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Supervised latent factormodeling isolates
cell-type-specific transcriptomicmodules
that underlie Alzheimer’s disease
progression
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Late onset Alzheimer’s disease (AD) is a progressive neurodegenerative disease, with brain changes
beginning years before symptoms surface. AD is characterized by neuronal loss, the classic feature of
the disease that underlies brain atrophy. However, GWAS reports and recent single-nucleus RNA
sequencing (snRNA-seq) efforts have highlighted that glial cells, particularly microglia, claim a central
role in AD pathophysiology. Here, we tailor pattern-learning algorithms to explore distinct gene
programs by integrating the entire transcriptome, yielding distributed AD-predictive modules within
the brain’smajor cell-types. We show that these learnedmodules are biologically meaningful through
the identification of new and relevant enriched signaling cascades. The predictive nature of our
modules, especially inmicroglia, allowsus to infer eachsubject’sprogressionalongadiseasepseudo-
trajectory, confirmed by post-mortem pathological brain tissue markers. Additionally, we quantify the
interplay between pairs of cell-type modules in the AD brain, and localized known AD risk genes to
enriched module gene programs. Our collective findings advocate for a transition from cell-type-
specificity to gene modules specificity to unlock the potential of unique gene programs, recasting the
roles of recently reported genome-wide AD risk loci.

Late-onset Alzheimer’s disease (AD) is a neurodegenerative disorder with a
largeburdenon theglobal healthcare system that is being exacerbatedbyour
aging societies. The gradual progression of AD begins with mild cognitive
impairment and cumulates in severe memory loss and death, often many
years or decades after onset1. While identified >100 years ago2, the under-
lying disease pathways of AD remain obscure. Increasingly large genome-
wide association studies (GWAS) have identified genetic variants that
contribute toADrisk,with the largest study to date identifying 38 risk loci at
genome-wide significance3. In parallel, bulk transcriptomic measurements
have enabled functional views on the genetic mechanisms of disease onset

and progression from a tissue-average perspective4. More recently, high-
throughput single-nucleus RNA sequencing (snRNA-seq) of post-mortem
human brain tissue has enabled the identification of gene expression effects
at the resolution of brain cell-types. This finer resolution has made it
apparent that different cell-types play different roles in the pathogenesis of
neurodegenerative diseases. For example, at the cellular resolution, APOE,
the top AD risk gene, was found to be simultaneously upregulated in
microglia but downregulated in astrocytes in AD patients5—an important
insight previously inaccessible tomethods unable to resolve gene expression
profiles in individual cells. Additionally, snRNA-seq studies have
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demonstrated that previous bulkRNA-seq studieswere dominated byRNA
originating from abundant neurons and oligodendrocytes, potentially
eclipsing the signal from cell-types less abundant in the brain such as
microglia5. Many single-nucleus studies continue to underscore the
importance of glial cells—and particularly microglia due to their high
concentration of expressed GWAS risk loci—as playing a major role in AD
pathophysiology6–8.

Despite the growing number of genomic studies of AD in the brain
from a single-cell perspective, it remains challenging to understand which
particular biological processes and specific molecular pathways are impli-
cated inADpathophysiology.One commonapproach toanalyzing snRNA-
seq cell transcriptomes leans heavily on quantifying differential expression
betweenpersonswith andwithoutAD, one gene at a time.While this single-
gene approach has uncovered insights about AD pathophysiology, isolated
case-control deviations in aparticular geneoften evadedirect interpretation.
Similarly, risk loci identified at the level of human populations through
GWASare often challenging to resolve in the context of individual cell-types
and molecular processes. As highlighted by co-expression network
approaches9, it is probably collections of pathologically expressed genes that
together act in concert to drive the disease phenotype. We believe that
identifying and characterizing such disease-driving groups is essential for
ultimately identifying the causes of AD.

Although individual genes may not be detected as being significant in
differential expression, if considered in the full picture of companion genes,
we may reveal their role in broader biological systems10. Machine learning
solutions are naturally suited to consider the totality of tens of thousands of
expressed genes simultaneously11. Therefore, this research paradigm may
better accommodate the functional interplay expected between con-
comitantly transcribed “cliques” of genes in the full functional context of a
cell. Unsupervised latent factor models, such as PCA, t-SNE, and UMAP,
are commonly used in snRNA-seq processing pipelines, typically for the
preprocessing and visualization of collections of high-dimensional tran-
scriptomes. However, this un-guided latent structure discovery is blind to
valuable contextual information such as the disease status of the cells and
other external clinicopathological markers. Therefore, the geometry of the
derived embedding space dimensions may be quite different after
accounting for the external information related to the disease under study.
Because of this reliance on un-guided structure discovery with incomplete
contextual information, previously discovered latent spaces for cell tran-
scriptomes may have provided only partial insights into the biological
phenomena underlying the disease state. A similar insensitivity to super-
vising information applies to deep learning variants of unsupervised latent
factor models, such as variational autoencoders12. While some variants do
anchor the non-linear embedding to biological pathway information to
enhance interpretability13,14, this latent space is still not extracted by con-
ditioning on a provided disease phenotype.Machine learningmodelswhose
estimation takes into account known disease status, but lack latent factor
extraction, have been applied to snRNA-seq data15. For example, the use of
diffusion-condensation combined with supervised graph signal processing
can help zoom in on the appropriate level of detail to find relevant
subpopulations16. However, these supervised methods do not simulta-
neously perform latent structure discovery. Hence, these modeling
approaches lack the interpretability that comes from learning a compressed
representation of several sources of gene activity variation. Our study
attempts to remedy this shortcoming by encouraging the discovery of
intrinsic structure within gene expression patterns observed in a specific
cell-type, explicitly guided by a target phenotype of scientific interest: AD
diagnosis.

Here, we implement a supervised latent factor framework from
machine learning tailored to improve the interpretability of snRNA-seq
transcriptome effects at the granularity of distinct gene expressionprograms
in AD. We systematically zoomed in on each of the six major cell-types
(excitatory and inhibitory neurons, oligodendrocytes and their precursors,
astrocytes, and microglia) of the human prefrontal cortex (BA10). The

analyzed dataset provided ~70,000 cells sampled from 48 age- and sex-
matched donors from the Religious Orders Study or Rush Memory and
Aging Project (ROSMAP) cohort5,17. We could thus demonstrate that our
supervised latent-factor frameworkdistinguisheshealthy cells fromdiseased
cells by learning biologically interpretable modules within each cell-type,
and that these modules could be linked to biologically meaningful gene
programs from large, curated ontologies. We first fit disease-discriminative
models to the gene expression data to identify cell-type-specific modules.
Leveraging established annotations from gene program databases such as
GeneOntology,we applied gene set enrichment analysis (GSEA) to the gene
importance scores for each latent module. We show that these learned
modules identify distinct biological processes and pathways that are pre-
dictive of AD, going beyond single genes found using differentially
expressed genes. We then investigate each gene module to understand its
connection to the most recent set of 38 AD genome-wide significant risk
genes across cell-types and their modules. Finally, we explore the possible
interactions between modules found in different cell-types, quantifying the
level of cell-cell interaction present in AD. Our results underscore the value
of dedicatedmachine learning tools that consider the expression of all genes
simultaneously to isolate several distinct latent gene expression modules,
within a given cell-type, that are predictive of AD.

Results
Supervised latent-factor modeling identifies cell-type-specific
gene modules implicated in AD
We hypothesized that brain cells sampled from persons with AD could be
differentiated from cells from persons without AD based on a subset of
underlying gene expression groups—here termedmodules.We used partial
least squares discriminant analysis (PLS-DA), a class of supervised latent-
factor model, to distinguish between these two phenotypes while simulta-
neously uncovering interpretable latent modules. PLS-DA was a natural
choice of method because it is a model that exploits the principle of parsi-
monyby learning to separate target classes based on anumber of underlying
groups of expressed genes. These derived modules each prioritize different
groups of genes that explain cell-type-specific differences between persons
with and without AD18.

We analyzed an snRNA-seq dataset containing gene expression pro-
files from 70,634 cells, collected from the prefrontal cortex of 48 subjects
(age/sex-balanced with 24 persons with and 24 without AD) from the
ROSMAP study on aging and dementia5. In each of the six previously
identified cell-types (excitatory/inhibitory neurons, oligodendrocytes, oli-
godendrocyte precursor cells (OPCs),microglia, and astrocytes), we trained
our PLS-DA model to distinguish between cells originating from persons
with or without AD, based on the normalized expression of 17,926 protein-
coding genes (Fig. 1a). That is, each separate classifiermodel was trained on
all cells of a given cell-typeoriginating fromall 48 subjects. By analyzing each
cell-type independently, we aimed to find cell-type-specific effects, as
opposed to effects common to all cell-types affected by AD. The disease
classification models for each brain cell-type extracted several latent mod-
ules. Each cell-type module defined a collection of gene effects in that cell-
type that collectively identified expression signatures that distinguished AD
individuals’ cell transcriptomes.

Since it is not knownapriori howmanymodules should be expected in
each cell-type, we treated the number of modules as a model hyperpara-
meter to be determined in a data-driven fashion. Independently in each cell-
type, we trained the classification model using a principled nested 5-fold
cross-validation framework: the captured cell transcriptomes were ran-
domly divided into five data splits, then the model was fitted on four of the
data splits (training set) and evaluated on the remaining unseen tran-
scriptomes (validation set). This was repeated for the remaining groups,
resulting in five estimates of how the model is expected to distinguish
between unseen AD vs control transcriptomes of the same cell-type. This
scheme identified an optimized number of modules in each cell-type that
resulted in the maximum classification performance on unseen brain cells.
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This minimizes the possibility of overfitting to idiosyncrasies in the data.
Theoptimalnumberofmodulesvaried fromtwo forOPCsandmicroglia, to
four for excitatory neurons.

Our AD classification model showed robust discrimination perfor-
mance on unseen brain cell transcriptomes in all examined cell-types, as
measured by the area under the receiver operating characteristic curve
(AUROC) (Fig. 1b). The mean and standard deviation of the AUROC
scores obtained from the nested 5-fold cross-validation provided an overall
assessment of the PLS-DAmodel’s ability to predict a cell’s AD phenotype.
All cell-types were successfully discriminated above 0.5 random chance.
Based on all the extracted modules, the highest AUROC was obtained for
excitatory neurons, at 0.839 (s.d. 0.006), while the lowest was 0.731 (s.d.
0.033) forOPCs. Keeping only themost individually discriminativemodule
for each cell-type, microglia showed the highest prediction performance
with an AUROC of 0.724 (s.d. 0.030), compared to 0.589 (s.d. 0.009) for
excitatory neurons, the cell-type with the highest overall classification per-
formance. This observation suggests that the disease-predictive signal is
concentrated in a singlemodule of expressedgenes inmicroglia,whereas it is
distributed over multiple modules in excitatory neurons (Fig. 1c). We fur-
ther show that the genes that are the top contributors to the predictive
performance are distinct for each module (Fig. 1d).

