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From pixels to connections: exploring in
vitro neuron reconstruction software for
network graph generation
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Digital reconstruction has been instrumental in deciphering how in vitro neuron architecture shapes
information flow. Emerging approaches reconstruct neural systems as networks with the aim of
understanding their organization through graph theory. Computational tools dedicated to this
objective buildmodels of nodes and edges based on key cellular features such as somata, axons, and
dendrites. Fully automatic implementations of these tools are readily available, but they may also be
purpose-built from specialized algorithms in the form of multi-step pipelines. Here we review software
tools informing the construction of networkmodels, spanning from noise reduction and segmentation
to full network reconstruction. The scope and core specifications of each tool are explicitly defined to
assist bench scientists in selecting the most suitable option for their microscopy dataset. Existing
tools provide a foundation for complete network reconstruction, however more progress is needed in
establishing morphological bases for directed/weighted connectivity and in software validation.

Two-dimensional (2D) neuron cultures offer a precise, efficient, and cost-
effectivemodel inmodern neuroscience. In this context,microscopy images
function as quantitative datasets harnessed for analysis through a growing
body of neuroinformatic tools (Fig. 1a). Most metrics deducible from
neuron reconstructions characterize cell morphology, such as neurite area
or length, as indicators of cell development and health1–3. However, these
discrete attributes are often agnostic to their broader biological context. For
example, healthy neurite pruning and fasciculation often translate to
reduced neurite area and length. Therefore, an incorrect impression of
neuron viability is easily conceivable if these metrics are solely relied upon
for analysis.

As a complimentary approach, in vitro neuron ensembles may be
interpreted as systems whose topology is organized to optimally facilitate
function. This concept is operationalized through network graphs. In
mathematical terms, networks are graph theoretical objects comprised ofN
units as nodes and N×N internodal relationships as edges (Fig. 1b). Edges
may be weighted, where a value denotes their relative strength (Fig. 1c) and/
or directed, where they possess orientation (Fig. 1d). Of primary appeal to
network analysis is the ability to reveal patterns of energy and information
transfer that underpin overall system performance. This is not domain-
specific, and in fact seminal work lay outside the field of neuroscience.

In 1998, Watts and Strogatz4 highlighted the ubiquity of so-called small
world topology in systems that optimise data propagation – such as social
networks, food chains, and electronic power grids – by balancing long-
distance signalling with specialized local clique signalling4.

Applications of network science to macroscale brain systems have
proven fruitful in characterizing the structural and functional topologies of
different states, with a focus onpsychiatric illnesses suchasmajor depressive
disorder5,6, schizophrenia7, and obsessive compulsive disorder8, among
others9–11. Recently these applications have been extended to microscale
neural systems to probe the molecular mechanisms underlying wider brain
structure and function. For example, in vitro neuron network studies have
documented the spontaneous emergence of organized electrophysiological
activity in culture12–17, which is shaped by electrical18,19 and chemical
perturbation20 in away that informs our understanding of in vivo dynamics.
However, despite multimodal studies suggesting a substantive role of phy-
sical connectivity in functional networks21,22, only a limited selection of
studies have characterized anatomical neuron network structure. Of these
few, notable work by De Santos-Sierra et al. conducted between 2014 and
2019 documented the self-organization of locust neurons over 18 days of
maturation23–25. An increase in small world-related graph metrics was
observed, indicating a shift towards modular cell organization and efficient
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internodal connectivity24. This has since been echoed by other invertebrate
and vertebrate neuron culture studies24,26–28.

No reviews thus far have documented available tools to support
research in structural in vitro neuronal networkmapping. Instead, previous
reviews have examined software that performs one facet of network
reconstruction—neuron segmentation—particularly with a focus on 3D
microscopy images29–33. Thosewith a broader scope have covered 2D aswell
as 3D segmentation tools, including excellent papers by refs. 34–37.

The current reviewoffers apractical guide to assist cellular andnetwork
neuroscientists in selecting the most appropriate tools to quantify neuron
cultures through network science.Wefirst provide a conceptual overviewof

the steps involved in reconstructing networks from microscopy images of
2D neuronal cultures, highlighting key challenges and decision junctures.
We next review algorithms and ready-to-implement freeware for automatic
network reconstruction, alongside non-technical accounts of their cap-
abilities and functionality.

The network reconstruction framework
A series of transformations are used to convert rawmicroscopy images into
network graphs (Fig. 2). In this pipeline, the first step is image acquisition
(Fig. 2a). Of all microscopy types, light microscopy is perhaps most relied
upon for the visualization of neuronal culture due to its accessibility,

Fig. 1 | Neuron connectivity represented through
network graphs. a A confocal microscopy image of
stem cell-derived neurons cultured in monolayer
format. Neurons immunostained for neuronal
marker β-Tubulin III (green) and nuclear dye
Hoechst 33342 (blue) exhibit self-organization.
b Schematic graph representing neuronal con-
nectivity, comprised of nodes (illustrated in green)
and edges (illustrated in orange). An unweighted,
undirected graph serves to represent basic relation-
ships between neuronal elements as nodes. c A
weighted graph incorporates edge values to confer
the strength of internodal relationships. dAdirected
network incorporates edge orientation to confer the
direction of internodal relationships.

Fig. 2 | A schematic pipeline for network reconstruction. aWorkflows begin with
the acquisition of neuron images through microscopy. b Pre-processing techniques
aim to improve image signal-to-noise ratio and reduce ambiguities. c Segmentation
creates a mask of neuron morphology (top left of panel), which can be skeletonized
(bottom left of panel). Tracing creates a tree of neuron centrelines (right half of

panel). dMorphological labelling resolves the neuron mask into features such as
somata (orange) and neurites (yellow). e Post-processing methods refine or extract
features, such as branch points (blue) from the neuron skeleton (yellow). fNetwork
reconstruction creates a model representing morphological features as nodes and
their relationships as edges.
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versatility, and relatively simple sample preparation requirements. The
second step is digital preprocessing of raw images (Fig. 2b), which involves
enhancing signal-to-noise ratio and removing extraneous debris. Third is
segmentation or tracing (Fig. 2c). Segmentation demarcates structures of
interest as a binary mask, and can be subsequently transformed into a
skeleton. Tracing extracts a compact representation of neurites by char-
acterizing only their centerlines. Fourth, morphological features such as
neurites and somata are labelled according to intensity-, shape-, or texture-
based criteria (Fig. 2d). Fifth is postprocessing of the segmentation in pre-
paration for network reconstruction, which includes reparation of dis-
continuities, branch pruning, or extraction of finer morphological detail
such as neurite branch points (Fig. 2e). Lastly, network reconstruction
transforms the labelled segmentation into a graph comprised of nodes and
edges (Fig. 2f). These graphical elementsmay represent somata andneurites,
or anyotherneuromorphological relationships. Eachof these steps is further
explored in the following sections, and italicized items are defined in a
glossary in Supplementary Material 1.

