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Nickel-catalyzed remote and proximal Wacker-
type oxidation
Binbin Liu1, Penghui Hu1, Fangning Xu1, Lu Cheng1, Mingxi Tan1 & Wei Han 1

Wacker oxidation chemistry is widely applied to oxidation of olefins to carbonyls in the

synthesis of pharmaceuticals, natural products, and commodity chemicals. However, in this

chemistry efficient oxidation of internal olefins and highly selective oxidation of unbiased

internal olefins without reliance upon suitable coordinating groups have remained significant

challenges. Here we report a nickel-catalyzed remote Wacker-type oxidation where reactions

occur at remote and less-reactive sp3 C–H sites in the presence of a priori more reactive ones

through a chain-walking mechanism with excellent regio- and chemo- selectivity. This

transformation has attractive features including the use of ambient air as the sole oxidant,

naturally-abundant nickel as the catalyst, and polymethylhydrosiloxane as the hydride source

at room temperature, allowing for effective oxidation of challenging olefins. Notably, this

approach enables direct access to a broad array of complex, medicinally relevant molecules

from structurally complex substrates and chemical feedstocks.
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Wacker oxidation, that is, the reaction of Pd-catalyzed
oxidation of alkenes into high value-added and syn-
thetically versatile carbonyls, is a central transforma-

tion in chemistry1–4 (Fig. 1a). This classical transformation is well
established for oxidation of terminal olefins. However, in this
reaction internal olefins are relatively unactivated without reli-
ance upon suitable coordinating groups5–9. Moreover, the inter-
nal olefins, particularly unbiased internal olefins, commonly
provide inseparable regioisomers with comparable yields5–9.
Actually, the regioselectivity issue of oxidation of internal
olefins represents another longstanding challenge in Wacker
chemistry1–9. Consequently, these challenges inherently under-
mine the utility of Wacker chemistry because the vast majority of
alkenes are unbiased internal olefins readily accessible from pet-
roleum and renewable resources such as seed oils10 and through
well-established synthetic routes such as carbonyl olefination11

and olefin metathesis12.
Remote functionalization that allows direct bond formation at

a distal and specific position other than the initial reactive site is a
significant challenge13–21, particularly in remote Wacker-type
oxidation. This is because the remote Wacker-type oxidation
would involve transition-metal hydride addition of an alkene into
the organometallic intermediate transition-metal alkyl, followed
by a sequential β-hydride elimination/migratory-insertion itera-
tion process reaching a specific remote sp3 C–H position where
oxidation occurs to liberate the desired single carbonyl
product13,14; unfortunately, both the reductive transition-metal

hydride and the unstable organometallic intermediate are com-
monly sensitive to oxidative conditions. Moreover, alkenes are
more reactive than alkanes owing to the exposed π-bonding
electrons, leading to oxidation of carbon–carbon double bonds in
preference to the remote sp3 C–H. Indeed, there were few clues in
the literature implying the exceptional difficulty for the devel-
opment of this protocol22–33. For example, isomerization of ole-
finic alcohols enabled by transition-metal hydride species leads to
the ketone products, which requires migration of the olefinic
unsaturations toward the tethered alcohols22–29. Alternatively,
internal olefins isomerization/hydroborations or isomerization/
hydrosilylations followed by oxidations can realize remote oxi-
dations30–34. While these methods are efficient, they all require
prefunctionalized starting materials. Apparently, straightforward
oxidation of olefins’ remote sp3 C–H to valuable ketones serves as
a more practical approach (For an example of Pd-catalyzed tan-
dem isomerization–Wacker oxidation of allyl arenes, see ref. 35.).