Cell-type-specific modules capture AD-related gene expression
programs
To ground our identified cell-type modules in known biological processes
and molecular pathways, we performed gene set enrichment analysis
(GSEA) using the gene combinations corresponding to each identified
transcriptomic module. This analysis allowed us to identify enriched gene
sets, or programs, from large, annotated collections: Gene Ontology (Bio-
logical Processes), WikiPathways, and Panther Pathways. GSEA10 takes as

input an ordered list of genes and looks for a statistically significant over-
abundance of genes from annotated gene sets at the top/bottom of this list.
In this analysis we used the PLS-DA module weights to rank the genes in
each module, as they represented the importance of that individual gene in
that module in predicting the cell’s classification. Therefore, finding a
concentration of genes of interest in terms of highest ranked genes repre-
sented a meaningful signal corresponding to that gene program.

Here we summarize the main themes of the cell-type-specific pre-
dictive modules, which are visualized in Fig. 2.

In microglia, the leading disease-predictive module was enriched for
gene programs related to the activation of microglial cells in response to an
external stimulus, phagocytosis, and response to amyloid-beta plaque.
Specifically, this gene expression module’s prioritized genes were found
enriched in immune-activation-related programs including “microglial cell
activation”, “regulation of complement activation”, and “TYROBP causal
network in microglia”. Indeed, microglia under homeostatic conditions are
known to be constantly probing their environment19, and can be activated
by a variety of immune receptors20, which leads to phagocytosis and the
release of signaling molecules to recruit other immune cells. Additionally,
the complement system is involved in the innate immune response and can
mediate phagocytosis21, and it was previously reported to be involved in
AD22.Complement receptorCR1 is a knownGWASrisk locus forAD23.The
TYROBP causal network was initially identified in mice, where TYROBP
was pinpointed as the key regulator of a microglia immune module asso-
ciated with AD pathophysiology9. In addition to gene programs related
specifically to microglia activation, we also found relevant enrichments
related to a general immune response, including “positive regulation of
inflammatory response”, “positive regulation of tumor necrosis factor
superfamily cytokine production”, and “regulation of interleukin-6 pro-
duction”. Additionally, we found enrichments related to phagocytosis,

Fig. 1 | Latent-factor modeling reveals gene expressionmodules predictive of AD
pathology in each brain cell-type. aWedevised a pattern-learning approach for AD
classification (partial least squares discriminant analysis, PLS-DA), and trained a
dedicated model for each cell-type to distinguish between cells originating from
brain tissue of persons with and without AD. Each cell-type-specific model was
estimated on the gene expression profiles from all tissue donors, and learned a
number of discriminative latent transcriptomic modules. Each of these module
shows the predictive role of each gene in a collective subspace that maximizes
separation according to disease status. To avoid overfitting, the number of modules
for each cell-type was selected based on five-fold cross-validation, using the out-of-
sample area under the ROC curve (AUROC) as the selection criterion. bWe found
that our model was able to successfully distinguish between the no AD and AD
classes in all cell-types (n = 48 donors). AUROC in unseen cell transcriptomes
ranged from0.731 (s.d. 0.033) across cross-validation folds forOPCs up to 0.839 (s.d.
0.006) for excitatory neurons, and coefficient of determination (R2) ranged from

0.150 (s.d. 0.023) for OPCs up to 0.328 (s.d. 0.017) for excitatory neurons. c We
calculated the association strength between the projection of the cells onto their
corresponding latent modules and the binary diagnosis vector. We found that the
first microglia and second OPC modules have the highest links to AD, whereas the
first excitatory and inhibitory modules had the weakest AD links. The number of
selected modules ranged from two (microglia, astrocytes, OPCs) to four (excitatory
neurons). d Each gene expressionmodule encapsulates a unique set of roles assigned
to the candidate genes, where the positive weights flag higher transcript level to be
indicative of AD cells (+), whereas negative expression weights are indicative of
healthy cell samples (−). We visualized the weights corresponding to the top three
genes in each module. We found several known AD GWAS risk gene among these
top genes, including APOE and CLU. This provides strong evidence that each
module captures a distinct set of genes, both relative to other modules for the same
cell-types and across cell-types.
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including “microglia pathogen phagocytosis pathway”. One of the recog-
nized roles of microglial is to engulf and clear debris, including apoptotic
neurons24 and amyloid-beta25, a process which also involves the AD risk
locus TREM2, discussed later. Finally, gene programs related to amyloid-
beta included “regulation of amyloid-beta formation”. Activated microglia
are known to congregate around amyloid-beta plaques, forming aprotective
barrier around these deposits26.

The second most important gene expression module in microglia was
functionally related to the activation of the MAPK/ERK signaling pathway
by cell surface receptor stimulation, and the toll-like receptor cascade.
Enrichments for the MAPK/ERK signaling pathway included “EGF/EGFR
signaling pathway”, “MAPK Signaling Pathway”, and “Ras signaling”. The
MAPK pathway is critical to the increase in pro-inflammatory cytokines
produced by microglia under stress. For example, this pathway can be
triggered by amyloid-beta or toll-like receptors27, which are also implicated
in this module. These pathways have previously been identified as playing a
role in the inflammatory response present in AD. Specifically, it was found
that ERK phosphorylation was a regulator of microglial pro-inflammatory
immune response in mouse models of AD28. Gene programs related to the
toll-like receptor cascade included “toll-like receptor signaling pathway”. It
has indeed been suggested that targeting the TLR4, which triggers the
MAPK pathway in microglia, could be a therapeutic target for AD29.

Hence, while microglia activation has been identified as one of the
hallmarks of AD, our approach disentangled two unique modules that
differentiate microglia originating from the brains of persons with and
without AD pathology. Our findings underline the MAPK/ERK signaling
pathway as being strongly predictive of positive disease status, in addition to
the classical microglial immune activation pathways.

In astrocytes, the leading AD-predictive module related specifically to
biological programs revolving around extracellular structure organization.
Their enrichments included “extracellular matrix organization”, “cell

junction assembly”, and “regulation of cell-cell adhesion”. The extracellular
matrix includes the basement membrane, which helps maintain the blood-
brain barrier integrity by connecting astrocytic endfeet to endothelial cells30.
Blood-brain barrier dysfunction is strongly suspected to be implicated early
in AD and other neurodegenerative disorders31. Furthermore, APOE4, the
top risk variant associated with the development of late onset AD, is known
to result in a thinning of the vasculature of the basement membrane and a
breakdown of the blood-brain barrier in AD32. Astrocytes can influence the
endothelial tight junctions which seal the BBB33, as well as form their own
tight junctions. The loss of endothelial tight junctions is common in AD
progression and is correlated with synaptic degradation34.

The second module in astrocytes was centered on gene programs
related to peptide biosynthesis, neurogenesis, and the response to ion
homeostasis, such as that of copper. The gene programs related to peptide
synthesis included “peptide biosynthetic process”, and astrocytes are known
to secrete the amyloid-beta peptide35, one of the primary biomarkers in AD.
This astrocytemodulewas also linked toneuron-relatedprocesses including
“brain-derived neurotrophic factor (BDNF) signaling pathway”, “negative
regulation of neuron projection development”, and “negative regulation of
axonogenesis”. These neurogenesis-specific terms emphasized negative
regulation, suggesting thatneurogenesis processes aremore active inhealthy
astrocytes. BDNF is a growth factor critical toCNSdevelopment, however it
also promotes the activation of astrocytes and microglia in
neuroinflammation36. Within this module we identified enrichment for
biological pathways related to copper ions, including “response to copper
ion”. Astrocytes regulate the homeostasis of copper in the brain37, and
copper has been shown to be present at higher levels elevated in AD senile
plaques38. Copper levels beyond the handling capacity of astrocytes may
initially result in a cascade of protective events to reduce labile Cu neuro-
toxicity, thus activating astroglia, which has been termed the “aberrant
copper homeostasis hypothesis”39.

Fig. 2 |Different genemodules isolate distinctAD-related processes in each brain
cell-type.We visualize the transcriptomes of all cells from each of the six brain cell
populations in two dimensions using PHATE. Each cell (dot) in this visualization is
then colored to indicate the relative strength (‘module score’) of a given functional
gene module pattern in that cell’s transcriptome. This module involvement (i.e.,
PLS-DA projection of a cell’s transcriptomes) represents how strongly a given cell’s
gene expression is aligned with the AD-predictive gene signatures identified in that
module (red=higher expression, blue=lower expression). Supplementary Fig. 2
shows the same PHATE visualizations colored by binary donor diagnosis. While the
PHATE visualization is not itself used to perform any analysis, it does help
emphasize how often distinct subgroups of cells are identified by the different

modules: different learned modules for each cell-type generally flag different groups
of AD cells within each cell-type. For each module, we then performed gene set
enrichment analysis (GSEA) and identified robust enrichment of biological pro-
cesses through contextualization bymeans of Gene Ontology (Biological Processes),
Wikipathways, and Panther Pathways, based on normalized enrichment score
(NES). By inspecting the resulting lists of enriched gene sets, we were able to identify
the dominant predictive set of biological signaling cascades in each module for each
cell-type. We show that our gene modules can be localized to distinct subspaces in
the spanned whole-transcriptome representation, many of which are indicative of
well-established biological pathways that are associated with AD, while others point
to new gene programs worthy of further investigation.

https://doi.org/10.1038/s42003-024-06273-8 Article

Communications Biology |           (2024) 7:591 4



The third astrocytemodule emphasized apoptosis, or programmed cell
death, in response to stress signals, with enriched gene programs including
“negative regulation of apoptotic process”. Recent studies show that astro-
cyte apoptosis may contribute to pathogenesis of many acute and chronic
neurodegenerativedisorders, suchas cerebral ischemia,ADandParkinson’s
disease40, and astrocyte apoptosis has also been correlated with “senile
plaques” in AD41.

Taken together, our disease-predictive model highlighted three sepa-
rate modules in astrocytes, related to the maintenance of the integrity of
cellular barriers such as the blood-brain barrier, to a cellular response to
copper, and to apoptosis.

In oligodendrocytes, the leading AD-predictive module was related to
neuron regulation, with enriched gene programs including “negative reg-
ulation of neuron projection development”, “negative regulation of axo-
nogenesis”, “positive regulation of neuron death”, “dendritic spine
maintenance”, and “myelination”. Oligodendrocytes are known to interact
closelywith axons as they form themyelin sheath42, andour results highlight
the negative regulation of these helper processes in the disease state, coupled
with the regulation of neuronal death, which is a key marker of AD
pathogenesis43. The second module was related to actin cytoskeleton orga-
nization, with enriched gene programs including “negative regulation of
stress fiber assembly” and “negative regulation of cytoskeleton organiza-
tion”. Myelin loss was one of the earliest reported observations in the post-
mortemADbrain44. Cytoskeleton reorganization and the regulation of actin
are key to the myelination process45. Our results emphasized that the
negative regulation of these processes is predictive of theAD condition. The
third module was associated with a cellular response to stress, including
“cellular response to cytokine stimulus”, “regulation of cell death”, and
“regulation of cellular response to stress”. Amyloid-beta has been shown to
drive oligodendrocyte death46. Our results identified three modules that
reflected the dysregulation of oligodendrocytes in processes relating to
neuron maintenance and myelin production, and their death induced by
external stressors.