Microscopic image acquisition
Two-dimensional neuron culture is compatible with a variety of high-
volume microscopy applications, such as live-cell, high-throughput, and
high-content imaging. In this context, fluorescence microscopy is often
employed to reveal cellular and subcellular features with high signal-to-
noise ratio and target specificity. A common technique for visualization is
immunostaining, in which protein epitopes specific to certain neuron
structures are tagged with fluorophore-conjugated antibodies38. Popular
fluorescence microscopy systems include widefield, confocal, light sheet,
two-photon, and super-resolution microscopy; all of which have been
technically detailed in excellent reviews39,40. One significant consideration of
immunostaining, however, is that the sample must be preserved with a
fixative before stain application, which prevents analysis at future time-
points in the cellular lifespan. An alternative is the use of probes compatible
with ongoing biological processes for longitudinal live-cell recording, such
as fluorescent reporter proteins41. In all these applications, fluorescence
imaging carries the risk of certain ambiguities that should ideally be miti-
gated later in computational processingpipelines. For example, a low signal-
to-noise ratio can arise from background autofluorescence, out of focus
light, or ineffective staining techniques42. Photobleaching, where the fluor-
ophore loses its ability to fluoresce over time due to prolonged or repeated
exposure to light, can similarly compromise signal43.

Other types of light microscopy rely on intrinsic properties of the
sample rather than exogenous fluorophores for visualization, and are thus
highly suited to live-cell imaging applications. Brightfieldmicroscopy is one
example inwhich light is transmitted through a specimen and the generated
optical properties are used to create images. This microscopy technique is
time- and cost-effective, however lacks the ability to provide specific label-
ling of molecules or structures within a sample. In addition, it can be sen-
sitive to the uneven illumination and scattering that commonly produce
image artifacts and reduce contrast44.

Pre-processing
The goal of pre-processing is to maximize the likelihood that target struc-
tures in microscopy images are recognized by subsequent detection algo-
rithms.Applicable techniques aim either to systematically correct distortion
originating from microscopic acquisition, such as in the case of
deconvolution45, or to improve image clarity through discrete image
transformations. For example, some approaches target uneven background
illumination by equalizing or normalizing the range of pixel intensity
values46,47 or introducing spatial smoothing filters such as a Gaussian or
median blur3,48,49. In addition, pre-processing methods exploit the fact that
debris usually has a size and shape dissimilar to neurons by including
morphological opening for their removal50. To facilitate the identification of
structure boundaries in later stages, edge contrast can also be improvedwith
Laplacian high pass filters51. Software tools often automatically apply a
battery of these techniques, for example NeuriteTracer52 performs contrast

enhancement, rolling ball background subtraction, despeckling and Gaus-
sian blurring to improve the signal of neuron structures (Supplemen-
tary Fig. 1).

Neuron segmentation and tracing
Structures of interest must be separated from surrounding or irrelevant
regions in order for reconstruction to take place. In this regard, two primary
methods are used to discern neurons in microscopy images: segmentation
or tracing. Segmentation aims to create a model of neurons that is repre-
sentative of their morphological structure. Global thresholding is one
employed segmentation technique that reliesona cutoff pixel intensity value
to partition the entire image into foreground or background53. Early neuron
reconstruction workflows54,55 and some contemporary tools such as
NeuriteTracer52 require the user tomanually select this numerical threshold,
while other tools implement automatic thresholding algorithms. For
example, theOtsu algorithm classifies pixels into foreground or background
based on an optimal value that minimizes within-class and maximizes
between-class variance56. Despite itsmerit, this approach can underperform
in cases where foreground pixel intensities are better characterized by
multiple classes rather than one. For this reason, tools that implement
automatic Otsu thresholding often include options for user input through
manual parameter adjustment57 or selectable thresholding settings58. Other
global algorithms includeHuang’s thresholding, based on fuzzy set theory59,
or maximum entropy60,61 and Li’s62 thresholding, based on the entropy
principle, although these are not featured prominently in tools covered by
this review. In practice, global thresholding techniquesmay be limited in the
context of significant variations in image intensity stemming from noise or
uneven illumination. In such cases, adaptive thresholding, where dynamic
cut-off values are calculated according to local pixel neighborhoods rather
than a global threshold, can bemore appropriate63–65. Tool pipelines such as
ExplantAnalyzer incorporate user-driven methods to optimize the neigh-
borhoodwindow size, ensuring it is as small as possible while still remaining
larger than the greatest neurite width64. Adaptive thresholding procedures,
however, assume that the window size contains a sufficient number of
foreground and background pixels to calculate an appropriate average
intensity threshold. This may be infeasible in certain image datasets that
contain expansive background regions unpopulated by cells, or in other
cases, may require excessive tuning on the behalf of the user.

Segmentation approaches can also be based on discerning boundaries
between foreground and background objects. Here, gradient analysis
identifies edges of the neuron by rapid changes in intensity66–70. To avoid the
fragmentation of edge pixels, the extraction and linkage of edge orientation
fields can build continuous contours along the boundary of neurite
filaments66. Certain algorithms such as those employed by NeurphologyJ71

(Supplementary Fig. 2c, d) and GAIN57 (Supplementary Fig. 2e, f) combine
user-parametrized intensity thresholding and edge detection to maximize
the likelihood that thick and thin neurites are detected respectively.

After segmentation is performed, skeletonizationmay be implemented
to compress the mask into a single pixel-wide structure, as employed by
NeuriteTracer52 (Supplementary Fig. 2a, b). Common algorithms for this
purpose include medial axis transforms50,72, which generate a skeleton at
centerlines equidistant from object boundaries, and homotopic thinning46,
which generates a skeleton with preserved topological features. Alter-
natively, a one pixel-thick representationmaybeobtained through aprocess
called tracing. This involves the iterative reconstruction of neurite cen-
terlines direct frommicroscopy images according to local (and occasionally
global) information. To achieve this, feature similarity between pixels guides
directional kernels along midlines45,47,73 or regions74. Tracing may also be
framed as a graphproblem,with pixels or nuclei as nodes.Here, edgeweight
confers the minimum cost path, which is used to produce a final tree
structure75–78. Other approaches follow a probabilistic framework to
strengthen tracing performance in ambiguous cases. For example, proposed
Bayesian frameworks build evidence for a set of trace predictions by using a
combination of currentmeasurements and prior knowledge of geometric or
intensity-based features79,80. Both skeleton and tracing representations are
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ideal for quantifying geometrical features like neurite direction, length, and
branching71,81, and may be further refined in post-processing by techniques
such as pruning. However, these complementary models do not explicitly
consider morphological information such as shape or thickness, rendering
them less suited to studies of neuroanatomy than segmentations.

