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Fast, accurate, and interpretable
decoding of electrocorticographic signals
using dynamic mode decomposition
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Dynamic mode (DM) decomposition decomposes spatiotemporal signals into basic oscillatory
components (DMs). DMs can improve the accuracy of neural decoding when used with the nonlinear
Grassmann kernel, compared to conventional power features. However, such kernel-based machine
learning algorithms have three limitations: large computational time preventing real-time application,
incompatibility with non-kernel algorithms, and low interpretability. Here, we propose a mapping
function corresponding to the Grassmann kernel that explicitly transforms DMs into spatial DM (sDM)
features, which can be used in any machine learning algorithm. Using electrocorticographic signals
recorded during various movement and visual perception tasks, the sDM features were shown to
improve the decoding accuracy and computational time compared to conventional methods.
Furthermore, the components of the sDM features informative for decoding showed similar
characteristics to the high-γ power of the signals, but with higher trial-to-trial reproducibility. The
proposed sDM features enable fast, accurate, and interpretable neural decoding.

Fast and accurate characterization of the spatiotemporal dynamics of neural
signals is crucial to decode neural signals for brain-computer interfaces
(BCIs), which can be applied to allow severely paralyzed patients to recon-
struct their lost communication and mobility functions. Dynamic mode
decomposition (DMD) is a numerical method to obtain representations
called Koopman modes1–6, each of which corresponds to an oscillation of a
spatial pattern with a fixed frequency and decay/growth rate. For a multi-
dimensional (P-dimensional) time series x tð Þ 2 RP that can be approxi-
mated as evolving over time Δt, as shown in Eq. (1), DMD approximately
decomposesx tð Þ as a superpositionofKoscillatory components in a complex
space, as shown in Eq. (2), by obtaining λk and φk based on singular value
decomposition (SVD) applied for A in Eq. (1) (see “Methods”):

x t þ Δtð Þ ¼ Ax tð Þ ð1Þ

x tð Þ≈
XK

k¼1
φk rk

t expð2πi f k tÞ bk ð2Þ

where rk ¼ λk
�� ��1=Δt and f k ¼ arg λk

� �
=2πΔt.

Here, each of the K oscillatory components is represented by a spatial
pattern φk, an P-dimensional complex vector representing the dynamic
mode (DM), and the following parameters of the kth DM: f k, the frequency
of the DM; rk, the decay/growth rate of the DM; and bk, a scalar that
determines the initial phase of the DM.

Figure 1 shows examples of DMs. Spatiotemporal signals of x tð Þ were
generated as the sum of two oscillations with different spatial distributions
(x1 tð Þ þ x2 tð Þ, Fig. 1a). When SVD was applied for A in Eq. (1), four
singular values were obtained as nonzero values (Fig. 1b). By using the four
SVD components corresponding to these nonzero singular values, four
oscillatory components (DMD components) were acquired (Fig. 1c). By
adding the products of each DM and time dynamics, an approximation for
x tð Þ (xrecon tð Þ) can be obtained (Fig. 1d). Notably, some of the DMD
components have complex conjugate pairs for their modes and time
dynamics (e.g., DMD components 1 and 2), yielding real summed values.
Because the original observed spatiotemporal signals x tð Þ are strictly real,
DMDalways decomposes the signals into realDMDcomponents or pairs of
complex conjugate DMDcomponents, ensuring that the reconstructed x tð Þ
(xrecon tð Þ) is in real space7.
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TheKoopmanmodes extracted by theDMDprocess (DM,φk) capture
some characteristic spatiotemporal patterns in the dynamics of neurophy-
siological signals; thus, the DMs are useful for neural decoding. Previous
studies have demonstrated that DMs characterize spindles recorded by
electrocorticographic (ECoG) signals8 and different traits of functional
magnetic resonance imaging (fMRI) scans9. Our previous study also
demonstrated that DMs were informative for classifying the ECoG signals
corresponding to some handmovements10. In that study, DMDwas applied

to the ECoG signals for each trial and the resultant matrix of DMs
(Φ¼ φ1. . .φK

� �
) was compared with the matrix of another trial using the

projection kernel11–13, one of the Grassmann kernel functions, to quantify
the similarity among all trials. It should be emphasized that a direct com-
parison between the matrix of DMs for the ith trial (Φi¼ φi

1 . . .φ
i
K

� �
) and

that of the jth trial Φj is difficult, because each DM φi
k has a different

frequency f ik. Hence, the projection kernel was introduced in the previous
study to define the similarity between thematrices for each trial, kpðΦi;ΦjÞ.

Fig. 1 | Representative example of dynamicmodedecomposition. aSpatiotemporal
signals of x tð Þ were created by adding two different signals: x1 tð Þ: 13-Hz sine wave with
decaying amplitude over time (X1(p, t) = sech(p+ 3) × 0.25t × sin(2π × 13t); x2(t): 8-Hz
sine wave with increasing amplitude (X2(p, t) = sech(p− 3) × 2t × sin(2π× 8t). Both
signals were sampled at 1 kHz for a duration of 0.5 s. Observation points (i.e., position p)
ranged from−10 to 10, with an interval of 0.25.b Singular values acquired by SVDbased
on (a) are shown, starting with the largest value. All values except the first four SVD
componentswere zero. Because of the stackingprocess prior to the SVD(see “Methods”),
only 493 components were acquired by the SVD process. The horizontal axis is shown
with a log scale. c, d Four DMD components determined based on the four SVD
components with nonzero singular values are shown for (c) time dynamics and DMs,

along with (d) their corresponding spatiotemporal signals. Here, DMD components 1
and 2 and DMD components 3 and 4 are complex conjugate pairs with respect to their
modes and temporal dynamics because the original spatiotemporal signal x tð Þ is strictly
real. For visibility, each DMwas L2-normalized, and the scaling factor for each DMwas
applied to the corresponding time dynamics so that their products were the same. By
adding the products of the fourDMs and time dynamics in (c), the original signals (x tð Þ)
were reconstructed (xrecon tð Þ) as shown in (d). e A matrix of the concatenated L2-
normalizedDMswasmultipliedby its transpose to acquire the sDMfeatures. fToacquire
frequency-filtered sDM features, the L2-normalized DMs were filtered based on their
corresponding frequencies before the multiplication was performed.
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A support vector machine (SVM) was then applied to the acquired Gram
matrix of kpðΦi;ΦjÞ to infer one of three types of movements (cf. Fig. 2a).
The SVM model successfully classified the ECoG signals with an accuracy
superior to that of amodel usingpower features estimatedbasedon the same
ECoG signals. Interestingly, the accuracy of this DM-based decoding
approach significantly decreased when the method was applied to ECoG
signals with shuffled phases. The higher accuracy than the power features
and phase-shuffled ECoG signals indicate that the DM-based decoding
method efficiently utilizes the information encoded in the spatiotemporal
patterns of the ECoG signals.