In OPCs, the leading AD-predictive module was related to neuron
development and oligodendrocyte differentiation. Enriched gene programs

related to neuron development included negative regulation of neuron
projection development, axonogenesis, and neurogenesis. The gene pro-
gram relating to differentiation was “oligodendrocyte specification and
differentiation leading to myelin components”. The second gene module
was related to cell migration and adhesion. Gene sets included neuron
migration and regulation of cell-matrix adhesion. OPCs divide in the adult
brain to form newoligodendrocytes formyelin repair in response tomyelin
damage47, and it has recently been shown thatOPCs disruption occurs early
in a mouse model AD pathogenesis48. Our results underlined the involve-
ment of the OPC to oligodendrocyte differentiation process, as well as
implicating the interaction between OPCs and neurons.

In excitatory neurons, the leadingAD-predictivemodule was linked to
amyloid-beta, GABA neurotransmitter signaling, and presentation of
extracellular antigens via MHC. Accumulation of amyloid-beta plaques in
neurons is one of the hallmarks of AD, regulated by APOE transport from
astrocytes49. The second module was related to synaptic growth and
transmission, with enriched gene programs including BDNF signaling,
positive regulation of synaptic transmission, and cell morphogenesis
involved in neuron differentiation. The thirdmodule was related to nervous
system development and protein phosphorylation. The fourth genemodule
was related to apoptosis/autophagy driven by interleukins/cytokine signals.
Enriched gene programs include “apoptotic process”, “regulation of cell
death”, VEGF-A signaling pathway, and multiple terms related to inter-
leukin signaling, specifically IL-12 and IL-18.Neuronal death by apoptosis is
one of the most prominent hallmarks of AD50, and VEGF-A exposure is
linked to neuronal apoptosis in response to injury51. Studies have shown
pro-inflammatory IL-18 to co-localize with amyloid-beta plaque in AD
brains, and increase amyloid-beta production in neuron-like cells52. Gene
program enrichment results for excitatory neuron modules implicated
various forms of neurotransmission and neuron development, along with
processes related to neuron death.

In inhibitory neurons, the top AD-predictive module displayed simi-
larities with the top module for excitatory neurons, suggesting a common
primary response between the two cell-types. This module was related to
GABA signaling and exogenous peptide presentation viaMHC class II. The
second module related to peptide biosynthesis and autophagy. The third
module was enriched in gene programs related to glycolysis and synaptic
transmission, as well as the ferroptosis pathway, a form of iron-dependent
cell death53. All three modules were enriched in gene programs relating to
glycolysis and mitochondria. These included “mitochondrial dysfunction-
associated senescence” and “regulation of protein insertion into mito-
chondrial membrane involved in apoptotic signaling”, and “mitochondrion
organization”. These results suggested that there is overlap in the responseof
inhibitory and excitatory neurons to AD. However, we also identified dif-
ferent modules relating to peptide biosynthesis, autophagy, and glycolysis.
Additionally, we investigatedwhether ourmodules were associatedwith the
canonical inhibitory neuron subpopulation markers SST, VIP, KIT, and
PVALB54 (Supplementary Fig. 1). Using Spearman’s correlation coefficient,
we found that each inhibitory subpopulation marker had an above-chance
association with at least one of our four gene expression modules (Sup-
plementary Table 1), suggesting distinct relationships between the markers
and modules. The marker association was relatively weaker in the top
module of inhibitory neuron cells, supporting the idea that this module
captures a broad response that affects both excitatory and inhibitory
neurons.

To contrast our proposedmethodwithdifferential expression analysis,
we compared the genes identified by our AD-predictive modules and the
genes identified by differential expression analysis. We found that there is
generally a low correspondence between the DE results and our modules
(Fig. 3), which underscores the novelty and complementarity of our present
work.We then compared the top ten genes in each of our cell-typemodules
(by absolute loading value) with the top ten DEGs.We found that there are
no shared genes in anymodule when compared to the top DEGs ranked by
fold change, which indicates that our model is not simply picking up the
genes that have the largest magnitude in the expression change. When

Fig. 3 | AD-predictive modules show low correspondence with DEGs. We
quantified the association between the gene weights in our multivariate AD-
predictivemodules and univariate differential expression analysis.We calculated the
Spearman correlation between each cell-type-specific module and the per-gene
expression fold-change (Wilcoxon rank-sum test) for that same cell-type. Differ-
ential expression analysis produces one gene ranking per cell-type (vertical axis),
whereas our approach results in multiple complementary gene rankings per cell-
type (horizontal axis). We found that generally there was a low agreement between
the twomethods, underscoring the fundamental differences between univariate and
multivariate approaches and their potential to identify different signals of
scientific interest.
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compared to the top DEGs by significance (ranked by smallest FDR-
corrected p-value), we found a subset of genes that overlap, many of which
are recognizable as genes with well-known AD associations (Table 1).

Module enrichment reflects relevant AD-associated gene
programs
To examine the high-level distribution of enriched gene programs across
AD-predictivemodules froma complementary perspective, we performed a
search for specific keywords within the enriched gene program annotations
originating from the Gene Ontology (Biological Processes), WikiPathways,
and Panther Pathways. In the preceding analysis, we sought to identify
overarching categories that summarize the enrichment results in each cell-
type module. Here, we instead targeted specific gene programs of interest
and explored in which modules they appeared. This approach provided a
compelling overviewof the processes implicated across all cell-types (Fig. 4).
The localization of enriched gene programs to cell-type modules in a bio-
logically plausible fashion provides strong evidence that the learned mod-
ules are biologically meaningful.

Cell-type-related: We obtained confirmatory evidence that gene pro-
grams linked to the keyword “microglia” in the queried databases were
exclusively localized to the microglia-specific modules in our present ana-
lyses. Similarly, we found that terms/pathways containing the keyword
“oligodendrocyte” were uniquely localized to oligodendrocyte and OPC
modules.

Amyloid-beta-related:Weobservedgeneprograms related to amyloid-
beta across many modules. These fell into two broad categories: amyloid-
beta formation (e.g. “regulation of amyloid-beta formation), and the
response to amyloid-beta (e.g. “cellular response to amyloid-beta”). The
annotations related to amyloid-beta formation that we found in excitatory
neuron, microglia, and oligodendrocyte modules, whereas the annotations
related to response to amyloid-beta were identified in OPCs and excitatory
neurons.

AD-related: Gene programs that have terms explicitly naming Alz-
heimer’s disease were only found in the modules for inhibitory and exci-
tatory neurons. The localization of the “Alzheimer’s disease” and
“Alzheimer’s disease—amyloid secretase” annotations (both from the Gene
Ontology) to neurons is expected because the gene annotations for this
pathway are almost exclusively those identified in neuron cells.

Immune-related: Because of accumulating evidence55 that the cellular
immune response plays an important role in AD pathogenesis, we searched
for keywords related to immune pathways and signaling across the identi-
fied modules. Gene programs containing the term tumor necrosis factor
(TNF), which is an immune signaling cytokine, were found in astrocytes,
microglia, oligodendrocytes, and excitatory neurons. Programs related to
TNFproduction (such as “regulation of tumor necrosis factor production”)
were found exclusively inmicroglia and astrocytes, whereas those related to
a biological response (such as “cellular response to tumor necrosis factor”)
were exclusively present in oligodendrocytes and excitatory neurons. Gene
programs related to the major histocompatibility complex (MHC) were
identified in modules for all cell-types except OPCs. Annotations for MHC

class I, which present protein fragments fromwithin the cell, were found in
astrocytes, oligodendrocytes, and excitatory neurons; annotations forMHC
class II,which serve antigenpresentationbydisplayingprotein fragments on
the cell surface, were present in microglia and both types of neurons. All
gene programs for bothMHCclass I and II are specific to the presentationof
exogenous peptides. It has been found that MHC class II expression is
increased in early-stage AD, and this corresponds to an increase in the
corresponding protein56. Specifically observed in neurons, it has been found
that APOE acts as an upstream regulator of neuronal MHC class I expres-
sion in AD57.

Annotations containing the term “immune” emerged predominantly
in ourmicroglial modules, with the exception of two gene programs related
to neutrophils. These gene programs, “neutrophil mediated immunity” and
“neutrophil activation involved in immune response”, appeared in micro-
glia, astrocytes, and excitatory neurons. Neutrophils cross the BBB in AD,
and neutrophil granule proteins CAP37mRNA has been observed in brain
cells including human primary neurons and microglia. CAP37 is expressed
within neurons, and neutrophil elastase and cathepsinGhave been detected
in microglia, these proteins could be released from neurons or microglia58.
The observed concordance of neutrophil-related gene sets across multiple
cell-types suggests a direction for further investigation to understand their
involvement in AD-related processes.

Neuron-related: As would be expected, there were many neuron-
related gene programs enriched in excitatory and inhibitory modules.
Among these, a subset specifically associated with neuron development also
appeared in astrocytes, oligodendrocytes and OPCs.

Apoptosis-related: Enriched gene sets related to apoptosis appeared
almost exclusively in excitatory and inhibitory neurons. Both types of
neurons contain terms linked to apoptosis in response toDNAdamage and
the intrinsic apoptotic signaling pathway. This DNA-induced apoptosis of
neurons has long been linked to AD59.

Phagocytosis-related: Enriched gene sets related to phagocytosis were
found primarily in both microglia modules, as well as in the top oligoden-
drocyte module.

Cell-type modules enable estimation of disease pseudo-
progression
Taking inspiration from pseudotime methods in the snRNA-seq literature,
we next considered cells as different snapshots along a continuous disease
trajectory60. AD progresses slowly, with pathological changes in the brain
beginning years to decades before clinical diagnosis61. The 24 persons with
AD selected for this study displayed a range of pathology severity, which
presented an opportunity tomove beyond the binary diagnosis in away that
accounted for this pathology spectrum. Our PLS-DAmodel was trained to
classify cells into two categories—no AD or AD—based on their tran-
scriptomes. The predicted classifications, i.e. the fitted response values, were
the result of thresholding the model’s continuous prediction, a value which
can be interpreted as the level of confidence the PLS model has in its
AD prediction. In the absence of samples at multiple timepoints from the
same subject, direct use of this un-thresholded prediction presented an

Table 1 | Top module genes overlap with subset of most significant DEGs

Module 1 Module 2 Module 3 Module 4

Excitatory NGFRAP1, BEX1 RASGEF1B, LINGO1, SLC26A3 None RAB3A

Inhibitory NGFRAP1, NDUFA4, TMSB4X, PEBP1 RASGEF1B, LINGO1, SLC26A3 None –

Oligodendrocyte SPP1, MID1IP1 None None –

Microglia APOE, SPP1 None – –

Astrocyte FTH1, TENM2, TMEM241, NRXN1 None – –

OPCs OLIG1 KCNIP1, NAV2 – –

Interpretation of differential expression analysis results typically focuses on themost significantly differentially expressed genes (DEGs) in each cell-type.We tested for overlap between the top tenDEGs in
eachcell-type (rankedbyFDR-correctedp-value) and the top tengenes in ourAD-predictivemodules (rankedbyabsolute gene loadings).We find that althoughonly a small number of genesoverlap in each
cell-type module, many of those that are prioritized by both analysis methods are recognizable as well-studied AD-associated genes.
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opportunity to quantify disease progression. For each cell-type-specific
disease-classificationmodel, we grouped all continuous prediction values by
subject (Fig. 5a). We used the out-of-sample predictions accumulated over
the five folds of the cross-validation process, ensuring that all estimateswere
obtained from unseen cells. Because this grouping aggregates predictions

across cells originating from a given subject, we obtained an AD diagnosis
confidence distribution for each subject.We then ranked the subjects based
on themedian of these distributions, frommost confidently predicted to not
have AD to most confidently predicted to have AD (Fig. 5b). Each model
was trained on cells from all 48 subjects, so this ranking inherently
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represents a relative comparison between subjects based on the AD-
predictive modules present in each cell-type. The relative strength is
determined by the combination of all module’s correspondence with the
gene expression patterns observed within a subject’s cells.