While most reconstruction procedures such as adaptive and global
thresholding rely solely on pixel intensity-based criteria, deep learning
architectures account for other diverse contextual pixel features such as
texture and shape to establish high-performing predictive frameworks82–86.
This greatly enhances their ability to overcome poor contrast, fuzzy struc-
ture boundaries, and morphological heterogeneity87. For example, con-
volutional neural network (CNN) architectures such as residual networks82

build progressively more complex feature maps to form a hierarchical
representation of the target image. They have shown effectiveness in seg-
menting not only fluorescent microscopy images, but also phase contrast
images that lack cellfluorescentmarkers82–85. Encoder-decodernetworks are
employed to a lesser extent in neuron reconstruction but exhibit similar
utility due to their ability to compress and subsequentially reconstruct low-
dimensional image features88. Self-supervised deep learning networks uti-
lizing these architectures may be customized to distinct protocols using
relatively small amounts of empirical training data after pretraining onopen
general databases88. Alternative supervised and semi-supervised approaches
allow manual classifier training, and platforms such as NeuriTES89 and a
toolbox by ref. 90make this process user-friendly by incorporating training
phases at relevant pipeline steps. Despite their merit, the computational
resources, amount of pretraining data, and level of user expertise required to
develop and operate these architectures compared to traditional segmen-
tation tools have likely contributed to their relative scarcity in the literature.
Their notable adaptability to context-specific image ambiguities, however,
justifies their continual refinement by future research.

Morphological labelling
Once neuron structures are segmented from background, more nuanced
cellular features may be extracted for subsequent assignment to nodes and
edges. Somata and neurites are two such structures important to exam-
inations of cell number, type and connectivity. Numerous pipelines3,50

including NeuriteTracer52 (Supplementary Fig. 3a–d) and GAIN57 (Sup-
plementary Fig. 3i, j) requiremultichannel images that include a nuclei stain
in order to define somata masks. Alternative computational approaches
such as that of NeurphologyJ71 (Supplementary Fig. 3e–h) discern somata
and neurite labels automatically without relying on immunostaining gath-
ered at image acquisition. In this tool, morphological filters such as opening
provide a way to isolate cell bodies by removing small structures including
filamentous neurites. The brightness of somata relative to neurites has also
been utilized to label these structures in tools such as NeuriteIQ91 andWIS-
Neuromath92.Once cell bodies havebeendefined, their subtraction fromfull
neuron masks reveals full neurite masks50,71,93.

Post-processing
Post-processing further refines neuron reconstruction to aid interpretation.
After tracing or skeletonization, inaccurate or extraneous branches can be
removed with selective pruning48,50 and any gaps caused by inhomogeneous
staining repaired with break linking algorithms45,49,74,94. Furthermore,
branching complexity is often explored through the extraction of neurite
attachment points (somata-neurite intersection points) and end points
(neurite terminal points). As adopted by NeurphologyJ71, morphological
dilation and erosion may be used to detect these points respectively (Sup-
plementary Fig. 4a, b). Furthermore, some pipelines such as GAIN57

(Supplementary Fig. 4c, d) individuate neurites at junctions by joining
ingoing and outgoing branches together based on continuity in
orientation57,72 or other geometrically logical rules72.

Network reconstruction
Mapping a network object from neuronal connectivity enables quantifica-
tion through graph theoretical analysis. To date, this goal has primarily

driven microscale connectomic research in the ex vivo domain, with full or
partial reconstructions of animal nervous systems established with high
resolution microscopy techniques. Electron microscopy, for instance,
images nanometer-thick tissue slices that can subsequentially be con-
solidated into cubic sections capturing fine cell and gap junction data. This
was used in pioneering studies on nematode species to define classes of
neurons based onmorphological and connectivity profiles95,96, andhighlight
implications for complex functions such as mating97 and feeding
behaviors98. Comparable 3D reconstructions of the Drosophila melanoga-
ster brain with light microscopy yielded valuable resources such as the
Virtual Fly Brain99, which resolved the interconnectivity of 41 local pro-
cessing units. A complementary analysis of global network properties found
small world attributes and a hierarchical structure consisting of functionally
segregated modules and submodules100. In vertebrates, the Allen Mouse
BrainAtlas101was established as amesoscaleweighted connectomebasedon
axon volume between grey matter regions. Graphical analysis revealed a
high number of hubs and a large clustering coefficient, in essence showing
mixed properties of small world and scale free networks. Indeed, char-
acterizing neurons within a living system – their arborization in 3D space,
association with non-neuronal cells, and regional patterning – assists in
contextualizing the mechanisms driving network organization in isolated
in vitro environments.

Meaningful organisation is embedded at every scale of neuronal cul-
ture, and network representations accordingly capture biological data at
different levels of dimensionality. At the smallest scale, axon and dendrite
dynamicsmay be examined through graphs thatmodel neurite branch- and
end-points as nodes, and neurites as edges25,64. Corresponding graph
reconstruction algorithms usually require a neurite tracing or skeleton as
input. The skeleton is iteratively traversed to establish graphical elements
based on local pixel neighbourhoods; branch point nodes by the presence of
two adjoining pixels, and end point nodes by the presence of exactly one102.
These methods have been used to study radial neurite outgrowth in high
resolution microscopy datasets64, and would also be highly applicable to
other investigations of synaptogenesis, neuritogenesis, and axonal fascicu-
lation in pathogenic systems103. At larger scales, nodes are typically assigned
to cell landmarks established in morphological labelling steps. Existing
graph-building routines represent nodes as individual cell bodies and edges
as neurites26,90, which would be ideal for analyses of sparse or dissociated
cultures. Other routines represent somata clusters as nodes, which is highly
applicable to mature cultures where cells tend to display collective organi-
sation into mesoscopic structures25,26. These larger scale reconstructions
stand to greatly enrich investigations of structure-function coupling, where
they could provide an ideal complement to electrophysiological data in
examining organised multimodal dynamics over time21,22,104. Lastly, some
definitions of connectivity rely on spatial rather than anatomical relation-
ships. Euclidean-based distancemetrics distinguish cells that lie within close
proximity, which has been utilised to produce graphs illustrative of local
community structure and associated cell-cell interactions105. Only select
methods have considered edge weight, by using measures of neurite
length23,64, and few have introduced edge direction. These represent com-
pelling areas for future research.