Although the DM-based decoding method improved the accuracy of
the neural decoding results, three remaining problems must be addressed:
(1) the large computational time prevents real-time application of the
decodingmethod in BCIs; (2) themethod is incompatible with non-kernel-
basedmachine learning algorithms; and (3) the characteristics of the signals
contributing to decoding cannot be easily interpreted. The computational

time for predicting a new sample (trial) with a kernel-based machine
learningmodel is proportional to thenumberof training samples; hence, it is
difficult to obtain predictions in real time with a large training dataset.
Furthermore, it is difficult to combine sparse regularization methods with
kernel-based algorithms, although the effectiveness of sparse regularization
in neural decoding has been demonstrated both empirically14–16 and
theoretically17. Finally, the kernel-based algorithms can evaluate only the
distances among the matrices of DMs for each trial, preventing the eva-
luation of the characteristics of the signals in each trial.

Here, we solved the above three problems by designing a nonlinear
feature mapping corresponding to the projection kernel. Known as the
kernel trick, kernel-based machine learning algorithms with a kernel
function k �; �ð Þ are equivalent to linearmachine learning algorithmswith a
nonlinear feature mapping function ψ �ð Þ satisfying:

k x1; x2
� � ¼ ψ x1

� �T
ψ x2
� � 8x1; x2 2 V

� �
whereV is the input space of the kernel function andAT denotes transpose
ofA. In this study, we obtained such a nonlinear feature mapping function
ψ �ð Þ for the projection kernel to acquire vectorized features, which can be
used in linearmachine learning algorithms. In this work, the effectiveness of
our proposed features was empirically evaluated using two types of ECoG
signals: during hand movements and during visual stimuli. Furthermore,
the properties of the sDM features were compared with those of the power
features to characterize the properties of the features.

Results
Nonlinear feature mapping equivalent to the projection kernel
for DMD
Thenonlinear featuremappingψ �ð Þ corresponding to the projection kernel
and L2-regularized SVM was obtained as follows. First, the prediction y of
the kernel-based classifier for test sample x is defined as shown in Eq. (3),
where k, xn, an, and b denote the kernel function, nth training sample,
weight, and bias, respectively:

y xð Þ ¼ sign
XN

n¼1
ank xn; x

� �þ b
� �

ð3Þ

The projection kernel kp between the two matrices of DMs for the ith
and jth trials (Φi andΦj, respectively;Φi;Φj 2 CP ×K ) is written as follows

Fig. 2 | Representative Gram matrix and sDM features during the arm
motor task. a–eThe ECoG signals recorded when patient 1 performed three types of
movements were used to calculate 300 DMs for each trial to obtain the Grammatrix
acquired by projection kernel kpðΦi;ΦjÞ among the trials. The sDM features were
calculated based on the same DMs used in (a) to visualize the (b) averaged sDM
features among the trials of the same movement type and (c) F values of the sDM
features among the different movement types. Notably, the sDM features are sym-
metrical due to their definition. The snDM features shown in (b) and their corre-
sponding F values (diagonal part of (c)) are shown by corresponding colors at the
location of each electrode on the normalized brain in (d) and (e), respectively. f For
each patient, Pearson’s correlation coefficient was calculated between the snDM
features and the PSD of each frequency by concatenating the features from all
channels and all trials. The correlation coefficients were Fisher z-transformed and
averaged among the patients, as shown by the black line, with the colored area
representing the 95% confidence intervals (CIs) among the patients. The dips in
correlation at 180 Hz and 300 Hz are considered to be due to noise caused by odd
harmonics of the power supply frequency (60 Hz). g For the power features of each
frequency band and the snDM features, the reproducibility of the features among the
trials of the same movement type was evaluated with Pearson’s correlation coeffi-
cients. To calculate the reproducibility of each feature, the correlation coefficients
were calculated among all possible pairs of trials of the same movement type, Fisher
z-transformed, and averaged for each patient. The average reproducibility is shown
in the bar graph, with 95% CIs among the patients. Each dot represents the repro-
ducibility of each patient.

https://doi.org/10.1038/s42003-024-06294-3 Article

Communications Biology |           (2024) 7:595 3



with Ay denoting conjugate transpose of A:

kp Φi; Φj
� � ¼ ������ΦiyΦj

������2
F
¼ tr ΦiΦiy

� �
ΦjΦjy

� �h i

¼ vec ΦiΦiy
� �y

vec ΦjΦjy
� �

¼ ψ Φi
� �y

ψ Φj
� �

ð4Þ

where

ψ Φð Þ ¼ vecðΦΦyÞ ð5Þ

Here, we callΦΦy in Eq. (5) as the spatial DM (sDM) features. Using
the vectorizedΦΦy (ψ Φð Þ), Eq. (3) can be rewritten as follows:

y xð Þ ¼ sign
XN

n¼1
anψ Φnð Þyψ xð Þ þ b

� �
ð6Þ

By setting wT ¼ PN
n¼1anψ Φnð Þy ¼ PN

n¼1anψ Φnð ÞT, Eq. (6) can be
written as follows, which is the formula for predicting y with a non-kernel-
based (linear) classifier based on test sample x:

y xð Þ ¼ sign wTψ xð Þ þ b
� � ð7Þ

Therefore, by using vectorized sDM features obtained by the feature
mapping ψ �ð Þ from the DMs, a prediction equivalent to Eq. (3) can be
performed with a linear classifier. The sDM features have three interesting
characteristics: (1) Although the matrix of DMs Φ includes complex
numbers, the sDM features are always real values because pairs of complex
conjugate modes are always obtained by DMD (e.g., Fig. 1d). (2) The sDM
features are always symmetrical due to the definition (ΦΦy). (3) The sDM
features are formulated as the matrix P × P, which corresponds to all
combinations of two channels in P-channel spatiotemporal signals, such as
ECoG signals.

