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Population genomics and epigenomics of
Spirodela polyrhiza provide insights into
the evolution of facultative asexuality

Check for updates

Yangzi Wang 1,2,8, Pablo Duchen1,2,8, Alexandra Chávez 1,2,3, K. Sowjanya Sree4, Klaus J. Appenroth5,
Hai Zhao 6, Martin Höfer1,2, Meret Huber1,3 & Shuqing Xu 1,2,7

Many plants are facultatively asexual, balancing short-term benefits with long-term costs of
asexuality. During range expansion, natural selection likely influences the genetic controls of
asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and
the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain
controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid.,
a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA
methylation levels. Within species, demographic history and the frequency of asexual reproduction
jointly determined intra-specific variations of genomic diversity andDNAmethylation levels. Genome-
wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis
were under positive selection. These data are consistent with the hypothesize that natural selection
can shape the evolution of asexuality during habitat expansions, which alters genomic and
epigenomic diversity levels.

Understanding the evolution of sexual reproduction has long been at the
center of evolutionary biology. Theories suggest that asexual reproduction is
beneficial for the short term but costly for the long term, mainly due to
accumulations of deleteriousmutations and low effective population size1–5.
Facultative asexuality, where organisms can reproduce both sexually and
asexually depending on environmental conditions, should be optimal for
one individual’s lifespan6,7. While rather few animals such as aphids
(Aphidoidea)8, water fleas (Cladocerans)9, and rotifers10 reproduce facul-
tatively asexually, up to ~80% of the flowering plants, including important
crops and keystone species, can reproduce both sexually and asexually11.
Asexual reproduction in plants involves different types of vegetative
reproduction (e.g. runners, tubers, bulbs, corms, suckers, plantlets), as well
as apomixis, the formation of seeds without fertilization12. Because changes
between sexual and asexual reproduction affect the ability to persist in the
short and long term, natural selection might act on the genetic controls of
sexual and asexual reproduction in facultative asexual organisms, which in
turn can alter the levels of genomic diversity, heterozygosity and effective-
ness of selection in the population2,5,13–15. However, direct evidence

supporting this prediction remains scarce, mainly due to the lack of a sui-
table facultative asexually reproducing system in which the signature of
selection can be detected at genomic levels.

Evolutionary changes in sexual and asexual reproduction might also
affect the maintenance and dynamics of chromatin marks, e.g., epigenetic
markers such as DNA methylations. In plants, cytosine methylation can
occur in three sequence contexts: CpG, CHG, and CHH (H=A, T, or C),
which are controlled by different mechanisms and have different dynamics
during reproduction16. Typically, CpG and CHG methylation are main-
tained by methyltransferases1 (MET1) and CHROMOMETHYLASE3
(CMT3), respectively, whereas CHH methylation is mostly maintained by
CMT217. During sexual reproduction, DNA methylations are highly
dynamic18. In both male and female gametogenesis, the megaspore mother
cell and microspore mother cell experience dramatic chromatin changes
during cell specification, such as heterochromatin decondensation and an
enlarged nuclear volume19,20. During male gametogenesis, sperm DNA is
highly methylated in the CpG and CHG context but has low CHH
methylation in retrotransposons18,21,22. During female gametogenesis, CpG
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and CHH methylation remains largely steady23. After fertilization, CHH
methylation increases during embryogenesis and can approach 100% at
individual cytosines, which then decreases likely through a passive
mechanism after germination24–26. In contrast, during vegetative repro-
duction, DNAmethylation is likely steady sincemeiosis and embryogenesis
are lacking27–29. Although Niederhuth, C. E. et al.30. comparing DNA
methylations among 34 angiosperm species suggested that clonally propa-
gated species often have low CHHmethylation, the extent to which asexual
reproduction affects genome-wide methylation levels remains unclear.

Here, we investigated the population genome and epigenome of a
facultatively asexual plant, Spirodela polyrhiza (the giant duckweed; Lem-
naceae), using samples from a global collection. This species, like other
duckweeds from the genera Spirodela, Landoltia and Lemna, is character-
ized by leaf-like fronds derived from fused stems31 and, with multiple roots
on each frond32 and with a highly reduced vascular system33. Spirodela
polyrhiza reproduces vegetatively via budding under normal conditions but
very rarely switches to sexual reproduction under unfavorable
conditions34,35. Recent studies showed that despite its global distribution in
diverse habitats, the genomic diversity, spontaneous mutation rates and
DNA methylation levels in S. polyrhiza are very low36–41, which might be
associated with its overall low frequency of sexual reproduction. DNA
methylation profiling of two genotypes suggests thatDNAmethylation in S.
polyrhiza, which is substantially lower than in other plants, varied between
genotypes41. Further insights into the evolutionary origin and consequences
of asexuality on genomic and epigenomic variation in S. polyrhiza are
required to understand the demographic history and to identify the foot-
print of selection on the genome.