Graph extraction is a quantitativemapping problem at its core and thus
amenable to more generic algorithms than neuron segmentation. For
example, the Skel2Graph3D algorithm102 was originally developed outside of
neuroscience, yet effectively constructs networks featuring neurite branch/
end points as nodes and neurites as edges (Supplementary Fig. 5). In graph
building, anatomical connectivity is typically established in three steps: the
neurite mask without nodes is morphologically dilated, the node structure
mask is superimposed, and connectedbinodal paths are extracted as edges for
the resulting graph output86. Graph pruning algorithms may remove extra-
neous paths from a network to simplify its structure. For example, retaining
only the shortest path between two key nodes such as attachment- and end-
points isolates routes that most likely inform efficient signal propagation64.
Streamlining networks in this way facilitates various downstream graph-
related tasks such as pathfinding and the extraction of graph metrics.
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Available tools for neuron reconstruction
Processing tools for 2D cell assay reconstruction require different levels of
user intervention: ranging from the semi-automatic tracing methods of
NeuronJ106 and Simple Neurite Tracer107, to fully automatic global
reconstructions34. The efficiency of automatic platforms that lends them so
distinctly to high-volume applications unfortunately also reduces their
versatility, such that each tool performs optimally with certain subsets of
input microscopy data. For this reason, the current review examines the
specifications of automatic reconstruction tools, in particular those that are
readily available as open access code, plugins or GUI implementations.
Additionally, software reconstructing both morphological and graph
models are considered based on the aforementioned importance of seg-
mentation in network assembly.

Table 1 summarizes the input requirements and capabilities of each
tool,whileTable 2 summarizes theirmetric readouts. The following sections
3.1 and 3.2 highlight key algorithmic approaches employed by each
program.

Segmentation and tracing tools
Available segmentation tools are diverse and include commercial software
such as HCA-Vision (CSIRO Biotech Imaging)48 and Neurolucida (MBF
Bioscience)108, as well as a broad repertoire of freeware that will serve as the
focus of this review (Fig. 3). As a whole, the field of neuron reconstruction
has seen a shift away from simple intensity-based thresholding to seg-
mentation routines that incorporatemore group-level pixel features such as
object size, shape, and gradient. These sophisticated techniques better serve
downstream network reconstruction algorithms in the assignment of node
and edge identities.

The tools documented here were selected based on their ability to
produce two outputs: a 2D neuron/neurite reconstruction and a set of
quantitative metrics. The corresponding resources of these tools are pre-
sented in Table 3.
• AutoNeuriteJ109 is an ImageJ plugin capable of analyzing individual cell

morphology in dissociated cultures. This tool was developed to
quantify neurons in early differentiation, and as such provides indi-
cators of maturity such as axodendritic neurite classification. After
preprocessing to homogenize background and enhance neurite signal,
both neuron and nuclei channels are binarized with global thresh-
olding. A series of images are produced depicting segmentations and
skeletons of each neuron, as well as a text file containing neurite
morphological information. It shouldbenoted thatAutoNeuriteJ is not
suitable for dense cultures with overlapping neurites, and thus may
have limited utility in building networks from population-level data.

• GAIN57 is a MATLAB-based algorithm with interactive GUI that has
the capability to resolvemorphologyonacell-by-cell basis.Neuronand
nucleus image pairs are first segmented with edge detection via Sobel
filtering and double Otsu thresholding to minimize the effect of
intensity variation between cell bodies and neurites. The neurite mask
is skeletonized, and neurite branches on either side of junction points
are paired into continuous filaments based on congruent angular
orientation and pixel adjacency. This process individuates neurites to
map whole single cells, which is especially applicable to network
reconstructions denoting individual neurites as edges. The authors
specify that this capability may be compromised in cases where
neurites sharply change direction near junction points.

• MorphoNeuroNet110 is an ImageJ plugin that is optimized for dense
neurite cultures grown for more than 10 days. It is one of the few tools
that segments individual somata fromclusters, achieved by an adaptive
region growing algorithm that uses nuclei in nucleus-stained images. To
generate the neuritemask, rolling ball background subtraction prepares
images for the generation of high intensity, unsharp, and Laplacian
filter masks. These three masks are combined to create the final
segmentation and skeleton. It should be noted that this tool only
individuates somata and not neurites.

• NeuriTES89 is a deep learning platform that is novel in its combined
ability to segment brightfield images of neurons and track their evo-
lution over time. After user-driven pretraining, images undergo
adaptive contrast enhancement and segmentation via a convolutional
neuronal network model. This segmentation is used to further
characterize cellular features, how they change over time, and to what
degree they are associated with particular biological processes via
transfer entropy. For example, the authors found that cultured
neuronal populations overexpressing an amyotrophic lateral
sclerosis-linkedmutation displayed alterations in the neurite attributes
thickness, flatness, length, and number89. NeuriTES centers on
processing neurons across the temporal domain and thus has limited
scope to analyze spatially complex cultures.

• Neurient111 is a MATLAB-based algorithm that traces and quantifies
the degree to which neurites exhibit spatial alignment in dense
populations. The routine computes orientation information for each
neurite, aswell as seed points at neuritemaxima along centerlines; both
of which subsequently serve a local exploratory tracing algorithm that
produces a full tree representation. The output describes angular
features of neurites that quantify neuronal alignment, however it
should be noted that this tool does not segment somata and thuswould
be restricted to graphical interpretations with nodes as branch- or end-
points.

• Neurite Analyzer112 is a Fiji plugin that was developed to quantify
neuritogenesis throughout neuronal differentiation. With nuclei and
neuron images as input, morphological filters such as Frangi’s filter113

and theGrayscaleMorphology filter114 are used to establish neurite and
somata masks respectively. Segmentedmasks are fortified with a hole-
filling function before being skeletonized. An option exists to optimize
the reconstruction for high-density neuron populations by accounting
for cell aggregation, however, the authors note that the number of
neurites per cell may be overestimated due to the tool’s inability to
discern neurite origin points from terminal points.

• NeuriteIQ91 is a pipeline with GUI designed to process high-density
cultures. In the workflow, fluorescent signal is first enhanced through
top-hat and bottom-hat transformations. To label somata, regions with
high pixel intensity are correlated with nuclei structures in the
respective image. The employed neurite tracing technique identifies
center points and extracts their associated local directions within a
given field, which are then connected to form a continuous curvilinear
structure. Extremely thin neurites down to the width of one pixel are
also detected by a procedure that employs non-maximum suppression
to remove extraneous pixels followed by a hysteresis linking technique.
It should be noted that in batch processing, full reconstructions are
exchanged for labelling and measurement metrics outputted to an
Excel spreadsheet.

• NeuriteQuant93 is an ImageJ macro established to process more
developed cultures with long and intersecting neurites. Rather than
solely relying on intensity for thresholding, this platform selectively
enhances neurite and somata structures with shape-based analysis
facilitated by the Grayscale Morphology filter114. After the neurite
ensemble is skeletonized, the reconstruction as well as outputs are
presented in a web-based data browser. In addition to overall metrics,
averaged metrics per cell and per field are calculated. However, the
authors acknowledge that per field metrics might be affected by the
state of the culture at imaging, for example, sparse cultures may not
have enough neurites in certain regions to enable accurate averaging.

