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Vocal convergence and social proximity
shape the calls of the most basal
Passeriformes, New Zealand Wrens
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Ines G. Moran 1,2 , Yen Yi Loo1,2, Stilianos Louca3, Nick B. A. Young 4, Annabel Whibley 1,
Sarah J. Withers1, Priscila M. Salloum 5, Michelle L. Hall6,7,8, Margaret C. Stanley1,2 & Kristal E. Cain 1,2

Despite extensive research on avian vocal learning, we still lack a general understanding of how and
when this ability evolved in birds. As the closest living relatives of the earliest Passeriformes, the New
Zealand wrens (Acanthisitti) hold a key phylogenetic position for furthering our understanding of the
evolution of vocal learning because they share a common ancestor with two vocal learners: oscines
and parrots. However, the vocal learning abilities of New Zealand wrens remain unexplored. Here, we
test for the presence of prerequisite behaviors for vocal learning in one of the two extant species of
New Zealand wrens, the rifleman (Acanthisitta chloris). We detect the presence of unique individual
vocal signatures and show how these signatures are shaped by social proximity, as demonstrated by
group vocal signatures and strong acoustic similarities among distantly related individuals in close
social proximity. Further, we reveal that rifleman calls share similar phenotypic variance ratios to those
previously reported in the learned vocalizations of the zebra finch,Taeniopygia guttata. Together these
findings provide strong evidence that riflemen vocally converge, and though the mechanism still
remains to be determined, they may also suggest that this vocal convergence is the result of
rudimentary vocal learning abilities.

Most vocal animals communicate with innate vocalizations, but a few taxa
are capable of vocal production learning – a behavior that provides animals
with the learning ability to copy, match, or imitate sound1. Species that
vocally learn include awide rangeof distantly related taxa suchas cetaceans2,
pinnipeds3, elephants4, bats5, humans, hummingbirds6, parrots7, songbirds8,
and although more research is needed, it appears they also include a few
suboscines (e.g. bellbirds, Procnias spp9.), African naked mole-rats (Het-
erocephalus glaber)10, musk ducks (Biziura lobata)11 and black-headed gulls
(Larus ridibundus), among others12. This paraphyly of vocal learners has led
to many hypotheses about the evolution of vocal learning, along with a
relatively new hypothesis, which suggests that vocal production learning
exists along a continuum consisting of modules1,13 – as opposed to a binary
dichotomy between vocal learners and vocal non-learners (absence vs.
presence). In this hypothesis, vocal production learning is made up of dis-
tinct, yet connected behavioral modules (e.g. vocal convergence, vocal

matching, mimicry, and song sharing) – resulting in varying levels of vocal
learning complexity (i.e., absent, limited/rudimentary, advanced)1,14–17.

Birds are an excellent group to explore this hypothesis due to
their diverse vocal production learning abilities. While advanced vocal
learning is well established in parrots (Psittaciformes)7, hummingbirds
(Trochiliformes)6, and oscine songbirds (Passeriformes)8, the picture is
less clear for suboscines (Passeriformes) and the New Zealand wrens
(Passeriformes and sister sub-order to oscines and suboscines, Fig. 1).
Suboscines have traditionally been classified as vocal non-learners18,19, but
some species have been reported as vocal learners9, or as limited learners
with a rudimentary neural circuitry related to vocal learning in oscine
songbirds14,20. As for New Zealand wrens, their vocal learning abilities have
never been directly tested, and have been assumed to be nonexistent based
on their simple syrinxmorphology (i.e., lacking the intrinsicmuscles present
in vocal learners21,22), and their basic and short call structure (i.e. lacking
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complex and broadcast songs23–25). However, recent revisions of the avian
phylogeny show that the New Zealand wrens share a close common
ancestor with vocal learning parrots and oscines, and with suboscines26–30

(Fig. 1). According to the continuum/module hypotheses1,15, this opens the
possibility for New Zealand wrens to have rudimentary learning abilities.
Investigating New Zealand wrens’ vocal behaviour and plasticity, and

determining where this species fits into the rudimentary/vocal learning
continuum hypotheses is hence key to resolve gaps in the evolution of vocal
production learning in Passeriformes.

In wild and at-risk animal populations, such as New Zealand wrens,
well-established approaches that enable the detection of vocal production
learning abilities (e.g., cross-fostering, social isolation, deafening)31–33 are
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often unfeasible. Alternative innovative methods are needed, such as the
detection of behavioral modules and behavioral predispositions unique to
vocal production learning. An example of such a behavioralmodule is vocal
convergence– a form of vocalmodification controlled andmaintained over
time among socially close conspecifics. To achieve vocal convergence,
individuals change their unique vocal signatures toward common group
vocal features, resulting in group vocal signatures34–39. Vocal convergence is
a particularly important behavior in the investigation of vocal production
learning because it may have been a precursor of more complex forms of
vocal production learning (e.g., vocal matching or mimicry)17,36,39,40.

Another powerful tool for detecting vocal production learning is
quantitativegenetics as it facilitates the investigationof the roleof genetics and
social environment in shaping vocal behavior. In vocal non-learners, kin are
expected to sound more similar due to their shared genetics41, but in vocal
learners, individuals often copy sounds from distantly related social partners,
eroding that similarity34,37,42–44. Thus, if distantly related individuals sound
more similar than their close kin, this could suggest that a form of vocal
imitation occurs. Furthermore, according to the phenotypic plasticity
continuum45, it is possible to distinguish vocal learners from vocal non-
learners, by partitioning genetics from social environment and by deter-
mining how these latter factors contribute to the phenotypic plasticity and
variation of vocalizations46. Accordingly, vocal learners are expected to have a
phenotypic vocal plasticity strongly associatedwith social environment,while
vocal non-learners are expected to show limited voluntary vocal control and
display minimal phenotypic vocal plasticity associated with social environ-
ment (i.e., indicative of a stronger genetic basis of vocalizations)45,47.

By using alternative and integrative approaches, we aim to determine
whether the rifleman (titipounamu, Acanthisitta chloris), one of the only two
extant speciesofNewZealandWrens,haspredispositions forvocalproduction
learning (e.g., rudimentaryvocal learningabilities).Amongriflemen’s large call
repertoire48, feeding calls are a good candidate for this investigation. They are
produced in a cooperative breeding social context by both parents, kin and
unrelated helpers at nests49,50. Vocal learning (if present) is most likely to have
evolved in sucha social context, in contrast tonon-interactive solitary contexts.
Furthermore, rifleman feeding calls are social contact calls, which are often
learned inavianvocal learners, suchas inparrot andzebrafinches’ contact calls
and the flight calls of the Carduelinae subfamily42,51–54.

Here,we search for predispositions for vocal production learning in the
rifleman in two ways: (1) by investigating the presence of individual and
group vocal signatures and determining how genetic relatedness and social
proximity influence the acoustic similarity and feeding call features of dis-
tantly related individuals living in close proximity; (2) by disentangling the
genetically driven phenotypic variances of rifleman call features from their
socially driven vocal counterparts using quantitative genetics, and by
comparing those ratios to a vocal learner, the zebra finch (Taeniopygia
guttata)54.

