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The neurocomputational link between
defensive cardiac states and approach-
avoidance arbitration under threat

Check for updates

Felix H. Klaassen 1 , Lycia D. de Voogd1,2,3, AnneloesM. Hulsman1,2, Jill X. O’Reilly4, Floris Klumpers1,2,
Bernd Figner 1,2 & Karin Roelofs 1,2

Avoidance, a hallmark of anxiety-related psychopathology, often comes at a cost; avoiding threatmay
forgo the possibility of a reward. Theories predict that optimal approach-avoidance arbitration
depends on threat-induced psychophysiological states, like freezing-related bradycardia. Here we
usedmodel-based fMRI analyses to investigate whether and how bradycardia states are linked to the
neurocomputational underpinnings of approach-avoidance arbitration under varying reward and
threat magnitudes. We show that bradycardia states are associated with increased threat-induced
avoidance and more pronounced reward-threat value comparison (i.e., a stronger tendency to
approach vs. avoid when expected reward outweighs threat). An amygdala-striatal-prefrontal circuit
supports approach-avoidance arbitration under threat, with specific involvement of the amygdala and
dorsal anterior cingulate (dACC) in integrating reward-threat value and bradycardia states. These
findings highlight the role of human freezing states in value-based decision making, relevant for
optimal threat coping. They point to a specific role for amygdala/dACC in state-value integration under
threat.

Threat avoidance often comes at a cost, particularly in approach-avoidance
conflict where avoidance may reduce the probability of aversive outcomes
but also of obtaining potential rewards. Approach-avoidance conflict
situations therefore require weighing of the potential reward and threat
outcomes of our decisions1–3. Effectively arbitrating between approach and
avoidance decisions is crucial for generating adaptive behavior across nat-
uralistic environments. This process might go awry in several psycho-
pathological conditions, including anxiety disorders as they are
characterized by excessive avoidance behavior2,4–7. While over the past
decades the decision sciences and computational psychiatry have made
significant progress inmodeling those value-based decisions in healthy and
patient populations, the role of the threat-induced psychophysiological state
of the organism has been largely overlooked8,9.

Freezing is a defensive threat reaction characterized by immobility and
heart rate deceleration (bradycardia), resulting from relative dominance of
parasympathetic over sympathetic arousal in the autonomic nervous
system10,11. There is ample evidence from postural, cardiac, and neural
analyses that humans aswell as animals freezewhen experiencing threat12–14.

Freezing is facilitated by projections from the central nucleus of the
amygdala to the midbrain periaqueductal gray (PAG), which in turn
innervates immobility and bradycardia through medullar connections to
spinal cord motor neurons and the vagus nerve, respectively15–19. This
freezing state has been shown to facilitate sensory upregulation and risk
assessment while minimizing the likelihood of detection under threat11,20–23.
For instance, freezing-related bradycardia has been linked to enhanced
perceptual sensitivity24,25 and increased action preparation13,26,27. Interest-
ingly, in a recent behavioral study28 we found evidence in line with a role
of freezing states in instrumental decision-making. In this study, bra-
dycardia was associated with value integration of reward and threat
during approach-avoidance arbitration, depending on the action context.
However, this relationship occurred on the subject level, and so it
remains unknown how transient defensive cardiac states might affect
value-based computations and underlying neural circuits on a momen-
tary (trial-by-trial) basis. This knowledge is critical to provide starting
points for optimizing interventions aiming at improved decision-making
under threat in health and anxiety.
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To address this knowledge gap, we a priori formulated three potential
mechanisms by which freezing states could impact approach-avoidance
arbitration under threat (corresponding to routes 1–3 in Fig. 1a), previously
published in Livermore et al.29 (preregistration: https://doi.org/10.17605/
OSF.IO/KYWV8). First, we hypothesize that freezing states may be asso-
ciated with enhanced processing of aversive value information from
potential threat in the amygdala-PAG circuit (route 1). The presence of
environmental threat can shift value processing frombeing drivenprimarily
by fronto-striatal regions (such as the ventromedial prefrontal cortex and
(ventral) striatum30–33), to regions involved in stress coping, salience, and
defensive threat reactions such as the amygdala and PAG27,34–37, particularly
during states of freezing-related bradycardia38. Indeed, the amygdala-PAG
pathway is not only involved in triggering defensive threat reactions13,14,16,22

but has also been implicated in processing aversive value (e.g., predicted

pain39,40). Accordingly, we predict that stronger bradycardia states are linked
to increased salience of aversive value, resulting in increased avoidance.

Second, and even more important for adaptive responding under
threat, we hypothesize that freezing states may be associated with a change
in how potential reward and threat are comparedwith each other (route 2).
If freezing affects approach-avoidance arbitration through assessment of the
associated risks20,41, then freezing states may not be linked to the processing
of aversive value alone, but rather to the value of one outcome in light of the
other (e.g., discounting the value of potential reward by the value of the
threat). Adapting the relative weight of potential positive vs. negative out-
comes might enable more optimal decisions to approach rather than avoid
when the potential reward (relative to threat) is deemed sufficiently large28.
Such value integration has previously been suggested to be driven by the
dorsal anterior cingulate cortex (dACC)32,36,42,43 and pre-motor areas such as
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Fig. 1 | Theoretical and experimental paradigm – outline of hypothesized
mechanisms of freezing-state effects on approach-avoidance, and trial design of
the Passive-active Approach-avoidance Task (PAT). a Visualization of the theo-
retical framework in which we hypothesize three routes through which freezing
states may affect the computations underlying approach-avoidance arbitration
under threat; processing of aversive value in the amygdala and periaqueductal gray
(AMY, PAG; route 1), value comparison in the dorsal anterior cingulate cortex
(dACC; route 2), and action invigoration in the perigenual ACC (pgACC; route 3).
This model hypothesizes that freezing effects on the computations in routes 1 and 2
affect the proportion of approach (vs. avoidance) choices as a function of threat
(route 1) and reward-threat comparison (route 2), and the proportion of active vs.
passive approach-avoidance choices (route 3). Seemain text for details and rationale.
Note that while we here depict the ventral striatum (vStr) and AMY as encoding
reward and threat information, respectively, we acknowledge that this is a simpli-
fication and that both these structures have been shown to encode threat and reward
(see e.g., refs. 11,55). Figure was adapted with permission from Livermore et al.29.
vmPFC: ventromedial prefrontal cortex. b To test this model, we developed an

experimental task in which participants (white square) have to approach or avoid
targets (gray circle) that are associated with varying reward and threat magnitudes
(ranging 1–5 euro/shocks and indicated by green coins/lightning bolts respectively).
After an initial anticipation screen (duration of 6–7 s for 80% of the trials) partici-
pants could indicate their choice during the target movement window (700 ms) by
positioning themselves (i.e., the white square) on the same location as where the
target was moving (approach) or on the other location (avoid). If participants
approached, there was a large probability to receive either the indicated number of
shocks (40%) or amount of money (40%), and a small probability to receive nothing
(20%). If participants avoided, therewas a large probability receive to receive nothing
(80%), and smaller probabilities to receive shocks (10%) ormoney (10%).Moreover,
the target movement direction during the movement window was manipulated in
two action contexts (i.e., movement towards or away from the player, 50% of all trials
each), such that participants could always either actively approach/passively avoid,
or passively approach/actively avoid. Participants were fully instructed about these
task conditions (including the outcome probabilities). Dashed arrows were not
present in the actual task.
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the supplementalmotor area (SMA)29,44.Wepredict that value integration in
these regions might be driven by freezing states.

Third,wehypothesize that freezing statesmayhelp to prepare the body
for action in acutely threatening situations through action invigoration
(route 3). Evidence for this comes from studies linking freezing to increased
fear-potentiated startle and faster response times (suggesting action
preparation)13,24,28,45. Based on previous human work on the switch from
freezing into action, we anticipate that action invigoration during freezing is
associated with the perigenual region of the ACC (pgACC)13.

To test these three routes (aversive value, value comparison, and action
invigoration; Fig. 1a), 58 human participants performed a Passive-active
Approach-avoidance Task (PAT)28. In this task people make approach-
avoidance decisions in the face of varying reward (1–5 euros) and threat
magnitudes (1-5 shocks) in two action contexts (passive or active; Fig. 1b).
Simultaneously, we measured heart rate to assess bradycardia (as a freezing
state index), and brain responses using blood-oxygen-level-dependent
functional magnetic resonance imaging (BOLD fMRI). Using a modeling
approach, we tested the link between event-related bradycardia states and
each of the hypothesized neurocomputational mechanisms (while
accounting for cardiac and respiratory noise46). Specifically, we modeled
how approach-avoidance decisions varied as function of bradycardia
interactions with the number of shocks (aversive value), the money-shock
level difference (value comparison), and the action context (action
invigoration)29. Neurally, we expected bradycardia interactions with aver-
sive value to activate the amygdala and PAG, with value comparison to
engage the dACC, and with action invigoration to involve the
pgACC (Fig. 1a).