• NeuriteSegmentation63 is an ImageJ macro created for the segmenta-
tion of neurite outgrowth from spinal cord slice cultures and dorsal
root ganglion cultures. Processing employs local adaptive thresholding
based on the Per Object Ellipse fit method115, which is optimized to
integrate object size and shape into the binarizationprocess rather than
just signal intensity.This assists in detecting faintneurite structures and
discounting artifacts in brightfield images. Notably, the algorithm was
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developed for segmentation from explant cultures and thus does not
producemetrics thatmay be of interest in neuron culture analysis such
as number of cell bodies.

• NeuriteTracer52 is an ImageJ plugin designed to process fluorescence
images of dissociated cultured neurons. After preprocessing to correct
uneven illumination and enhance contrast, user-driven global thresh-
olding of both nuclei and neurons is completed. Images are then de-
speckled with the Particle Remover plugin before a final neurite

skeleton is produced. One limitation noted by the authors of this
platform is that it is unsuitable for dense neuron monocultures, and
thus it may not be suitable for mesoscale network reconstruction
pipelines.

• Neuron Image Analyzer116 is a MATLAB-based tool that generates a
vector representation of neurite structure as well as somata. Without
nuclei stained images, soma are detected with a combination of a
Laplacian filtering and Level Set methods. Neurite reconstruction relies

Fig. 3 | Examples of neuron segmentation tool interfaces. aWIS-Neuromath92

graphical user interface with output depicting segmentation of individuated neu-
rons, implemented inMATLAB177. bNeuriteQuant93 interface with stages of neuron
reconstruction from raw image to somata/neurite segmentation (CC BY 2.0),

implemented in Fiji178 (GNU General Public Licence). c GAIN57 graphical user
interface with output depicting segmentation of individuated neurons, implemented
in MATLAB177. Neuron microscopy image utilized as input for tools sourced from
Cell Image Library (CC BY 3.0)179.
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on relational pixel information established through a probabilistic
HiddenMarkovModel. Although thismethod significantly reduces the
likelihoodof off-targetdetection, itmay also carry the risk of premature
trace termination in cases where gaps in neurite staining exceed a
10 × 10 μmwindow. This tool also distinguishes axons from dendrites
in highly arborized neurons with another probabilistic graph model
that assesses information fromentire neuronal tree in conjunctionwith
local structure.

• NeuronAnalyzer2D67 is an ImageJ plugin that reconstructs dissociated
neurons and quantifies the distribution of subcellular fluorescently-
labelled proteins. This tool is specialized to extract filopodia-like
protrusions of the neurite growth cone, and as such, features multistep
active contourmodels to capture finemorphology. Neuron structure is
first binarized with the Niblack thresholding method, and a coarse
contour is applied to detect approximate neurite regions. A second
active contour model produces a more refined region edge through
distance-based energy minimization. Finally, somata, neurite, and
growth cone regions are definitively segmented by an algorithm that
calculates the width profile along the structure. This tool focuses on
elucidating microscale neuron morphology and thus may have a
limited ability to process dense cultures at large fields of view.

• NeuronCyto II117 is a MATLAB-based tool with GUI that features a
novel technique to individuate neurites that are touching or
intersecting. After stained neuron and nuclei images are provided as
input, fluorescence signal is enhanced and noise is removed by
preprocessing. Thresholding yields a binary segmentation, which is
then overlayed with a trace to discern single neurites. The tracing
process conceptualizes pixels as a directed graph and implements label
propagation according to local and global contextual information72.
The authors of NeuronCyto II highlight that occasional errors may
occur in neurite individuation, which could be improved by
incorporating metrics of width and brightness in future research. As
this tool differentiates whole cells from clusters, it would be ideally
suited tonetwork reconstructions that distinguish edges asneurites and
nodes as parent somata.

• NeuronMetrics94 is an ImageJ plugin designed to process images of
single neurons with complex neurite arbors. Its segmentation techni-
que combines an intensity threshold mask to detect high-intensity
neurites and a Laplacian filtermask to detect faint neurites, while the
soma is selected manually. After neurite skeletonization, local
exploratory methods are used for refinement, including a gap-filling
algorithm that bridges broken neurite segments according to distance-

based criteria. It should be noted that this tool segments only neurites
and not somata.

• NEuronMOrphological analysis tool (NEMO)58 is a MATLAB-based
software with GUI optimized for batch processing and analysis of
timelapse neuron microscopy images. Preprocessing may be per-
formed manually or automatically and includes options for back-
ground homogenization and enhancing contrast. Segmentation is
achieved through either grey level orOtsu thresholding, as well as edge
detection. After skeletonization of neurites, if visualization of somata
and neurites is preferred, the user must manually select each cell body.
This is a limitation that may prevent application of this tool to larger
datasets. However, NEMO is unique in its breadth of output metrics.
Numerous readouts for each cell are collected in a data matrix, which
forms the basis of feature extraction to reveal how phenotypes of cells
differover time and relative tooneanother.The tool alsoutilizes formal
3-way principal component analysis to determine statistically
significant differences between cell, morphological metric, and
timepoint data.

• NeuronRead118 is an ImageJ macro that has the versatility to analyze
both phase contrast and fluorescence images. Pre-processing proce-
dures such as median blurring and bottom-hat operations are applied
before a watershed algorithm separates clustered cell bodies. The
authors note that this proceduremay result in over-segmentationwhen
cell body aggregates are present in the culture. For neurite
segmentation, the image intensity histogram is adaptively equalized
andDifference of Gaussians filtering is applied to enhance the edges of
thin neurites, followed by skeletonization. This process is facilitated by
comparison to a user-defined neurite width range.

• NeuroTreeTracer119 is aMATLAB-based tool developed to individuate
neurons in fluorescence images. A denoising algorithm120 is first
employed that reduces background fluorescence while preserving cell
boundaries. Somata are then extracted using directional filters that
detect local anisotropy. Neurite segmentation is performed with a
machine learning approach based on Support Vector Machines119,121,
which notably, does require classifier training. For neuron individua-
tion, neurite branches are conceptualized as graph trees, in which
each node is connected to the root node (the somata) via a directed
edge. Individuation at cell junctions is achieved by joining seed points
with front-propagated traces based on neurite orientation. This
tool assigns a unique label to each individuated neurite, which
would streamline edge assignment in downstream network recon-
struction routines.