Results
Individual and group vocal signatures in riflemen
Vocal production learning can be revealed when animals copy the unique
and distinctive vocalizations of another individual, known as individual

vocal signatures10,37.Most animals that communicatewith sounds, including
vocal non-learners, are distinguishable thanks to their unique vocal
signatures55–60. But, vocal learners can go one step further and learn to copy
other’s unique vocal signature37,40. In riflemen, only weak signs of vocal
individuality have been found to date in their feeding calls61, and it remains
unknown whether they learn to copy conspecifics’ individual vocal
signatures.

Thanks to novel high-quality recording techniques, we detected the
presence of strong individual vocal signatures in rifleman feeding calls and
found that adults provisioning at the same nest were more similar to one
another than random individuals. Riflemen produced visually distinctive
individual vocal signatures with a strong stereotypy (i.e. structural con-
sistency between vocalizations within an individual, Fig. 2A; n = 6839 calls;
n = 13 individuals; isoMDS Kruskal stress = 0.27; iterations = 200;
k-dimensional = 2), which were more similar within individuals than
between individuals (PERMANOVA of cross-correlations: F = 289.9;
P < 0.01 and Mantel ϱ = 0.24; P = 0.001; number of permutations: 10,000;
Fig. 2A, B). In addition, rifleman social partners (i.e. parents and helpers
provisioning the same nest) were more similar to one another than to
individuals from other nests (isoMDSKruskal stress = 0.27; iterations = 200;
k-dimensional = 2; PERMANOVAof cross-correlations: F = 541.7;P = 0.03
and Mantel ϱ = 0.23; P = 0.001; number of permutations=10,000; Fig. 2C),
revealing the presence of group vocal signatures in riflemen.

Machine learning algorithms are capable of recognizing and distin-
guishing individual and group vocal signatures10,62,63. Thus, to further con-
firm the presence of individual and group vocal signatures in riflemen, we
trained a Random Forest machine learning algorithm64 with the above
datasets to examine classification accuracies at the individual and nest
(group) level (Fig. 2D). The Random Forest Classifier accurately classified
calls to the right individual with 82.95% accuracy (95% CI = 0.80, 0.85;
κ = 0.80; P < 2.2e-16; number of times cases are ‘out-of-bag’; computing
OOB estimate of error rate: 20%, number of trees = 500; Fig. 2D), and to the
correct nestwith 85.96%accuracy (95%CI = 0.84, 0.88;P < 2.2e-16; κ = 0.84;
computing OOB estimate of error rate: 17.5%, number of trees = 500;
Fig. 2D). These results outperform previous vocal identification classifica-
tion results for riflemen that used discriminant analysis (82.95% in this
study vs. 26%Khwaja et al.61). Our high-quality audio recordings (with little
signal to noise ratio) of rifleman feeding calls likely facilitated the distinction
between individuals and groups. This result confirmed that both individual
and nest vocal signatures are present, distinctive, and identifiable in
riflemen.

High acoustic similarity is not explained by genetic similarity
We hypothesized that if distantly related riflemen soundmore similar than
their close kin, this could suggest that a form of vocal imitation occurs. By
examining the relationship between pairwise acoustic similarity (using
mean spectrographic cross-correlations65) and genetic relatedness in a wild
population of riflemen (using 32,948 Single Nucleotide Polymorphisms or
SNPs generated with Genotyping-By-Sequencing66–68; Fig. 3A), we found
that the correlation between genetic similarity (i.e., relatedness) and acoustic
similarity of feeding calls was low (Spearman’s correlation ϱ = 0.0028,

Fig. 1 | Schematic phylogenetic tree with associated vocal behaviors of New
Zealand wrens and other birds. Avian vocal behaviors are categorized based on
neurobiological and/or behavioral studies or anecdotes (see below) and are repre-
sented with colored rectangles. Behaviors, such as vocal production learning for calls
and songs, are separated due to their distinct neurological and functional basis,
which may have evolved separately131,132. Diagonally barred rectangles indicate that,
although there is some evidence for vocal production learning in this taxon, further
testing is needed. When no data is available on the presence or absence of vocal
production learning in a clade, vocal behaviors are represented with empty rec-
tangles. Triangles highlight novel and previously unknown behaviors found in this
current study (i.e. in the rifleman). Innate vocalizations (labeled in yellow) are
present in all bird clades suggesting that they were likely present in the common
ancestor to all birds. Seven bird clades vocally converge toward common group vocal

signatures (labeled in black) and include oscines41,133,134, suboscines101, New Zealand
wrens (based on current study), parrots44,76,135, wood-hoopoes76, hummingbirds82

and penguins92. Two bird clades have possible rudimentary/limited vocal learning
predispositions (labeled in green), the suboscines – based on neurological
evidence14,20 and New Zealand Wrens – based on the quantitative genetic model
comparisons from this study. Call learning (labeled in light blue) has been
demonstrated in oscines42,51–53, parrots56 and although more research is needed, it is
also present in one species of gulls12,136 and ducks11,12 and may be present in New
Zealand Wrens (this study). While song learning (labeled in cyan blue) has clearly
been demonstrated in oscines8,137 and hummingbirds6,138, other forms of song
learning have also been found in suboscines9 and parrots139–141. This simplified
subtree was derived from Jetz et al.142.
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P = 0.94, n = 49 individuals with genetic data and with a maximum of 50
randomly selected feeding calls; npairs = 1176 Fig. 3B.a). This indicates that
genetic similarity is a poor predictor of acoustic similarity in riflemen.
Furthermore, we found no correlation between genetic relatedness and
mean difference in a comprehensive range of specific acoustic parameters,
including call frequency and call duration (Tables S1-S2), consistent with
the idea that factors other than genetic relatedness influence call similarity
and vocal feature differences in riflemen.

Socially-close, but distantly related riflemen sound similar
Vocal learners often imitate individuals that are in close proximity,
regardless of their relatedness8,69,70. Following a similar approach to the
above section, and by examining the correlations between pairwise
acoustic similarity and social proximity (i.e., low mean geographic

distance between individuals based on nest attendance indicates high
social proximity), we found that acoustic similarity was positively corre-
lated with social proximity in all birds (Spearman’s correlation, ϱ = 0.20,
P = 0.0011, Nperm = 10,000, Nindividuals = 70, npairs = 2415 – note that
the number of individuals n = 70 differs from n = 49 from above – see
method). In other words, social proximity appears to play a crucial role in
shaping rifleman call similarity.