Figure 1e demonstratesΦΦy for DMs in [φ1. . .φ4] (ΦΦy 2 RP × P ; P
is the number of observation points (e.g., channels of ECoG signals) in the
original spatiotemporal signals x tð Þ. It is worth mentioning that these sDM
features are composed of all DMs; thus, the resultant sDM features were
determined by modes with frequencies distributed widely in the range of
[0; ð1=2ΔtÞ] Hz. The sDM features for certain frequency bands can also be
obtained by selecting modes based on the frequency band (frequency-fil-
tered sDM features;ΦΦy

f low<f <f high
). For example, if the DMs are divided by

their frequencies with a threshold of 10Hz, the frequency-filtered sDM
features ΦΦy

f <10Hz and ΦΦy
f ≥ 10Hz represent the sDM features corre-

sponding to oscillations at two different frequencies (8 and 13Hz, as shown
in Fig. 1f).

sDM features of ECoG signals during hand movements
The characteristics of the sDM features were evaluated by using the same
dataset of ECoG signals fromour previous study10. This dataset is composed
of ECoG signals that were recorded at 1 kHz while 11 patients performed
three types of movements with their hand contralateral to the implanted
electrodes. Due to clinical requirements, all these patients had subdural
electrodes implanted in cortical areas, including the sensorimotor cortex.
The dataset consists of ECoG signals from the frontal and parietal cortices
(ECoG dataset of arm motor task; Supplementary Table 1). Following the
method used in our previous study, the DMs were calculated based on the
500-ms ECoG signals after the cue to start the movements, with truncation
of the SVD components; the truncation was performed based on the sin-
gular values so that the SVD components with the largest singular values
were included in the DM calculation. Because the number of included SVD
components, referred toas the rank in this study, largely affects thedecoding
accuracy, it is important to optimize the rank parameter. However, here, the
rank was fixed to 300, which was the same value used in our previous study,
to show the representative sDM features and to compare the classification

accuracy and computational time. With the exception of this analysis, the
rank parameter was optimized simultaneously with the parameter to train
the decoding model via nested cross-validation for all other analyses in this
paper (see “Methods”).

Figure 2a shows a representative example of theGrammatrix acquired
by the projection kernel applied among the DMs from 120 trials, in which
patient 1 performedgrasping, opening, or pinchingmovements with his left
hand. The Gram matrix showed that the kernel values became similar
among trials for the same movement type. For the same DMs from 120
trials, the sDM features (ΦΦy : ðΦΦyÞi;j2R;i; j ¼ 1; . . . ; P) were acquired
for each trial, where P is the number of analyzed channels for the patient.
Figure 2b shows an example of the sDM features averaged for each move-
ment type.Because the sDMfeatures are always symmetric, the independent
components are on thediagonal andone side of theoff-diagonal.We refer to
these independent diagonal and off-diagonal components of the sDM fea-
tures as spatial node DM (snDM) features (ðΦΦyÞi;i; i ¼ 1; . . . ; P) and
spatial edge DM (seDM) features (ðΦΦyÞi;j; i; j ¼ 1; . . . ; P; i<j), respec-
tively. When one-way analysis of variance (ANOVA) was applied for each
component in the matrix for the three types of movements, the F values of
the ANOVAwere higher for the diagonal components of the sDM features
(snDM features) than for the off-diagonal components of the sDM features
(seDM features; Fig. 2c). It was demonstrated that the snDM features had
higher selectivity than the seDM features. Moreover, these snDM features
and the corresponding F values exhibited high values around the sensor-
imotor cortex (Fig. 2d, e).

To characterize the neurophysiological properties of the snDM fea-
tures, the snDM features were compared with the power spectrum density
(PSD) features of the same ECoG signals. Because each component of the
snDMfeatures corresponds to a channel, the snDMfeaturesof all trialswere
concatenated for each patient to calculate Pearson’s correlation coefficient,
with the PSDof each frequency concatenated for all channels and trials. The
correlation coefficients were Fisher z-transformed and averaged among all
patients; the resulting coefficients became high from ~80Hz to ~200Hz
(Fig. 2f), a range that interestingly includes the high-γ band (80–150Hz),
which is known to be the most informative frequency band for movement
classification18. Hence, the results showed that the snDM featuresweremost
similar to the high-γ power features among the frequency band powers in
the ECoG signals. On the other hand, when the snDM features were
compared against different trials of the same movement, considering all
possible pairs for each patient, the reproducibility of the snDM features was
significantly higher than that of the power features, including the high-γ
power features (Fig. 2g;p < 0.001,F(4,50) = 94.95, one-wayANOVA; snDM
features vs. other features, p < 0.001, post hoc Tukey‒Kramer test; for
reproducibility during visual perception, see Supplementary Fig. 1). These
results suggested that snDM features capture similar cortical activities
represented by high-γ power features with higher reproducibility.

Neural decoding using sDM features of ECoG signals during
hand movements
To assess the feasibility of using sDM features for neural decoding, we
compared the computational times and accuracies in classifying the
movement types using the Gram matrix of the DMs and the sDM features
by SVM. First, the computational times were compared between the kernel-
based L2-regularized SVM, with the Gram matrix acquired based on the
DMs by the projection kernel, and the non-kernel-based (linear) L2-
regularized SVM with the corresponding sDM features. We assessed the
decoder training time and the time for the decoder to predict a new sample
by changing the number of training samples per class (movement type).
Because SVD was a common process among the different decoding
methods, themeasurement was performed based on the precomputed SVD
components. Moreover, it should be noted that the rank parameter to cal-
culate the sDM features was fixed at 300.

The training time of the decoder using the Gram matrix increased
exponentially with the number of training samples (~O(n1.99), where n is
number of samples per class; shown as a green line in Fig. 3a). In contrast,
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when the sDM features were used with the linear L2-SVM, the computa-
tional complexity was reduced to ~O(n1.15) (shown as a blue line in Fig. 3a).
Similarly, theprediction time for anewsample increasedwith thenumberof
training samples (~O(n0.75)) for the Grammatrix, while the prediction time

using the sDM features and linear L2-SVMwasmuch shorter and increased
much more slowly with the number of training samples (~O(n0.05)) (for a
comparison of the computational times between high-γ power features and
sDM features, see Supplementary Fig. 2). In addition, the decoding
accuracies were exactly the same between the method using the Gram
matrix and themethodusing the sDMfeatures (73.80 ± 7.04%(mean ± 95%
CI) for both, Fig. 3b). Because the matrix of the sDM features is symmetric,
the lower triangular part of the sDM features was redundant for the clas-
sification analysis. By performing classification using only the diagonal and
upper triangular part of the sDM features (snDM features and seDM fea-
tures, respectively), the classification accuracy was slightly improved to
76.75 ± 6.67% (labeled as snDM+ seDM in Fig. 3a). Use of the sDM fea-
tures increased the training and testing speeds for the neural decoding
process without decreasing the decoding accuracy.