We previously identified an iron catalysis system enabling
highly efficient Wacker-type oxidation36. This oxidation trans-
formation involves iron hydride in situ generated from iron(II)
and hydrosilane to react with an alkene producing the adduct
alkyl iron intermediate that gives carbon-centered radical via
single-electron transfer37,38, followed by generation of the iron
peroxide complex in the presence of oxygen, ultimately to release
the desired carbonyl product36. This work led us to attempt
remote Wacker-type oxidation with an analogous process.
Apparently, this new strategy would require the discovery of a
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Fig. 1 Nickel-catalyzed Wacker-type oxidation at remote sp3 C–H sites. a Classical Wacker oxidation vs. remote Wacker-type oxidation. b Examples of
biologically active organic molecules that contain an aromatic ketone motif. c Mechanistic rationale for the nickel-catalyzed Wacker-type oxidation at
remote sp3 C–H sites
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catalyst enabling migration of an olefinic unsaturation toward a
specific position where oxidation occurs. Encouragement in this
regard was found in the work of inexpensive nickel-catalyzed
remote sp3 C–H functionalizations through a chain-walking
mechanism via iterative β-hydride elimination/nickel-hydride
species migratory insertion yielding a nickel alkyl
sequences31,32,39–44. Inspired by these investigations, we ques-
tioned whether we could utilize a nickel catalyst for the chal-
lenging remote oxidation of unactivated sp3 C–H sites in the
presence of a priori more reactive carbon–carbon double bonds.

On the basis of the above-mentioned results, we hypothesize
that the remote Wacker-type oxidation proceeds through a single
electron transfer (SET) process. To achieve requisite selectivity
and avoid the formation of regioisomeric oxidation products, this
remote Wacker-type oxidation process should preferably have
sufficient kinetic and thermodynamic favorability. In this context,
aryl-substituted olefins selected as substrates would be the opti-
mal choice because they can generate stable benzyl radical
intermediates and give the corresponding conjugated aryl ketone
products. Notably, aryl-substituted olefins that are widely present
in readily available and renewable plants of the family Anacar-
diaceae and Ginkgo biloba fruits10,45 undergo such a transfor-
mation to deliver aryl ketones, a privileged scaffold in medicinal
chemistry and pharmaceutical agents (Fig. 1b).

Here we develop an alternative disconnection, in which
internal olefins, including unbiased internal olefins, can be easily
converted to single regioisomeric ketones with high activity in the
absence of coordinating groups through remote Wacker-type
oxidation. This method is highlighted by the successful employ-
ment of ideal ambient air as the sole oxidant, natural abundance
of nickel as the catalyst, and a byproduct of the silicone industry,
polymethylhydrosiloxane (PMHS) as the hydride source under
room temperature allowing for effective oxidation of challenging
alkenes with excellent selectivity.

Results
Design principle. Details of our design principle are outlined in
Fig. 1c. Nickel hydride I, formed in situ from the reaction of L
[NiII]X with hydrosilane, undergoes hydrometalation of olefin to

provide alkyl nickel intermediate II40–43, followed by β-hydride
elimination to give a new metal-bonded hydride with a con-
comitant migration of the double bond III. Subsequently, re-
addition of the metal hydride generates a new alkyl–Ni species
IV. Iterative the β-hydride elimination/migratory insertion
sequences achieve a chain-walking process, delivering a critical
benzyl nickel intermediate V39–43. Then the reaction of V with
oxygen would form a thermodynamically favored benzyl
radical VII, followed by generation of a nickel peroxide complex
VIII46–50. Finally, VIII would undergo homolytic cleavage of
O–O and C–H bond breaking to liberate the thermodynamically
more stable product aryl ketone 2, while providing the LNiII-OH
species, which could regenerate the nickel hydride I catalyst by
hydride transfer in the presence of a hydrosilane50,51.