Riflemen are facultative cooperative breeders that live within close
proximity with relatives and helpers in kin-based neighborhoods50,71. Our
results confirmed the presence of kin-based neighborhoods in riflemen and
showed that relatives were socially closer than distantly related pairs of
individuals (Mantel statistics Spearman’s correlation: ϱ = 0.15, P = 0.0005,
Nperm = 10,000, Nindividuals= 49 birds, npairs = 1176; Fig. S1.a). How-
ever, thismeant we could not exclude the possibility that genetic relatedness

Fig. 2 | Individual and group vocal signatures in the feeding calls of riflemen.
A Examples of rifleman feeding call spectrograms concatenated together from dif-
ferent time events showing unique individual vocal signatures. Concatenated calls in
each frame come from a single individual. The gray colored bar above each frame
groups individuals provisioning the same nest.B,C Themultidimensional scaling is
based on call dissimilarities of 6839 rifleman feeding calls and shows clusters of (B)

distinct individual vocal signatures (each color represents calls from a single indi-
vidual) and (C) group vocal signatures at the nest level (each color represents calls
from individuals feeding chicks at the same nest; n = 6 nests, n = 13 individuals).
D Training of a Random Forest Classifier resulted in the accurate classification of
rifleman feeding calls to the correct individual with 82.95% accuracy and the correct
nest with 85.96% accuracy.
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was driving the high acoustic similarity among socially close individuals.
To control for this, we repeated the above analysis (i.e. acoustic similarity vs
social proximity), but excluded pairs of close genetic relatives from our
pairwise comparisons: G ≥ 0.2. The positive correlation between pairwise
social proximity and acoustic similarity persisted in distantly related
individuals (Spearman’s correlation: ϱ = 0.19, P = 0.032, Nperm = 10,000,
Nindividuals = 49, npairs = 1149; Fig. 3B.b). A similar pattern was also
detected among closely related individuals (excluding distantly related
individuals), but although the relationship was stronger than in distantly

related individuals, it was not statistically significant (ϱ=0.41, P = 0.98,
Nperm = 1262, Nindividuals = 29, npairs = 27; Fig. S1.b). Overall, this pro-
vides additional evidence that a form of vocal convergence or possibly
imitation is present in the rifleman.

To understand which aspects of rifleman vocalizationswere adjusted
in response to social proximity, we further examined the relationship
between acoustic parameters of feeding calls and social proximity among
distantly related individuals (Fig. 4A, Table S3). Acoustic parameter-
specific Mantel tests revealed statistically significant correlations for 7 out

Fig. 3 | Methodology and relationship between acoustic, genetic and social
similarity in rifleman feeding calls. AMethodology used to obtain acoustic, genetic
and social similarity multiple-matrices and hierarchical-clustering phyloacoustic
trees of rifleman calls. a The acoustic similarity matrix and the hierarchical-
clustering phyloacoustic tree were derived from spectrographic cross-correlations of
rifleman feeding calls (i.e. zip calls; 1110 sound clips from 70 individuals across 29
nests); (b) The genetic relatedness matrix was derived from SNPs data from 186
riflemen and the hierarchical-clustering phyloacoustic tree was based on genetic
relatedness and acoustic data from 49 individuals; (c) The social proximity distance
matrix and the hierarchical-clustering phyloacoustic tree were derived from geo-
distance proximity (i.e., based on nest locations) of social partners provisioning the

same nests (n = 70 individuals across 29 nests). The hierarchical-clustering phy-
loacoustic trees have at their tips, bird identity with one representative feeding call
spectrogram. The diagrams for “DATA” and “MATRIX” are for methodology
illustration purposes only. B (a) Relationship between acoustic similarity (based on
mean spectrographic cross-correlation of rifleman feeding calls) and genetic simi-
larity (based on SNP relatedness estimates) (1176 bird pairs across 49 individuals).
Each circle represents one bird pair. b Relationship between pairwise acoustic
similarity (mean spectrographic cross-correlation of rifleman feeding calls) and
social proximity (based on geodesic distances between nests visited by individuals)
among distantly related pairs of riflemen (1149 bird pairs across 49 individuals).
Each circle represents one bird pair.
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of 37 acoustic parameters (at a two-sided significance threshold of 0.05)
(Table S3). These parameters were related to frequency, such as frequency
slope of feeding calls (i.e., the change in frequency through time), dura-
tion, entropy and inflections (Table S3). These correlations ranged from
ϱ =−0.27 (P = 0.003) to ϱ = 0.20 (P = 0.01), with dominant frequency
slope (dfslope) and minimum frequency contour slope (PFC) having the
strongest correlations, and frequency median having the weakest corre-
lations (Table S3). After accounting for multiple comparisons and cor-
relations between acoustic parameters, the chance of obtaining a
significant correlation between at least 7 acoustic parameters (out of 37
parameters) and social proximity was 0.03. In other words, it is very
unlikely that one would see this many significant correlations just by
chance. This suggests that some parameters are biologically relevant to
rifleman social interactions. It is also worth noting that, despite some
correlations being significant, the values of ϱ were generally low, sug-
gesting that the correlations observed may result from subtle call feature
modulations. Overall, these results show that social proximity plays a role
in shaping some aspects of rifleman calls, and that individuals provi-
sioning for the same nests share higher acoustic similarity, regardless of
their genetic relatedness.

The phenotypic variance of the rifleman calls resembles those of
a vocal learner
Vocal learners are expected to have higher vocal plasticity and phenotypic
vocal variances than vocal non-learners45,54. If riflemen vocally learn,
their vocal plasticity and phenotypic vocal variance should be similar to
those of vocal learners. To test this hypothesis, we built three multiple-
matrix “animal models” (i.e., Genetic similarity model; Social proximity
model; and Genetic similarity & Social proximity model)46 and used model
selectionwithDeviance InformationCriterion (DIC;Table S5) to determine
which of these three models best predict the proportion of phenotypic
variance components for each acoustic parameter46 (Fig. 4A, B).

Based on the DIC model selection, the genetic similarity model
(G model) best explained the phenotypic variance of 16 out of 37 feeding
calls’ acoustic parameters (Fig. 4B, Fig. S4 and Table S5). For example, the
phenotypic variance of the average slope of the peak frequency contour was
best explained by this model and had the strongest genetic influence (i.e.,
largest genetic proportion of variance and smallest residual variance). In
addition, the credible interval ranged from< 0.0001 to 1.3 (Fig. 4B.a; Fig. S4).
These results indicate that some acoustic parameters have a stronger genetic
basis with a minimal influence by social environment.
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in zebra finches were combined and the maternal effects were not represented.
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The social proximity model (S model), on its own, did not explain the
phenotypic variances of any acoustic parameters (Fig. S5; DIC Table S5). In
this model, the credible interval ranged from 0 to 11.3 (Fig. S5). This result
aligns with our expectations that some acoustic parameters have a strong
genetic component (i.e.,morphology andauditory innate vocal templates72),
and that the social environment alone cannot contribute to the entirety of
the phenotypic variance of calls.

However, the combined genetic and social model (G&S model) best
explained the phenotypic variance of 21 out of 37 acoustic parameters
(Fig. 4B.b; Fig. S6), according to the DICmodel selection (Table S5). In this
model, social variance had the largest credible intervals compared to genetic
variance (range < 0.0001 to 9.9; Fig. S6). The social variance of the dominant
frequency slope and thepeak frequency contours of the average slopeof calls
had non-overlapping credible intervals which diverged away from zero,
supportive of the effect of the social proximity on these parameters. This
result indicates that the phenotypic variance of rifleman call features is
influenced by both genetic similarity and social proximity, and that some
acoustic parameters are more influenced by social proximity than genetic
similarity, as would be expected in vocal learners. However, as will be dis-
cussed below, non-genetic variation may also be caused by other factors,
such as shared environmental or social conditions.