Results
Bradycardia states are associated with stronger shock-induced
avoidance
Approach-avoidancedecisions under threat. In the PAT, participants
were well able to trade off shocks versusmoney, replicating typical choice
and response time patterns28 (Fig. 2a, see Methods Eqs. (1) and (2) for
Bayesian mixed-effects model, i.e. BMM, specifications).

Regarding choice, highermoney and shock levels led tomore approach
and avoidance, respectively (as preregistered, statistical effects whose
Bayesian 95% and 90% posterior highest density interval ‘HDI’ did not
include 0 were interpreted as ‘significant’ and ‘marginally significant’,

respectively, see Methods for details; Bmoney = 1.54, HDI95% = [1.26, 1.83];
Bshocks =−1.10, HDI95% = [−1.35, −0.84]; Fig. 2a). Additionally, shock-
induced avoidance was more pronounced for lower money levels, and
money-induced approach was less pronounced for lower shock levels
(Bmoney:shocks = 0.40, HDI95% = [0.22, 0.57]). Choice was not affected by the
action context (Bactioncontext = 0.06, HDI90% = [−0.04, 0.17]), but the action
context did interact with the money and shock levels. Specifically, the
approach-effect ofmoneywas stronger in active compared to passive action
contexts, indicating action invigoration as a function of reward
(Bmoney:actioncontext =−0.27, HDI95% = [−0.40, −0.16]). Conversely, the
avoidance effect of shocks was stronger in passive compared to active action
contexts, indicating more passive responses (i.e., action inhibition) as a
function of threat (though only marginally so; Bshocks:actioncontext = 0.09,
HDI90% = [0.008, 0.17]).

Differences between approach vs. avoidance decisions were also
reflected in the response times. Participants responded faster for avoid
compared to approach choices (Bchoice =−0.04, HDI95% = [−0.07, −0.02];
Fig. 2c), and this response time difference depended on the reward and
threat magnitudes: Highermoney levels led to faster approach compared to
avoid responses (Bmoney:choice = 0.04, HDI95% = [0.02, 0.05), while higher
shock levels led to slower approach compared to avoid responses
(Bshocks:choice =−0.04, HDI95% = [−0.06,−0.02]).

In sum, we observed (as previously28) a balanced trade-off between
reward and threat, and interactions of reward and threat magnitudes with
action and response times.

Behavioral interactions with bradycardia states. Next, we assessed to
what extent our experimental paradigm induced the desired cardiac
effects, and whether these heart rate dynamics interacted with partici-
pants’ task behavior.

A significant reduction in heart rate during the anticipation screen
relative to the pre-trial baseline indicated the expected freezing-like bra-
dycardia state (Bintercept =−1.77, HDI95% = [−2.12, −1.42]). This brady-
cardia response was not affected by varying money levels (Bmoney = 0.10,
HDI90% = [−0.004, 0.20]), shock levels (Bshocks =−0.02, HDI90% = [−0.12,
0.07]), the action context (Bactioncontext = 0.04, HDI90% = [−0.06, 0.15]), nor
their interactions (BMM on Δhr, Methods Eq. (3); Fig. 2b).

Moreover, stronger bradycardia was related to an increased effect of
shock level on avoidance (Bshocks:heartrate = 0.08, HDI95% = [0.001, 0.17]).
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Fig. 2 | Task effects on choice behavior and heart rate. aHigher money and shock
levels led to more approach vs avoid choices, respectively. bWe observed a sig-
nificant average heart rate deceleration during the anticipation screen relative to the
1 s pre-trial baseline indicative of a freezing-like bradycardia state, which was
numerically but not significantly more pronounced in avoid (compared to
approach) trials (see main text for statistics). Trial-by-trial bradycardia (Δhr) was
quantified as the average baseline-corrected heart rate across a 5–7 s time window
relative to the anticipation screen onset, such that lower (relative to higher) Δhr
values indicate stronger bradycardia. c Stronger trial-by-trial bradycardia was
associated with faster response times (for illustration purposes, individual dots

reflect RT and Δhr values aggregated separately for money and shock levels, and
approach and avoid choices). Moreover, we observed faster response times for avoid
compared to approach decisions. Error bars indicate ±1 SEM. Gray-white striped
shaded area in (b) reflects partial overlap between anticipation and target movement
screens across different trials (i.e., movement window onset was uniformly jittered
between 6–7 s relative to the anticipation screen onset). BPM: beats per minute; Ap.:
approach; Av.: avoid; asterisks (*) indicate ‘significant’ effects (i.e., HDI95% excludes
0) of money and shocks on choice (a) and heart rate and choice on response
times (b).
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Specifically, in trials withmore bradycardia,more shocks led to increasingly
more avoidance. There were no significant interactions of bradycardia with
any other experimental conditions, including money or the money-by-
shocks interaction.

Finally, stronger bradycardia was associatedwith faster response times
(BMM on RTs, Methods Eq. (5); Bheartrate = 0.03, HDI95% = [0.007,
0.05]; Fig. 2c).

Together, these results show that bradycardia states were related not
only to general task involvement, but also approach-avoidance decisions
and faster responding.

Distinct neural networks underlying anticipation of reward and
threat magnitudes versus approach-avoidance decisions
Tracking of reward and threat magnitudes during anticipation.
Before detailing the modeling effects, we investigated the task-based
neural correlates of reward and threat anticipation, by performing a
parametric modulation of the fMRI signal as a function of themoney and
shock levels (Fig. 3a). For reward, as expected, higher money levels were
positively correlated with increased BOLD activity in the ventral striatum
(left: p = 0.003, right: p < 0.001; peak-voxel family-wise error small-
volume corrected, i.e., FWE-SVC). We also expected a reward effect in
the vmPFC, but we did not observe a significant association (p = 0.059
peak-voxel FWE-SVCwithin an anatomical vmPFCmask, seeMethods).
Money levels were negatively correlated with BOLD in the right lateral
orbitofrontal cortex (p = 0.024 cluster-level FWE-corrected). Regarding
threat, shock levels were as expected positively correlated with BOLD
activity in regions part of the salience network such as SMA/dACC and
anterior insula, and regions part of the executive control network such as
the dlPFC and precuneus (all p < 0.001 cluster-level FWE-corrected).
This contrast did not show the expected effects of the shock levels in
subcortical regions such as the amygdala; this was only the case when
contrasting approach vs. avoid trials, i.e. when the probability of receiving
a shock is relatively high (see below). Finally, shocks were negatively
correlated with BOLD in the vmPFC (p < 0.001 cluster-level FWE-cor-
rected; for all statistics, see Supplementary Table 1). Together, these
results show that cortico-striatal regions traditionally implicated in
reward and threat confrontation (e.g., reception ofmoney vs. shocks) also
parametrically track the processing of these potential outcomes during
anticipation.

Circuits underlying approach-avoidance decisions. Approach
(compared to avoid) trials showed increased activation in regions
implicated in both appetitive and aversive processing, such as the ventral
striatum (left and right: p < 0.001 peak-voxel FWE-SVC) as well as the
amygdala (left: p = 0.005, right: p < 0.001; peak-voxel FWE-SVC).
Additionally, regions previously implicated in (approach-avoidance)
decision-making such as the vmPFC and the right hippocampus showed

stronger BOLD responses during approach (both p < 0.001 cluster-level
FWE-corrected). The inverse contrast—showing stronger activation for
avoid vs. approach trials—revealed activity in regions consistent with the
frontal-parietal network: the right precuneus and superior frontal gyrus
(precuneus: p < 0.001, sup. front. gyr.: p = 0.007; cluster-level FWE-cor-
rected; Fig. 3b; see Supplementary Table 2 for all statistics). Finally, neural
patterns were similar for active vs. passive approach-avoidance decisions
(see Supplementary Table 2).

To verify relevance of these neural findings for decision-making, we
performed a follow-up hemodynamic response function (HRF)-agnostic
time-series analysis ofBOLDresponsepatterns (i.e., afinite impulse impulse
response analysis). This control analysis indicated that the neural approach-
avoidance effects in our main regions (ventral striatum, amygdala, and
vmPFC) were only related to the choice and not the subsequent response
(see Supplementary Fig. 1).