We called this ordering of subjects the disease pseudo-progression, as it
is an estimate, basedonly on gene expression, of the severity of each subject’s
progression through the stages of AD. To validate whether this pseudo-
progression alignes with the biological reality, we compared the resulting
subject ordering to widely used clinical and pathological metrics available
for each subject in the ROSMAP resource: Braak stage, CERAD score, as
well as measured levels of neurofibrillary tangles and amyloid plaque, and
assessed global cognition level (Fig. 5c). These quantitative disease pro-
gression metrics were at no point available to the PLS-DA model during
training, and hence provide the opportunity for an unbiased point of
comparison.We found a strong absolute Spearman correlation between our
disease pseudo-progression and these established biological indicators of
AD progression: 0.57 for Braak stage, 0.54 for CERAD score, 0.64 for global
cognition level, 0.56 for neurofibrillary tangles, and 0.46 for amyloid plaque.

Usingonly single cell gene expressiondata,wedeployedour supervised
latent factor model to quantify a subject’s position along a disease pseudo-
progression trajectory, fromhealthy to late-stageAD.The biological validity
of this trajectory is supported by its high correlation with postmortem
pathological variables and external disease severity metrics.

Potential inter-cell-type coordination in AD
We then moved beyond cell-type-specific analyses to understand whether
there existed some quantifiable coordination between pairs of cell-type
modules at the level of the 48study subjects. Prior to the single-nucleusRNA
capture and sequencing, all cells fromagiven subject originated froma small
volumeof post-mortembrain tissue.Weuse this fact as justification tomake
the assumption that each tissue sample may have captured a local micro-
environment present within a subject’s brain at the time of acquisition. The
presence of this local micro-environment could therefore plausibly permit
the interaction of cell-type modules via inter-cell signaling, or the coordi-
nated response of cells of multiple cell-types to a common stimulus.

To infer such potential modes of coordination between cell-type
modules, wefirst quantified the activity level of each enriched gene program
within a module. This activity level was obtained by training a simple PLS-
DAdisease classifier instance for the top 50 gene programs enriched in each
module, resulting in 50 classifiers per module. Each simple classifier only
had access to the expression levels of the genes from the gene program of
interest as input (see Methods). This effectively restricted the predictive
capacity of the model to the information carried by that specific gene pro-
gram. We aggregated the predictions of this gene-program-specific model
across all cells fromeach subject.This producedameandisease classification
for each subject based on the gene expression of that gene set. Next, we
calculated the association magnitude via Pearson’s correlation between the
per-subject gene program activity (one activity value per subject) for the top
50 gene programs—as measured by normalized enrichment score (NES)—
in one cell-type module with the top 50 gene programs in a module from a
different cell-type. We used correlation magnitude as we were only con-
cerned with the strength of the association. We hypothesized that if the

activity of biological processes and pathways belonging to one module was
highly correlated with those of another module across subjects, this pro-
vided evidence that there could be a degree of coordination between these
two modules, such as if modules from two different brain cell populations
exhibit similar responses to a same external stimulation.

Our analysis framework found that the strongest module-module
coordination was between all pairs of excitatory and inhibitory modules
(Fig. 6), whichmakes sense as they are cell-types with similar functions that
are likely affected by, and respond to, their micro-environment similarly.
There was a high level of coordination between all astrocyte modules and
both inhibitory and excitatory neuron modules. Disruption of astrocyte-
neuron interaction related to synaptic function has been shown to impair
memory in a mouse model of AD62. Beyond astrocytes, the neuronal cell-
type interactions diverged. Excitatory neuron modules exhibited con-
sistently higher coordination with other cell-type modules than those of
inhibitory neurons, despite the high coordination between excitatory and
inhibitorymodules. This suggests that a different subset of gene programs is
involved in these interactions, and that excitatory neurons are more
involved in oligodendrocyte- andmicroglia-related dysfunction inAD than
inhibitory neurons.

OPC modules showed a low level of coordination with most cell-type
modules, only showing elevated levels of potential interaction with oligo-
dendrocyte modules. Similar to neurons, this alignment in responses from
similar cell-types reflects their common response to their environment, and
suggests a distinct set of gene programs active in both OPCs and oligo-
dendrocytes that are related to AD. Investigating this interaction more
closely, we found that the most coordinated gene program pairs across
subjects in oligodendrocytes andOPCswere similar: theywere related to the
negative regulation of neurogenesis, axonogenesis, and neuron projection
development.

The topmicroglia and oligodendrocyte modules showed high levels of
coordination with the majority of other cell-type modules, suggesting that
they are involved in many different processes in the brain at a cellular level.
In general, the level of coordination between modules was similar across all
pairs of modules within the same pair of cell-types, except for the second
oligodendrocyte module and the top astrocyte module. The second oligo-
dendrocytemodule had fewer enriched gene programs than othermodules,
which limited its ability to extract the subject-level pattern.The top astrocyte
module was identified as being related to blood-brain barrier maintenance,
and since endothelial cell are not considered in this analysis this interaction
would not be expected to appear if it were occurring.

This examination of coordination between AD-predictive cell-type
modules, measured through the activity of enriched gene programs, reveals
a rich constellation of potential interactions occurring in the brain.

GWAS risk loci can be localized to a diversity of gene expression
modules
In order to further contextualize the AD-predictive modules against
established knowledge, we investigated whether AD risk loci identified by
genome-wide association studies (GWAS) could be localized to specific cell-
types and modules. Given that the heritability of AD is estimated to be
around 60–80%63,64, it is valuable to understand the specific biological

Fig. 4 | Annotation of AD-predictive genemodules identifies biological processes
and pathway. We performed gene set enrichment analysis (GSEA) separately for
each cell-type module, ranking the genes by their PLS-DA model weight (cf. Fig. 1).
Enriched gene combinations were selected based on significance testing (thre-
sholded at 0.05, FDR-corrected two-tailed p-values). To obtain a synopsis of the
mined annotations for each gene module (columns), we searched for keywords
relevant to AD and neurodegenerative disorders within the gene set names and
charted (heatmap) in which cell-type modules these keywords appear. Specifically,
we searched for keywords relating to microglia, the MAPK/ERK pathway, inflam-
mation, tumor necrosis factor (TNF), major histocompatibility class (MHC), toll-
like receptors (TLRs), oligodendrocytes, myelin, Alzheimer’s disease, amyloid pla-
que, lipid metabolism, cholesterol metabolism, neurons, actin, apoptosis,

phagocytosis, and copper. We found that over-expressed collections of genes
relating to these keywords appeared in biologically plausible cell-type modules. For
example, we found that microglia-specific gene programs and those related to
phagocytosis appeared almost exclusively in microglia modules. Gene programs
related to oligodendrocytes and myelin appeared in the top oligodendrocyte and
OPC modules. This comprehensive high-level investigation also revealed gene
programs related to neuron death/apoptosis present in astrocyte and OPCmodules,
and phagocytosis gene programs concentrated in microglia modules and the top
oligodendrocyte module. Red indicates a positive normalized enrichment score
(NES), blue indicates a negative NES; the color scale indicates the -log10(p-value) of
the enrichment. Redundant annotations, due to the hierarchical nature of the
ontologies, have been removed for clarity.
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mechanisms that these risk loci are involved in through a single-nucleus,
cell-type-module lens. We used the 38 significant risk loci identified by the
largest GWAS study of late onset AD to date3, as well as the early-onset risk
genes PSEN1 andPSEN2, as our target list.We searched for these risk loci in
the gene program annotations that were enriched in our AD-predictive
modules. Inherited risk variants are present in all cells within a subject, but
we hypothesized that they may have different effects in different cell-types
and modules. We argue that by intersecting each reported AD risk locus
with the gene programs enriched in each module, we can generate a
hypothesis about which gene programs present avenues through which an
AD-associated variant might influence the disease phenotype.

We put this hypothesis to the test by searching the AD-predictive
modules for the presence of each risk locus and determining in which
specific enriched gene programs that risk gene appears. The results of this
analysis (Fig. 7) showed that while many of the top AD risk loci were

identified in enriched gene programs across the majority of cell-types, a
number of the less studied risk loci could be localized to a more focused
subset of cell-type modules. Of the 38 loci being considered, 37 were cap-
tured in our gene expression data after pre-processing, and 24 appeared in a
predictive gene set in at least one cell-type module, including five of the
seven never-before reported risk genes (AGRN, TNIP1, HAVCR2,
TMEM106B, GRN). Of the risk loci identified in our AD-predictive mod-
ules, one was found in modules in all six cell-types (PICALM), two were
found in modules in all cell-types except microglia (APP, CLU), and nine
were found in only a single cell-type module. These observations suggest
that both cell-type-dependent and -independent effects are important
contributors to the disease.

Themost numerous risk loci uniquely isolated to a single cell-typewere
in microglia (SPI1, TREM2, HAVCR2, CD33) and excitatory neurons
(ABCA7, TNIP1, AGRN). Multiple modules corresponding to these two

Fig. 5 | Established clinicopathological markers validate our disease pseudo-
progression trajectories.Themodel-derived AD-prediction estimates for each cell-
type indicated that cell-type-specific model’s confidence in the AD vs no AD clas-
sification. The strength of gene expression patterns of each cell-type reflected the
signatures identified in the predictive modules. a Each cell has its own estimated AD
prediction confidence, which we then aggregated across all cells of the same cell-type
(columns) and from each subject (rows), resulting in a distribution of the predictive
confidence. This distribution is due to the variation in prediction confidence for the
cells within each subject. Boxes show median and middle quartiles, whiskers show
10/90% range. b Under the hypothesis that cells that could be more confidently
discriminated between the healthy and AD class were more severely affected by the

disease, these effect-strength confidence distributions allowed us to order subjects
from least severely affected to most severely affected by AD. The bottom row cor-
responds to the original binary diagnosis: patient (light) vs. control (dark). cWe
found that this ranking, whichwe call ‘disease pseudo-progression’, alignedwell with
both the diagnosis information and with external pathological disease metrics,
which were not available to the model during training. We Spearman correlated the
pseudo-progression with quantitative post-mortem assessments of neurofibrillary
tangles and amyloid plaque, as well as clinical cognition level scores, and found that
these were highly correlated. Red (black) dots correspond to persons with (without)
AD, and 1/99% bound is shaded.
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cell-types contained enriched gene programs that implicated these estab-
lishedADrisk loci. 15 of 24 loci appeared in excitatory neuronmodules, and
12 of 24 appeared in microglia modules.