Results
Extremely low genomic variations in S. polyrhiza
We sequenced the genomes of 131 globally distributed S. polyrhiza geno-
typeswith anaverage of~25Xcoverage.Togetherwithpreviouslypublished
samples36,37, we analyzed the genomic diversity of 228 S. polyrhiza indivi-
duals across five continents (Supplementary Data 1). We identified
1,241,981 high-quality biallelic single-nucleotide polymorphisms (SNPs)
and 166,075 short insertions and deletions (INDELs, less than 50 bp of
length). Based on an updated genome annotation of S. polyrhiza (see Sup-
plementaryResultsMethods1.1 andSupplementaryResults Section2.1),we
found that most of the SNPs (70.3%) are in the intergenic regions (Sup-
plementary Fig. 1). Of all the SNPs located in the protein-coding regions,
61,039 were identified as nonsynonymous and 44,287 as synonymous
(SupplementaryData 2). Consistent with our previous study36, the genome-
wide nucleotide diversity is 0.0016 (Supplementary Table 1), which falls
within the lower range of genome-wide nucleotide diversity of other tested
multicellular eukaryotes (Supplementary Table 2 and Supplementary
Fig. 2). The species-wide efficacy of selection (πN/πS ratio) is 0.37, thehighest
among studied organisms42, indicating a relatively relaxed purifying selec-
tion in S. polyrhiza, despite its large effective population size36,37.

In addition to SNPs and small INDELs, we also characterize the
genome-wide structural variations (SVs, ≥50 bp in length) in S. polyrhiza
(see Supplementary Methods Section 1.2 and Supplementary Results Sec-
tion 2.2). We identified 3,205 high-quality SVs, including 2,089 deletions,
291 duplications, and 825 insertions. Among all identified SVs, 155 dupli-
cations and 169 deletions affected protein-coding sequences (Supplemen-
tary Table 3 and SupplementaryData 3).Using a permutation approach at a
genome-wide level, we identified gene families that are significantly enri-
chedwith SVs and small INDELs (see SupplementaryMethods Section 1.3,
1.4, and 1.5, Supplementary Results Section 2.3, and Supplementary
Data 4 and 5), respectively. We found several gene families related to
defences, such as RPP843 and the glycoside hydrolase44, are enriched with
both SVs and small INDELs. This is consistent with findings from Arabi-
dopsis and other plant species, which show that SVs are enriched in stress
and pathogen resistance45,46 (Supplementary Data 5). Interestingly, we also
found SVs and small INDELs are also enriched in gene families that are
involved in organ development and reproduction, such as the receptor-like

protein kinases gene family47 and MADS-box gene family that has been
shown to have substantial gene losses and copy number variations in
duckweeds48–50.

Population structure and demographic history of S. polyrhiza
Because S. polyrhiza is facultatively asexual, genotypes collected from the
geographic proximity can be derived from the same clonal family. Using
a previously established grouping threshold that was developed in S.
polyrhiza2, we identified 159 likely clonal families in the sampled
population (Supplementary Data 6).

Population structure and principal component analyses revealed four
populations in the sampled S. polyrhiza (Fig. 1a and b). Consistent with our
previous study, the four populations are largely concordant with their
geographic origins, namely America, Southeast Asia (SE-Asia), Europe, and
India (Supplementary Fig. 3), with a few exceptions that can be due to recent
migration events or artifacts during long-term duckweed maintenance.

We inferred the population history with aMaximumLikelihood (ML)
phylogeny and Approximate Bayesian Computation (ABC). For ML, we
used Colocasia esculenta (from the Araceae family) as an outgroup. The
maximum likelihood phylogeny of all 228 genotypes indicated an early split
of the American population from the other populations and subsequent
splits of the Indian and European populations from SE-Asia (Fig. 1c). The
European population constitutes themost recent split (Fig. 1c and d). Here,
genotypes collected from the transcontinental region (e.g. Russia) showed
intermediate features of SE-Asian and European populations, suggesting
this as a likelymigration route. Furthermore, the Indian population possibly
originated via Thailand and Vietnam, as genotypes from these countries
show intermediate features between Indian and SE-Asian populations.

We modeled the demographic history using an ABC modeling
approach to further validate the evolutionary history of the four populations
in S. polyrhiza (see SupplementaryMethods Section 1.6 and Supplementary
Table 4). Based on the phylogenetic analysis, we simulated three plausible
demographic scenarios, allowing for either the SE-Asian, American or an
additional putative population to function as the ancestral population
(Supplementary Fig. 4).We found that the scenario, in which the American
population and Asian population were derived from an additional putative
ancestral population, constituted themost supportedmodel (Fig. 1d).While
theAmerican populationwas separated fromother populations around one
million generations ago, the European population was derived from the SE-
Asian population only 12,000 generations ago (see Supplementary Results
Section 2.4 and Supplementary Table 5).