Discussion
By combining diverse quantitative approaches, we demonstrate that New
Zealand wrens have unique individual vocal signatures that converge
toward common vocal features among distantly related individuals that
share high social proximity. This result reveals the presence of vocal con-
vergence in riflemen. Further, we show that the phenotypic variance ratios
of rifleman calls are most similar to vocal learners. These results align with
the vocal learning continuum/module hypotheses, and suggest that riflemen
may possess rudimentary vocal learning abilities.

Detecting whether and how individuals match each other’s unique
vocal features (i.e. vocal signatures73–75) is one of the first stages in the
investigation of vocal production learning56,76–78. In our study, each indivi-
dual had unique and distinctive vocal signatures with high stereotypy (i.e.,
structural consistency between vocalizations within an individual), possibly
due to individual differences in themorphology of their vocal tract (e.g. bill,
syrinx size). Individual vocal signatures in social species, such as the rifle-
man, are beneficial because they may help rifleman parents distinguish
among the multiple helpers that visit nests simultaneously49 .This is true
especially in the context of “pay-to-stay” situations commonly found in
cooperative breeding systems, in which helpers support parents in order to
be accepted and tolerated within the group territory79. These unique indi-
vidual vocal signatures may also help riflemen distinguish their breeding
partner from others and may benefit parent-offspring interactions by
helpingnestlings andfledglings recognize and locate their parents.Although
the goal of our studywas not to investigate call differences within individual
call repertoire, it is interesting to note the small variations within an indi-
vidual’s call repertoire.This is relevant to our searchas itmaybe indicativeof
syringeal or bill control.

In the context of vocal learning, animals that copy each other’s unique
individual vocal signatures provide a strong indication for vocal production
learning. Animals that imitate or converge toward others’ individual vocal
signatures result in group vocal signatures or “vocal passwords” or
accents80,81. Thismay help animals gain considerable social advantages, such
as stronger bonding and group membership35,56,70,82,83. In species that learn
their vocalizations, such as in many birds44,82,84, pinnipeds3, cetaceans37,85,86,
bats80 and humans, group vocal signatures are obtained either through a
process called vocalmatching – an exact copy of individual vocal signatures
from the same group87, or vocal convergence – a form of vocal imitation in
which individuals slowly modify their call features toward common group
vocal features (e.g., when pairing with a partner or assimilating to a new
group)70,82,83. Vocal matching was not demonstrated in this study, but we
detected vocal convergence in socially and geographically close riflemen
that were provisioning for the same nest, but were not closely related.

This suggests that individuals have some degree of vocal control with their
vocalizations. This result contrasts with the traditional assumptions that
rifleman calls have relatively little vocal plasticity and genetically encoded
vocalizations.

According to Janik et al.88, such vocal convergence toward a common
group vocal signature is a strong indicator for vocal learning ability. But
recent work has also shown that vocal convergence is present in animals
traditionally labeled as vocal non-learners, making it ambiguous whether
vocal convergence is the result of vocal production learning36,76,89–92. For
example, goitred gazelles (Gazella subgutturosa)93, domestic goats (Capra
hircus)94, pygmymarmosets (Cebuella pygmaea)95,96 and orangutans (Pongo
sp.)97,98 show high levels of vocal plasticity and modify their vocalizations
toward the individual signatures of their partners or group members.
Similarly, young agile gibbons (Hylobates agilis agilis) produce strong innate
vocal templates from birth, but modulate and refine their vocalizations
during ontogeny to match their mothers’ calls and songs99. Whether vocal
convergence is learned in these animals, traditionally known as vocal non-
learners, is not well understood or thoroughly tested. One possible
hypothesis is that vocal convergence is expressed along a learning con-
tinuumwith non-learned, rudimentary and learned forms. For example, in
some species, vocal convergence may be attributable to reward-based
operant conditioning17, whichmaynot require cortical involvement of vocal
control and may only need the lower brain region (for example, midbrain
thalamic pathway) for neuromuscular modulation of simple call matching.
Thus, while convergence may be the result of simple learning in some
species, it may have an entirely different mechanism in other species.
Further research is needed to test this hypothesis and to investigate the
mechanisms underlying vocal convergence in multiple and diverse species.

Importantly, unlike vocal non-learners that vocally converge as an
immediate response to a conspecific call (e.g. frequencymatching in frogs100),
rifleman vocal convergence was maintained even in the absence of other
conspecifics at thenests. This indicates that theobservedvocal convergence in
riflemen is not a simple one-time matching or a short-term frequency shift
response. This type of sustained vocal convergence has previously been
observed in vocal learners such as parrots34,44, oscines42, and hummingbirds82,
as well as in species traditionally termed vocal non-learners76,92, including
suboscines101 (Fig. 1), but never inNewZealandwrens. Thismay suggest that
the vocal convergence detected in riflemen is more similar to that of vocal
learners than vocal non-learners.

Our quantitative genetic analyses further helped clarify whether
learning could cause the observed vocal convergence in the rifleman. Similar
to vocal learners – which generally have higher phenotypic plasticity than
vocal non-learners due to their strong social influence (see phenotypic
plasticity continuum byMesoudi et al.45) – the rifleman had call phenotypic
variances that were best explained by the combined genetic and social
model, and had high proportions of social variance. Vocal production
learning is one potential mechanism that could explain these results;
however, some interpretative caution is needed because factors such as
shared physiological andmotivational parameters102 may have also affected
call phenotypic variance. However, in our study, environmental factors,
suchas shared food resources or habitat differences, canbe excludedbecause
the birds shared the same general habitat. Furthermore, it is important to
highlight that innate vocal behaviors produced in the total absence of vocal
learning can also show strong levels of vocal plasticity under the influence of
social environment (although considerably less than in vocal learners)103.
For example, white-lipped frogs (Leptosactylus albilabris) are vocal non-
learners that perform complex, plastic, yet instinctive vocal behaviors that
match the frequency of conspecific calls100. But, unlike white-lipped frogs’
phenotypic vocal variance, which is predicted to be best explained by
genetics (as would be expected in vocal non-learners)104, rifleman call
phenotypic ratios were more similar to that of vocal learners (in addition to
being variable and sustained over a long time period). This may indicate
that their vocal plasticity is closer to that of vocal learners (with their
ability to both instantaneously match a sound as well as maintain a learned
sound overtime).
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Comparing thephenotypic vocal variances between riflemenandzebra
finches46,54 (Fig. 4C) helped further illustrate how rifleman’s vocal plasticity
fitted in the phenotypic plasticity continuum45. Although differing com-
parative methods and models were used for this comparison, the relative
genetic versus social ratios of our models were similar to that of zebra
finches’ learned calls and songs (i.e., produced by males; Fig. 4C). Riflemen
had an even larger social versus genetic variance ratio than zebra finches in
some parameters. This further indicates that themechanism underlying the
observedvariance in the riflemancallsmaybe closer to that of vocal learners.
Conducting an extensive cross-species comparative analysis of phenotypic
vocal variance components would be a valuable future comparison and
contribution. Ideally, such future studies should use a single and standar-
dized comparative method, such as using MCMCglmm of phenotypic
variances between species46. This would further situate rifleman phenotypic
variances relative to other vocal non-learners and vocal learners along a
phenotypic plasticity continuum (Mesoudi et al.45).