Collectively, our task-based neural results outline an approach-
avoidance circuit consistent with previous work, and show distinct net-
works underlying approach-avoidance arbitration and anticipatory pro-
cessing of reward/threat magnitudes, with only partial overlap.

Neural circuits underlying the link between bradycardia states
and approach-avoidance decisions
Support for aversive value and value comparison models. After
having verified the task-based effects, we addressed our main experi-
mental question regarding the link between bradycardia states and the
computations underlying approach-avoidance arbitration (i.e., aversive
value, value comparison, and action invigoration, Fig. 1a), using com-
putational modeling and model-based fMRI analysis.

We created three separate models (further referred to as freezing
models) capturing the effects of aversive value (AV), value comparison (VC)
and action invigoration (AI) on trial-by-trial approach-avoidance choices,
and contrasted them against a base model (following previous work47–49).
The AV model included an interaction term between bradycardia and the
number of shocks (i.e., βs:hr). The VC model included an interaction
between bradycardia and money-shock difference Δms, which we mathe-
matically defined as the difference between the money and shock levels on
offer (i.e., βms:hr, and Δms=money−shocks). Lastly, the AI model featured
an interaction term between bradycardia and the action context, which
estimates participants’ probability of giving an active (vs. passive) response
(i.e., βac:hr). Details on the modeling specifications are included in the
Methods.

We assessed whether the freezing models captured the observed pat-
terns in the choice data (Fig. 4, upper panels a–c showaggregated raw choice
proportions, lower panels d–f show model-predicted choice probabilities
which were generated from model-estimated decision values ‘DVs’, where
DVs < 0 correspond to p(approach) < 0.5, and DVs > 0 correspond to
p(approach) > 0.5; note that low vs. high Δhr values indicate trials with

Fig. 3 | Neural correlates of reward-threat and
approach-avoidance anticipation. aWe observed
positive correlations between BOLD and money
levels in the ventral striatum (vStr), and between
BOLD and shock levels in the supplemental motor
area/dorsal anterior cingulate (SMA/dACC) and
anterior insula.bWeobserved higher BOLDactivity
in the ventral striatum, amygdala, and ventromedial
prefrontal cortex (vmPFC) for approach compared
to avoid choices. Images are thresholded at p < .001
whole-brain uncorrected for display purposes. All
labeled areas are significant at p < .05 FWE-
corrected.
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stronger vs. weaker bradycardia, respectively). Note that some of the bra-
dycardia effects in the freezing models (i.e., βs:hr and βac:hr) were also tested
above in a single task-effect BMM. Here, these interactions are entered in
separatemodels to allowus to isolate their unique contribution to the neural
data (see below).

First, the aversive value model confirmed the relationship between
bradycardia and shocks (also tested in the BMM above; βs:hr = 0.07,
HDI90% = [0.01, 0.14], Fig. 4a). For the value comparison model, we now
found a significant interaction between bradycardia and Δms
(βms:hr =−0.09, HDI95% = [−0.18, −0.01]), revealing a more pronounced
effect of money-shock level differences on choice in trials with stronger
compared to weaker bradycardia (Fig. 4b). Interestingly, this interaction
seems particularly driven by a higher approach rate in trials with high
money (relative to shock) levels (i.e., high Δms values), and strong brady-
cardia. In all other conditions (i.e., Δms values below 2), bradycardia was
mostly associated with more avoidance (regardless of the Δms value). On
trials where expected reward strongly outweighs the threat magnitude,
bradycardia was associated with increased, rather than decreased approach.
Whereas on trials with comparable reward-threat magnitudes, or trials
where the threat magnitude outweighs the expected reward, stronger bra-
dycardia is associated with more avoidance. Finally, in the action invi-
goration model there was no relationship between bradycardia and the
action context (also tested in the BMM above; βac:hr = 0.05;
HDI90% = [−0.01, 0.11], Fig. 4c). Overall, the freezing models captured the
observed behavioral patterns well (quantitative model comparison indi-
cated that allmodels fit the data roughly equally well, with the aversive value

model slightly outperforming the other models, including the base model;
see Supplementary Table 3).

Model-based and task-based fMRI analyses reveal highly similar
neural circuits. Then, for our model-based fMRI analysis approach, we
first investigated to what extent the predicted approach-avoidance
choices by the base model generated similar neural circuits of BOLD
activation as the observed approach-avoidance choices (Fig. 5a). Here we
found indeed a highly similar pattern of regions for the model-based
analysis: a positive correlation between higher decision values (i.e., higher
predicted probability to approach) and BOLD activity in the ventral
striatum (left: p = 0.001, right: p = 0.009 peak-voxel FWE-SVC), right
amygdala (p = 0.019 peak-voxel FWE-SVC), and vmPFC (p < 0.001,
cluster-level FWE), and a negative correlation (i.e., higher predicted
probability to avoid) with BOLD in the right precuneus and superior
frontal gyrus (precuneus: p = 0.001, sup. front.: p = 0.008, cluster-level
FWE; see Supplementary Table 4 for all significant clusters). This sup-
ports the base model as being a solid foundation to investigate the neural
correlates of the subsequent freezing models each incorporating the
distinct bradycardia-state mechanisms.

Amygdala and dACC involvement in bradycardia-state interactions
with aversive value and value comparison. Next, to test our core
neural hypotheses, we investigated the unique contribution of the
freezing models to the observed BOLD-fMRI signal, as compared to the
basemodel (Fig. 5). For each of the three freezing models, we computed a

1.00

0.75

0.50

0.25

0.00
1 2 3 4 5

Pr
op

or
tio

n 
Ap

pr
oa

ch
es

1.00

0.75

0.50

0.25

0.00
-4 -3 -2 -1 0 1 2 3 4 Passive Active

1.00

0.75

0.50

0.25

0.00

a b c
2. Value Comparison1. Aversive Value 3. Action Invigoration

Pr
ed

ic
te

d 
p(

Ap
pr

oa
ch

) 1.00

0.75

0.50

0.25

0.00
1 2 3 4 5

Shock level

0.1 0.20-0.1
Estimate

D
en

si
ty #

βs:hr

∆ms (money - shocks)

1.00

0.75

0.50

0.25

0.00
-4 -3 -2 -1 0 1 2 3 4

0.10-0.1-0.2

D
en

si
ty

Estimate

*
βms:hr

Action context

0.10-0.1

D
en

si
ty

Estimate
0.2

n.s.

βac:hr

Passive Active

1.00

0.75

0.50

0.25

0.00

d e flow ∆hr high ∆hr low ∆hr high ∆hr low ∆hr high ∆hr

Fig. 4 | Comparison of observed and model-predicted bradycardia-state inter-
actions underlying approach-avoidance choices. Observed (a–c) and model-
predicted (d–f) effects on choice for the three hypothesized routes (1: aversive value,
2: value comparison; 3: action invigoration). Specifically, we plot the interactions
between bradycardia and the number of shocks (a, d), the money-shock difference
Δms (b, e), and the action context (c, f). Model-based plots also display the posterior
distributions of the interaction coefficients, with the 90%HDI shaded in red, and the
95%HDI in orange. For plotting purposes only, we created conditions with stronger

bradycardia (low Δhr) and weaker bradycardia (high Δhr; respectively containing
the trials with the 33% lowest vs highestΔhr values).Model predictions are plotted as
predicted approach probabilities. In (a–c), small, semi-transparent dots represent
individual participant data (n = 58 per condition). Error bars indicate ±1 SEM;
asterisks (*) indicate ‘significant’ effects (i.e., HDI95% excludes 0), hash icons (#)
indicate ‘marginally significant’ effects (i.e., HDI90% excludes 0), n.s.: not ‘significant’
(i.e., HDI90% includes 0); m: money; s: shocks.
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regressor containing difference scores that quantify to what extent that
model predicts different decision values as compared to the base model
(i.e., DVdifffreezemod = DVBase – DVfreezemod). For a given freezing model,
positive difference scores (i.e.,DVdifffreezemod > 0) indicate that it predicts
a higher probability of avoidance in that trial, and negative difference
scores (i.e., DVdifffreezemod < 0) indicate it predicts a higher probability of
an approach choice (relative to the base model, see Methods). Note that
these prediction differences between the freezing models and the base
model are driven by the distinct bradycardia-state interaction terms,
since all models were otherwise parameterized identically. The DVBase

and threeDVdifffreezemod vectorswere then together entered as parametric
modulators of the BOLD signal during the anticipation screen. All
parametric modulators were orthogonalized relative to the unmodulated
(i.e., anticipation screen) regressor, such that each regressor captures its
unique BOLD-signal variance (i.e., shared variance between two
regressors will be attributed to the error term50).