Determinants of genomic diversity among populations
Among the four populations, nucleotide diversity (π) and the efficacy
of selection (πN/πS ratio) varied among populations (Fig. 2b).While the
SE-Asian population has the highest π and lowest πN/πS ratio, the
American population has the lowest π and highest πN/πS ratio. Inter-
estingly, while the European population has a much smaller π com-
pared to the SE-Asian population, the πN/πS ratio of the European
population remains similar to the latter, likely due to its recent split
from the SE-Asian population.

Using genome-wide SNPs, we found that linkage disequilibrium (LD)
is comparable to Arabidopsis thaliana51, suggesting considerable historical
sexual reproduction in S. polyrhiza. However, the extent of LD decay varied
substantially among populations (Fig. 2b and Supplementary Fig. 5).While
the Asian population showed the most rapid LD decay (about 12 kb at
r2 = 0.2), the European population had very long LD blocks (>100 kb). The
Indian andAmericanpopulationshad intermediate LDdecay. Consistently,
the Asian population had the highest recombination rate compared to the
other three (Fig. 2b). Different LDs and recombination rates found among
populations indicate that the frequencies of sexual reproduction varied
among populations. In addition, we found that the variations of hetero-
zygosity in S. polyrhiza showed a similar pattern with the genomic diversity
and recombination rate among four populations (Fig. 2b and Supplemen-
tary Fig. 6).
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Interestingly, the changes in genomic diversity and levels of hetero-
zygosity are associated with two SVs involving MADS-box genes that are
involved in sexual reproduction. One SV is an 84 bp insertion at the last
coding sequence (CDS) of gene SpGA2022_005278, a homolog of AGL62
from the Mα subclade of MADS-box genes (Supplementary Fig. 7). In A.
thaliana, AGL62 is a transcription factor that suppresses endosperm cel-
lularization by activating the expression of a putative invertase inhibitor,
InvINH1, in the micropylar region of the endosperm52,53 (Supplementary
Fig. 8). The insertionmay potentially disrupt the function of theAGL62-like
gene, suggesting a possible reduction in the suppression of endosperm
development, which might be required for sexual reproduction (Fig. 2a).
Consistently, we found the insertion was at a higher abundance in the SE-
Asian population (87.5%) than in other populations (Fig. 2c, d). In addition,
the insertion positively correlates with heterozygosity within the European
population (Supplementary Table 6 and Supplementary Fig. 9).

Another SV is a 69 bp deletion at 1.8 kb upstream of
SpGA2022_007306, (Supplementary Fig. 7), a gene that show homology to
SOC1 (but shorter than SOC1, Supplementary Data 7), which is a positive
regulator of the flowering process in A. thaliana54 (Fig. 2a). Conserved
protein domain analyses suggested that SpGA2022_007306 has SRF-like
MADSdomainbut lacks theK-box region (SupplementaryFig. 10),which is
similar toOs03g03100 (OsMADS50), a SOC1 homology that are involved in
regulating flowering time in rice55–58. The deletion was exclusively found in
the Indian population with the alternate allele frequency of 73% (Fig. 2c). It
is plausible that the deletion, due to its disruption potential at the cis-
regulatory region, reduces the ability of this SOC1-like gene to respond to the
upstream floral activators (e.g. CO) in S. polyrhiza, thus reducing the fre-
quency of sexual reproduction in the Indian population (Fig. 2d). Con-
sistently, this deletionnegatively correlateswith heterozygosity in the Indian
population (Supplementary Table 6, Supplementary Fig. 11). However,

future functional validations on SV of the twoMADS-box genes are needed
to provide further mechanistic insights into the observed patterns.

Population epigenomic diversity in S. polyrhiza
As changes in sexual reproduction can also alter epigenomic dynamics, we
further investigated the patterns of population epigenomic diversity in
S. polyrhiza. We selected five individuals from each population and
quantified their shoot DNA methylation levels at single-base resolution
using whole genome bisulfite sequencing (Supplementary Table 7).
Similar to a recent study39, we found that only 1.6% of cytosines are
methylated in S. polyrhiza (7.6% of CpG, 2.3% of CHG, and 0.1% of CHH;
Supplementary Table 8), and the average species-widemethylation level is
the lowest among all studied angiosperms (Supplementary Fig. 12)30,59.
The hierarchical clustering of 20 methylomes in CHG and CHH contexts
in gene bodies show overall consistency with their genetic similarity
(Supplementary Fig. 13 and 14)with few discrepancies weremostly found
within the same population or between the recently diverged SE-Asian
and European populations. While in the CpG context, we did not observe
clear correlations between genetic and methylation distances (Supple-
mentary Fig. 15).