PICALM is the only risk gene that was identified across all examined
cell-types, where it was almost exclusively enriched in endocytosis-related
gene programs. In excitatory neurons, microglia, oligodendrocytes, and
OPCs, PICALM was enriched in the “regulation of receptor-mediated
endocytosis” gene program, while in inhibitory neurons it appeared in
“clathrin-dependent endocytosis”, and in astrocytes it appeared in “negative
regulation of protein localization to cell periphery”. This coherent signal
across cell-types suggests a common role of PICALM, which is known to
play a key role in the endocytosis of amyloid-beta65. It has been shown that
PICALMdepletion reduces endocytosis and intracellularAPP levels66, while
increased expression of PICALM in iPSC-derived human astrocytes has
been shown to reverse APOE4-caused endocytic disruptions67.

APOE, whose e4 variant is the largest risk factor for developing AD68,
was identified exclusively in the disease-predictive modules corresponding
to glial cells (astrocytes, microglia, OPCs), other than a single appearance in
a single inhibitory neuron module. APOE4 is thought to primarily con-
tribute to AD risk by disrupting the homeostatic function of microglia and
astrocytes69.

In our results, four risk loci were uniquely localized to microglia:
TREM2, HAVCR2, CD33, and SPI1. TREM2 and CD33 are well-known
microglia-specific genes. TREM2 is a highly expressed surface receptor on

microglia which binds lipoproteins, in particular APOE and CLU25. It is
known to modulate the rate of phagocytosis24 and to modulate inflamma-
tory signaling70. AD-associatedTREM2 variants have been shown to impair
the binding of cell-surface ligands71 and alter phagocytic functions70. In our
results, TREM2 was enriched in a number of gene programs related to
phagocytosis, including “microglia pathogen phagocytosis pathway”,
“positive regulation of phagocytosis”, and “positive regulation of kinase
activity”, and gene programs related to inflammation, including “negative
regulation of inflammatory response”, “regulation of cytokine production
involved in inflammatory response”, and “regulation of chemokine pro-
duction”.CD33 is a transmembrane protein expressed on immune cells that
interacts with the TREM2 receptor, inhibiting the uptake of amyloid-beta72.
In our results, it only appeared in the gene programs “neutrophil activation
involved in immune response”, “neutrophil degranulation”, and “regulation
of tumor necrosis factor production”, found in both microglia disease-
predictive modules. Neutrophil granules are involved in neuroinflamma-
tion in AD73. Microglia are known to protect neurons from infiltrating
immune cells by engulfing neutrophil granulocytes74. This suggests that
microglia may be phagocytosing neutrophil granules in AD, although
microglia may also secrete these granule proteins75.

HAVCR2 (also known as TIM-3) is a newly reported AD risk locus
which has received little attention in the context of AD.HAVCR2 can bind
to phosphatidylserine on the surface of dying cells, increasing their
phagocytosis76, and it is also upregulated in activated microglia77. In our
results it appeared in gene programs related to cytokine signaling: “reg-
ulation of tumor necrosis factor production” and “regulation of interleukin-
2 production”.

SPI1 is a transcription factor whose reduced expression in macro-
phages has been associated with delayed onset of AD78. In our results, SPI1
appeared in the enriched gene programs “regulation of NIK/NF-kappaB
signaling” and “RANKL/RANK signaling pathway”. RANK is a member of
the tumornecrosis factor superfamily and is amain activator ofNF-kappaB.
Many other prominent AD risk genes have been linked to the NF-kappaB
pathway79, and our results suggest this connection can be extended to SPI1.

In our results there were three risk loci uniquely enriched in excitatory
neuronmodules:ABCA7,TNIP1, andAGRN.ABCA7 is primarily expressed
in neurons and microglia in the brain, and is suspected to be involved in
cholesterolmetabolismandphagocytosis80. In our results it is present only in
the “phospholipid translocation” gene program, suggesting its role in the
lipid clearance. This supports the “altered lipid homeostasis” hypothesis81,
which proposes that neurotoxic lipids produced in neurons are not ade-
quately cleared when ABCA7 levels are too low. TNIP1 is a newly reported
AD risk locus, and it is also one of the few known risk loci for the neuro-
degenerative disease ALS82. In our results, it was uniquely enriched in the
excitatory neuron gene set “translation”. AGRN (Agrin) is also a newly
reported AD risk locus. In our results it was primarily found in excitatory
neuron gene programs relating to synapses (“synapse organization”, “spli-
cing factor NOVA regulated synaptic proteins”) and “positive regulation of
GTPase activity”. Agrin is known to play an important role in excitatory
synapse formation/maintenance83, and GTPases are also central in con-
trolling this process84. Synapse loss is strongly associated with AD and the
resulting cognitive decline, and these results suggest that theAGRN variant
may be involved.

Other AD risk loci of interest in our results included BIN1,
TMEM106B, andGRN. BIN1 appeared in oligodendrocytes, microglia, and
excitatory neurons, where across all of these cell-types, it was enriched in the
“regulation of amyloid-beta formation” gene program. TMEM106B is a
newly reportedAD risk locus, and it was enriched in gene programs relating
to neuron morphogenesis in excitatory neuron and OPC modules,
including “dendrite morphogenesis” and “neuron projection morphogen-
esis”. GRN is a newly reported AD risk locus, which in our results was
localized to astrocyte, oligodendrocyte, microglia, and excitatory neuron
modules, and has been suggested as underlying a shared mechanism for
Parkinson’s, AD, and ALS85. We also investigated whether the well-known
early-onset risk genes PSEN1 and PSEN2 were enriched in our predictive

Fig. 6 | Quantification of the functional interplay between module-specific gene
programs. We calculated the association strength between the activity of top enri-
ched gene programs to understand which modules may be functionally interacting
with each other across cell-type populations. The “activity” level of the top gene sets
in eachmodule for a given subject is themean across all cells from that subject, where
activity level wasmeasured by the ability of the expression level of the subset of genes
corresponding to a particular gene set to predict the disease phenotype. Top gene
programswere selected based onnormalized enrichment score (NES), and the top 50
in eachmodulewere used for this analysis. The activity levelwas aggregated across all
cells from each subject. The subject-level mean was taken as representing the extent
to which a gene programwas active in that subject.We then Pearson correlated these
signals between all pairs of cell-type modules, between different cell-types, to esti-
mate which modules showed coordinated changes. We confirmed the expectedly
high correlation between all modules of excitatory and inhibitory neurons. We
revealed that microglia showed the highest correlation with oligodendrocytes and
excitatory neurons, but not inhibitory neurons. Our inter-module analysis
demonstrates that coherent activity of different transcriptome modules can be
estimated from their gene expression profiles.
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modules. Only PSEN1 appeared, and was localized to excitatory neurons,
oligodendrocytes, and OPCs.

By bringing together results from the population level and the cell level,
we were able to localize AD risk loci to specific cell-types, AD-predictive
modules, and gene programs enriched in those modules. This suggests an
under-exploredwayof contextualizingADGWASfindings at the resolution
of individual nuclei in brain tissue.

Discussion
Recent snRNA-seq studies have suggested that neuronal and glial cells in the
human brain play diverging roles in the onset and progression of AD5,7,86.
Our present investigation aimed to show that the effects of AD can be
further dissected by decomposing the gene expression in each cell-type into
distinct coherent modules predictive of AD diagnosis, enabled by a super-
vised latent factor modeling approach that integrates information from the
expression of all genes simultaneously. By examining single-nucleus tran-
scriptomic data through this lens, we demonstrated that dysfunction in the
prefrontal cortex in AD can be deconvolved into interpretable cell-type-
specific modules. These learned gene expression modules presented
opportunities for downstream refinement of the biological conclusions that
can be derived from snRNA-seq studies—by direct quantitative examina-
tion of gene programs, module-module coordination, and AD GWAS
risk loci.

The role of microglia in AD pathogenesis has become increasingly
apparent in recent years, spurred by the rapid adoption of snRNA-seq
technologies. Our collective findings confirm this direction and extend
recent AD studies by detailing evidence as to howmicrogliamay participate
in the genesis and progression of AD. In particular, previous transcriptomic
studies have found evidence that dysregulatedMAPKsignaling pathways in
microglia contribute to neuroinflammation, impaired phagocytosis, and the
subsequent accumulation of toxic proteins, such as amyloid-beta, poten-
tially accelerating the progression of AD28. In our analysis, conducted at the
granularity of gene expressionmodules identified within the microglia cell-
type, gene program enrichment of the topmodule pinpointed the activation
ofmicroglial cells, phagocytosis, and response to amyloid-beta plaques. The
high predictive power of this top module to distinguish AD-affected

microglia, relative to modules of other cell populations, underlined the
importance of the detected signal. The biological processes and pathways
that we identified as being implicated in this gene program may reflect
different facets of the amyloid hypothesis of AD. Specifically, amyloid-beta
plaque is thought to cause immune activation, and one proposed mode of
immune activation is the phagocytosis of this amyloid-beta plaque by
microglia87. The driving genes in this leading microglia module, which can
be thought of as the genes that collectively best explain AD diagnosis in that
cell population, replicated several genes well-known to be associated with
AD6.These includedAPOE, the top risk locus forAD, aswell as genes related
to the complement system (C1QA, C1QB, C1QC; and CD14), a critical
regulator of the microglial inflammatory response that acts to modulate Aβ
deposition88. GeneCD74 offers a demonstration of the new perspective that
comes from isolating coherent patterns of gene expression by searching
across all genes simultaneously. While the most salient genes in our two
separate microglia modules were distinct,CD74was one of the top genes in
both modules—playing a role in antigen presentation and a marker of
microglia activation89. CD74 has been shown before to be upregulated in
microglia inAD90.Our results confirm and provide nuance howCD74 plays
distinct roles, in concert with different companion genes, in parallel
mechanisms in AD.