For aversive value (AV), we observed a negative correlation between its
difference scores and BOLD activity in the amygdala (as expected; right:
p = 0.022 peak-voxel FWE-SVC; survives Bonferroni correction for two
ROIs, i.e., pcorrected= 0.044), but unexpectedly not in the PAG (Fig. 5b; for

whole-brain results see Supplementary Table 4). This suggested that as the
difference in choice predictions between the AV and base model increased
(i.e., as DVdiffAV becomes more positive), BOLD activity in the amygdala
decreased. However, it remained unclear whether this was a general rela-
tionship (along the whole range of positive and negative trial-wiseDVdiffAV
values), or whether this relationship was specific to certain trial conditions.
To further investigate this, we performed a follow-up analysis in which we
split the AV difference regressor in two: one for trials in which the model
predicted a higher probability of avoidance compared to the base model
(DVdiffAV > 0), andone for trials inwhich itpredictedahigherprobabilityof
an approach choice compared to the base model (DVdiffAV < 0). This
revealed that only in the trials in which AV predicted more avoidance
compared to the base model (i.e., DVdiffAV > 0), there was a negative rela-
tionship (i.e., stronger prediction of avoidance) with BOLD in the amygdala
(right: p = 0.014, p = 0.018, p = 0.027, left: p = 0.045; all peak-voxel FWE-
SVC; Fig. 5b). This suggests that the relative decrease of amygdala activity is
specific to the interaction effect of shocks and bradycardia on avoidance
captured by the AV model (Fig. 4a).

For value comparison (VC), we observed a large positive whole-brain
significant cluster in the dorsomedial prefrontal cortex (dmPFC) spanning

Fig. 5 | Neural circuits underlying the link between bradycardia states and value-
based computations. a For the base model, we find positive correlations between
model-extracted decision values (DVs, indicating the value of approaching vs.
avoiding) and BOLD activity in the ventral striatum (vStr) and ventromedial pre-
frontal cortex (vmPFC), delineating a similar neural circuit as was observed from the
task-based analysis (see Fig. 3). bDVs estimated from the aversive value (AV)model
were, relative to the base model, negatively correlated with BOLD activity in the
amygdala (top). A follow-up analysis revealed that this negative relationship was
specific to conditions in which AV predicted more avoidance, compared to the base
model (i.e., DVdiffAV > 0; bottom). c DVs estimated from the value comparison

(VC)model were, relative to the basemodel, positively correlated to BOLD in a large
whole-brain significant cluster in the dorsomedial prefrontal cortex (dmPFC),
spanning the SMA and dACC (top). Follow-up analysis revealed that this rela-
tionshipwas specific to conditions inwhichVCpredictedmore approach, compared
to the base model (i.e., DVdiffVC < 0; bottom). DVdiffAV/VC: trial-wise difference
scores of the DVs of AV/VC models relative to the base model. Positive/negative
DVdiffAV/VC values indicate stronger predicted probability to avoid/approach by
AV/VCmodels compared to the basemodel. Error bars indicate ±1 SEM. Images are
thresholded at p < 0.005 whole-brain uncorrected for display purposes. All labeled
areas are significant at p < 0.05 FWE-corrected.
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the (pre) supplemental motor area (SMA) and—as we predicted—the
dACC (p < 0.001 cluster-level FWE; Fig. 5c). Follow-up analysis revealed
that this effect was only significant in conditions in which the VC model
predicted a higher probability to approach compared to the base model,
which corresponds to trials with Δms ≥ 2 (p < 0.001 peak-voxel FWE for
dACC ROI, p = 0.004 cluster-level FWE-corrected for whole brain; Fig. 5c;
see Supplementary Table 4 for all statistics). Together, these results suggest
that the bradycardia-related increase in approach choices for highly positive
money-shock differences (Fig. 4b) is inversely related to BOLD activity in
the dACC/SMA area (note that more negative DVdiffVC values indicate
higher differential predicted approach probabilities, see Fig. 5c). These
findings might point to a reduction in conflict-related processing when the
money-shock difference is relatively high, since approach-avoidance con-
flict is highest when money and shock levels are similar, and lowest when
they are maximally dissimilar (e.g., the average approach rate is 48% when
Δms =−1, and 13% / 93% when Δms =−4/4). Finally, for action invi-
goration (AI), we did not observe any significant associations in our region
of interest (i.e., pgACC), nor across the rest of the brain.

Discussion
This study highlights the role of the psychophysiological state of freezing in
approach-avoidance arbitration under threat, establishing a neurocompu-
tational link between bradycardia states and approach-avoidance decisions.
Participants made passive and active approach-avoidance decisions in the
face of varying reward and threat magnitudes, showing increased approach
for higher money levels and increased avoidance for higher shock levels.
Moreover, bradycardia states during anticipation indicated that participants
were in a psychophysiological state of freezing. Neurally, approach-
avoidance arbitration was associated with BOLD-response patterns in the
amygdala, ventral striatum, and vmPFC (in line with previous
reports30,32,36,42,51,52).

Additionally,we found that trial-by-trial bradycardia stateswere linked
to value-based computations underlying approach-avoidance arbitration.
First, bradycardia states were associated with a stronger effect of threat of
shock (i.e., aversive value) on avoidance decisions, which was negatively
associated with BOLD activity in amygdala. Secondly, bradycardia states
were linked to a stronger tendency to approach rather than avoid when the
expected reward outweighs the threat (i.e., value comparison), an effect
associated with the dACC and SMA. Together, we delineate a neural circuit
involved in approach-avoidance arbitration under threat, with specific
involvement of the amygdala and dACC in integrating subjective outcome
values and defensive psychophysiological states during approach-avoidance
decisions. These results stress the relevance of the organism’s psychophy-
siological state in approach-avoidance arbitration under threat, fitting with
recent empirical and theoreticalwork11,24,28,29. Together,wehighlight the role
of human freezing states in value-based decision processes relevant for
optimal threat coping.

Bradycardia states are linked to distinct value-based computations
underlying approach-avoidance arbitration, with distinct neural signatures.
Specifically, usingmodel-based fMRI analysis, we found that the relation of
bradycardia states with aversive value involves the amygdala, and that the
link with value comparison (i.e., reward-threat magnitude differences)
involves the dACC/SMA.

First, the finding that bradycardia was linked to increased shock-
induced avoidance, indicates that on trials with stronger bradycardia higher
shock levels led tomore avoidance compared to trials with less bradycardia.
This finding points to increased sensitivity for aversive value during bra-
dycardia states, resulting in a stronger tendency to avoid. Although the
relation with BOLD activity in the amygdala was expected, the direction of
the correlation was negative, rather than positive. Perhaps amygdala deac-
tivation during bradycardia states might signal an increase in attentional
processing under threat, which is then accompanied by increased sensitivity
to aversive value. Previously, downregulation of the default mode network
(DMN) during cognitively demanding tasks has been shown to be
accompanied by amygdala inhibition53,54. Such amygdala deactivation has

alsobeenobserved in conditions under threat55,56. Similarly, such an increase
in attentional processing under threat might explain why sensory upregu-
lation occurs during bradycardia states24,38. Alternatively, the negative
relationship with amygdala activity might reflect a decrease in outcome-
related risk anticipation, a safety signal, or sense of relief after choosing to
avoid57. Indeed, a potential role of the amygdala in value-based decision-
making might be to process the potential negative consequences of the
decision, such as anticipation of risk and potential negative outcomes41,58–60.
As such, the reduction in amygdala activity might reflect a consequence of
the decision (to avoid) rather than a mechanism underlying the decision
itself. Unfortunately, the limited temporal specificity of the fMRI signal does
not allow us to separate these two possible explanations. However, our FIR
time-series analysis of the BOLD response in the amygdala showed that
choice effects already occurred early during the anticipation window (see
Supplementary Fig. 1), hinting at early involvement of the amygdala in the
approach-avoidance decision process. Future studies using neuroimaging
methods with higher temporal precision, such asmagnetoencephalography
(MEG)61–64, might provide more insight into the role of the amygdala and
associated neural circuits in value-based decision-making under threat.
Overall, these findings provide further support for an important role of the
amygdala in approach-avoidance arbitration in rodents andhumans65,66, but
also reveal that threat states may underlie this decision-making process.