An SVM with L1 regularization (L1-SVM) was then applied to the
combined snDM and seDM features. For comparison, we also applied the
L1-SVM to the high-γ power features. It is worth mentioning that the L1-
SVM cannot be applied to the Gram matrix. The classification accuracy of
the combined snDM and seDM features with the L1-SVM (80.45 ± 7.52%)
was significantly higher than that of the high-γ power features with the L1-
SVM (71.40 ± 8.14%; p < 0.01, two-tailed paired t test, t(10) = 4.61; Fig. 3b)
and that of the Gram matrix of the DMs with the L2-SVM (p < 0.01,
t(10) = 4.66). In addition, the classification accuracy using the snDM fea-
tures (81.33 ± 6.71%)was similar to the accuracy using the combined snDM
and seDM features (Fig. 3b). In contrast, the accuracy using the seDM
features was lower (58.67 ± 6.55%). Notably, the use of the snDM features
with the linear L1-SVM reduced the training time to ~O(n0.97) and the
prediction time to ~O(n0.001) compared to the use of the sDM features with
the L2-SVM (Fig. 3a). Therefore, these results demonstrated that the sDM
features, especially the snDM features, with the L1-SVM model improved
the classification accuracy and computational time for the neural decoding
of ECoG signals recordedduring handmovements (for the specific effects of
the available electrodes on the classification accuracy and the importance of
each electrode, see Supplementary Figs. 3 and 4).

As previously mentioned, the sDM features were composed of DMs
from the full frequency range; hence, the sDM features were unlikely to
capture differences in the frequencies of the DMs. To assess the differences
in the frequencies of the modes for different movement types, the classifi-
cation accuracy was evaluated using snDM features calculated from DMs
whose frequencies fell within a given frequency range (Fig. 1f; for visuali-
zation of the frequency-filtered snDM features, see Supplementary Fig. 5).
Here, the evaluation was performed with the L1-SVM model for conven-
tional frequency bands (0–1, 1–4, 4–8, 8–13, 13–30, 30–80, 80–150, and
150–500Hz). The classification accuracies significantly differed among the
frequency bands (p < 0.001, F(7,80) = 19.34, one-way ANOVA); interest-
ingly, the classification accuracies for the frequencybands of 80–150Hz and
150–500Hz, which are known to be informative for movement decoding
using power features18, were significantly higher than those of the other
frequency bands except 30–80Hz (p < 0.01, post hoc Tukey‒Kramer test of
one-way ANOVA). However, the classification accuracy using the com-
bined frequency-filtered snDM features from all bands was similar to that
using the (nonfiltered) snDM feature (combined frequency-filtered snDM
features, 81.12 ± 5.54%; snDM features, 80.88 ± 6.34%). Notably, the clas-
sification accuracy did not improve when frequency-filtered seDM features
were included (combined frequency-filtered seDM features, 65.17 ± 8.87%;
combined frequency-filtered snDM and seDM features, 79.39 ± 6.09%).
These results suggested that (1) the information about the movement type
included in each frequency band was not complementary, and (2) the dif-
ferences in the movement types did not largely affect the frequencies of
the DMs.

Comparison of neural decoding accuracy for different types of
tasks and decoding using ECoG signals
The accuracies of neural decoding using snDMand seDM features based on
ECoG signals were compared among different types of tasks and with the

Fig. 3 | Decoding accuracy and computational time using sDM features.
a Training and testing times of SVM models plotted against different numbers of
training samples per class. The training time versus the number of samples per class
was fitted by a linear model in log space for both time and number of samples per
class to estimate the computational complexity. The computational time of each
measurement is shown as dots. b Accuracies to classify three types of movements
using snDM features, seDM features, and the combination of both features are
shown as bars with the 95% CI among the subjects, with individual accuracy
represented by dots. For the combination of the SVMmodel and features shown in
(a), same color to (a) was used to plot the bar; for other combinations, white bars
were used. Since the sDM features were constructed such that classification with a
linear L2-SVMmodel based on the sDM features was mathematically equivalent to
classification with kernel-based L2-SVM based on the Gram matrix of DMs, the
classification accuracies were exactly the same. c Frequency-filtered snDM features
were calculated for each frequency band of the ECoG signals to perform classifi-
cation with the L1-SVM model with an optimized rank. Classification was also
performed based on the features created by concatenating all of the frequency-
filtered snDM features (combined) and snDM features without frequency filtering
(nonfiltered). The average classification accuracies are shown by bars with 95% CIs
among the patients, with individual accuracies shown as dots. The differences in the
classification accuracies among the frequency bands were evaluated by one-way
ANOVA with a post hoc Tukey‒Kramer test. *p < 0.05, **p < 0.01.
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accuracies using high-γ power features. Here, we used our own ECoG
dataset of video perception task (Fukuma et al.19) and an open dataset of
ECoG signals, including hand versus tongue movement task, finger flexion
task, and image perception task (Miller20). Neural decoding by either clas-
sification or regression was performed for each of these datasets. As sum-
marized in Fig. 4, the proposed method successfully decoded ECoG signals
with an accuracy higher than or comparable to that using high-γ power
features regardless of task or decoding type (due to the computational time,
L2 regularization was used for regression throughout this study; Supple-
mentary Fig. 6 and Supplementary Tables 3, 4). Consistent with the results
based on the ECoG dataset of the arm motor task, the snDM features
enabled neural decodingwith higher accuracy than the seDMfeatures for all
datasets (Fig. 4, black bars), and use of the frequency-filtered snDM and
seDM features did not show considerable improvement in the decoding
accuracy (Fig. 4, white bars).

Discussion
We proposed sDM features to characterize spatiotemporal signals. The
sDM features were DM representations transformed by a mathematical
conversion equivalent to the projection kernel and kernel-based L2-SVM.
Throughout this study, the following advantages of the sDM features were
shown. (1) The sDM features enable neural decoding with DMs for real-
time BCIs that require small delays to control external devices based on
ECoGsignal changes. In fact, the use of the sDMfeatures drastically reduced
the prediction time from ~O(n0.75) to ~O(n0.001) (n is number of training
samples), which is the time achieved to classify theGrammatrix acquired by
the projection kernel based on the DMs. Notably, the training time of the
decoder was also reduced from ~O(n1.99) to ~O(n0.97), enabling the use of
more training samples. (2) The sDM features allow neural decoding to be
performed with L1 regularization, thereby improving the classification
accuracy using ECoG signals. Moreover, even with regression with L2
regularization, the regression accuracy for the finger flexion task increased.
These results strongly suggest that the sDM features are promising for fast
and accurate decoding. (3) The characteristics of the signals can be inferred
based on the different behaviors of the snDM, seDM, and the frequency-
filtered sDM features. Based on the results, the ECoG signals were char-
acterized by snDM features as opposed to seDM features. Furthermore,
because the use of frequency-filtered sDM features did not show con-
siderable improvement in the decoding accuracy compared to use of the
nonfiltered sDM features, the frequency information appears to be less
effective in the neural decoding of ECoG signals. Therefore, the proposed
sDMfeatures have several key factors that demonstrate their effectiveness as

BCI decoders for ECoG signals: (1) high accuracy, (2) fast computational
speed, (3) good scalability, and (4) good interpretability.