We then compared the genome-wide weighted methylation level
(wML) among populations. For CpG methylation, no differences were
found among four populations at genome-wide, gene body, or TE levels
(Fig. 3a, d and g). For CHG, the Indian population had the lowest genome-
wide methylation level among all four populations (Fig. 3b, e, and h).
Interestingly, for CHH, the SE-Asia and Europe populations had the higher
genome-wide methylation levels compared to American and India popu-
lations (P < 0.05, pairwise Wilcoxon test; Fig. 3c), while the European and
Indian populations showed a gradual reduction of methylation in com-
parison to the SE-Asian population. The patternwas the same for both gene
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Fig. 1 | Phylogeny, population structure and demographic model of 228 S.
polyrhiza. aThe population structure of 228 S. polyrhiza genotypes. bThe principal
component (PC) analysis of the SNPs from 228 S. polyrhiza genotypes. The three
coordinates indicate the first three PCs. c The Maximum Likelihood phylogenetic

tree of 228 S. polyrhiza genotypes. The gray branch represents the outgroup - C.
esculenta. Dashed branches represent internal nodes with supporting values lower
than 0.75 (the max is 1). d The demographic model of S. polyrhiza populations.
“Tpopulation” indicates the estimated divergence time in generations.
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bodies and TEs (P < 0.05, pairwise Wilcoxon test; Fig. 3f, i). The genome-
wide reduction of CHH methylation is consistent with the hypothesis that
clonal reproduction reduces CHH methylation, and the effects gradually
accumulate over clonal generations60.

The footprint of selection on the genome
To identify the genomic signature of selection at the species level, we per-
formedgenome-wide scans.To reduce falsepositives,weused theμ-statistics
from RAiSD61, the composite likelihood ratio CLR statistic from SweeD62,
and the T statistic from LASSI63. We found 69 genes showed strong sig-
natures of selection using all three methods (Supplementary Fig. 16 and
Supplementary Data 8). Manual inspection indicated that several orthologs
of these genes are related to gametogenesis (e.g., NOTCHLESS) and
embryogenesis (e.g.,NUP214, CPSF, CDK, AGP, and ACR4) in Arabidopsis
thaliana64–68. Further enrichment analysis indeed showed that embryo lethal
genes were enriched in these 69 genes (P = 0.016, χ2 test). In addition, theA.
thaliana orthologs of several genes under selection are also associated
with controlling sexual reproduction, includingfloral development (DRMY1
and ACR4)64,69, flowering time (NF-Y AT2G27470, NF-YAT1G72830,
and CPSF), pollen development (EFOP3, ELMOD, and CLC)66,70–74, seed
development (NUP214, NF-Y AT2G27470 and NF-YAT1G72830, and
Transducin/WD40)65,70,75. Furthermore, among these69genes,wealso found
several genes involved in leaf development and vascularity (SECA2, RbgA,
PHABULOSA/PHAVOLUTA)76–78, light signaling (NF-Y, CCR4-NOT, and
PPP)70,79,80, root development (GEND1, WAVY, and ACR4)64,81,82, DNA
damage repair (ATM and Xrcc3)83,84, and stress tolerance (phospholipase D,
histone superfamily protein, RabGAP, FC1, NUDX2) (Supplemen-
tary Data 8).

To further understand the selection that drove the evolution within
individual populations, we identified the signature of positive selection in a
three-population tree using patterns of linked allele frequency differentia-
tion and calculating the corresponding composite-likelihood ratio (CLR, see
Methods). In total, we found 1,883 genes on the SE-Asian branch, 593 genes
on the Indian branch and 401 genes on the European branch (Fig. 4a; see
Supplementary Results Section 2.6, and Supplementary Data 9) which
showed strong signatures of selection (top 1% of CLR values). We did not
find evidence supporting the hypothesis that differentiallymethylated genes
were under positive selection (see Supplementary Methods Section 1.7,
Supplementary Results Section 2.5, and Supplementary Data 10).

We found thatgenesunderpositive selection in theEuropeanbranchare
enriched with reproduction and development-related GO terms (Supple-
mentary Fig. 17). Among these, SpGA2022_013448, in chromosome 9, is an
ortholog of FLOWERING LOCUS KH DOMAIN (FLK) that delays flow-
ering by up-regulating FLC family members in A. thaliana85. This gene
showed a strong signature of selection in the European branch but not in
other branches (Fig. 4c, d). Similarly, SpGA2022_006111, on chromosome 3,
is an ortholog of the A. thaliana BIG BROTHER (BB) that negatively reg-
ulates floral organ size and is also under selection in Europe86 (Fig. 4c).