Secondly, bradycardia states were linked to value comparison of
potential reward and threat, reflected by a more pronounced impact of the
reward-threat magnitude difference on choice. Namely, trial-by-trial bra-
dycardiawas associatedwithmore avoidancewhen the expected rewardwas
equal to or less than the threat, while bradycardia was linked to more
approach when the expected reward outweighed the threat. This behavioral
observation is in support of the notion that bradycardia states are not only
related to value processing in the aversive domain (i.e., defensive responses)
but also the appetitive domain (i.e., approach behavior67). Whereas pre-
viously such association between computations of subjective outcome value
and bradycardia stateswas found across participants28, we now show this on
a trial-by-trial level. We thus extend previous work28, illustrating how the
current physiological state of the decision maker may inform approach-
avoidance arbitration. This finding provides empirical support for recent
theoretical work proposing that the presumed role of the psychophysiolo-
gical state of freezing in optimizing decision-making under threat11,29,
namely to approachwhen the expected reward outweighs threat, so as not to
miss out on potential opportunities.

The relationship betweenbradycardia states and value comparisonwas
associated with BOLD-activity changes in the dACC/SMA. Specifically,
trials with stronger bradycardia and with high reward (relative to threat)
magnitudes were associated with less dACC/SMA BOLD activity. This
might reflect a change in conflict-related processing. This interpretation
would be in line with other evidence indicating a role for the dACC in
conflict resolution30,32,42,68. Indeed, in our paradigm conflict is relatively high
when the reward and threat magnitudes are similar, while conflict is rela-
tively low when the expected reward outweighs threat. Additionally, recent
work has demonstrated a central role of the dmPFC (specifically the dACC
and preSMA) in encoding value-based decision variables, such as the
expected value43,44. The fact that we find that similar regions are involved in
the interaction between value comparison and bradycardia states, suggests
that threat states are linked to the neurocomputational basis of value-based
decisions in general, and not just approach-avoidance decisions specifically.
Finally, while previous work has linked parasympathetic activity to the
vmPFC and sympathetic activity to the dACC69, we now show that para-
sympathetic effects (i.e., bradycardia) might also affect processes in other
more dorsal prefrontal areas, such as the dACC/SMA. Together, these
findings illustrate the frontal cortical circuitry supporting bradycardia-state
interactions with the value computations underlying approach-avoidance
arbitration.

Finally, we found no evidence for a relation between bradycardia states
and action invigoration in terms of active versus passive decision-making.
There was no behavioral interaction between bradycardia and action
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context, and accordingly there were no significant correlates at the neural
level. This means that, within our paradigm, bradycardia states might not
play a role in the decision to take an action. However, we did find a trial-by-
trial relationship between bradycardia and faster response times, replicating
previouswork23,26–28,70. Thismight suggest that bradycardia states only play a
role in actions through increased speed of action once the organism has
decided to act.

One open question pertains to the causal chain of effects regarding the
link between freezing states and value-based computations underlying
approach–avoidance. Indeed, the interpretation of our findings is limited by
the correlational nature of our experimental design. For example, freezing
states might not causally contribute to changes in value computations but
rather be an epiphenomenon of task engagement. If that were the case, one
would expect bradycardia to be correlated with general task effects, such as
arousal and effort. However, while threat and reward typically both induce
arousal (e.g., through increased skin conductance responses), bradycardia is
particularly observed as a function of threat and not reward
magnitudes28,71,72, ruling out a general effect of arousal. Additionally, bra-
dycardia states are commonly associatedwith faster response times,which is
typically indicative of easier rather than more effortful decisions13,28,73,74.
How should we then interpret the relation between bradycardia states and
value computations?We speculate that freezing statesmay bemore than an
epiphenomenon, and that they serve a role in integrating the value of
external stimuli while accounting for the internal bodily state. This inter-
pretation would be in line with findings that heart rate reductions and slow
breathing rates during freezing serve sensory processing, for example by
optimizing interoception of cardiac and other bodily signals75, subsequently
increasing neural signal-to-noise24,76,77. This sensory upregulation might
subsequentially facilitate neural processing in downstream brain circuits
involved in value assignment. This way, we theorize, freezing states may
facilitate the computation of aversive value in the amygdala (increasing
threat avoidance) as well as value comparison of reward and threat in the
dmPFC (maintaining the behavioral flexibility to obtain large rewards).
Indeed, our findings imply that howweweigh the potential outcomes of our
actions depends on the current psychophysiological state. Nevertheless,
causal manipulations, such as deep brain stimulation of regions critically
involved in freezing states (like the periaqueductal gray16,18,78), are needed to
directly test this hypothesis.

Our findings may have implications for people suffering from inter-
nalizing symptoms, including anxiety anddepression,whodisplay excessive
and costly avoidance7,51. Indeed, altered freezing has been associated with
psychopathology79–81. For example, infants who displayed little to no
freezing at all early in life were at high risk to develop internalizing symp-
toms up until late adolescence82,83. We provide a formal framework that
could be used to test transdiagnostically what might drive maladaptive
avoidance patterns6,8,84. For example, it would be important to test whether
avoidance in anxiety and depression are related to altered freezing patterns
and if this is driven by changes in the computation of threat value, and
reward-threat comparison.

In conclusion, this work illustrates how the psychophysiological state
of bradycardia is linked to the neurocomputational underpinnings of
approach-avoidance arbitration under threat. Our findings suggest that
during bradycardia states the amygdala is involved in increased sensitivity to
aversive value (reflected by increased shock-induced avoidance), while the
dACC/SMA is involved in the comparison of appetitive vs. aversive value.
The results thus demonstrate a potential role for psychophysiological states
in shaping value-based decision-making under threat. Altogether, our
findings support recent theorizing on an active role of human freezing states
in optimizing decision-making under threat11, and may contribute to a
better understanding of how defensive threat reactions may affect cognitive
and affective processes.

Methods
This study was preregistered before data analysis on the Open Science
Framework (https://doi.org/10.17605/OSF.IO/KYWV8). All research

activities were carried out in accordance with the Declaration of Helsinki,
approved by the local ethics committee (Ethical Reviewing Board CMO/
METC [Institutional Research Review Board] Arnhem-Nijmegen, CMO
2014/288), and all ethical regulations relevant to human research partici-
pants were followed.

Participants
Sixty-seven healthy volunteers completed the study. After data collection, 9
participants were excluded from data analysis due to an imaging artifact
(n = 3), too little variance in choice behavior (n = 3), unusable heart rate data
(n = 2), or falling asleep during the experiment (n = 1), leading to a sample
size of n = 58 participants (aged 18–34, [M ± SD = 24.17 ± 3.43], 41
females). Inclusion criteria were age (between 16 and 35 years), Dutch or
English speaking, and right-handedness; exclusion criteria were MR
incompatibility, self-reported current pregnancy, current or lifetime history
of psychiatric, neurological, or cardiovascular disorder, endocrine illness or
treatment, claustrophobia, epilepsy, and self-reported high or low blood
pressure. All participants gave written informed consent before participa-
tion, andwere paid for participation (€24) plus bonusmoney contingent on
their task choices (max €15, see PAT section below).

Experimental design and procedure
Participants came to the lab for a single session of 150min. Upon arrival,
they read and signed the screening and informed consent forms. Partici-
pants then read through onscreen task instructions and performed 8
practice trials of the Passive-active Approach-avoidance Task (PAT; see
below) in a behavioral cubicle. All participants performed the same set of
practice trials. Afterwards, the researcher made sure participants fully
understood the task by asking them to verbally report (and, if necessary,
correcting) their understanding of how to approach/avoid, and the relation
between approach-avoidance and the probability of receiving one of the
outcomes. Next, participants were escorted to the MRI lab, attached to the
measurement and stimulation electrodes, given the shock-workup proce-
dure (see Electrical stimulation section below), and placed inside the scan-
ner. In the scanner, we acquired BOLD fMRI images while participants
performed the PAT in three runs of 62 trials each (186 in total). Each run
consisted of one repetition of allmoney (5), shock (5), and action context (2)
combinations with long anticipation screen durations (i.e., ≥6 s; 50 trials in
total), and 12 trials with short anticipation screen durations (pseudor-
andomized money/shock/action context parameters). See PAT section
below for details. A field map was acquired between run 1 and 2, and an
anatomical image was acquired after the 3rd run. After the last scan, parti-
cipants had to subjectively rate the intensity of one final electrical shock
(ranging 1 [not painful at all] to 5 [very painful]), after which they filled in
three questionnaires on a computer outside of the scanner: the Beck
Depression Inventory (M ± SD = 6.08 ± 5.9885) and the Trait questionnaire
of the STAI (M ± SD = 37.27 ± 10.1786) to characterize our sample, aswell as
a short debriefing form.

Passive-active approach–avoidance task (PAT)
Participants performed the PAT28. In this computer task, participants were
instructed to make approach–avoidance decisions in response to a moving
target that was associated with receiving varying amounts of monetary
rewards (1–5 euro) and numbers of shocks (1-5 stimulations). Additionally,
depending on the action context, they could approach or avoid either
actively or passively (Fig. 1B).