Complementing this leadingmode of gene expression inmicroglia, the
second most important gene module in this cell-type singled out a specific
set of biological cascades, namely the activationof theMAPK/ERKsignaling
pathway and the activation of toll-like receptors (TLRs). Targeted immu-
nohistochemistry studies have shown that TLRs onmicroglia can recognize
amyloid-beta aggregates, and, upon binding, trigger the MAPK cascade,
leading to the production of pro-inflammatory cytokines and exacerbation
of neuroinflammation91,92.Microglial TLRs have therefore beenproposed as
a possible target for therapeutic intervention93.Ourfindings consolidate and
systematically reframe these previous hints by nominating TLR2, followed
by TLR1 and TLR5, as the top predictive receptors identified by means of
this microglia module. TLR2 has been found before, via spectroscopy, to be
theprimary receptor that triggersneuroinflammatory activation in response
to amyloid βpeptide94.Misfolded alpha-synuclein has been shown to trigger
theTLR1/2heterodimer to induce a proinflammatorymicroglial phenotype

Fig. 7 | Known GWAS risk loci for AD are implicated in biological pathways
specific to gene modules in cell-types. Starting from the enriched gene programs
identified in each cell-type by our disease-classification model, we focused on the
specific gene programs that implicated known AD risk loci, as reported in a recent
GWAS with over one million subjects3. We counted the number of times these AD
risk loci appeared in the list of genes associated with the enriched gene programs in
each cell-type-specific module. This heatmap shows the counts corresponding to

each module and risk locus, with the color indicating the magnitude of the locus
count.We found that several gene sets containingwell-known risk genes appeared in
at least one module in most cell-types (PICALM, APP, CLU). There were also many
risk genes that were only active in a small subset of cell-types (NCK2,HLA-DRB1) or
a single cell-type (TREM2,CD33,AGRN). Most of the AD-related risk loci that were
localized to only a single cell-type were present in microglia or excitatory neuron
modules.
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in Parkinson’s, hinting at possible overlap between these two neurodegen-
erative diseases95. Another immunocytochemistry study showed that TLR5
activation in microglia modulates their function and contributes to
orchestrating immune processes in the brain96. Examining commonalities
withother cell-typemodules,we found that the only other cell-type inwhich
annotation enrichment profiling identified the MAPK cascade are excita-
tory neurons. The only other cell-type module in which phagocytosis pro-
cesses were flagged was the top module in oligodendrocytes. As a
conjunction of present and previous findings, we have carefully located the
involvement of TLR2, TLR1, and TLR5 in the activation of MAPK/ERK
signaling pathways in microglia. Our elaboration of previous results of
targeted immunological studies single-nucleus expression modules rein-
forces the potential value of these TLRs in therapeutic strategies for AD.

Expanding our analysis framework to target the coordination
between cell-type modules, we provided further context for how our
microglia modules may be linked to pathway and biological process
annotations of distinct gene modules from other cell-types. Our results
suggest that excitatory neurons and oligodendrocytes were the two cell-
types with the strongest expected functional liaison with our microglia
modules. Because this coordination is based on the aggregated gene
expression of disease-predictive gene programs, it draws a more complete
picture of AD pathophysiology with coordinated microglia-excitatory-
neuron and microglia-oligodendrocyte cell responses. As one tempting
explanation, such concerted action could be related to the aforemen-
tioned MAPK cascade and phagocytosis, both of which could be trig-
gered as a reaction to external factors present in the cells’
microenvironment. One of the reasons for the expanding focus on
microglia is that a majority of AD risk loci discovered through genome-
wide association studies were noted to locate in or near genes that are
most highly expressed in microglia97. Consolidating and extending these
previous cues, our analyses showed that the genes SPI1, TREM2,
HAVCR2, and CD33 appear as top disease-predictive features specific to
microglia. Bolstering our module-level insights and their functional
interaction signatures, all four of these target genes have direct links to
phagocytosis and the MAPK cascade. Taken together, combining
ontologies of thousands of biological processes and functional interaction
analyses, several of our module-resolved findings point to phagocytosis
and the MAPK cascade in microglia playing an important role in AD
pathogenesis. These identified mechanisms potentially act in concert
with dedicated AD-linked gene programs in specific subsets of brain cells
including oligodendrocyte and excitatory neuron populations in brain
tissue.

Turning attention to the other examined cell-types, we applied the
samemodule-module coordination analysis to chart the coherent activation
of AD-predictive gene modules. On a confirmatory note, we find an
expectedly strong level of interplay between excitatory and inhibitory
neuron modules. Yet, we observed diverging levels of interactions between
these twoneuronal cell-types and their supporting glial cells.Only astrocytes
showed a high correspondence of biological pathways at play in AD with
both inhibitory and excitatory neurons.Other glial cell-types (i.e.,microglia,
oligodendrocytes, OPCs) showed stronger functional engagements with
excitatory neurons. This suggests that a different subset of expressed genes
may perhaps drive the excitatory-inhibitory neuron coordination as com-
pared to excitatory-neuron-glia synergy. Furthermore, our diverging
coordination constellations suggest that excitatory neurons are more
involved than inhibitory neurons in dysfunctional processes associatedwith
oligodendrocyte and microglia modules in AD. To our knowledge, this
relationship has not been suggested by other single-nucleus AD studies.
These results may also help contextualize a recent study that showed, using
magnetoencephalography, an association between excitatory circuits and
tau depositions, and inhibitory circuits and amyloid-beta depositions98. As
such, our collective findings suggest that different classes of neurons can be
considered as partly independently acting culprits in AD.

In addition to neuronal cell-types, we also identified several patterns of
coordination between glial cell-types. Oligodendrocytes were the only cell-

type with modules that were found to potentially functionally coordinate
with OPCs. Indeed, within these pairs of modules the top gene programs
were similar and related to neurogenesis. This suggests that another multi-
cell-type response in AD may implicate OPCs shifting from a homeostatic
state to aid oligodendrocytes to react to damage inflicted in the course of
AD99. Our top microglia and oligodendrocyte modules both showed inti-
mate coordination with the majority of other glial cell-type modules. This
observation suggests that these modules act in union with many different
processes in the brain at a cellular level. Because cell-type–cell-type inter-
action analysis does not attempt to resolve cause andeffect, future rigorously
designed experiments could target whether our identified coordinated
responses between cell-type modules are due to direct interaction between
cells. For example, this could be via intercellular signaling channels, or
because of a common response to another factor. The confederated inter-
play between the derived cell-type modules underscores the complex
dynamics between transcriptomic processes that may go well beyond iso-
lated actions of individual cell-types.

Machine learning classification models can inherently produce a
measure of the confidence of their predictions. In our case it reflected the
strength of the AD-discriminative patterns observed in a given cell. We
make use of this capability to infer a subject-level pseudo-progression by
ranking the 48 persons in the study by the out-of-sample strength of the
AD-associated gene expression patterns learned by the PLS-DA cell-
type-specific modules. This approach is grounded in the fact that
observed cellular transcriptomes that are more confidently predicted as
belonging to a person with AD will be more easily distinguished from
non-AD cells due to their more pronounced AD-discriminative
expression patterns. We showed that the derived trajectories of disease
pseudo-progression reflect similar trends in separate classical patholo-
gical semi-quantitative indicators of AD progression, including Braak
and CERAD stages. This concordance further demonstrates how
supervised transcriptomic models can be used towards generating
interpretable insights, by tracing out the different kinds of AD progres-
sion. This could help to better stratify individuals in future meta-analyses
to better subtype and characterize early, intermediate, and late disease
states in AD.

Finally, we sought to revisit AD risk loci established via the so-far best-
poweredGWASeffort3 bymeansof transcriptomic contextualization.Todo
so, we zoomed in on candidate cell- and module-resolved gene programs
throughwhich these risk genesmay propagate tides of diseasemechanisms.
We were able to establish patterns of risk-locus-associated signaling cas-
cades across the landscape of AD-predictive cell-type modules. Our
approach sheds light onwhich risk loci are robustly involved in common or
unique cellular processes.We only observed localization of risk loci within a
unique cell-type in excitatory neurons andmicroglia, suggesting that certain
inheritable mechanisms are specific to these two cell-types. In microglia,
immune-specific risk loci includingTREM2 andCD33were confirmed to be
involved in gene programs preferentially in this cell-type. However, the
actions of the less studied risk loci HAVCR2 and SPI1 were also unique to
this cell-type. These genes emerged as relevant in both our AD-predictive
microglia modules. We specifically localized AGRN, TNIP1, and ABCA7
only to excitatory neuron modules. We identified certain risk genes across
most or all cell-type modules, suggesting their possible implication in a
broader regime of dysfunction. For example, PICALM was identified in
modules across all examined brain cell-types. PICALM is a clathrin-adaptor
protein that is known to play a critical role in clathrin-mediated endocytosis
and autophagy, involved in clearance of amyloid-beta plaque100, suggesting
the possibility of its contributions to a broad response across cell-types. We
also identified APP and CLU in modules in all cell-types other than
microglia. Instead, APOE was primarily localized to glial cell modules,
specifically astrocytes, microglia, and OPCs. These insights attest to the
value of using snRNA-seq to see into sub-cell-typemodule granularity. The
value of these findings strengthens the argument for using single-nucleus
transcriptomics to assist in contextualizing AD risk loci that have been
identified in large-cohort efforts.
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Methods
Preprocessing of single-nucleus source data
We here analyzed a uniquely rich gene expression data resource: the first
single-nucleus RNA sequencing (snRNA-seq) study of AD5, which used
post-mortem brain tissue from the prefrontal cortex (BA10) of human
subjects from the Religious Orders Study and Rush Memory and Aging
Project (ROSMAP)17. All participants agreed to annual clinical evaluation
and organ donation at death. All participants signed an informed consent,
an Anatomic Gift Act, and a repository consent to allow for resource
sharing. Diagnoses of Alzheimer’s dementia and pathologic AD have been
previously reported101.

Due to careful experimental design, the transcriptomedata exhibits low
noise even relative to more recent studies. Additionally, the ROSMAP
resource contains a high number of subjects compared to many existing
snRNA-seq AD studies. This large subject-level sample size is essential for
being able to design and deploy more advanced quantitative analysis fra-
meworks that are able to fully exploit information in subtle expression
signals of the major cell populations in the brain. We obtained the filtered
single-nucleus transcriptomic dataset from the AD Knowledge Portal
(www.synapse.org). This dataset is the result of the pre-processing steps
described in the “Quality control for cell inclusion”, “Cell clustering”, and
“Cell-type annotation and sub-clustering” sections of the original paper5.
This dataset provides 70,634 cell transcriptomes from 48 age- and sex-
matched subjects (24 males and 24 females, 24 AD cases and 24 unaffected
controls) and transcript counts for 17,926 protein-coding genes.

In particular, quality-based filtering of cells and genes was already
performed as described in the source study5, including the removal of low-
quality and outlier cells, and the removal of lowly expressed genes. Only
protein coding genes, as opposed to non-coding genes, were kept for
downstream analysis.We have built on the cell-type categorization that was
provided with a previous study5, along with relevant clinical and patholo-
gical metadata. These cell-types were identified by clustering the cells using
the highly variable genes (basedondispersion andmean), then screening for
enrichment of known marker genes (see their Methods section for further
details5).

In the present study, all further transcriptome preprocessing of the
filtered single-nucleus data was performed using the scanpy library102. We
transformed transcript counts using the default scanpy variance stabilizing
transform of log-transforming the scaled counts per cell (scanpy functions
pp.normalize_total(data, target_sum=1e4) and pp.log1p(data)). Down-
stream data analyses of scientific interest were conducted using the scikit-
learn python library103.