Table 3 | Neuron segmentation software resources

Software Authors Interface Installation Link

AutoNeuriteJ
GAIN
MorphoNeuroNet
NeuriTES
Neurient
Neurite Analyzer
NeuriteIQ
NeuriteQuant
NeuriteSegmentation
NeuriteTracer
Neuron Image Analyzer
NeuronAnalyzer2D
NeuronCyto II
NeuronMetrics
NEMO
NeuronRead
NeuroTreeTracer
NeurphologyJ
SynD
WIS-Neuromath

Ref. 109
Ref. 57
Ref. 110
Ref. 89
Ref.111

Ref. 112
Ref. 91
Ref. 93
Ref. 63
Ref. 52
Ref. 116
Ref. 67
Ref. 117
Ref. 94
Ref. 58
Ref. 118
Ref. 119
Ref. 71
Ref. 122
Ref. 92

ImageJ/Fiji
Matlab-based GUI
ImageJ/Fiji
Matlab
Matlab
ImageJ/Fiji
GUI
ImageJ/Fiji
ImageJ/Fiji
ImageJ/Fiji
Matlab
ImageJ/Fiji
Matlab-based GUI
ImageJ/Fiji
Matlab-based GUI
ImageJ/Fiji
Matlab
ImageJ/Fiji
Matlab-based GUI
Matlab-based GUI

https://github.com/Grenoble-Institute-Neurosciences/AutoNeuriteJ
https://github.com/qutublab/GAIN
http://www.limid.ugent.be/downloads.htmla

https://github.com/Arianna1974/NeuriTES
https://github.com/jenmitch/neurient
https://github.com/AlexisHaas/Neurite_Analyzer
http://www.cbi-tmhs.org/NeuriteIQ/index.htmla

http://ewit.ccb.tu-dortmund.de/groups/CB/bastiaens/dehmelt/NeuriteQuant/
https://www.surgsci.uu.se/Forskning/forskningsomraden/Ortopedi/orto-lab-ikv/
https://fournierlab.mcgill.ca/styled-6/NeuriteTracer.html
https://github.com/kilho/NIA
https://mitobo.informatik.uni-halle.de/index.php/Applications/NeuronAnalyzer2D
https//sites.google.com/site/neuroncyto/a

https://biii.eu/neuronmetricsa

https://github.com/CentroEPiaggio/NEMO
Included as supplementary material in paper 126

https://github.com/cihanbilge/AutomatedTreeStructureExtraction
https://hwangeric5.wixsite.com/erichwanglab/neurphologyj
software.incf.org/software/synda

https://biii.eu/wis-neuromath
aWebsite may not be actively maintained.
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• NeurphologyJ71 is an ImageJ plugin targeted at reconstructing images
producedbyhigh-throughput screening.After standardpreprocessing,
various morphological operations are used to create a neuron mask.
This segmentation is skeletonized, and a comprehensive point analysis
is performed that includes the computation of a branching complexity
metric summarizing neurite bifurcation. The authors noted that this
tool may have a limited capability to skeletonize neurons at high
magnification (≥ 40x) due to neurite diameter occupying more of the
field of view. In network reconstruction applications, nodal assign-
ments of either somata or branch/end points would be derivable from
the output of this tool, potentially making it a good candidate for a
multiscale graph pipelines.

• SynapseDetector (SynD)122 is aMATLAB-based softwarewithGUI for
the detection of synapses and neurites. The image is preprocessed with
an adaptive Weiner filter and globally thresholded, then somata are
detected through morphological opening. Starting from the soma as
seed points, neurite tracing is performed with steerable filters that
calculate plausible directions of neurite ridges using a cost function.
Two steerable filters with different sized filter kernels are applied to
detect thick and thin neurites. To repair discontinuities in staining, the
filter search radius is slightly extended from purported end points.
Synapses are also identified based on unique local intensity maxima,
which could assist in deriving functional connections for network
reconstruction analysis. While this tool allows batch processing, the
computational resources required for locally-drivenneurite tracing can
be more significant than global segmentation approaches.

• WIS-NeuroMath92 is a MATLAB-based tool with GUI equipped to
extract metrics from single cells in a population. Somata are first
labelled based on simple intensity-based threshold segmentation. To
identify candidate neurites, this tool employs an edge detection routine
followed by a stochastic completion-like process. A final neurite
skeleton is createdby framing the trace as anundirected graph inwhich
neurite pixels as treated as nodes. Edges are established between nodes
along candidate neurite paths based on Euclidean distance. If neurite
intersections occur, neurite lengths are assigned to respective cells
based on an equidistant point. It should be noted that this method is
not based morphological indicators such as neurite orientation, and
thus can have some limitations in assigning correct neurites to somata
in dense cultures.

Extending segmentation tools: benchmarking methods
Given ongoing development since the 1980s, segmentation tools in cellular
neuroscience have undergone extensive validation efforts that aim to
reconcile biological subjects and computational reconstruction. Manual
tracing remains the gold standard and is often used as a benchmark in
quality assessment of automatic modelling algorithms. To facilitate this,
large community platforms such as BigNeuron have been established that
contain diverse light microscopy datasets and their corresponding gold
standard annotations provided by human experts123. Powerful metrics have
been proposed that enable comparison between these benchmark recon-
structions and those produced by candidate automated segmentation
methods. The DIADEM metric is one example that establishes similarity
between reconstructions based on co-registration of bifurcations, terminal
points, arborization patterns, and other criterea124. These resources accel-
erate the development of state-of-the-art tools by standardizing tests for
algorithm evaluation as well as definitive target morphological outputs.

Network reconstruction tools
A small number of existing toolboxes transform raw microscopy images
into structural networks. Correspondingworkflows goone step further than
neuronal segmentation discussed in the previous section by establishing
pixel-based criteria to resolve biological correlates of nodes and edges. These
tools are documented below and recorded in Table 4.
• cytoNet105 is a cloud-based platformwith web interface that constructs

networks from cell communities (Fig. 4a). It was developed to study

spatial and functional relationships between neural progenitor cells
with minimal neurite outgrowth125. The pipeline performs best with
segmented images as input. However, the option to input raw
microscopy images does also exist, as cytoNet is able to perform basic
segmentation with intensity thresholding and watershed operations.
Two types of spatial graphsmay be generated, eachwith assignment of
singular cells as nodes. Type I creates edges if the area of cells overlap
after theirmask boundaries are expanded by two pixels. Type II graphs
create edges based on the proximity of cell centroids. To establish
connectivity, it generates a threshold distance for each nuclei pair
based on the average of the two object diameters, and multiplies it
by a user-defined scaling factor. If the distance between the object
centroid is lower than the threshold, an edge is established. Once
networks have been constructed, local and global graph metrics are
extracted to reveal neighbourhood characteristics. This tool was
validated on human neural progenitor cells as they underwent
differentiation, revealing an increase in clustering and the number of
hub nodes by day 5126.

• ExplantAnalyzer64 is a MATLAB application designed to build
weighted graphs from neurite trees of ex vivo tissue, especially orga-
notypic explant cultures (Fig. 4b). A pair of images with a stained
explant body nucleus and associated neurites are required as inputs.
After standard pre-processing, neurite segmentation routines employ
adaptive thresholding. The mask is morphologically closed to bridge
gaps before being skeletonized. During graph reconstruction with the
Skel2Graph3D function102, nodes are demarcated as start points,
branch points, and end points, and edges as connecting neurites. The
adjacency matrix associated with this graph is weighted by the Eucli-
dean distance between each node. The neurite graph is then reduced to
a tree-like structure by only keeping the shortest path from each end-
point to start-point, determined by a backtracking algorithm. The
authors note that this method could underestimate the morphological
neurite length, as it allows edges tobepart ofmore thanoneneurite tree
if they are implicated in multiple shortest paths. In experimentation
exploring the addition of neurotrophins on explant cultures,
ExplantAnalyzer quantified a significant increase in neurite outgrowth
and neurite end points, although a significant decrease in average
shortest paths was not observed64.