In each trial, after an intertrial interval of 9–11 s, the participant was
first shown the anticipation screen detailing the money and shock levels
(ranging 1–5 each, with 5*5 = 25 possible combinations), the target (a gray
circle in the center), and the player icon (a white square in the bottom). This
information remained onscreen for a variable anticipation-to-movement
screen interval (AMI) of 500–7000ms. Because of the slow temporal
development of the heart rate signal, we only included trials with long (i.e.,
6000–7000ms) AMIs in our analyses (80% of trials per participant). The
short (i.e., 500–5500ms) AMI trials were in the PAT to ensure continued
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activation of the participant13,28,70. After the AMI, the target started to move
either towards (i.e., downwards) or away from the player icon (i.e., left or
right, pseudorandomized across trials). During the target movement win-
dow (700ms), the participant could either approach the target by posi-
tioning the player icon at the same location as the target, or avoid the target
by positioning the player icon at the other location. Specifically, if the target
moved downwards (passive action context) the participant could either
passively approach (by withholding a response) or actively avoid (by
pressing a button). If the target moved left/right (active action context), the
participant could either actively approach (bypressing abutton) or passively
avoid (by withholding). Depending on the approach/avoidance choice, this
led probabilistically to either money, shocks, or no outcome. Specifically, if
the participant approached, there was a high probability of receiving either
the specified money amount (40%) or number of shocks (40%), and a low
probability of no outcome (20%). Inversely, if the participant avoided, there
was a high probability of receiving no outcome (80%) and a low probability
of receiving the money (10%) or shocks (10%). The selected outcome was
presented during the outcome screen (1.5 s) by color coding of the target
stimulus (i.e., green formoney, yellow for shocks, gray for no outcome), and
shocks were paid out immediately during that color change. The summed
monetary outcomeof three randomly selected trials (max. €15)was paid out
as a bonus fee. The task was programmed in MATLAB87 using the Psy-
chtoolbox extension88.

Psychophysiological measurements
To measure heart rate, a pulse oximeter was affixed to the first (i.e., index)
finger of the left hand. Tomeasure skin conductance, two standardAg/AgCl
electrodes were applied to the distal phalanges of the third and fourth (i.e.,
ring and pinky) fingers of the left hand. Respiration was measured using a
respiration belt placed around the participant’s abdomen. These were all
recorded through a BrainAmpMR amplifier at a sampling rate of 1000 Hz
in BrainVision Recorder (Brain Products GmbH). An EyeLink 1000 eye-
tracker system (SRResearch,Kanata,Ontario,Canada)wasused tomeasure
pupil diameter (sampling rate of 1000Hz). Skin conductance and pupil/eye
data were not analyzed for this study because of relatively poor data quality
for several participants.

Electrical stimulation
Electrical shocks were delivered through two 10mm Ag/AgCl electrodes
attached to the distal phalanges of the third and fourth fingers of the right
hand using a MAXTENS 2000 (Bio-Protech) machine. Shock durations
were 200ms (consisting of a train of 250 μs pulses at 150 Hz), delivered at an
intensity ranging from 0–40 V/0–80mA divided in pre-defined 10 steps/
levels. To determine the appropriate stimulation intensity per participant,
we performed a standardized shock calibration procedure (see refs. 28,89).
Each participant received and subjectively rated exactly five shocks (always
starting at intensity level 2), with the aim to converge at a shock intensity
level that was experienced as uncomfortable, but not painful (i.e., rated as 4
on a scale ranging from ‘1=notpainful at all’, to ‘5=verypainful’). Inbrief, if
a shock was rated as 3 or lower the shock intensity was increased, if a shock
was ratedas 5 the intensitywasdecreased, and if itwas rated at 4 the intensity
was kept the same. The average final shock intensity across shock subjects
was 4.48 ± 1.72 steps (range 1–10).

Trial-wise preprocessing and exclusions
As preregistered, we only included trials with long anticipation-to-
movement screen intervals in our analyses (i.e., 150 trials per participant).
For 8 (out of 58) subjects we only had usable data of 2 out of 3 runs (i.e., 100
trials), due to a lack of observations in our cells of interest for fMRI analysis
(i.e., passive and active approach-avoidance choices). For consistency, we
used the same data set across all analyses. Additionally, we excluded trials
with poor heart rate data, or response times below 200ms (i.e., excluding a
further 304 trials (±3.7%) from the data set). For all analyses involving
response times, only trials with active responses (i.e., button-presses) were
used (±48.7% of the data set).

Physiological preprocessing
Raw pulse and respiratory data were preprocessed using in-house software
for removal of radio frequency artifacts and interactive visual artifact cor-
rection and peak detection (https://github.com/can-lab/brainampconverter,
https://github.com/can-lab/hera). In general, MR artifacts were identified as
the modulation of the signal relative to each TR and subsequently removed
usingdeconvolution.The cleanedheart rate signalswere high-passfiltered at
0.01Hz, and low-passfiltered at 2.5 Hz. Cardiac inter beat intervals (IBI’s) of
the peaks were converted to beats-per-minute (BPM= 60/IBI) and baseline
corrected with respect to the average heart rate (BPM) during the 1 second
baseline window prior to the trial onset (i.e., tbaseline = [−1, 0]). As pre-
registered, the trial-by-trial quantification of bradycardia states (Δhr) was
computed by taking the average baseline-corrected heart rate across a 5–7 s
time window (such that increasingly negative values reflect heart rate
deceleration or bradycardia, compared to baseline). Finally, respiratory data
were used for physiological noise correction of the BOLD-fMRI signal (see
Physiological noise correction below).

MRI data acquisition
MRI scans were acquired using a 3 T MAGNETOM PrismaFit MR
scanner (Siemens AG, Healthcare Sector, Erlangen, Germany), using a 32
channel head coil. T2*-weighted BOLD-fMRI was acquired using a mul-
tiband sequence (68 axial slices, TR = 1500ms, TE = 28ms, flip angle
= 75°, multiband acceleration factor = 4, interleaved slice acquisition, slice
thickness = 2mm, voxel size = 2mm isotropic, phase encoding direction
= A»P, bandwith = 2290Hz/Px, echo spacing = 0.54ms, phase partial
Fourier = 7/8, FOV = 210 × 210). Additionally, a field map was acquired to
correct for distortions due to structural magnetic field inhomogeneities
(68 slices, TR = 435ms, TE1 = 2.20ms, TE2 = 4.66ms, flip angle = 60°).
Finally, one anatomical image per participant (1mm isotropic) was
acquired using a single-shot T1-weighted magnetization-prepared rapid
gradient-echo sequence (MP-RAGE; acceleration factor of 2 [GRAPPA
method], TR = 2300ms, TE = 3.03ms, flip angle = 8°, 192 sagittal slices,
FOV= 256 × 256 × 192mm).

MRI data processing
Preprocessing. All raw MRI images were converted to nifti format and
then preprocessed in SPM12 (Statistical Parametric Mapping; Wellcome
Trust Centre for Neuroimaging, London, UK). Functional images were
realigned and unwarped using the field-map based voxel displacement
map, coregistered to the anatomical image using maximization-based
rigid-body registration, normalized to MNI152 space (Montreal Neu-
rological Institute), and spatially smoothed with a Gaussian kernel of
5 mm full width at half maximum. Six rigid-body realignment para-
meters were added to the GLMs analyses as nuisance regressors.

Physiological noise correction. To correct for cardiac and respiratory
noise in the BOLD signal, we applied the same procedure as described by
de Voogd et al.89. The preprocessed pulse and respiration measures were
used for retrospective image-based correction (RETROICOR) of phy-
siological noise artifacts in BOLD-fMRI data46. Raw pulse and respiratory
data were used to specify fifth-order Fourier models of the cardiac and
respiratory phase-related modulation of the BOLD signal90, yielding 10
nuisance regressors for cardiac noise and 10 for respiratory noise.
Additional regressors were calculated for heart rate frequency, heart rate
variability, (raw) abdominal circumference, respiratory frequency,
respiratory amplitude, and respiration volume per unit time91, yielding a
total of 26 RETROICOR regressors (https://github.com/can-lab/
RETROICORplus).