Extracting functional gene modules indicative of ADRD status:
supervised latent factor model
We aimed to identify intrinsic cliques of genes whose cell-type-specific
expression robustly covaried with AD diagnosis across the cells in that
measured brain tissue population. For that purpose, we brought to bear the
class of supervised latent-factor models, which is under-represented in
single-cell genomics. The key assumption of latent-factor models is that the
patterns in the high-dimensional input data can be captured by a smaller
number of underlying hidden factors—that is, weighted linear combina-
tions of the input features (genes) in the context of supervised outcome
prediction. This analysis approach is particularly effective if there is
appreciable auto-correlation among the input features, which is a well
known, but not systematically exploited, property in single-cell RNA-seq
genomics104,105. Latent-factormodels seek to discover and render explicit the
quintessential building blocks that jointly compose the gene expression
structure by learning these latent factors directly from the transcriptomes
themselves. Using a supervised latent-factor model ensures that the dis-
covered factors are tracedout in away such that they uncover principles that
can distinguish healthy andAD cells.We thus opted for partial least squares
(PLS) as a natural choice of supervised latent-factor model for our present
study goals. This model class naturally offers a balance between latent

structure discovery capabilities with interpretability in a data-efficient
fashion106,107.

PLS is a multivariate statistical technique that can be used to decon-
volve themany-to-outcome relationship betweenonepotentially large set of
(known-to-be correlated) input predictor variables X and a target pheno-
type (response variable) y106. In the present study, we utilized PLS for
classification purposes, which is also known as PLS discriminant analysis
(PLS-DA)108. Here, PLS-DA was used to predict the binary AD diagnosis
label, separately for each cell-type, based on a set of gene expression features
in the subset of cells belonging to one predefined brain cell population (cf.
above). All cells sampled from the brains of subjects clinically diagnosed
with AD were assigned a positive label (+1), whereas those of the controls
were assigned a negative label (−1)109. Both matrix X and vector y were
subject to column-wise normalization (towards zeromean, unit variance) to
facilitate the direct interpretation of the feature weights, given that PLS is a
scale-variant approach.

The PLS algorithm identifies and extracts to-be-discovered latent
patterns while simultaneously optimizing the emerging latent patterns’
covariance between the biological ambient space X and the target outcome
variable y. Each latent component is parametrized by a weighted linear
combination of all input features110. Parameter fitting of a PLS model is
rooted in the singular value decomposition ofXTY . However, if the target y
is a single column, the PLS components can be iteratively extracted111. This
setting involves solving either NIPALS/SIMPLS algorithms or the power
method. These solvers are computationally efficient and robust, while
allowing the extraction of a specified number of latent components.

Given inputs X 2 Rn× p and outcome y 2 Rn× 1, where n is the
number of observations (cells) and p is the number of measured features
(corresponding to gene expression measurements), we find a first major
direction of hidden variation in the high-dimensional space X (i.e., a linear
combination of its columns) and a scaling of y that has maximum covar-
iance. Let w 2 Rp× 1 and c2R be the direction vector and scalar corre-
sponding to X and y, respectively. Then, by projecting the transcriptome
observations onto these emerging latent dimensions,weobtain observation-
wise scores t ¼ Xw and u ¼ yc, such that covariance tTu evaluates to a
maximum112. The loading vector l ¼ XTt is the first latent component, and
represents the contribution of each gene to that particular latent dimension.
The information contained in the current latent component emerging from
the transcriptome profiles, indexed by (observation-wise) scores and (gene-
wise) loadings, is then removed from X and y before extracting the next
latent component. By projecting the original transcriptome measurements
onto the latent components (cf. below), PLS re-expresses the dataset at a
lower dimensionality, while preserving the essential signal of value for
outcome classification.ConstructingmatricesT andL fromthe collectionof
individual component scores ti and loadings li, the original ambient data X
can be reconstructed by X≈TLT .

Calculating using the power method, the extraction of latent PLS
parameters proceeds as follows:
1. Randomly initialize vector u.
2. Iterate: For each successive latent dimension, repeat until u converges:

a. Calculate w as the vector in gene space that maximizes the covar-
iancewith the diagnosis label of each cell. This is done by projecting
the data columns X (gene expression vectors) onto the emerging
estimation of u:w ¼ XTu. Intuitively, we thus identify the group of
genes whose expression jointly covaries especially with the super-
vised target outcome (diagnosis). Normalize w to unit length.

b. Calculate the scores t, which represent the projection of the rows of
X onto w: t ¼ Xw. Intuitively, this identifies how strongly cells
express the group of genes prioritized by w.

c. Calculate the loadings l ¼ XTt.
d. Calculate c as the scalar thatmaximizes the covariancewith t. This is

done by projecting t onto the outcome vector y: c ¼ yTu. Nor-
malize c to unit length.

e. Update u as the scaling of y by c: u ¼ cy.
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3. Deflate: After a given latent component is found, X and y are deflated
by subtracting the outer product of the scores and the loadings fromX,
and the outerproductof the scores and theweights from y. This is done
to remove the portion of variability that is explained by the current
latent variable and allow for the extraction of subsequent latent
variables.

Finally, from another perspective, the mth PLS component lm is the
solution to the optimization objective:

maxαCorr
2 y;Xα
� �

VarðXαÞ

subject to |α| = 1 and αTSlk ¼ 0, k ¼ 1; . . . ;m� 1, where S is the covar-
iance matrix between the columns of X, indexing the degree of gene co-
expression strengths across cell observations110.

The direct interpretability of loading vectors for each latent factor in
PLS classification is crucial for understanding the relative importance and
joint influence of gene expression features for AD detection. Gene loadings
with large absolute values indicate a strong (marginal) contribution to the
overall outcome prediction (AD diagnosis). Loadings with values close to
zero suggest little contribution to the pattern encapsulated in a component
at hand.

Cell-type-specific PLS models
Concretely, for the purpose of the present goal to investigate the biological
mechanisms at play within each cell-type, we fitted a separate PLS model
for all the cells of a given cell-type (scikit-learn cross_-
decomposition.PLSRegression(scale=True) model). The following proce-
dure was repeated independently for each cell-type prespecified in our
dataset. This approach enabled us to partition the overall predictive gene
expression signal into coherent latent components that captured intrinsic
gene modules specific to each cell-type.

For all observed cell transcriptomes of a given cell-type, we removed
genes that were captured in fewer than 1 out of 1000 cells (scanpy function
pp.filter_genes()) to adjust the model degrees of freedom by ignoring
unexpressed genes. Filtering genes at the level of the cell-type, as opposed to
at the level of the entire dataset, ensured that genes that are only expressed in
a given cell-type can still be fully considered for downstream analysis. To
address any class imbalance in our case vs control setting, the transcriptome
observations were subsetted to ensure that the number of cells from each
diagnosis class had matched sample sizes. We randomly subsampled cells
from themajority class so as to ensure a number of cells was equal in theAD
and control groups (scanpy function pp.subsample(), fixed random state
initialization for reproducibility). To prevent potential biases arising from
the initial ordering of the subjects, at the beginning of the workflow, the
entire dataset was shuffled once (scikit-learn function utils.shuffle(), fixed
random state for reproducibility). The resulting balanced and shuffled cell-
type transcriptomes provided the basis for all downstream analysis steps.

Model selection via hyperparameter tuning (selecting number of
robustly extractable latent components for each cell-type)
The PLS model tuning and ensuing classification performance depend on
selecting an appropriate number of latent components, as supported by our
data at hand. As each subsequently extracted latent component captures a
complementary pattern in the transcriptome profiles, not already explained
by a previous PLS component, selecting too few components can lead to
poor classification performance and failure to capture informative sets of
correlated features.Conversely, selecting an excess of latent components can
lead the model to overfit to the training data and capture noise structure,
instead of biologically meaningful gene expression signals.

To enable data-informed choices for the number of PLS components
and to rigorously assess themodel performance for howwell we can classify
the disease status of cells based on gene expression, we carried out a nested
5-fold cross-validation (CV) scheme. For each cell-type, the transcriptome
observations were split into five equal-sized subsets, ensuring an equal

number ofADand control cells in each data subset. Four of the subsets were
first used formodel hyperparameter selection in the innerCV loop, followed
by evaluation of themodel performance using the final held-out test subset.
In the innerCV loop of the nestedCV, the (four) combined training subsets
were divided into five equal-sized subsets of cells formodel tuning. For each
combination of training and validation subsets in the innerCV, several PLS-
DA models were fitted based on a range of choices for the numbers of
components (scikit-learn model_selection.GridSearchCV function with
PLSRegression as the estimator and ‘n_components’ parameter set to 1-8).
To avoid overfitting, we selected the optimal number of components using
the mean area under the receiver operating characteristic (mean AUROC
across the inner CV validation subsets). The hyperparameter of the
employed PLS instance (number of components) yielding the highestmean
AUROC was kept for the subsequent analysis steps. Note that this analysis
setup accommodated different numbers of latent components for different
brain cell-types.

After determining the optimal number of components for disease
detection in each cell-type, a PLSmodel was estimated on the full set of four
training subsets of transcriptome observations and evaluated on the held-
out validation subset of the outer CV (scikit-learn model_selec-
tion.cross_val_score function). This process was repeated for each outerCV
fold. The CV estimates of the expected model performance in new data
drawn from the same population distribution was assessed by the mean
AUROC across all five outer CV validation subsets. The optimal number of
components and ensuing cross-validatedAUROC then allowed for a robust
and impartial assessment of the model’s performance in distinguishing AD
vs. healthy cells based on gene expression profiles.

Identifying the gene sets most robustly predictive of AD using
bootstrap resampling
Next, as a principled assessment of the robustness of each PLS component
(loading vector), which indicates the relative roles of the gene transcription
features in successful AD detection, we conducted an empirical resampling
analysis using a non-parametric bootstrapping scheme. In this analysis, we
performed 1000 bootstrap iterations by resampling the cell transcriptomes
with replacement. In each bootstrap iteration, the PLS model was fitted to
this perturbed version of the original snRNA-seq dataset. The loadings of
the corresponding PLS model instance were recorded across bootstrapping
iterations—one collection of perturbed PLS model parameter weights, one
bootstrap distribution for each gene.

The resulting bootstrap distributions provided an empirical estimate of
the model’s loadings for each respective latent component as if we had
drawn different transcriptome examples from the original population dis-
tribution. This empirically derived non-parametric distribution of effect
sizes served as the basis to evaluate the uncertainty of the PLS model’s
loading vectors in a disciplined fashion.

Post-processing of PLS signatures and statistical relevance
testing
Based on the derived bootstrap distribution belonging to each gene feature,
we determined statistically defensible gene groups, in the context of AD
prediction, based onwhether the (two-sided) bootstrap loading distribution
for each gene, learned simultaneously with all other genes, exhibited robust
sets of effects under the 5/95% confidence interval.We silenced geneswhose
5/95% confidence intervals of the expressionmeasurements contained zero
(i.e., their effect was removed by setting their corresponding loading weight
to zero), along with features that had at least one bootstrap loading value of
exactly zero.