In conclusion, this study offers new research avenues and meth-
odologies to investigate potential predispositions for vocal learning abil-
ities in presumed vocal non-learners. It reveals the presence of vocal
convergence and possibly a rudimentary form of vocal learning in the
rifleman. This raises important questions about the evolution of vocal
convergence, which might have been present in the shared ancestor of
Psittacopasserans. Vocal convergence and any predispositions for vocal
production learning are behaviors that are easily overlooked without
extensive analyses, so sophisticated and in-depth future studies are needed
to explore their possible existence and their origins in other animal groups.
In particular, exploring the vocal phenotypic variances of traditional vocal
non-learners would provide an important contrast to our findings. It
would also provide a framework for others trying to interpret phenotypic
variances in the context of the vocal learning continuum hypothesis.
Further, our study highlights the importance of revisiting the definition of
vocal convergence in the context of vocal learning. Overall, this work
offers new insights into the vocal behavior and learning predispositions of
a presumed vocal non-learner, the rifleman – a species which is key to
understanding the evolutionary origin of vocal production learning in
Passeriformes.

Methods
Study field site and population monitoring
We monitored a wild population of riflemen at the Boundary Stream
Mainland Island reserve,NewZealand (39°06’15.8“S, 176°48’06.1“E)during
two austral breeding seasons, from September to February 2018–2020. The
timing of rifleman breeding is asynchronous25, which enabled us tomonitor
nests simultaneously and continuously throughout the breeding seasons.
For monitoring and identification purposes, we caught individuals using
mist-nets and speakers with conspecific lure calls, we then sexed and aged
adults and fledglings based on their sexual dimorphism in size and
coloration105, and we banded individuals with unique color band combi-
nations. One of the leg bands was equipped with a Passive Integrated
Transponder (2.3 mm EM4102 PIT tag; Eccel Technology Embedded
RFID) that could be read byRadio-frequency identification receivers (RFID;
engineered by the University of Auckland) placed at nests (Fig. 2D). RFID
receivers logged the identity of individuals entering or leaving nests during
the 2019-2020 breeding season. After locating nests, we monitored nest
activity and recorded vocal behavior of individuals provisioning nests (see
recording methods below). Due to the inaccessibility of most natural nests
(i.e., tight spherical nests in tree cavities), we could not band nestlings which
limited information about the relatedness among individuals. To mitigate
this, we banded fledgling groups when siblings still clustered together out-
side their nests and were fed by banded adults.

We have complied with all relevant ethical regulations for animal use.
This research was approved and facilitated by mana whenua from the
Maungaharuru region and the Department of Conservation, New Zealand
(Department of Conservation permit obtained in 2018, act No FAU 55391)
and approved by the University of Auckland Animal Ethics Committee

(Approval no. 001866). Bird capture and banding activities were conducted
under the New Zealand National Bird Banding Scheme.

Study species
Riflemen are socially monogamous cavity-nesters that build their nests at
various heights (i.e., on the ground under leaf litter or in tree cavities) in the
native forests of New Zealand25. Nest building can last a few days (i.e.,
3–6 days, personal observation) and is followed by an incubation period
which can last 20 days25. Once hatched, nestlings remain in the nest for
around 24 days25. Riflemen are facultative cooperative breeders (i.e., helpers
in addition to parents feed nestlings at some nests), so nestlings receive
frequent visits from both parents and helpers which are often genetically
related to the parents49,50,71,106. The frequency of visits at the nests increases as
nestlings grow, with a feeding rate ranging from 4 to 20 times an hour (i.e.,
every 3 to 12min) in the later nestling stages25. Each time adults visit
nestlings, they produce feeding calls (also known as zip calls; e.g. Fig. 2A)
prior to feeding them which seems to function as contact calls between
parents and offspring25. These feeding calls are distinguishable from other
call types due to their “S” shape and higher frequency (~6–14 kHz;
Fig. 2A)48. Rifleman feeding calls are a good candidate to test the presence of
vocal learning abilities because they are used in social contexts (between
parents, helpers and nestlings, and between partners) in which vocal
learning is most likely to have evolved and be detected if present.
The rifleman does not produce vocalizations that classify as songs in the
traditional sense; indeed, it is a non-territorial species and rifleman pairs do
not seem to produce courtship songs to attract mates. Instead, the rifleman
has a large repertoire of calls48, which has been assumed to be innate based
on its simple vocal features, nonterritorial or non-courtship vocalizations,
and a syrinx that lacks complex intrinsic muscles found in bird vocal
learners21,22,24,25.

Sound recording
We collected rifleman feeding calls (zip calls; e.g. Fig. 2A) at nests using a
combination of methods which we implemented to accommodate the
diversity of nest heights found in our study population. First, we collected
focal recordings of the feeding calls at nest (i.e. one observerwith binoculars,
a digital Zoom H6 recorder and a shotgun Sennheiser ME62 K6 micro-
phone -20,000Hz frequency) of banded individuals (i.e. identified by their
unique color band combo). During focalmonitoring sessions, we combined
focal recordings with visual monitoring and video recordings to match the
identity of individuals visiting nests to their corresponding feeding calls.We
also recorded the vocal behavior of individuals at nests using passive
Bioacoustic Automated Recorders (BAR; Frontier Labs version 1.4; WAV
format with a sampling frequency of 44,100 Hz and 32 bits sampling depth;
breeding season20182020; Fig. 2D). EachBARrecorderwas connectedvia a
long cable to a small omnidirectional microphone placed close to nest
entrances (range: 0.1 m–1m). Each BAR recorder was placed further away
from the focal nest (10–15 meters) to minimize nest disturbance when
changing batteries and SD cards. BARs were programmed to record
daily from 1 hour before sunrise to 2 h after sunset. In addition to the
BAR recorders, we also deployed trail cameras (Bushnell Trophy Cameras
24MP and E2 12MP) and PIT tag readers (2.3 mm EM4102 PIT tag; Eccel
Technology Embedded RFID; breeding season 2019–2020) to facilitate the
synchronization of individual identity and feeding calls. The trail cameras
pointed toward nest entrances (i.e., placed between ~30 cm and ~1m) to
capture photos and videos of the leg color bands combinations, and PIT tag
readers were placed around nest entrances to log PIT tag numbers.