Statistics and reproducibility
General. All statistical analyses were performed on a sample size of 58
participants. Throughout behavioral and computational analyses, we
used Bayesian mixed-effects (also ‘hierarchical’ or ‘multi-level’) models
to estimate group-level (i.e., fixed) effects while controlling for
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participant-level (i.e., random) differences in intercepts and slopes. All
models were fitted using the {brms} and {rstan} packages in R (with
Rstudio92–96) using 6000 samples (3000 warmup) across 4 chains, and all
converged to a solution without warnings or errors (i.e., all R-hat values
between 0.99 and 1.01). All models with binary dependent variables (e.g.,
approach/avoid choices or passive/active responses) were modeled using
Bernoulli distributions (logit link), response time variables with shifted
log-normal distributions (identity link), and all others with Gaussian
distributions. All models followed a ‘maximal’ random-effects structure
(i.e., by-participant random intercepts, by-participant random slopes for
all within-subjects effects, and all pairwise correlations between random
intercepts and slopes)97. Finally, for all models we used the default (i.e.,
weakly regularizing) {brms} priors, which are improper flat priors for
group-level effects, weakly informative Student-t priors for participant-
level effects (i.e., random intercepts and slopes), and LKJ-Correlation
priors for random correlations.

To interpret the output of the Bayesian models, we report highest
density (credible) intervals (HDIs) of the posterior parameter distributions.
These are analogous but not exactly equivalent to frequentist confidence
intervals. For example, a 95%HDI indicates the range that includes the 95%
most probable parameter estimates (i.e., with the highest probability den-
sity), given the evidence provided by the data. All values falling within the
interval have a higher probability to reflect the true (unknown) parameter
estimate than those falling outside of the interval. Thus, when a large per-
centage of the posterior distribution is unidirectionally non-zero, this
indicates a large probability of the true effect also being non-zero (in that
direction). While Bayesian approaches thus allow us to make continuous
statements about the probability of an effect (see e.g., Limbachia et al.98), to
aid interpretation we report two types of statements pertaining to effects’
significance.Whenever the 95%HDI does not include 0 (e.g., it ranges from
0.3 to 1.4), we interpret the effect to be ‘significant’.Whenever the 95%HDI
does, but the 90% HDI does not include 0, we interpret the effect as ‘mar-
ginally significant’99–102. Finally, we also report effects’ posterior estimates;
these are simply the means of the posterior parameter distributions.

Task effects on choices, response times, and heart rate. We tested effects
of the task (i.e., money and shocks levels, and the action context) on
decision-making and heart rate (Δhr) using Bayesianmixed-effects models.
For the full model specifications of the choice and response time models in
{brms} syntax, see Eqs. (1) to (3) below.

Choice model:

choice∼money � shocksþ acþmoney : acþ shocks : ac

þ ð1þmoney � shocksþ acþmoney : acþ shocks : acjpIDÞ ð1Þ

Response time model:

response time∼money � shocks � choice
þ ð1þmoney � shocks � choicejpIDÞ ð2Þ

Heart rate model:

heart rate∼money � shocks � ac
þð1þmoney � shocks � acjpIDÞ ð3Þ

In this notation, the term left of the tilde (‘~‘) denotes the dependent
variable and the terms to the right of the tilde denote the predictors, the
terms between brackets denote the random effects structure (i.e., ‘1‘ reflects
the random intercept, and the variables reflect the random slopes, all of
which are modeled separately for participants (‘pID‘) as the grouping fac-
tor), and an asterisk (*) between two variables indicates that both main
effects as well as their interaction are modeled, whereas a colon (:) indicates
an isolated interaction term between two variables.

Behavioral interactions with bradycardia states. To statistically test
the effect of trial-by-trial bradycardia states on approach-avoidance
choices, we ran a Bayesian mixed-effects model with the same effects
specification as Eq. (1), but with trial-by-trial Δhr as an additional con-
tinuous predictor, both as a main effect as well as interacting with all the
task effects, as follows:

choice∼money � shocksþ acþmoney : acþ shocks : acþ Δhr

þmoney : Δhr þ shocks : Δhr þ ac : Δhr þmoney

: shocks : Δhr þmoney : ac : Δhr þ shocks : ac : Δhr

þ ð1þmoney � shocksþ acþmoney : acþ shocks : acþ Δhr

þmoney : Δhr þ shocks : Δhr þ ac : Δhr þmoney : shocks : Δhr

þmoney : ac : Δhr þ shocks : ac : ΔhrjpIDÞ
ð4Þ

We similarly tested the effect of bradycardia states on response times,
addingΔhr asmain and interaction effects to the response timemodel inEq.
(2):

response time∼money � shocks � choice � Δhr
þð1þmoney � shocks � choice � ΔhrjpIDÞ ð5Þ

Computational modeling of bradycardia-state interactions
Using the same mixed-effects (i.e., hierarchical) Bayesian modeling
approach, we performed computational modeling to test our hypotheses
regarding the three mechanisms through which freezing may affect com-
putations underlying approach-avoidance choices.

Model specification. First, we specified a base model estimating the
value of the decision (decision value; DV, ranging [-∞,+∞]) on each trial,
accounting for task-induced effects and a main effect of bradycardia on
choice. The DV function of this base model consists of 8 free parameters,
estimating the average approach rate (β0), the effects of money (βm),
shocks (βs), action context (βac), and bradycardia (βhr) on choice, and the
two-way interaction effects betweenmoney and shocks (βm:s),money and
action context (βm:ac), and shocks and action context (βs:ac):

DVBase ¼ β0 þ βm �mþ βs � sþ βm:s �m � sþ βac � acþ βhr
� Δhr þ βm:ac �m � acþ βs:ac � s � ac

ð6Þ

Where m and s indicate the potential money amounts and shocks, Δhr
reflects the change in heart rate relative to the pre-trial baseline, and ac is a
sum-to-zero coded dummy variable indicating the action context:

ac ¼ �1; action context ¼ active

1; action context ¼ passive

�
ð7Þ

Specifically, βac captures the variance in approach-avoidance choices
due to the participants’ tendency to respond passively (ac > 0) vs.
actively (ac < 0).

Note that this model has the same parameterization as Eq. (1), except
for the additional inclusion of a main effect of heart rate on choice. This
additional term was included to improve the interpretability of the inter-
action between Δhr and other terms introduced in the freezing models (see
below). To fit this model to the choice data, the trial-by-trial DVs were
transformed to choice probabilities (ranging [0,1]) through the logistic
function:

pðapproachÞ ¼ 1
1þ e�ðDVÞ ð8Þ

Next, building from this base-model parameterization, we formalized
three new freezing models that each add a single term to the base DV
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function, corresponding to the three hypothesized mechanisms of
bradycardia-state interactions underlying approach-avoidance:

Aversive value (AV):

DVBase þ βs:hr � s � Δhr ð9Þ
Value comparison (VC):

DVBase þ βms:hr � Δms � Δhr ð10Þ

where the Δms variable is computed as the difference between the money
and shock levels (i.e., Δms = money – shocks).

Action invigoration (AI):

DVBase þ βac:hr � ac � Δhr ð11Þ
The trial-by-trial DVs of the base model and these three additional

models were subsequently used in the model-based fMRI analysis.

Model fitting procedure. While we initially planned to fit these com-
putational models using MLE (maximum likelihood estimation) and on
the subject level (rather than hierarchically), we instead opted for a
hierarchical (Bayesian) approach because this tends to estimate group
and participant-level parameters more reliably, compared to more tra-
ditional ‘flat’ (i.e., non-hierarchical) model-fitting procedures103. For
fitting these models we used the same settings for other BMMs as spe-
cified in the Statistics and Reproducibility –General section (i.e., maximal
random-effect structure, default uninformed priors, all continuous pre-
dictors mean-centered and scaled across subjects).

Computation of trial-by-trial decision values (DV). To compute the
trial-by-trial DVs for each of the models (per participant), we multiplied
the trial-wise data (i.e., money and shock levels, action context, and heart
rate) with the group-level parameter estimates obtained from the fitted
Bayesian models described in the Model specification section (see for
example also Zorowitz et al.68). We used the group-level parameter
estimates for this rather than participant-level estimates, because – fol-
lowing previous reports48,104,105—we wanted to investigate the neural
correlate of the group-level behavioral effects that the models estimate,
not in individual differences that may obscure the common underlying
cognitive process. Table 1 displays an overview of the exact parameter
values used to generate the trial-wise DVs per participant for each of the
models (obtained from the model fitting procedure). The associated
behavioral predictions are drawn in main text Fig. 5B.

fMRI analysis
Since our analyses of interest only included trials with long anticipation-to-
movement screen intervals (AMI), the remaining trials with shorter AMI’s
( ± 20% of trials per participant) were modeled in separate regressors of no
interest so as to exclude them from the implicit baseline. Unless specified
otherwise, all regressors were temporally convolved with the hemodynamic
response function (HRF) included in SPM12 (Statistical Parametric Map-
ping; Wellcome Trust Centre for Neuroimaging, London, UK).