As a necessary preparatory step, we synchronized the sign direction-
ality of loadings across the different permutation iterations to account for
potential mirrored loadings in the bootstrap distribution due to reflection
invariance—a form of non-identifiability that is inherent to parts of the PLS
model class113. To do so, we performed a comparison between the original
loading estimates (derived from the original, un-permutated dataset) and
the bootstrapped loading vectors in each instance. If themirrored bootstrap
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loading vector was more similar to the original loading estimate, as mea-
sured by cosine similarity, the loading was aligned by multiplication with
-1113. This post-hoc adjustment of the obtained PLS parameter estimates
aligned the sign of loadings across resampling iterations, ensuring con-
sistency in the polarity of the loadings across the bootstrap iteration-wise
PLS instances.

Comparison of modules with differentially expressed genes
We calculated the Pearson correlation between the gene feature weights
(loadings) in each of our cell-type-specific modules (PLS) and the fold-
change for the same gene (DEG) in the same cell-type, as obtained by
differential expression analysis in the original paper (Mathys et al., 2019,
SM4). These differential expression results were obtained as described in the
“Differential gene-expression analysis” section of that paper. For each
module, we then compared the top ten genes as ranked by absolute loading
valuewith the top ten genes ranked by significance (FDR-corrected p-value)
in the DEG results.

Tracing out the intrinsic directions of variation: PHATE
visualization
To allow for a low-dimensional synopsis of the high-dimensional cellular
transcriptomes, we performed non-linear dimensionality reduction by
means of PHATE114. Separately for each cell-type, all corresponding cell
transcriptomeswereprojected into their own independent low-dimensional
spaces (scanpy external.tl.phate(k = 15, t=’auto’, a = 100) function with
n_pca varying from5-20depending on the number of cells).We colored the
cells by their PLS score for each latent component (PLSRegression
x_scores_), rather than using external variables such as age and sex, as is
common in previous snRNA-seq research. The PLS scores quantify the
degree of presence of the gene expression pattern for each component. That
is, this cell-wise value quantifies how well the gene expression in each cell
aligns with gene sets tracking AD status.

Delineating disease pseudo-progression trajectories
Next, we aimed to understand where individual subjects and their cell
transcriptomes lay on the continuous spectrum fromhealth to early-stage to
late-stage AD. For that goal, we repurposed the probabilistic predictions
provided by the trained PLS classifier as a proxy for how strongly a cell
matched the latent patterns that signal AD. Using the cell-type-specific PLS
models that were trained to predict binary AD diagnosis based on a cell’s
gene expression (cf. above), we grouped all continuous out-of-sample pre-
dictions by subject. After per-subject aggregation of themodel’s predictions
across all cells originating from that subject, we ranked the 48 subjects based
on the medians of these prediction distributions.

Taking the median probabilistic diagnosis prediction for each subject
produced a (6 cell-types x 48 subjects) matrix. To obtain an ordering of
subjects based on their estimated disease progression, we calculated the first
principal component of this matrix across subjects and projected each
subject onto this principal component space. These rankings order the
subjects from those most confidently predicted to be a control to those
subjects most confidently predicted to have AD, which we termed “disease
pseudo-progression”. The cell-type-specific disease classifiers were trained on
cells originating from all subjects, providing a direct and balanced com-
parison based on the disease-predictive modules present in each cell-type.

To validate the biological relevance of the relative disease progression
of subjects derived from their transcriptomic profiles, we calculated the
Spearman correlation between the ordered subjects and their available
clinical and pathological metrics (Braak stage, CERAD score, amyloid
plaque level, global cognition level), as a battery of externalmetrics of disease
progression, commonly used in histological tissue dissection reports
in AD43.

We employ a classificationmodel’s probabilistic predictive confidence
(obtained using a cell’s gene expression) as a proxy for the degree to which
ADhas affected that cell. This analysis uses the assumption thatADperturbs
a cell’s gene expression profile, and that the strength of this perturbation

varies as the disease progresses. We believe this is a reasonable assumption,
as AD is well established to be a continuously progressing disease, and the
progressing phenotype most likely originates from changes at the cellular
level. However, it is possible that the model’s predictive confidence corre-
lates with but does not directly correspond to themolecular changes caused
byAD. It is also possible that ADonly impacts a subset of the cells of a given
cell-type obtained from a donor, whichmay affect the associations based on
the total number of cells collected.

Annotating derived gene modules by known biological signaling
pathways: GSEA
We then aimed to gain insights on the biological processes and pathways
that are at play in the gene modules (latent components) identified by our
cell-type-specific PLS models. For that purpose, it was essential to bring in
the biological context provided by annotated gene programs identified by
biological experiments. The expression of individual genes is often driven by
their membership in complex functional gene regulatory networks.

We performed gene set enrichment analysis (GSEA)10 for each com-
ponent in each cell-type-specific model. We used the following gene set
databases, as these resources are the most widely used in existing literature
and had the most complete coverage of genes: gene ontology biological
processes (2021), WikiPathway human (2021), and Panther pathways
(2016). These databases permitted us to respectively explore the enrichment
of various biological processes, pathways, and functional categories. We
used the python libraryGSEApy115, which itself uses Enrichr116.We used the
most up-to-date versions of these databases available through Enrichr in
October 2022.

For each cell-type and each of its dedicated PLS latent components, we
constructed a ranked list of genes based on their corresponding median
bootstrap PLS loading. Notably, each genemodule’s gene set to be analyzed
excluded the zeroed-out gene features (cf. above). We performed gene set
enrichment analysis on each ranked list: each candidate gene set was tested
for enrichment at either end of the list (gseapy prerank function). This
approach was executed using the following parameter choices: minimum
gene set size of 5, noplotting, and1000permutations for significance testing.
Wefiltered theGSEA results based on a false discovery rate (FDR) threshold
of 0.05. TheGSEAresults for all gene set databaseswere then combined into
a single collection for further analysis and interpretation.

Subsequently, to address the hierarchical nature of the ontologies, we
performed an overlap analysis to remove gene sets that were highly similar
to other gene sets within the same component. For eachpair of gene sets, we
calculated the degree of overlap as the ratio of the number of genes shared
between both sets to the size of the smaller gene set (overlap threshold of
0.9). If the degree of overlap between two sets exceeded the threshold, the
less enriched gene set (by normalized enrichment score) was removed from
the results list.

Gene set keyword search
We performed a string search of the full annotations associated with the
GSEA results in order to gain a compact understanding of which types of
processes and pathways were enriched in each cell-type component. We
searched for annotations that contained the following terms: ‘microglia’,
‘mapk’, ‘inflamm*‘, ‘tumor necrosis’, ‘mhc’, ‘toll-like’, ‘oligod*‘, ‘myelin’,
‘alzheimer’, ‘amyloid’, ‘lipid’, ‘cholesterol’, ‘neuron’, ‘actin’, ‘apopto*‘,
‘phagocyt*‘, ‘copper’. These terms were informed by phenomena com-
monly associated with AD, as well as our results for the identified themes
within the gene modules.

Characterization of coordination between cell-type modules
To gain a broader perspective over the biological processes and pathways
found to be at play in each of the examinedbrain cell-types, we next inferred
a proxy measure for the level of potential coordination between the top
enriched gene sets (i.e., biological processes and pathway annotations)
discovered in each cell-type. We achieved this goal by first calculating an
aggregate activity score, in each subject, for each enriched gene set based on
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the expression level of its constituent genes. We then identified which of
these gene sets had activity scores that associated with our disease pseudo-
progression. This approach helped to identify similar biological processes
and pathways that plausibly varied together in different cell-types and cell-
type modules in a local brain tissue milieu in AD.

To derive a dedicated quantity tracking the activity level of each
functional gene set, we first trained a gene-set-focused instance of our PLS
modelwith a single latent component, usingonly the expressionof the genes
that were annotated to that enriched gene set as predictors. The target
outcome for this gene-set-specific model was binary AD diagnosis. The
performance of the classifier indicated how well the purportedly enriched
gene set was able to detect diagnosis based on expression levels of its con-
stituent genes. Aswith the disease pseudo-progression estimate,we used the
continuous probabilistic model predictions, here termed the activity score,
and aggregated these values across all cells from each subject. Using the
mean activity score for each subject, we quantified howpredictive the group
of genes defined by a given gene setwerewithin that subject, relative to other
subjects. This analysis resulted in a gene set activity score for each enriched
gene set and each subject.

Finally, we ranked all enriched gene sets based on the Spearman cor-
relation between the disease pseudo-progression (cf. above) scores and the
gene set activity scores (both of these scores hadone value per subject).Next,
according to the derived ranking, we calculated Pearson’s correlation
between the activity score vector corresponding to the top 50 gene sets, for
all pairs of different cell-types and their corresponding latent components.
Then, for each possible pair of cell-types and components, we calculated the
median absolute correlation between their top pathway pairs. For example,
we identified the top 50 gene sets in module 1 of microglia andmodule 1 of
oligodendrocytes and calculated the correlation between each pairing of
gene sets between the two modules, then took the median of these 502

correlation values. This analysis approach was repeated for all possible
combinations of transcriptome module pairs.

GWAS-transcriptomemappingby localizinggene risk loci in cell-
type modules
To understand which cell-type-specific gene modules contained enriched
gene sets that had as members knownAD risk loci identified by GWAS, we
interrogated the sets of driving genes in each derived cell-type module. We
based this examination on the 38 recently reported loci from the best-
powered AD GWAS investigation conducted to date3 (Supplementary
Table 2). These risk loci are the result of mapping genome-wide variants
associated with AD, based on both true and proxy cases, to their most likely
associated genes by means of FUMA117.

We take this analysis one step further by identifying themost likely cell-
types, cell-type modules, and gene sets associated with these AD risk loci.
We justify this step by the following argument: for a genetic variant to be
associated with a phenotype such as AD, it must also participate in some
pathway or process that is itself associatedwith the phenotype, such as those
which are identified in our disease-predictive modules.

For each reported GWAS locus, we counted the number of times it
appeared as a member of each AD-predictive gene expression module. To
eliminate redundancy due to the hierarchical nature of the ontologies being
used, we only kept gene set annotations that were not supersets of other
enriched annotations (i.e., only the leaves of the tree of enriched terms). This
analysis allowed the identification of the gene sets thatwere both enriched in
our cell-type-specific disease-predictive modules, and contained known
inheritable risk loci associated with AD. The ensuing systematic
transcriptome-GWAS mappings can be used to help guide further study
into which cell-types and via which mechanisms these risk loci may be
acting to bring about AD pathophysiology.

Statistics and reproducibility
Machine learning analyses were performed using 5-fold out-of-sample
cross-validation to ensure robustness and generalizability. Results are
expressed as mean and standard deviation (s.d.) unless otherwise specified.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The snRNA-seq PFC data originated from Mathys, H. et al. Single-cell
transcriptomic analysis ofAlzheimer’s disease.Nature570, 332–337 (2019),
and are available through Synapse (https://www.synapse.org/#!Synapse:
syn18485175) under the doi 10.7303/syn184851755. The data is available
under controlled use conditions set by human privacy regulations The
numerical source data behind the graphs can be found in https://doi.org/10.
5281/zenodo.10962415118.

Code availability
All code to reproduce the analysis and generate the figures in this article are
available at: https://github.com/dblabs-mcgill-mila/snRNA-AD_latent_
modules118. Python package versions are listed in environment.yaml file.
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