Sound processing and annotations
Time offset correction and synchronization. Time drift occurred in
some of the BAR recordings due to SD card write-speed differences,
which resulted in a mismatch between the timestamps of the BAR
recorder and RFID (Fig. 2D). We corrected for time offset using known
sound timestamps produced in the BAR recordings for which we had
an exact RFID timestamp. For both the time offset correction and the
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following synchronization step, we used the following custom pipeline
(available at https://uoa-eresearch.github.io/bird_recognition/time_
sync_check.nb.html). The synchronization between the timestamps of
PIT tags and nest recordings enabled us to associate calls to the correct
individuals. We extracted feeding calls (zip calls; e.g.: Fig. 2A) based on
PIT tag readings of individuals entering nests within 5 s of a PIT tag time-
stamp reading. Samples with two or more individuals detected within
these 5 seconds were removed to avoid errors in identity attribution. We
then manually annotated each feeding call within these 5-second filtered
time windows using Raven Pro v1.6.1107.

Sound libraries. The above sound collection method yielded a large and
high-quality RFID/BAR call library with 6839 calls from 13 individuals
(12 parents and one nest with one helper;mean = 526.1 ± sd = 456.4 calls
per individual, min = 12 calls, max = 1378 calls) across 6 nests (mean =
977.0 ± sd = 1,012.8 calls, min = 12 calls, max = 2457 calls). This library
offered a large number of calls per individual andhigh-quality sound clips
with no background or overlapping sounds which is ideal to detect vocal
signatures and train our machine learning algorithm (Fig. 2).

We also manually synchronized the BAR or focal recordings to the
timestamps of our visual observations, trail cameras, and video recording
timestamps using Raven Pro v1.6.1107. This combination of recording
techniques (BAR/focal/trail camera/video) enabled us to build a second
extensive feeding call library with 4207 calls from 70 birds across 29 nests
(see details below under “Creation of acoustic, genetic relatedness, and social
matrices”).Weused this call library and the aboveRFID/BARcall library for
the remaining analysis of our study (Figs. 3–4).

Spectrograms and call feature measurements. All spectrograms of
feeding calls were plotted with Seewave v.2.2.0108 (settings set to wl=250,
ovlp=50) andwarbleR v.1.1.2765 (Figs. 2A, 3A respectively).Wemeasured
feeding call features using three vocal measurement tools (Seewave
v.2.2.0108, warbleR v.1.1.2765, and RavenPro Raven Pro v.1.6.1107), and
extracted 37 acoustic parameters (Table S1).

Detection of vocal signatures
Toassess thepresence of vocal signatures at the individual andnest level in
rifleman, we compared feeding calls within and between individuals
attending the same nest.We performed spectrographic cross-correlations
between the feeding calls of each individual, which is a method that slides
spectrograms over one another to obtain a similarity score between
calls (i.e., similarity matrix, based on sound dissimilarities – one
minus cross-correlations rescaled to be between 0 and 1). We used the R
function xcorr from warbleR v.1.1.2665 to perform the pairwise cross-
correlations (Fig. 2B, C). All pairwise combinations of calls resulted in
6, 839× (6, 839− 1)/2 distinct cross-correlations of calls for 13 individuals
(mean = 526.1± sd = 456.4 calls per individual;min = 12 calls,max = 1378
calls) across 6 nests (mean = 977.0 ± sd = 1012.8 calls; min = 12 calls,
max = 2457 calls).

We then compared the pairwise cross-correlations using Kruskal’s
non-metric multidimensional scaling with MASS (isoMDS) v.7.3.51.6109

(Fig. 2B,C), andanalyzed thegoodness offitwith isoMDSKruskal’s stress109.
We then used a Mantel test based on Pearson’s correlation from vegan
v.2.5.6110 to determine whether vocal signature was significant at the indi-
vidual or nest level. To do this, we created a binary matrix representing
feeding call membership in which 0 was assigned to feeding calls belonging
to the same individual and 1 was assigned to feeding calls belonging to
different individuals82. The cross-correlation dissimilarity matrix (1-corre-
lation similarity matrix) was then compared with the membership matrix
using aMantel test, and it used groupmembershipmatrices as predictors in
Mantel correlations against acoustic dissimilarity matrices. We also used
PERMANOVA111 (adonis from vegan v.2.5.6110) as an alternativemethod to
detect individuality in the feeding calls of riflemen. For nest signatures,
we controlled for individual vocal signatures (i.e., by only permuting indi-
viduals, rather than clips between individuals) because individual vocal

signatures could otherwise cause an apparent nest vocal signature due to the
small number of individuals per nest.

Random forest classifier
We created and trained a Random Forest Classifier using calls collected
from our BAR/RFID library (Fig. 2A) to test if the classification of feeding
calls could be accurately achieved at the individual and group level
(Fig. 2D). We normalized feeding calls at -1dB using ffmpeg v1.20.1112 to
ensure that amplitude differences between recording clips would not
cause classification inaccuracies. We compiled the training library
by loading .wav files of feeding calls and then calculated Mel-frequency
Cepstral Coefficients (MFCC) of the feeding calls using tuneR (melfcc)
v1.3.2113. MFCC have been extensively used for human voice
recognition114 and focus on dynamic features of the vocal tract, and have
been successfully applied to animal vocalization recognition115. We then
set up the duration of each time frame (i.e., used as a “sample”) at 0.25 s.
A longer duration meant that more call clips were included in one
“sample”, thusmaking the classification easier; however, it alsomeant that
from each particular .wav file, fewer “samples” could be extracted. Con-
sequently, we set hoptime to be the same as wintime, so that successive
time frames could not overlap, making the samples truly independent.
Next, we randomized the order of time frames (e.g., in case bird clips had
not been concatenated randomly). We then trained a Random Forest
Classifier, which usedmultiple learning algorithms (ensemble learning) to
obtain high predictive performance for classification purposes, using
the function random Forest from randomForest v.4.6.1464. We then esti-
mated the accuracy of the classifier with the samples from each group
(individual and nest).

Blood sample collection and DNA extraction
We collected blood samples (10–35 µl) during banding sessions using
brachial venipuncture with a BD PrecisionGlide sterile needle (26 G 1/
2–0.45mm x 13mm) and a 70 µl capillary tube (Microhematocrit tubes).
Blood sampleswerepreserved in 95%ethanol and temporarily storedat 4 °C
in the field before being transferred for long-term storage at −20 °C. In
addition to collecting blood samples from Boundary Stream Mainland
Island (i.e., focal population), we also collected blood samples from Mohi
Bush (39°51'25.34"S, 176°54'7.49"E), a geographically close but genetically
distant population to increase our sample size to 186 individuals to provide
robust genetic relatedness estimates116. We extracted DNA from individual
blood samplesusing aQiagenDNeasyBloodandTissue kit and followed the
protocol for total DNA purification from nucleated blood with elution in
80 µl AE buffer and without RNase treatment (Spin-column Protocol;
DNeasy Blood & Tissue Handbook version 07/2006). DNA was quantified
using the Qubit Broad Range DNA assay (Qubit 2.0 Fluorometer), and
further quality checks were performed by spectrophotometry (Implen
NanoPhotometerN60) andby gel electrophoresis.DNAaliquotswere dried
(3 h. at 30 °C) and sealed for shipping to AgResearch, Mosgiel, Aotearoa,
New Zealand, where a Genotyping-By-Sequencing (GBS) protocol was
carried out.