The high-γ activities in ECoG signals have been determined to be the
most informative frequency band for neural decoding18,19,21–24, reflecting the
spiking activities of neurons25; hence, the use of high-γ powers has been a
standardmethod to extract useful information fromcortical activity.On the
other hand, the (nonfiltered) sDM features proposed in this study are
constructedbasedonDMsregardless of theirwidelydistributed frequencies.
Interestingly, although the high-γ powers and the sDM features are pro-
duced in different ways, the correlation coefficient between the high-γ
powers and the snDM features suggests that they extract similar informa-
tion. Moreover, the snDM features have smaller variance within the same
task than the high-γpowers, which likely contributes to the improvement in
the decoding accuracy. It is worth noting that the use of the frequency-
filtered snDM features did not lead to a considerable improvement in the
decoding accuracy of the ECoG signals. Taken together, the results suggest
that themotor and visual information in the ECoG signals is not encoded in
the frequencies of the DMs, although the high-γ power features are highly
informative among the various frequency bands. The sDM features are
novel electrophysiological features that stably extract neural information
without explicitly selecting the frequency band for neural decoding.

The proposed method utilizes information about the nonlinear
dynamics in ECoG signals while avoiding the computational costs incurred
for decoding via kernel methods. In our previous study, decoding was
performed based on a symmetric positive definite matrix (Gram matrix)
calculated by means of a projection kernel on a Riemannian manifold; in
contrast, theproposedmethoddirectly converts theDMs into sDMfeatures,
enabling theuseofnon-kernel-baseddecoders (e.g., L1-regularizedSVM). It
should also be mentioned that both DMD and traditional empirical mode
decomposition (EMD) offer effective ways to derive information about the
nonlinear dynamics in time-series data. However, DMD has the following
main advantages over EMD for high-dimensional data with nonlinearities,
such as in the present case. (1) The decompositions obtained by DMD are
known to be closely related to several physical concepts, such as phase
reduction as discussed in the field of nonlinear science, allowing the
extracted information to be interpreted bothphysically andmathematically.
(2) EMD is amethod that captures nonlinearity and nonstationarity in data
based on the extraction and smoothing of local extreme values in the data,
and in principle, it is known to be numerically unstable and generally
difficult to apply to high-dimensional data due to its large computational
cost. On the other hand, DMD is based on relatively stable numerical
computations (SVD and eigenvalue decomposition), is known to be robust

Fig. 4 |Neural decoding accuracies for various ECoGdatasets.Bars showdecoding
accuracies using high-γ power features, snDM features, seDM features, and the
combination of both features (black bars) and those using the corresponding part of
the frequency-filtered sDM features (white bars) for the ECoG datasets: a hand
versus tongue movement task (n = 19), b image perception task (n = 7), c finger
flexion task (n = 7; the average of the Fisher z-transformed correlation coefficients
for the thumb, index finger, and little finger is shown, followingMiller et al.32; for the

correlation coefficients for each patient and each finger, see Supplementary Table 4),
and d video perception task (n = 17; the average of the Fisher z-transformed cor-
relation coefficients among 1000 dimensions is shown). Error bars represent 95%
CIs among patients, with dots representing decoding accuracy for each patient. For
classification in (a) and (b), L1-SVM was applied. The differences in the decoding
accuracies using the high-γ power features and snDM features were evaluated by
means of two-tailed paired t tests. *p < 0.05, **p < 0.01.
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for high-dimensional data, and is capable of extracting information that
captures globaldynamic features indata6. In fact, theproposed sDMfeatures
are informative for various types of tasks and decoding (Fig. 4). Considering
the improved computational cost in this study, the proposed method may
also be effective even for different modalities of spatiotemporal signals with
high spatial dimensions.

Finally, the proposed sDM features can be further combined with
different machine learning algorithms other than simple SVM and regres-
sion.Many new algorithms have beenproposed for decoding ECoG signals,
includingmethods based ondeep neural networks (DNNs)with long short-
term memory26, recurrent neural networks21, and gradient boosting trees27.
In fact, it has been reported that the decoding accuracy (correlation coef-
ficient) for the finger flexion task can reach 0.50 for all fingers and for all
patients in a datasetwith gradient boosting trees27, whereas the accuracywas
0.37 for snDM features with L2-regularized regression (see Supplementary
Table 4). Thus, the proposed sDM features may improve the decoding
accuracy when combined with these algorithms. Moreover, recent studies
using DNNs have shown the viability of across-patient decoding by means
of weights for individual patients (subject blocks)28 or electrode-level data
projections onto predefined brain regions29. With these techniques, sDM
features, which capture the spatiotemporal patterns of multiple signals,
could similarly be used for decoding across patients.

In conclusion, our proposed sDM features were demonstrated to be
effective for the fast and accurate decoding of ECoG signals in various tasks.
Furthermore, snDM features without frequency band selection appear to be
the most effective features for decoding ECoG signals.

Methods
Analyzed datasets
This study employed two in-house datasets that were used in our previous
reports (ECoG dataset of arm motor task (Shiraishi et al.10) and ECoG
dataset of video perception task (Fukuma et al.19)), and publicly available
datasets (ECoG signals acquired during hand versus tongue movement,
flexion offingers, and visual perception of face and house images (Miller20)).
To record the in-house datasets, experimentswere performed in accordance
with the experimental protocol approved by the ethics committee of each
hospital (Osaka University Medical Hospital: Approval No. 08061, No.
14353, No. 19257, UMIN000017900; Juntendo University Hospital:
Approval No. 18-164; Nara Medical University Hospital: Approval No.
2098). Prior to the experiments, all subjects or their guardians provided
written informed consent to participate in the study. All ethical regulations
relevant to human research participants were followed.

ECoG dataset of the arm motor task (in-house dataset from
Shiraishi et al.10)
Subjects. The ECoG dataset of the arm motor task consisted of eleven
subjects (7 males; age range, 13–66 years), with subdural electrodes
placed on their front-parietal area, including the sensorimotor cortex. All
subjects were implanted with intracranial electrodes prior to the study for
the purpose of treating their drug-resistant epilepsy.