In the SE-Asian population, we found that gene SpGA2022_051517, a
CHROMOMETHYLASE3 (CMT3) ortholog in A. thaliana that is likely
associated with maintaining CHG methylation17, was under positive selec-
tion. This is consistent with the higher CHGmethylation levels observed in
the SE-Asian population when compared to the European and Indian
populations (Figs. 3a, b). Within the Indian population, we found that five
MADS-box genes have been under selection exclusively along this branch.
Given that there are 43MADS-box genes in the genome, the fact that five of

Fig. 2 | Genomic diversity variation among four
populations might result from the switching
between sexual and asexual propagation in S.
polyrhiza. a Scheme of asexual and sexual propa-
gation cycles in S. polyrhiza. (A) Vegetative stage of
S. polyrhiza; (B) Budding; (C) Offspring from clonal
propagation; (D) S. polyrhiza flowering; (E) Putative
schematic of ovule at endosperm cellularization
stage; (F) Putative schematic of seeds. b Bar plots
show the differences among the four populations in
terms of “π”: genome-wide nucleotide diversity;
“LD”: the physical extent (in kb) of pairwise SNPs at
r2 of 0.2 (Europe does not yet reach r2 = 0.2 at 100 kb,
Supplementary Fig. 5); “πN/πS”: the efficacy of linked
selection; “r”: genome-wide recombination rate;
“H”: the median of per population genome-wide
heterozygosity rate. c Two panels of pie charts
indicate the allele frequencies of the functional allele
of SOC1-like and AGL62-like genes among popu-
lations. Gray: functional allele frequency; Black: SVs
allele frequency. d The distribution and migration
world map of the four S. polyrhiza popula-
tions. “+” suggests the increased functional allele
frequency, while “-” suggests the decreased func-
tional allele frequency.
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themhave been targeted by selection, constitutes a significant enrichment of
such genes under selection (P = 0.0075, Fisher’s Exact test). For example,
SpGA2022_013078 is an homolog of AGAMOUS-LIKE6 (AGL6), which is
involved in flower and meristem identity specification in rice87;
SpGA2022_052274, ahomologofAPETALA3 (AP3), is involved in thepetal
and stamen specification in A. thaliana88; and SpGA2022_006905 belongs
to the SHORT VEGETATIVE PHASE (SVP-group) which controls the
time of flowering and meristem identity89.

We found 77 genes under positive selection (top 1% CLR values) in
both the European and Indian populations (Fig. 4b), significantly more
genes than expected by chance (P < 2.2e-16, Fisher’s Exact Test). Among
these, gene SpGA2022_055195, an ortholog to CYP78A9 of cytochrome
P450 monooxygenases in A. thaliana, belongs to a highly conserved gene
familyCYP78A. Previous studies inA. thaliana andother species found that
CYP78A9 plays a critical role in promoting cell proliferation during flower
development and further impacts seed size90–92. In addition, the RNA-seq
data indicates that CYP78A9 is differentially expressed between India and
Europe populations (see Supplementary Methods Section 1.8, Supple-
mentary Results Section 2.7, and Supplementary Data 11). Overall, these
data consistently suggest that genes involved in reproduction and devel-
opment were under selection in Indian and European populations, which
might have led to reduced sexual reproduction in these two populations.

Discussion
Here, we characterized the genomic and epigenomic diversity, as well as
the demographic history of a facultative asexual flowering plant, S. poly-
rhiza. We found that among populations of S. polyrhiza, demographic
history and reproductive system jointly determine the population’s
genomic and epigenomic diversity. Analyses on the footprint of selection

suggest that natural selection drove the reduced vascular system and
increased asexuality in S. polyrhiza.

Theory predicts that asexual reproduction reduces genomic diversity
and the efficiency of purifying selection93. Consistent with this prediction, at
the species level, we found that S. polyrhiza has very low genomic diversity
and reduced purifying selection (seen as an increased πN/πS ratio), when
compared to awide rangeof spermatophyte plants42.Within species, the SE-
Asian population, which has the highest frequency of sexual reproduction
based on the estimated recombination rate, has the highest genomic
diversity, the lowest πN/πS ratio and the highest heterozygosity (Fig. 2b),
supporting the theoretical prediction2,5,13–15. The lowπN/πS ratio found in the
European population, which has the lowest sexual reproduction and
genomic diversity, is most likely due to its migration history. The demo-
graphicmodel suggested that theEuropeanpopulationderived from the SE-
Asianpopulation very recently (Fig. 1d). It is likely that theπN/πS ratio in the
European population remained the same as its ancestral population and has
not reached an equilibrium level yet.

While there are fewer genome-wide SVs in S. polyrhiza compared to
other species94,95, we found these variants and small INDELs are in tendency
enriched in stress responses and reproduction, such as MADS-box genes.
This indicates that the loss-of-function of genes involved in flower devel-
opment and sexual reproduction, is under natural selection. The results are
consistent with the observation that the number of functional MADS-box
genes was dramatically reduced in S. polyrhiza49.