Additionally, we included six movement parameter regressors (3 transla-
tions, 3 rotations), 26 RETROICOR regressors, high-pass filtering (1/
128Hz cutoff), and AR(1) serial correlation corrections into all models.
First-level contrast maps were entered into second-level one-sample t-tests.

Correction for multiple comparisons. For analyses within regions of
interest (ROI) we use peak-level correction (p < .05 FWE-corrected), as
preregistered. While for whole-brain level analyses we preregistered the
same, we think this would not do justice to the clustered patterns of
activation that we observe for our non-ROI contrasts (e.g., approach vs.
avoid, passive vs. active, and parametric analyses of money and shock
levels). Since the PAT is a new task in the fMRI context, we want to be
transparent and report on any significant clusters that appear in any of
these contrasts. This will facilitate comparison of our results to data of
previous studies using comparable experimental paradigms32,33,36,42,52,106.
Therefore, for whole-brain statistics only, we will report activations that
are significant at the cluster level (p < .05 FWE-corrected, at an initial
cluster-forming threshold of p < .001 uncorrected). Note that this will not
in any way affect the conclusions of our main hypotheses concerning the
bradycardia-state interactions underlying approach-avoidance, since
those are tested through ROI analyses (using peak-level correction as
planned).

ROI definition. We preregistered various regions of interest (ROIs) for
our fMRI analysis. For reward magnitude effects on BOLD we defined
ROIs that have traditionally been associated with reward processing,
namely the vmPFC and ventral striatum107,108. For threat magnitude
effects we defined regions that have traditionally been associated with
fear, arousal, and the salience network; namely the amygdala, PAG, ACC,
and BNST35,39,109–112. For approach-avoidance decisions, we defined the
ventral striatum, amygdala, and anterior cingulate as ROIs for approach
(vs. avoidance), and the frontal gyrus and anterior insula for avoidance
(vs. approach). These regions were based on their previously implied role
in approach-avoidance, risky decision-making, reward and threat
anticipation, and risk avoidance30,107,113,114.

For the amygdala, vmPFC, and anterior cingulate regions we used the
Automated Anatomical Labeling 3 (AAL3)115 atlas (vmPFC consisting of
the frontal medial orbital, rectus, and OFC medial subregions, and ACC
consisting of the sup-ACC, pre-ACC, sub-ACC, and Cingulate_Mid sub-
regions). For the ventral striatum we used an independent mask created
previously116, because the ventral striatum consists of a combination of
different anatomical regions (e.g., nucleus accumbens, part of the caudate
nucleus). For the BNST we used a mask provided by Avery et al.117. Finally,
for thePAGweusedamaskbasedonmanual segmentations fromLojowska
et al.118. thresholded at a value of .25 (following Neubert et al.119).

Task-based analysis. To investigate the neural correlates of passive and
active approach-avoidance choices, we created a first-level model con-
taining 4 box car regressors during the anticipation screen (passive-
approach, active-approach, passive-avoid, active-avoid; 0.5–7 s dura-
tion), two stick function regressors for the movement screen (passive,
active response), and three box car regressors for the outcome screen
(money, shocks, neutral; 1.5 s duration).

Table 1 | Group-level parameter estimates used to compute trial-wise decision values (DV) for each model

Model β0 βm βs βm:s βac βhr βm:ac βs:ac βs:hr βms:hr βac:hr

Base 0.73 1.54 −1.10 0.41 0.07 0.05 −0.28 0.09 – – –

AV 0.73 1.54 −1.11 0.40 0.07 0.04 −0.28 0.09 0.07 – –

VC 0.73 1.55 −1.11 0.40 0.07 0.03 −0.28 0.09 – −0.09 –

AI 0.73 1.54 −1.10 0.40 0.07 0.05 −0.28 0.09 – – 0.05

Note: As described above, the base model did not include any bradycardia interaction term, and the freezing models only included one bradycardia interaction term each (three right-most columns).
AV aversive value, VC value comparison,AI action invigoration,mmoney, s shocks, ac action context, hr heart rate (Δhr),ms differential money-shock level, colons (:) depict interaction terms between two
variables.
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To investigate the neural correlates of reward and threat anticipation,
we additionally created a model with a single box car regressor for each
anticipation screen, modulated by three parametric regressors: money level,
shock level, and their interaction (i.e.,multiplying the demeanedmoney and
shock regressors with each other). All parametric regressors were ortho-
gonalized with respect to the unmodulated trial regressor per subject (i.e.,
demeaned)50. This model also contained regressors for the movement and
outcome screens as specified for the previous model.

Finite impulse response (FIR) analysis. To investigate the time course
of the BOLD response during the anticipation screen, we fit a finite
impulse response model. In this model, activation during (and shortly
after) the anticipation screenwas estimated using amodel that included 8
time bins (TR = 1.5 s) starting one time bin before the onset of the stimuli
(−1.5 s) and ending two time bins after the anticipation screen (10.5 s).
This way, bin numbers 2 to 5 (0–6 s) always fell within the anticipation
screen. This first-level model makes no assumptions regarding the shape
of the HRF and yields independent response estimates for each time bin.
All additional preprocessing (regarding nuisance regressors, smoothing,
etc.) was performed like discussed previously (see above). To analyze the
time courses, we extracted the subject-wise β weights from three anato-
mical ROIs; the bilateral amygdala, ventral striatum, and vmPFC (see
ROI definition section above). All responses were baseline corrected
relative to the response in bin 1 and analyzed using 3-way repeated
measures ANOVAs (per ROI) with within-subjects factors time (bin 2 to
5), choice (approach/avoid), and response (active/passive). Since for all
models the assumption of sphericity was violated, we applied
Greenhouse-Geisser correction to all degrees of freedom (DFs) and p-
values, and we report partial η-squared (η2p) effect-size estimates where
appropriate. Significant effects were followed up using two-tailed paired
t-tests.

Model-based analysis. To test the neural correlates of our three
hypothesized mechanisms of bradycardia-state interactions with com-
putations underlying approach-avoidance arbitration, we used model-
based fMRI analysis. Specifically, we extracted—per participant—the
trial-by-trial DVs of the base computationalmodel (Eq. 6) and theDVs of
the three freezing models (Eqs. 9, 10, and 11). We then used these trial-
by-trial values as parametric regressors in a single first-level GLM per
participant. More specifically, each first-level model had a single box-car
regressor for the anticipation screen, and four corresponding parametric
regressors (one for the base model, and one for each of the three freezing
models). The first parametric regressor contained the raw (standardized)
trial-by-trial DVs of the base model. However, to account for high cor-
relations between the base regressor and the regressors of each of the
three freezing models (i.e., Spearman correlations for all freezing models
with the base model across subjects were approximately MRs = ±0.998,
SDRs = ±0.0006), we orthogonalized the regressors of each of the freezing
models with respect to the base regressor by computing difference scores:
For each of the freezing models we computed the difference in trial-wise
DV predictions compared to the base model DVs, such that (e.g., for the
AV model) DVdiffAV = DVBase – DVAC. This approach has previously
been used to deal with correlated model-based parametric regressors47–49.
Indeed, after computing difference scores the correlations between
regressors were greatly reduced (MRs_AV =−0.035, SDRs_AV = 0.165;
MRs_VC =−0.088, SDRs_VC = 0.249;MRs_AI = 0.003, SDRs_AI = 0.081). As
such, these difference regressors reflect a difference in trial-by-trial pre-
dictions of each freezing model with respect to the base model: positive
difference scores reflect higher value assigned by the base model than the
freezing model (i.e., the freezing model predicts relatively more avoid-
ance), whereas negative difference scores reflect lower value assigned by
the base model compared to the freezing model (i.e., the freezing model
predicts relatively more approach). Importantly, because each freezing
model only deviates from the basemodel by a single term (e.g., βs:hr for the
AV model), any difference in the predicted decision value, as well as its

correlate with BOLD-fMRI, is driven by this additional term. Finally,
because the difference regressors of all three freezingmodelswere entered
together into the same first-level model, the BOLD correlations for each
regressor reflect the unique contribution of that regressor, while con-
trolling for the contribution of other regressors. Any shared explained
variance between freezing-model regressors will thus be assigned to the
error term50.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The source data supporting the findings of this study are available in the
Radboud Data Repository (data.ru.nl) under the identifier
di.dccn.DSC_3023009.03_522, at https://doi.org/10.34973/tvyt-h588.

Code availability
The code used to generate the findings of this study are available in the
Radboud Data Repository (data.ru.nl) under the identifier
di.dccn.DSC_3023009.03_522, at https://doi.org/10.34973/tvyt-h588.
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