• A deep learning-based toolbox proposed by refs. 86,90. builds graphs
fromboth brightfield andfluorescencemicroscopy images (Fig. 4c). By
utilising an intuitive GUI, the user can construct a custom workflow
from a library of methods that best suits their dataset. To prepare
images for segmentation, standard pre-processing options may be
selected from OpenCV and SKimage libraries. In addition, deep
learning-based options can remove large and obfuscating artifacts,
such as MEA electrodes, and estimate missing data in their place127,128

Segmentation of structures can employ unsupervisedmethods, such as
a modified watershed algorithm129 or W-Net130 model, or supervised
methods that require labelling and training. The applicationof the deep
learning algorithm yolov3 (You Only Look Once version 3.0131)
categorises different brain cell types. This flexibility in nodal assign-
ment could be highly applicable to multiscale graphs in which unique
nodes are assigned to individual and clustered somata. After
skeletonization with the Zhang-Suen Thinning algorithm132, the core
graph reconstruction process extracts branch points and end points as
nodes, then assigns them cell type labels based on their proximity to
yolov3-identified structures. Connectivity is determined bydilating the
skeleton and establishing edgeswhere the skeleton has binodal overlap.
Edges belonging to non-neuronal cell types are then automatically
removed based on the fact that they do not confer functional neuronal
connections. It should be noted that the supervised learning-based
components of the pipeline require the provision of training datasets.
However, the toolbox offers a platform for user-driven generation of
trainingdata and explicitly defines thepoints atwhich this datamust be
integrated.
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Extending network reconstruction tools: benchmarking and
analysis methods
Tool benchmarking procedures have not been systematically adopted in
network reconstructiondue to the nascency of thefield, and thus represent a
compelling opportunity for future research and platformdevelopment.One
of the only exceptions is a study that developed a synthetic neuron image
dataset with known network connectivity for validation purposes25. Here,
synthetic images were created by first generating a connectivity matrix and
thenbackfilling its edges into the image spacewith neurite segments isolated
from real images. The network organization of synthetic images was then
compared to that generated by the proposed algorithmusing the F-measure
– ranging from zero to one, where higher values indicate better predictive
performance25. Alternative future methods could swap simulated neuron
network analogues with physical counterparts whose structures are pre-
determined, intrinsically generating their own gold-standard graph con-
structs. For example, the technique of cell micropatterning utilizes specialty

plate biomaterials to guide neurite outgrowth, and could be used to produce
anatomically defined cultures with known connections133. Alternatively,
artificial microstructural models could be built from predefined templates,
emulating the concept ofphantoms indiffusion tensor imaging (DTI)where
small-scale, synthetic brainmodels aremadeusingfibers of polyester, rayon,
or nylon to simulate white matter tracts134–136. After scanning to obtain DTI
data, axonalfiber tractography is performedand the reconstructedphantom
is compared to its known ground truth. The realization of physical neuron
analogues would offer a self-contained system for validation where con-
nectivity is designed at the outset and thus serves as an established ground-
truth in later assessment.

In network analysis, measures such as the clustering coefficient and
characteristic path length provide valuable insight into network topology.
However, other mathematical tools offer a deeper exploration of the orga-
nizing principles underpinning observed complexity. Fractal analysis is one
such example that explores the self-similarity of a system across scales by

Table 4 | Structural neuron network reconstruction resources

Software Authors Interface Installation Link

cytoNET Ref. 126 Web browser https://www.qutublab.org/how

Deep learning-based toolbox Refs. 86,90 Python-based GUI https://github.com/gmorenomello/rfbi a

ExplantAnalyzer Ref. 64 Matlab https://github.com/DominikSchmidbauer/ExplantAnlayzer
aWebsite may not be actively maintained.

Fig. 4 | Available network reconstruction software. a Spatial network recon-
structions by cytoNet105. Type I networks establish connections (yellow line)
between cells (bordered in cyan) that touch when dilated. Type II networks establish
connections (yellow line) between cells based on whether the distance between their
nuclei (bordered in red) falls below a defined threshold. Image adapted from ref. 126
and modified (CC BY 4.0). b ExplantAnalyzer64 network reconstruction of spiral
ganglion explant neurites (stained with β-Tubulin III and DAPI, scale bar: 1 mm). A
pruned graph structure is created by finding the shortest path from each neurite end
point depicted in green to the explant body attachment point depicted in red. Edges

not part of any shortest paths are removed from the final tree. Figure adapted from
ref. 64 and modified (CC BY 4.0). c An example workflow of the network recon-
struction tool developed by refs. 86,90. An input brightfield image of poor quality is
morphologically labelled by yolov3; blue boxes are neuron somata, yellow box is a
neuron somata cluster. After segmentation, a preliminary network is reconstructed
with red nodes (branch and end points), blue edges, and yellow underlying skeleton,
followed by final network reconstruction. Figure adapted from ref. 86 and modified
with permission.
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detecting the prevalence of hierarchically repeating motifs137–139. Char-
acterizations of in vitro neuron networks have revealed a wide multifractal
spectrum that indicates high network heterogeneity, but shows increasing
self-similarity over time at the level of mesoscale clustering26. Furthermore,
geometric determinants of network organization can be examined through
the construction of spatially embedded networks, which yield graphmetrics
that aremeaningful in Euclidian space such as physical edge betweenness140.
Network simulations known as generative models assist in elucidating the
organizational features that emerge in biological systems as a result of
spatiotemporal factors such as multifractality137,141, alongside other neuro-
developmental constraints142,143. Additionally, examinations of commu-
nication dynamics elucidate the topological mechanisms that scaffold
neuronal signaling across networks, providing a plausible bridge between
structure and functional states144. Network control paradigms aim to
determine which structural components drive system functionality through
perturbative analysis145,146, while other approaches model neuron spiking
activity to reveal underlying topologies that could plausibly manifest
emergent behavior147. Finally, resilience analysis may prove useful in
quantifying the extent to which a network can withstand deterioration due
to pathology associated with diseases such as schizophrenia or traumatic
insult148. The majority of these network characterizations have centered on
macroscale brain systems, however, future application to microscale neu-
rocircuitry is alsowarranted. Thiswill likely be accelerated bymodernGPU-
based parallel computing and emerging algorithmic architectures that
illuminate properties of network data. For example, deep neural networks,
which were previously unsuitable for graphical applications due to their
non-Euclidian and inter-dependent nodal structure, have now been suc-
cessfully adapted for these purposes149. Geometric deep learning archi-
tectures are able to process data features with inductive biases informed by
geometric rules found in the physical world150,151. Neuroimaging studies
have already harnessed this approach by encoding local space and spectral
properties in geometric neural networks to uncover intrinsic features of
functional connectivity152. On the other hand, topological deep learning
architectures are ideally poised to encode higher-order relational properties.
Thesemodels integrate principles from algebraic topology to learn complex
global patterns in data153–156. Both geometric and topological deep learning
have thepotential to enrich future inference frameworks that aimtouncover
inherent or empirically-relevant properties from neuron connectivity157.