Single-base resolution methylomes of 20 individuals showed that the
overallCpG,CHGandCHHmethylation levels inS. polyrhiza shoots arevery
low, consistent with previous studies39,41. The low levels of DNAmethylation
might be associated with reduced sexual reproduction: while CpG and CHG
methylations in plants are important for controlling cross-overs during
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meiosis96 and are increased duringmale gametogenesis, CHHmethylation is
highly accumulatedduring embryogenesis18,24–26. In facultative asexual plants,
due to reduced sexual reproduction and meiosis, the selection of genetic
mechanisms maintaining or increasing the CpG, CHG and CHH methyla-
tion is reducedorabsent,whichmighthave led to the reducedCpG,CHGand
CHH methylation levels. Consistently, a recent study suggests that S. poly-
rhiza has lost several genes in the RdDM pathway41. Interestingly, within
species, the CHG and CHHmethylation profile of the 20 individuals largely
correlates with their genetic distance (Supplementary Fig. 13 and 14), indi-
cating a gradual neutral evolution of DNA methylomes in S. polyrhiza. For
example, the Indian and European populations, which diverged from SE-
Asian populations around 51,000 and 12,000 generations ago, gradually
decreased their CHH methylations (Fig. 3a–c).

At the species level, using a genome-wide scan approach, we found a
strong signature of natural selection on genes involved in flower and seed
development, indicating that the evolution of reproduction, likely, an
increased clonal propagation in S. polyrhiza, was driven by natural selection.
This is consistent with the pattern that many aquatic organisms reproduce
clonally97. In addition, several genes related to vascularity, root development
and DNA damage repair were also under strong selection, suggesting the
reduced root and vascular development and low mutation rate in S. poly-
rhiza were likely also driven by natural selection.

Among populations, we found strong positive selection on genes
involved in sexual reproduction and development in India and Europe
populations, two recently evolved populations that showed reduced geno-
mic recombination. These results are consistent with the hypothesis that
natural selection favors clonal reproduction in S. polyrhizaduring the recent
colonization process, a pattern that was frequently found in many invasive
species98,99. However, despite strong selection favoring clonal reproduction,
substantial recombination in the S. polyrhiza genome, mostly in the SE-
Asian population, remained, reflecting that sexual reproduction is essential
to overcome the costs involved in clonal reproduction in the long term.

Taken together, the structure of population genomes and epigenomes
of S. polyrhiza suggest that demography and natural selection acting on the
reproduction system and organ development can shape genome-wide
genomic and epigenomic variations.

Materials and Methods
DNA sample preparation and sequencing
We sequenced 131 genotypes that were primarily collected from Asia and
Europe (Supplementary Data 1). These samples were cultivated in
N-medium100 until DNA isolation using a CTAB method. Library pre-
parations were carried out following the protocol described in Xu et al.36. All
libraries were sequenced either on Illumina HiSeq X Ten or Illumina Hiseq
4000 platforms for paired-end sequencing with a read size of 150 bp. Low-
quality reads and adapter sequences were trimmed with AdapterRemoval
(v2.033)101. On average, 33.8million reads per genotype were obtained. The
clean reads were aligned to the S. polyrhiza reference genome48,102 using
BWA-MEM (https://github.com/lh3/bwa) with default parameters. Reads
without alignment hits or withmultiple alignment positions were removed.
SAMtools “rmdup” function was used to remove PCR duplicates103.

Genetic variant identification and gene family annotation
After filtered out low-quality SNPs using GATK104 (v4.1.4.1, Java 11)
with options: “QD< 2.0 | QUAL< 30.0 | SOR > 3.0 | FS > 60.0 |MQ< 40.0 |
MQRankSum < -12.5 | ReadPosRankSum <−8.0”, we identified 8,363,387
SNPs. Then, VCFtools (v0.1.13)105 and GATK were used to remove SNPs
that have the following features: (1) SNPs from organelle genomes (9,278
SNPs); (2) missing genotypes >20% (85,645 SNPs); (3) mean sequencing
depth<8or>41 (179,920 SNPs); (4) non-biallelic (448,404SNPs); (5)minor
allele frequency (MAF) <1% (6,102,027 SNPs); and finally, (6) located in
small SNP clusters (≥ 3 SNPs in a ten base-pair window, accounted for
296,132 SNPs). We updated the protein-coding gene annotation of S.
polyrhiza based on recently published transcriptomes and Iso-seq data (see
Supplementary Methods Section 1.1, Supplementary Results Section 2.1,

Supplementary Table 9, and Supplementary Figs. 18–20). We used SnpEff
(version 5.0c)106 to annotate SNPs and INDELs. To exam whether SNP
cluster filtering criterion affects the estimation of genomic diversity and
selection, we performed additional analyses based on a more relaxed fil-
tering parameter (≥200 SNPs in 1 Kb region). Although the second SNP
cluster filtering criterion resulted in 18.7% more SNPs, which are mostly
(>88%) located in TE regions or nearby the SV or INDELs, the patterns of
genomic diversity and selection did not change. In addition to SNPs and
INDELs, We identified SVs using a joint genotyping pipeline and stringent
quality filtration processes (see Supplementary Methods Section 1.2, Sup-
plementary Results Section 2.2, and Supplementary Fig. 21-24).