Task procedure. The subjects were instructed to perform three types of
movement with their upper limb contralateral to the sensorimotor cortex
where the subdural electrodes were implanted. Three types of movement
were selected among grasping, pinching, hand opening, thumb flexion,
and elbow flexion18 according to their performance ability and comfort.
For each trial, three visual and auditory cues were provided at intervals of
1 s; at the timing of the last cue, the subjects performed one of the three
types of movement once and returned to the resting position, relaxing
their hands or elbows with slightly flexed joints. For the types of per-
formed movements and number of trials for each movement type, see
Supplementary Table 1.

Experimental settings andECoG recordings. The subjects were seated
on chairs to perform the movement tasks. A computer screen was placed

in front of the subjects to show the movement cue, which was also
delivered auditorily. The presentation of the cues was controlled using
ViSaGe (Cambridge Research System, Rochester, UK). During the
experiment, ECoG signals were recorded at 1 kHz by EEG-1200 (Nihon
Koden, Tokyo, Japan) by referencing the average of two intracranial
electrodes. Digital pulses denoting the timing of the cue were recorded
synchronously with the ECoG signals.

Signal preprocessing. Signal preprocessing of this dataset was per-
formed as described in our previous study10 by rejecting noisy channels
and channels located outside of the front-parietal area via visual
inspection (for the number of channels in the dataset, see Supplementary
Table 1). For the analyses in this study, the ECoG signals were common-
average referenced and cropped from 0 to 500 ms with respect to the
movement cue.

Division of the dataset for classification. This dataset was evaluated by
classification analysis with nested cross-validation for each patient. To
accurately estimate the classification accuracy, 10-fold outer cross-
validationwas repeated 10 times by changing the division of the dataset to
calculate the average of the 10 classification accuracies. For each outer
fold, inner cross-validation was also repeated 10 times by changing the
division of the samples to accurately estimate the best decoder para-
meters. The imbalance between the number of samples for each label
(movement type) was minimized for each division.

ECoG dataset of the video perception task (in-house dataset
from Fukuma et al.19)
Subjects. The ECoG dataset for the video perception task consisted of
17 subjects (12 males; age range 11–51 years), with subdural electrodes
placed around their visual and temporal cortices for the treatment of
epilepsy. One subject participated twice within 2 years due to a second
surgery (E07 and E11).

Taskprocedure. All seventeen subjects (E01–E17) were shown the same
six 10-min videos (training videos), and 12 subjects (E01, E03, E06, E07,
and E09–E16) were also shown another 10-min video (validation video).
No fixation point was presented in the video stimuli; the subjects were
instructed to freely watch the videos. The presentation of the training
videos took 1–3 days to complete. The validation video was presented
after the presentation of all training videos.

Visual stimuli. The six training videos and the validation video were
created by sequentially concatenating short film or animation clips. The
clips were cutouts from one of 75 trailers or behind-the-scene features
downloaded from Vimeo and had a median duration of 16 s (inter-
quartile range, 14 to 18 s). The six 10-min training videos were created by
concatenating 224 clips, and the 10-min validation video was created
with four repetitions of a 2.5-min video composed of 11 clips. The short
video clips were cut so that they did not overlap; hence, there were no
overlapping scenes not only between the training videos and the vali-
dation video but also among the training videos. The resulting videos
contained scenes that widely varied in semantic meaning, such as ani-
mals, foods, landscapes, and text.

Construction of the semantic vectors: training the skip-grammodel.
A skip-gram model was trained using Japanese Wikipedia dump data
with the following steps based on the procedure described in a study by
Nishida and Nishimoto30. (1) Words were segmented and lemmatized
from Japanese text in the articles in the Wikipedia dump to create a text
corpus usingMeCab31, an open-source text segmentation software, along
with the Nara Institute of Science and Technology (NAIST) Japanese
dictionary, a vocabulary database for MeCab. (2) In the text corpus,
words other than nouns, verbs, and adjectives and words that appeared
less than 120 times were discarded, resulting in a text corpus of
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365,312,470 words, consisting of 94,337 nouns, 4922 verbs, and 631
adjectives. (3) By using the Gensim Python library, a skip-gram model
was trained with the text corpus. The training parameters were set as
follows: dimension of word vector representation, 1000; window size, 5;
number of negative samples, 5; use of hierarchical softmax function, no.

Construction of the semantic vectors: conversion to the semantic
vectors. For each 1-s scene in the training videos and validation video,
the semantic meaning of the scene was represented as a semantic vector
based on the scene annotations and the trained skip-gram model. A still
image was extracted from each 1-s scene, resulting in 3600 images for the
six 10-min training videos and 150 images for the first 2.5 min of the
validation video. Each extracted image was manually annotated by five
annotators with descriptive sentences containing 50 or more Japanese
characters. Using the same preprocessing method performed with the
Japanese Wikipedia dump data, lemmatized words were extracted from
the annotations and filtered by discarding words that did not exist in the
text corpus of the trained skip-gram model. The remaining words were
then converted to 1000-dimensional vectors using the trained skip-gram
model, which were first averaged within each annotation and then
averaged among the five annotators to create a 1000-dimensional
semantic vector for each scene.

Experimental settings and ECoG recordings. The subjects either sat
on beds in their hospital rooms or were seated on chairs to perform the
experimental tasks. A computer screen was placed in front of the subjects
to show the video stimuli. A pair of speakers was also placed near the
subjects to play sounds during the presentation of the video stimuli.
During the experiment, ECoG signals were recorded at 10 kHz by EEG-
1200 (Nihon Koden, Tokyo, Japan) by referencing the average of two
intracranial electrodes. The presentation timing of the video stimuli was
monitored by DATAPixx3 (VPixx Technologies, Quebec, Canada) and
recorded as digital signals synchronized to the ECoG signals.

Signal preprocessing. Signal preprocessing of this dataset was per-
formed as described in our previous study19 by rejecting noisy channels
via visual inspection (for the number of channels in the dataset, see
Supplementary Table 2). The ECoG signals in the dataset were filtered
with a lowpass filter (8th-order Chebyshev Type I infinite impulse
response filter) and downsampled to 1 kHz. The downsampled ECoG
signals were then rereferenced by common averaging. For the regression
analysis, the ECoG signals corresponding to the 1-s scenes were used.

Division of the dataset for regression. To enable direct comparison
with our previous study, regression was performed with nested cross-
validation using the same division of the dataset as in our previous
study19, in which the samples were divided into 10 groups so that the
scenes from the same video source were kept in the same group, and the
imbalance in the number of trials among the groups was minimized.
Hence, nonrepeated 10-fold outer cross-validation with nonrepeated
9-fold inner cross-validation was performed for the regression.