Despite the widespread adoption of network analysis in neuroscience,
it is important to consider the limitations of graph modelling. Graphs
intrinsically represent pairwise relationships such that one edge links two
nodes only.While the study of topological motifs such as cliques offer some
insight into higher-order interactions, neuronal relations are frequently
collective in nature rather than confined to isolated patterns. Functional
networks show synchronous firing of cells in triplicate, quadruplicate, and
beyond158, and it is easily discernible how this group-level connectivity
wouldmanifest structurally in underlying neurites that bifurcate or synapse
with one another. Extensions to simple graphs are available to model
simultaneous or heterogeneous connections between elements in away that
would not be captured by a traditional edge. For example, simplicial com-
plexes are combinatorial structures that represent collections of geometric
simplices and their relationships159.Widermesoscale structures of simplicial
representations are interpretable through the application of algebraic
topology. These characterisations could offer insights pertinent to under-
standing information flow in neuronal ensembles, such as how cliques
assemble to form higher-order cycles and cavities160–163. Quantifying per-
sistent homology structuremay reveal the robustness of such signatures in a
neural system by uncovering their prevalence at different dimensional
scales164,165. Furthermore, hypergraphs offer more generalised depictions of
higher-order interactions166. These models have the capacity to depict three
or more interactions between nodes through the inclusion of hyperedges.
Applications in neuroscience have identified the expanded scope of repre-
sentation that emerges from allowing a single modelled element to convey
multiple biological connectivity scenarios167. This would have clear merit in
recapitulating complex neuronal arborisationwhere several synaptic targets

can exist for a single source and vice versa. However, it is important to
acknowledge that the increased generality of these models can translate to
ambiguity in situations where precise relationships need to be defined in
order to understand functional implications. For this reason, topological
representations will most likely serve as valuable companions to network
analysis in a specific constituent of experimental objectives.

Future directions and concluding remarks
Systems-level analysis of neuronal architecture reveals subtle properties of
cell viability and behavior that are not detectable though simple morpho-
logical analysis. Viewing these cells as networks provides a mathematical
framework to quantify and analyze topological patterning through graph
theory. Existingnetwork reconstruction tools define either anatomical64,90 or
spatial105 topology across multiple scales, highlighting the versatility of this
framework in addressing diverse research questions. The widespread
adoption of these tools in the cellular neuroscience community, however,
will be contingent upon the strengthening of robust benchmarkingmethods
that validate derived connectivity profiles. As many interpretations of
connectivity are possible, reliable criteria and non-arbitrary cutoff points
will be essential to establish at every phase of the reconstruction workflow.
Foundational steps such as segmentation are well-supported in this regard
by existing validation methods, however, novel benchmarking approaches
based on simulated or physical ground truth models will be required in the
future to standardize the quality of final network reconstruction.

In the body of available software, key algorithmic themes emerge at
each stage of image processing. Initially, the primary focus ofmost pipelines
is selective filtering to enhance signal-to-noise ratio and remove extraneous
objects. To this end, spatial,morphological, and frequencyfilters adjust pixel
values based on the surrounding features of their neighborhood. For sub-
sequent segmentation and morphological labelling, several local and global
approaches have been proposed. Joining the classic technique of intensity
thresholding are novel procedures that incorporate shape-based criteria to
optimize neuron detection, as well as local methods that trace centerline
paths iteratively to account for changing features. In addition, deep learning
methods offer powerful avenues for robust segmentation. Future research
could prioritize interactive functionality in the development of supervised
and semi-supervised methods, where manual annotation from the user is
employed to shape and correct ground truthmasks in real time. In this way,
human expertise may be leveraged to resolve neuromorphological ambi-
guities alongside dataset-specific noise and idiosyncrasies. Investment in
these methods in the wider sphere of generic cell segmentation has already
enabled cell biologists without expertise in computer science to quantify
their datasets in an intuitive,flexible, and robustmanner, as illustratedby the
tools Ilastik168, Trainable Weka-Segmentation169 and LABKIT170. These
platforms, however, are not designed to provide specific neuromorphic
readouts.

Segmentations can be refined to yield graphically meaningful features
destined for network node and edge identities. However, a limited capacity
to resolve intricate neuronal ensembles poses an issue for network recon-
struction algorithms that base connectivity on discrete structures. This
challenge likely underlies the sparsity of neuron network reconstruction in
the literature. After all, many domain-agnostic algorithms have been pro-
posed for the reconstruction of filamentous patterns, such as leaf venation,
slime mold populations, and mud cracks171,172. If this is the case, the key to
expanding neuron-specific resources lies not in developing more graphical
model approaches per se, but rather in adding more graphically-relevant
features to segmentation routines.Node andedge localization aswell as edge
weight and direction may be facilitated by more biologically relevant
quantifications of diameter, size, orientation, pixel intensity, and so forth.
Realizations of this already exist in macroscale brain network reconstruc-
tion. For example, numerous DTI schemes leverage proxies for cross-
sectionalwidthornumberof axonal streamlines connecting brain regions to
informedgeweight innetworkmodels173. Streamlinefilteringmethods, such
as SIFT174,175 and COMMITT176, have been developed to yield connectivity
measures that are more consistent with underlying white matter
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ultrastructure than simple streamline counts. Equivalent formulations at the
microscale might extract the number of inter-somal neurites or the thick-
ness of fascicular bundles from segmented reconstructions to inform the
same target. Further, morphological features of neurites such as length and
arborization may provide a basis for axonal or dendritic assignment, which
could ideally serve the introduction of edge directionality. This would be
facilitated by imaging modalities such as confocal and phase contrast
microscopy, whose high resolution and scanning field cater to cell visuali-
zation at both ultrastructural and population levels. It is desirable for net-
work reconstruction workflows to be optimized from these early stages to
ensure a well-integrated approach to target research objectives.

Overall, the prospective of applying graph theoretical analysis to
neuronal networks is one of great significance in exploring microscale
neuromorphology and organization. Combining graph theoretical
approaches and advanced segmentation techniques stands to greatly enrich
our understanding of neuronal microcircuitry and pave the way for new
discoveries in the field of cellular neuroscience.
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