We estimated genome-wide nucleotide diversity (π) and genome-wide
πN/πS ratios using SNPgenie (v2019.10.31)

107. The SNPs overlapping with
the structure variations were excluded from the calculation to minimize
potential interference caused by misalignments, ensuring a more accurate
and reliable analysis.

The genome-wide heterozygosity for each individual was calculated
using VCFtools (v0.1.13)105. We estimated the genetic associations between
heterozygosity and the SVs ofAGL62 and SOC1 using RVTESTS108 with the
single variant Wald test.

To study the potential genetic factors related to the variation of sexual
reproduction frequency in S. polyrhiza, we annotated the MADS-box gene
family (see SupplementaryMethods Section 1.3 and Supplementary Results
Section 2.3, Supplementary Fig. 25-27, Supplementary Table 10, and Sup-
plementary Data 12). Other gene families that were annotated in Arabi-
dopsis were also identified in S. polyrhiza using an orthology-basedmethod
(see Supplementary Methods Section 1.4 and Supplementary Data 4).

Population structure and linkage disequilibrium (LD)
We grouped genetically similar genotypes by defining clonal genotype pairs
that have nomore than 0.01%different homozygous sites and nomore than
2% different heterozygous sites. These thresholds were previously adopted
by Ho et al.37.

Prior to the population structure analysis, we removed SNPs that (1)
deviated fromHardy-Weinberg Equilibrium (Fisher exact test, P < 0.01) or
(2) linked loci (each pair of SNP have correlation coefficient r2 > 0.33 in a
sliding window with a size of 50 SNPs and step of 5 SNPs), using VCFtools
(v0.1.13)105 and Plink (v1.9)109.

Principal component analysis (PCA) andpopulation structure analysis
were carriedoutusingPlink (v1.9)109 and fastStructure (v1.0)110, respectively.
The simplemode (as default) from fastStructurewasused for the population
structure analysis. The K value was estimated using a heuristic function in
fastStructure.

For each of the 159 clonal families, we selected the least missingness
genotype (i.e. the genotypewith thehighest sequencing coverageof that clonal
family) as the representative genotype. SNP information from all 159 repre-
sentative genotypes was used to estimate the linkage disequilibrium decay for
each of the four populations. PopLDdecay (v3.41)111 was used tomeasure LD
decay. For each population, we used the following filters: SNP of missing
allele > 20% andMAF < 0.05. The allele frequency correlation (denoted as r2)
of pairwise SNPs within 100 kb physical distance was calculated.

Phylogenetic tree reconstruction
We used BLAST+ version 2.9.0112 to identify orthologous fragments
between the genomes of S. polyrhiza andColocasia esculenta (Araceae). For
each SNP from the core set, the reference allele and its flanking 300 bp
(upstream 150 bp and downstream 150 bp, respectively) sequences
were extracted from the S. polyrhiza genome and then aligned to the
C. esculenta reference genome113. The hit thresholds were set as (1) align-
ment identity >70%; (2) e-value > 1e− 6; (3) minimum aligned sequence
length ≥50 (the aligned sequence must cover SNP position); (4) keep the
best hit; and (5) ignore short deletions from C. esculenta. The orthologous
alleles from C. esculentawere used as the outgroup genotype.We identified
only 13,120 SNPs that have orthologous fragments in the C. esculenta
genome. Those data were further used to infer the maximum-likelihood
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(ML) phylogenetic tree using RAxML-ng (v1.0.1)114. The best hitmodel was
estimated to be ‘TVM+G4’ using Modeltest-ng (0.1.6)115,116. The boot-
strapping converged after 700 iterations of the ML tree search. ITOL v5117

and the Python package ETE2118 were used for tree visualization.