ECoG dataset of the hand versus tongue movement task
(“motor_basic” experiment in the open dataset fromMiller20)
Dataset overview. To acquire the dataset, the patients were implanted
with intracranial electrodes around the front-parietal area. The patients
performed repetitive movements with their hand (synchronous flexion
and extension of all fingers) or tongue (sticking the tongue in and out
from their mouth) at their own pace (~1–2 Hz) while movement cues
were provided for 2 or 3 s. Each movement type was repeated 15–45
times. ECoG signals were recorded at 1 kHz. Nineteen patients included
in the dataset were used for the analysis in this study.

Signal preprocessing. For each patient, ECoG signals were rereferenced
by common averaging among all channels. For the classification analysis,

ECoG signals from 0 to 2 s with respect to the start of the moment cues
were obtained.

Division of the dataset for classification. For this dataset, the classifi-
cation analysis was performed for each subject by nested cross-validation.
To accurately estimate the classification accuracy, 10-fold outer cross-
validation was repeated 10 times by changing the division of the dataset,
and the average of the 10 classification accuracies was calculated. In
addition, for each outer fold, 10-fold inner cross-validation was also
repeated 10 times by changing the division of the samples to better
estimate the decoding parameter. The division was performed so that the
imbalance between the numbers of samples for each label (hand or
tongue movement) was minimal.

ECoG dataset of the image perception task (“faces_basic”
experiment in the open dataset fromMiller20)
Dataset overview. Patients implanted with intracranial electrodes in the
inferotemporal subdural space participated in a visual perception task in
which face or house images were presented. During the recording of the
ECoG signals at 1 kHz, the patients were presented with luminance- and
contrast-matched grayscale face and house images for 400 ms in random
order, with an interstimulus interval of 400 ms. In each of the three
repeated runs, 50 different face or house images were presented. All
fourteen patients in the dataset were included in the analysis for
this study.

Signal preprocessing. For each patient, rereferencing of ECoG signals
was performed by common averaging among all channels. For the clas-
sification analysis, ECoG signals from 0 to 400 ms with respect to the
image presentation were used.

Division of the dataset for classification. Classification analyses with
this dataset were performed with a within-patient approach by nested
cross-validation. To accurately estimate the classification accuracy, 10-
fold outer cross-validation was repeated 10 times by changing the divi-
sion of the dataset to average the classification accuracies among the
repetitions. The decoding parameters of each outer fold were estimated
by 10-fold inner cross-validation, which was also repeated 10 times by
changing the division of the samples. During the division of the dataset,
the number of samples for each label (face or house images) was blanched
in each group.

ECoGdatasetof thefingerflexiontask (“fingerflex”experiment in
the open dataset fromMiller20)
Dataset overview. To acquire the dataset, patients were implanted with
intracranial electrodes around the front-parietal area. The patients per-
formed repeated movements (flexion and extension) of individual fin-
gers; the movement of each finger was measured at 25 Hz by a 5-DOF
data glove with simultaneous recording of 1-kHz ECoG signals. Patients
were given a 2-second cue to move individual fingers at their own pace.
Themovement cue for each finger was presented in a random order, with
an intertrial interval of 2 s. There were 30movement cues for each finger.
All nine patients in the dataset were included in the analysis.

Signal preprocessing. ECoG signals were first rereferenced by common
averaging among all channels for each patient. For each measurement of
finger flexion, the corresponding ECoG signals were cropped to form a
sample to be regressed with the following procedure: (1) In the dataset,
values forfingerflexionmovementswere upsampled from25 Hz to 1 kHz
and saved with the 1-kHz ECoG signals, leading to 40 continuous sam-
ples for the same value. Based on these values, the timing of the first
sample was identified. The finger flexion values for these samples were
selected as the target variables for the later regression analysis. (2) The
ECoG signals corresponding to the selected samples were cropped with a
300-ms time window; here, the time window was placed at 84 ± 150 ms
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with respect to the selected samples because the original study reported
that the best Pearson’s correlation coefficient was obtained with an 84 ms
offset32.

Division of thedataset for regression. To prevent overestimation of the
accuracy, the samples in the dataset for each patient were divided into 10
groups by splitting the time sequence of the samples. Nested cross-
validation for the regression analysis was performedwith this division for
both the inner and outer folds; hence, nonrepeated 10-fold outer cross-
validation was performed using nonrepeated 9-fold inner cross-
validation.

DMD
Assuming that the spatiotemporal signals originate from one dynamic
system, the system can be described as follows:

dx
dt

¼ f x; t; μ
� � ð10Þ

where x tð Þ 2 RP is a vector representing the state of the dynamic system at
time t, and μ and f �ð Þ denote the system parameters and the dynamics,
respectively. Considering that the actual signal measurement is performed
in discrete time intervals of Δt, the discrete time representation of the
dynamic system corresponding to Eq. (10) can be written as follows:

xlþ1 ¼ F xl
� � ð11Þ

where xl denotes the lth measurement of the system
(xl¼x lΔtð Þ; l ¼ 1; 2; :::; L). Practically, the dynamics F needs to be esti-
mated from the observed signals; here, the DMD method estimated the
dynamics by linear approximation as follows:

xlþ1 ¼ Axl ð12Þ

Then, A is acquired by minimizing the approximation error
jjxlþ1�Axljj2 across all measurements of l ¼ 1; 2; :::; L� 1.

To minimize the approximation error, two matrices of the
measurement,X and X0, are introduced:

X ¼ x1 . . . xL�1

� �
;

X0 ¼ x2 . . . xL
� �

:

In the original DMDmethod, the dimension ofXwas assumed to be P
»L; for the implementation in this study, see the “Signal stacking” section for
a more detailed explanation. The linear approximation in Eq. (12) can be
written asX0≈AX, where the optimizedA is givenbyA¼X0Xþ and+ is the
Moore–Penrose pseudoinverse. By applying SVD to X:

X ≈USV�

where U 2 CP ×K , S 2 CK ×K , V 2 CL×K , * represents the conjugate
transpose, and K denotes the rank used for the SVD approximation.
Notably, the left and right singular matrices (U and V, respectively) satisfy
U�U ¼ I andV�V ¼ I. This process assumes a low-dimensional structure
for the dynamics. Here,A can be obtained by using the pseudoinverse ofX
acquired by the SVD:

A ¼ X0VS�1U�

Because the dimension of the measurement (P) is large, eigenvalue
decomposition of A requires considerable computational resources. The
DMDmethod addresses this problem by leveraging the orthogonal matrix

U, yielding:

eA ¼ U�AU ¼ U�X0VS�1:

Then, the eigendecomposition of eA was performed as follows:

eAW ¼ WΛ

where each column inW is an eigenvector and Λ is the diagonal matrix of
the corresponding eigenvalues λk. Finally, the approximated eigenvectors of
A (DM) are obtained as the columns in Φ, with the corresponding eigen-
values given by Λ:

Φ ¼ X0VS�1W:

By introducing the variable ωk ¼ ln λk
� �

=Δt, the original dynamics
can be approximated as:

x tð Þ≈
XK

k¼1
φke

ωkt bk ð13Þ

where bk is the initial condition of the mode.
Here,b¼ b1;;bK

� �T
canbeobtained asb ¼ Φþx 0ð Þ. By rewritingωk in

Eq. (13), Eq. (2) can be obtained.