GBS library construction and SNPs detection
High-throughput Genotyping-By-Sequencing (GBS) was used to generate
Single Nucleotide Polymorphisms (SNPs). The GBS library was prepared
following the method outlined in Elshire et al.66 with modification as in
Dodds et al.67 (KGD v0.8.4) for 186 individuals (total of 192 wells with 6
negative control samples) using PstI-MspI double-digest restriction
enzymes. The Library underwent size selection with Pippin Prep (SAGE
Science, Beverly, Massachusetts, USA) to select fragments in the size range
of 193−318 bp (genomic sequence plus 123 bp of adapters). Single-end
sequencing (1x101bp) was performed on an Illumina HiSeq 2500 utilizing
v4 chemistry. Raw fastq files were quality checked using a custom QC
pipeline (available at https://github.com/AgResearch/DECONVQC and
FastQC v.0.10.1, http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/, Andrew117).
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Demultiplexing, SNPdetection, and filteringwere undertakenwith the
reference-free SNP detection pipeline called UNEAK118, implemented in
Tassel3 v.3.0.174119. We filtered SNPs to avoid the inclusion of erroneous
SNPs in downstream analyses. The following parameters were used: s
(maximum number of barcoded reads per lane) set to 400M, t (merge taxa
option) set to “no”, m (maximum tag number in themerged TagCount file)
set to 600M, x (Maximum tag number in TagCount file for each taxa) set to
100M, c (minimum count of a tag that must be present to be output) set to
30, mnMAF (minimum minor allele frequency) set to 0.03, and mnC
(minimum call rate) set to 0.1 (10%). All other parameters (e.g., Error
tolerance rate – ETR; Maximum minor allele frequency –mxMAF; max-
imum call rate – mxC) were left at the default option (i.e., ETR = 0.03;
mxMAF=0.5; mxC=1). We excluded SNPS with a significant (p < 0.05)
deviation fromHardy-Weinberg equilibrium(Fig. S2).We identified 32,948
SNPs (mean co-call rate for sample pairs = 0.55;min co-call rate for sample
pairs = 0.23; proportion of missing genotypes = 0.36; call rate = 0.64) and the
average sequencing read depth for called SNPs was 7.6.

Creation of acoustic, genetic relatedness, and social matrices
To further investigate the mechanisms resulting in nest vocal signatures, we
created three matrices (i.e., acoustic matrix, genetic relatedness, and social
proximity matrices; Fig. 3A) for downstream analyses to disentangle the
genetic and social factors influencing rifleman call structure (i.e., similarity). In
vocal learners, social factors influenceacoustic structure and similaritybetween
individuals, especially in individuals that are not closely related, so these ana-
lyses canhelpdetectpredispositions for vocal imitationor learningabilities45,120.

First, we determined acoustic similarities between individuals by
creating an acousticmatrix for all individuals forwhichwehad collected call
clips (70 birds across 29 nests; Fig. 3A.a). Some individuals had considerably
fewer feeding calls than others due to rare nest visitations (e.g., helpers) or
limited available recordings, which resulted in an imbalanced dataset. Thus,
to balance out our dataset of calls per individual, we randomly selected a
maximum of 50 feeding calls per individual. This resulted in a total of 1,110
filtered soundclips (mean = 14.4 calls per individual, sd = 14.3 calls,min = 1,
max = 50). We then calculated the mean of pairwise spectrographic cross-
correlations between rifleman feeding calls using the function xcorr from
warbleR v.1.1.2765. The warblerR settings for xcorr were set as follows:
window length (wl) = 300 and overlap (ovlp) = 90. All pairwise combina-
tions of calls resulted in 1110 × 1110 distinct cross-correlations of calls and
70 × 70 distinct mean cross-correlations for individuals.

Next, following the KGD v0.8.4 pipeline (G5 method, as in Dodds
et al.67,68), we determined the genetic relatedness between individuals using
the 32,948 filtered SNPs (obtained from the above method) to generate a
genetic relatedness matrix (GRM) and to measure genetic similarity (or
genetic distance) between individuals (n = 186 individuals, Fig. 3A.b).
Genetic relatedness between individuals was visualized using a relatedness
heatmap (Fig. S2). It is important to note that genetic relatedness was
determined here, not the heritability of any vocal trait.

Finally, to create a social proximity matrix that reflected social close-
ness between individuals, each individual for which we had acoustic data
(n = 70birds acrossn = 29nests)was given a location (GPSpoints) based on
the location of the nest they provisioned (Fig. 3A.c). Because several adults
attended the same nest, we “blurred/jittered” the GPS points to a few cen-
timeters away from the commonly sharedGPSnest point to avoid having all
individuals provisioning for a same nest with a social distance of 0. This
“blurring/jittering”was essential to retain a true social proximitymatrix that
could become invertible (i.e., positive definite), as recommended by
Thomson et al.46. We used the package castor v.1.7.2121 and the function
all_pairwise_geodesic_angles to calculate the distance between two sets of
individual locations/nests coordinates. This function returns a 2Dmatrix of
size N1 x N2 (in this case, 70*70). If one individual was found at several
nests, we calculated the average distance for that individual between all
provisioned nests. We used this distance as a proxy for a shared social
environment (i.e., social interactions) to generate a social proximity matrix
(Fig. 3A.c).

Hierarchical-clustering trees with spectrograms
Wevisualized call similarity between individuals by generating hierarchical-
clustering trees with spectrograms and individual identity at their tips
(Fig. 3A), based on acoustic, genetic and social proximity distances between
individuals (based on GPS locations of individuals provisioning at nests)
using the package ape v.5.6-2122 and phylo_spectro fromwarbleR v.1.1.2765.
One randomly selected feeding call from each individual call repertoire was
represented as a spectrogram at the tips of the trees’ branches. ThewarbleR
settings for the phylo_spectro function were set as follows: wl = 300,
ovlp = 90, wl.freq = 512.

Correlations between acoustic, genetic, and social similarity
To determine whether and how the social environment and genetics con-
tribute to shaping rifleman nest vocal signatures and whether this could
reveal any predispositions for vocal learning (e.g. high acoustic similarity
among distantly related pairs of individuals), we examined the relationship
between the acoustic (i.e., mean spectrographic cross-correlation of calls per
bird), genetic (i.e., SNP relatedness estimates) and social similarity (geodesic
distances between nests provisioned by individuals) (Fig. 3; following
similar reasoning as in Lemasson et al.120).

To assess the correlations between thesematrices, we usedMantel tests
(Spearman’s correlation with permutation null model; two-sided sig-
nificance) with the function cor from the R package stats v4.0.2123

(Figs. 3B, 4A; Tables S2, S3). Note that when comparing pairwise distances,
the individual pairs cannot be considered independent samples because
different pairs may correspond to shared individuals, hence the statistical
significance of any given correlation is generally estimated using permuta-
tion tests that account for this data structure124,125.