Selection analysis
Genome-wide scans of selection were performed on all 20 chromosomes of
all sampled populations. Selective sweeps were inferred by three programs:
RAiSD61, SweeD62 and LASSI63. RAiSD uses the μ statistic, which provides
information on the SFS, LD, and genomic diversity to evaluate the presence
of positive selection61. SweeD calculates the traditional composite likelihood
ratio (CLR) to infer loci under selection62. LASSI employs the T statistic,
which uses a likelihood model based on the haplotype frequency spectrum
to detect hard and soft sweeps63. As recommended by the authors of LASSI,
we selected the top 5% T scores as candidates for selection. For RAiSD and
SweeD we selected the top 1% scores. After finding the common genes
under selection according to all three programs, we reported the genes that
have orthologs in A. thaliana. The embryo lethal genes from A. thaliana119

were used for the enrichment analysis.
To test for population/branch-specific signals of selection, we ran a

composite likelihood ratio (CLR) approach as implemented in 3P-CLR120.
Briefly, thismethoduses three-population trees coupledwithgenomicdata as
input, from which patterns of linked allele frequency differentiation are
calculated. By doing this, this algorithm can tell apart signals of selection that
happened in either branch of the tree or in the ancestral lineage, as well as
outputting the lociwith thehighestCLR120. Inourcase,weusedeitheraNorth
America-Asia-Europe, or a North America-Asia-India population tree as
input, and 3P-CLR output the CLR across windows along each chromosome
in the S. polyrhiza genome. We then selected the top 1% windows for each
branch of the input tree and reported the genes that are present in each
window. To further validate the evidence of positive selection on the regions
with thehighestCLR,we ran scansofTajima’sDandgenomicdiversity along
the samewindows and contrasted themwith the same signal along the other
population branches. We expect negative Tajima’s D and low genomic
diversity values along the populations with highCLR values. For authenticity
validation of genes under selection, we used RT-qPCR to check the expres-
sion of eight genes (see Supplementary Methods 1.9, Supplementary
Results 2.8, Supplementary Fig. 28, and Supplementary Table 11 and 12).
Another expanded list that includes 37 candidate genes was also created, and
these genes’ expression (RNA-seq) and orthology alignments against their
Arabidopsis counterparts were examined (Supplementary Data 7).

DNAmethylation in S. polyrhiza
We selected five genotypes from each of the four populations (America,
India, SE-Asia, Europe) for single-base whole-genome bisulfite sequencing
(WGBS). The genotypes originated from distinct clonal families, except for
two European genotypes that came from the same clonal family (Supple-
mentary Table 7).

FastQC (v0.11.5, https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) was used to summarize statistics of the sequencing reads. Trimmo-
matic (v 0.36)121 was used to filter out low-quality reads with the parameters
“SLIDINGWINDOW: 4:15, LEADING:3, TRAILING:3, ILLUMINACLIP:
adapter.fa: 2: 30: 10, MINLEN:36”. To account for the genetic variations
among genotypes, we generated pseudo-reference genome for each genotype
by substituting SNP from the S. polyrhiza reference genome using GATK,
usinga similar strategy toprevious studies122,123. Bismark (v0.16.3)124wasused
to align bisulfite-treated reads to pseudo-reference genomes. Identical reads
aligned to the same genomic regions were deemed as duplicated reads and
thuswere removed.Cytosines coveredby less thanfive sequencing readswere
excluded from the study. Only after applying these filters the sequencing
depth and coverage were then summarized. The sodium bisulfite non-
conversion rate was calculated as the percentage of non-converted cytosines
to all cytosines in the reads that mapped to the chloroplast genome125

(GenBank: JN160603.2). For eachcytosine site, abinomial testwasperformed
to determine if the cytosine was methylated. If the methylation frequency at

the site was lower than the background, which was estimated as the non-
conversion rate, then the site was considered unmethylated, and the reads
supporting methylation at this site were excluded126.

We calculated two different methylation parameters: the proportion of
methylated cytosines (mC methylation) and weighted methylation level
(wML)126. For both parameters, only cytosines covered by more than four
sequencing reads were involved in the calculation. Those cytosines with low
reads supporting methylation but not passing the binomial test were con-
sidered as un-methylated cytosines. The mC proportion was calculated by
dividing thenumberofmethylated cytosines by the totalnumberof cytosines.
Genomic regional wML was calculated using the methylKit (v1.17.5)127 and
the regioneR (v1.28.0)128, with input based on the cytosine report generated
with the Bismark pipeline. Line plots that show the wML patterns across the
gene body and transposable elements, as well as their 2 kb flanking regions,
were generated using ViewBS (v0.1.11)129. The hierarchical clustering, based
on the methylation profiles’ similarity, was done using methylKit. The
comparison between the genetic phylogenetic tree and hierarchical clustering
based on the methylome was made using the R packages ggtree (v3.4.4)130,
treeio (v1.20.2)131, ape (v5.6.2)132, and phytools (v1.2.0)133.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The raw genomic and bisulfite sequencing reads involved in this study can
be retrieved fromNCBIunder accessionnumbersBioprojectPRJNA701543
and Bioproject PRJNA934173. The scripts for the data analyses are
deposited in https://github.com/Xu-lab-Evolution/Great_duckweed_popg.
The authors declare that the data and corresponding computational codes
supporting the conclusions of this study are available within the article and
its supplementary information file.
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