Signal stacking
The original DMD method was developed for signals with P » L, where P
andLdenote the number of recording sites andmeasurements, respectively.
However, for neural signals, P is usually smaller than L. In these cases, the
signals can be augmented by stacking them h times to create the two
measurement matrices X and X0:

X ¼

x1 x2 . . . xL�h

x2 x3 . . . xL�hþ1

..

. ..
. . .

. ..
.

xh xhþ1 . . . xL�1

2
66664

3
77775;

X0 ¼

x2 x3 . . . xL�hþ1

x3 x4 . . . xL�hþ2

..

. ..
. . .

. ..
.

xhþ1 xhþ2 . . . xL

2
66664

3
77775:

Throughout this study, h was the minimum integer that satisfies
h≥ Lþ1

Pþ1. Moreover, out of the hP DMs obtained from these stacked signals,
the first P DMs were used for the analysis.

Acquisition of the Gram matrix and sDM features
DMDwas first applied to the preprocessed spatiotemporal signals (x tð Þ) of
each trial in each dataset. Each DM (φ) in the matrix of DMs (Φ) for the
sample was then L2-normalized following the method used in our previous
study10.Aprojectionkernelwas then applied toeachpair of thematrix of the
L2-normalized DMs to generate the Gram matrix; similarly, according to
Eq. (5), the sDM features were calculated based on the matrix of the L2-
normalized DMs.

For the frequency-filtered sDMfeatures, the following frequencybands
wereused to group theDMs: 0–1, 1–4, 4–8, 8–13, 13–30, 30–80, 80–150, and
150–500Hz. When no DMs were within a band, all components of the
frequency-filtered sDM features for the band were set to zero.

Calculation of the PSD and power features
The PSD and power features were calculated based on the same 500-ms
signals (x tð Þ) that were used to calculate the DMs and sDM features for the
ECoG dataset of the armmotor task. For each channel in x tð Þ, the PSDwas
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calculatedusing aHammingwindowand fast Fourier transformationof 512
points. To calculate the power features, the PSD was averaged within the
given frequency band (e.g., 80–150Hz for the high-γ band).

Neural decoding
Nested cross-validation. Throughout this study, the training para-
meters (cost or λ parameter for the decoder, and rank parameter for the
sDM features) were always optimized only using the training samples
independently from the testing samples to prevent overfitting of the
decoder. For all datasets, nested cross-validation was applied; for each
outer cross-validation, the testing samples of the outer fold were decoded
with a decoder trained based on all training samples (of the outer fold),
with the optimized parameters estimated based on the inner cross-
validation with the training samples.

Classification analysis. In this study, classification analysis was performed
with either an L2-regularized SVM or an L1-regularized SVM. For the L2-
regularized SVM model decoding based on the Gram matrix, classification
was performed by LIBSVM 3.133 with the following parameters: svm_type, 0
(C-SVC); kernel_type, 4 (precomputed kernel). For the L2-regularized SVM
with the linear kernel, the following parameters were used by LIBSVM:
svm_type, 0 (C-SVC); kernel_type, 0 (linear). For the L1-regularized SVM,
the classification was performed by LIBLINEAR 1.834 with the following
parameters: s, 6 (L1-regularized logistic regression). In each case, the other
parameters were set to their default values. For all classification analyses, the
cost for the SVMwas optimized by (nested) cross-validation fromcandidates
of 10�1; 100; � � � ; 108. When the number of training samples for each class
was imbalanced, the samples for the classes with less samples were repeatedly
included so that the number of samples was increased to that of the class with
the most samples. Moreover, the classification accuracies were evaluated by
the balanced accuracy.

Regression analysis. Due to the limitation of the computational time,
L2-regularized ridge regression was used in this study. Parameter λ was
optimized from candidates of 10�8; 10�7; � � � ; 108 by (nested) cross-
validation for each dimension of the dependent variables. The optimi-
zation was performed by minimizing the mean square error, and the
regression accuracy was evaluated based on the average of the correlation
coefficients between the true and predicted values for each dimension.

Evaluation of computational time
Decoder training time and decoder testing time on a new sample were
assessed by varying the number of samples per class (n) using the pre-
computedDMsof patient 1 in the armmotor task. First, trialswere randomly
resampled so that the number of trials in each class was equal to n, and then
the DMs of the resampled trials were used to train the decoder model while
training time was measured. The cost parameter for training was selected as
the most frequent value among the optimized costs in the outer folds of the
nested cross-validation to calculate the classification accuracy. To measure
the testing time of the decoder, the precomputedDMsof a randomly selected
trial were applied to the decoder. The measurement was repeated 100 times
by changing the seed value for the random number generator.

Statistics and reproducibility
The reproducibility of the snDM features and the power features was tested
by one-way ANOVA with post hoc Tukey‒Kramer tests (Fig. 2g).

The classification accuracy of the L1-regularized SVMwith combined
snDM and seDM features was compared with that of the L1-regularized
SVM with high-γ power features by two-tailed paired t tests (Fig. 3b).

The classification accuracies using the frequency-filtered snDM fea-
tures were tested among the frequency bands by one-way ANOVA with
post hoc Tukey‒Kramer tests to determine the frequency band that was
most informative for classification (Fig. 3c).

The decoding accuracies using the high-γ power features and the
snDM features were compared using a two-tailed paired t test (Fig. 4).

The reproducibility of the proposed method was verified on two in-
house datasets and three open datasets.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The source data for the graphs in this paper are provided in Supplementary
Data 1. Other relevant data are available under a formal data sharing
agreement.

Code availability
The code used in this study are publicly available on github (https://github.
com/yanagisawa-lab/fast-accurate-and-interpretable-decoding-of-
electrocorticographic-signals-using-DMD).
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