To probe this potential, our initial studies tested the
isomerization–Wacker-type oxidation of 4-allylanisole (1a) with
NiCl2/L1 (neocuproine) catalyst system using PhSiD3 as hydro-
silane and EtOH as solvent and was found to allow the formation
of desired aryl ketone 2a-d bearing similar degrees of D-
incorporation at all positions of its hydrocarbon chain (Fig. 2a),
suggesting that the process proceeds via Ni-D hydrometalation
and subsequent β-hydride elimination/migratory insertion
sequences and is bidirectional39–43. Furthermore, when olefin
1p was subjected to the reaction conditions under N2, a mixture
of olefins originating from olefin isomerization was observed by
gas chromatographic–mass spectrometric (MS) analysis and
subjected to the oxidation reaction conditions to produce only
one regioconvergent aryl ketone 2p (Fig. 2b), indicating that
olefin isomerization is independent of an oxidant and chain
walking precedes oxidation event. In the following oxidation
section, a benzyl nickel intermediate undergoing SET oxidation to
form a benzyl radical is supported by a radical capture
experiment where addition of a radical inhibitor Galvinoxy to
the reaction mixture of 1a resulted in total inhibition of the
oxidation transformation and intercepted the corresponding
benzyl radical to provide 2a’ based on high-resolution MS
(electrospray ionization) analysis (Fig. 2c). Collectively, these
results demonstrate the feasibility of the elementary steps in our
design principle.
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Fig. 2 Mechanistic studies. a Isotopic labeling experiment. b Intermediates analysis and oxidation of olefin isomers. The ratio of the mixture of alkenes was
determined by GC/MS. c Radical-trapping experiment
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Encouraged by the above results, we systematically evaluated
various parameters with exposure of 1a to a nickel species in the
presence of hydrosilane as a hydride source under aerobic
conditions at room temperature and found that optimal
conditions were achieved by using a combination of NiBr2 (5.0
mol%) and bench-stable L1 (6.0 mol%) as the catalyst and PMHS
(3.0 equiv) as the hydride source in EtOH under ambient air to
yield the desired aryl ketone 2a in 80% yield as a single
regioisomer (see Supplementary Table 1). Notably, compared
with L1, in 1,10-phenanthroline L2 lack of encumbered two
methyl groups at C2 and C9 led to no desired oxidation product.
Additionally, in line with our design principle, nickel catalyst,
PMHS, and air are all essential for oxidation. Without any one of
the three elements, no oxidation was possible.

Substrate scope. With the optimized conditions established, the
scope of the nickel-catalyzed remote and proximal Wacker-Type
oxidation was investigated (Fig. 3). Allyl benzenes bearing
electron-donating or/and electron-withdrawing groups could
be oxidized efficiently to afford the corresponding aryl ketones

2a–2m in good-to-excellent yields. The reaction of 1a could be
run on a 5 mmol scale to give a similar yield (78%). Although
steric hindrance on the aryl ring had a deleterious effect on the
yield, a synthetic useful yield could also be obtained (2c). Parti-
cularly noteworthy is the tolerance of bromo, chloro, fluoro, and
iodo groups (2e–2h and 2m), which can be used as pre-
functionalities for further transformations. Additionally, meth-
oxy, trifluoromethyl, cyano, and trimethylsilyl substitutes and
esters were unaffected under the normal reaction conditions.
Gratifyingly, the transformation can move beyond the simple aryl
group. For instance, allyl-substituted naphthalene and indole
were viable reagents in this reaction to build-up aryl ketones (2n–
2o). Compared with allylbenzene (1d), homoallylbenzene (1p)
could achieve an identical result in a longer reaction time (6 h).
Even further increasingly distal functionality, such as a thiophene
ring three methylene and a phenyl ring four methylene units
away (1r–1s), provided the desired products in 82% and 88%
yields, respectively. Notably, internal olefins such as 1t–1v, 1s’,
1s”, and 1r’ are not successfully oxidized through conventional
Wacker-type reaction but are suitable substrates for oxidation via
the present nickel catalysis. A variety of styrenes could also
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undergo direct oxidation under the reaction conditions to provide
the corresponding products 2w–2y, 2a, and 2t in good-to-
excellent yields.

A particularly noteworthy aspect of this protocol is its
amenability to late-stage synthetic applications (Fig. 4). For
instance, remote Wacker-Type oxidation of a Vitamin E succinate
derivative proceeded smoothly to give the desired product 4a in
82% yield. Eugenol peracetyl-glucoside 3b having activity against
the fungi52 was also oxidized in 82% yield (4b). In addition, the
steroidal substrates 3b–3f synthesized from estrone, epiandros-
terone, lithocholic acid, and glycyrrhetinic acid, respectively, were
subjected to the oxidation procedure, affording the desired
products in 62–86% yields (4b–4f). Notably, oxidatively labile
functional groups such as a hydroxy group and a carbon–carbon
double bond conjugated with a highly electron-withdrawing
substitute remained intact (4e–4f). Furthermore, cashew nutshell
liquid, a raw material, is directly obtained from the shell of the
cashew nut and contains cardol, cardanol, and anacardic acid. It
undergoes decarboxylation, vacuum distillation, hydrogenation,
and methylation to deliver 3g53. With our protocol, 3g could be
transformed to 4g in 65% yield with ideal selectivity (Fig. 4b).

Ultimately, a major benefit of this mild, nickel-catalyzed
aerobic oxidation is its viability to demonstrate regioconvergent
oxidation of mixtures of alkenes to produce single-regioisomer
aryl ketones. To demonstrate this potential, an equimolecular
mixture of three olefin regioisomers was subjected to the standard
reaction conditions to selectively generate a single product 2s in
88% yield (Fig. 5a). This finding showcased the potential of the

catalytic platform for conversion of cheap and abundant
petroleum-derived alkenes that are often mixtures of regioisomers
to value-added products containing single regioisomers. In
addition, elimination reactions frequently result in a mixture of
at least two olefin regioisomers that are difficult to separate. For
example, aliphatic tosylate 5a underwent elimination in alcoholic
MeONa solution54 to give a mixture of two regioisomers 1p’ and
1p” (molar ratio, 4.1:1) that could be directly transformed to a
single-regioisomer aryl ketone 2p in 78% yield by using our
protocol (Fig. 5b). Similarly, alcohol 5b dehydration55 generated a
mixture of olefins 1s’ and 1s” with a 1.5:1 molar ration, which
was subjected to the reaction conditions and produced only one
regioconvergent oxidation product 2s in 62% yield (Fig. 5c).
Neither purification nor isolation of the intermediate olefinic
isomers was necessary, showing the robustness of our method.

Discussion
In summary, we have developed a conceptually new approach to
selective oxidation of remote sp3 C−H bonds to produce ketones.
The transformation proceeds through the nickel-catalyzed alkene
isomerization to transfer the unit of unsaturation to the most
thermodynamically favored position in the molecule and sub-
sequent oxidation using ambient air as the sole oxidant at room
temperature. The mild, expeditious, and operationally simple
protocol allows efficient remote oxidation of terminal olefins and
unactivated internal olefins with excellent functional-group tol-
erance and regio- and chemo-selectivity. Even unrefined mixtures
of olefins can undergo regioconvergent oxidation to selectively
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produce a single product, which is not currently accessible.
Notably, the protocol is particularly useful for late-stage oxidation
of structurally complex substrates, which offers a unique
approach to conceptualize the remote oxidation disconnections in
organic synthesis.

Methods
General procedure. A 25 mL flask was charged with NiBr2 (2.8 mg, 0.0125 mmol),
neocuproine (3.2 mg, 0.0150 mmol), olefin (0.25 mmol), EtOH (2 mL), and PMHS
(170 μL, 0.75 mmol). The reaction mixture was stirred in an open air atmosphere at
room temperature until the reaction was complete (observed by thin layer chro-
matography). The resulting reaction solution was directly purified by column
chromatography (petroleum ether/ethyl acetate) on silica gel to afford the corre-
sponding product.

Synthesis and characterization. See Supplementary Methods for general infor-
mation about chemicals and analytical methods, synthetic procedures, 5 mmol-
scale synthesis, regioconvergent oxidation of mixtures of olefins (see Supplemen-
tary Figures 6–8), and characterization of products. For 1H and 13C nuclear
magnetic resonance data, see Supplementary Figures 9–40.

Optimization. See Supplementary Table 1.

Mechanistic studies. See Supplementary Figures 1 and 2 (isotopic labeling
experiment), Supplementary Figure 3 (intermediates analysis and oxidation of
olefin isomers), and Supplementary Figure 4 and 5 (interception of radical
intermediate).

Data availability
We declare that the data supporting the findings of this study are available within
the article and Supplementary Information file or from the corresponding author
upon reasonable request.
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