First, we used a Mantel test (Spearman’s correlation with permuta-
tion null model; two-sided significance) to examine the relationship (i.e.,
correlation) between genetic similarity and acoustic similarity (1176 bird
pairs across 49 birds; Fig. 3B.a). 49 individuals (out of 186 individuals for
whichwehad genetic data) had both genetic relatedness and acoustic data.
The mean spectrographic cross-correlation for these 49 individuals was
based on 929 sound clips (mean = 19.0 calls per bird, sd = 15.4). We
expected that if acoustic and genetic similarity were strongly correlated,
this would indicate that genetics has likely a strong influence on acoustic
similarity. In contrast a weak or negative correlation would indicate that
other factors shape acoustic similarity. For this analysis, we excluded self-
related acoustic similarity from our analysis because the “within-indivi-
dual” vocal signatures would have otherwise biased the correlations
between the two entries.

Next,weused a similarMantel test as above to examine the relationship
between acoustic similarity and social proximity and the relationship
between social similarity and genetic similarity (Fig. S1a). This enabled us to
determine whether individuals living in close proximity sounded similar
and whether they were kin (i.e., kin-neighborhoods). After confirming the
influence of social proximity on acoustic similarity in all birds (Spearman’s
correlation, ϱ = 0.20, P = 0.0011, Nperm = 10,000, Nindividuals = 70,
npairs = 2415) and detecting kin-neighborhood effect in rifleman (Spear-
man’s correlation: ϱ = 0.15, P = 0.0005, Nperm=10,000, Nindividuals = 49
birds, npairs = 1176, Fig. S1a), we controlled for genetic relatedness, by re-
examining the relationship between acoustic similarity and social proximity,
but this time we restricted our analysis to distantly related pairs of indivi-
duals by excluding genetically close pairs of individuals (Fig. 3B.b). To
exclude genetically close pairs of individuals we set a maximum relatedness
threshold to 0.2 (i.e., excluding siblings, parents, uncles, and aunts from the
genetic matrix and the correlation calculations). Among those 1176 bird
pairs for which genetic relatedness was known, 1149 bird pairs had a genetic
similarity below 0.2 (i.e., “distantly related” or “unrelated”), and the
remaining 27 pairs had a genetic similarity above 0.2 (i.e., they are “closely
related”). The 1149 distantly related pairs covered all 49 birds, in other
words for every bird in our dataset there exists another bird that is unrelated
to it. The 27 closely related pairs cover 29 individuals, in other words there
are 29 birds in our dataset for which there exists another closely related bird.
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Next, to determinewhich specific acoustic parameters were driving the
significant positive correlation between acoustic similarity and social
proximity among distantly related pairs of individuals (Fig. 3B.b), we
investigated the relationship between the mean absolute difference in 37
acoustic parameters between any two sound clips of two individuals and
social proximity in distantly related pairs of birds (1149 across 49 indivi-
duals, Fig. 4A and Table S3). The warbleRv.1.1.27 function specan65 and
Raven Pro v.1.6.1107 were used to measure the 37 acoustic parameters of
rifleman feeding calls (see list of the acoustic parameters and their
descriptions can be found in Table S1). ThewarbleR settings for the specan
functionwere set as follows:wl = 300, ovlp = 90,wl.freq = 512.We then used
acoustic-parameter-specific Mantel tests (two-sided significance threshold
of 0.05) to examine correlations between mean absolute acoustic difference
and genetic similarity (Table S2), andmean absolute acoustic difference and
social proximity for each acoustic parameter (Fig. 4A; Table S3). Acoustic-
parameter-specificMantel tests revealed statistically significant correlations
with social proximity for 7 out of 37 vocal parameters (at a two-sided
significance threshold of 0.05; Table S3). Mutual pairwise spearman cor-
relations showed these latter parameters were independent of each other
(Table S4).Toaccount formultiple comparisons andexaminehowprobable
it would be to erroneously obtain at least this many significant correlations
by chance (i.e., under the null hypothesis of no correlations with social
proximity), we used an adjusted permutation test. Our test fully accounted
for correlations between acoustic parameters. Specifically, rows and col-
umns of the social distance matrix were synchronously permuted (to break
any association with acoustic parameters, as in a regular Mantel test), and
subsequently all 37 acoustic-parameter-specific Mantel tests were repeated
to re-compute the number of significant correlations. This permutation step
was repeated 1000 times, to obtain the fraction of permutations that yielded
at least 7 significant correlations. This fraction is an estimate for the prob-
ability of erroneously seeing a significant correlation between at least 7
acoustic parameters and social proximity, under the null hypothesis. We
found that this probability was 0.03.

Multiple-matrix animal models: Estimation of the phenotypic
vocal variance of rifleman feeding calls
Next, we built multiple-matrix animal models to partition the phenotypic
varianceof the rifleman feeding calls for eachacoustic parameter (Fig. 4B,C).
Modelswith strong social influence (i.e., acoustic parameterswithhigh social
variance components) are more likely to indicate the presence of social
learning possibly via a vocal production learningmechanism45.We followed
methods from Thomson et al.46, which uses Markov Chain Bayesian gen-
eralized linearmixed effectmodels (MCMCglmm)– anapproach thatfits an
animal model into a Bayesian framework (Fig. 4B, C) to estimate acoustic
traits’ genetic, social, and residual variance components for each acoustic
parameter. We used MCMCglmm v.2.34126 and built generalized linear
mixed effect models (GLMM) with the previously generated genetic, and
socialmatrices (Fig. 3A). For all threemodels, acoustic traitswere continuous
traits added as fixed effects.

The MCMC ran for n = 1,000,000 iterations with thinning interval
(n = 100), burn-in period (n = 100,000) for each acoustic parameter. We
used n = 1,000,000 iterations to obtain an effective size between 1000 and
10,000 as recommended by Hadfield et al.126,127 and de Villemereuil128, de
Villemereuil et al.129. The number of sound clips per individual was set to a
minimum of 5 andmaximum of 50 clips per individual. The first model (G
model) determined genetic similarity and residual variances (n = 39 indi-
viduals; mean = 23.3 calls per bird; sd = 14.2; n = 911 sound clips), and
genetic-relatedness was added as a random effect (Fig. 4B.a; Fig. S4). The
secondmodel (Smodel) determined the social and residual variance (n = 49
individuals, mean = 21.7 calls per bird, sd = 13.8, n = 1066 sound clips,
min = 5 andmax = 50), and social proximity was added as a random effect
(Fig. S5). The final model combined genetic, social, and residual variances
(G & S model; fixed = trait values ~ 1, random = ~ genetic relatedness +
social proximity; n = 39 individuals; mean = 23.3 calls per bird; sd = 14.2;
n = 911 sound clips, Fig. 4B.b; Fig. S6).

For eachmodel,weplotted the traceofMCMCchains for each acoustic
parameter and accessed the curves of traces and posterior density based on
their relatively symmetry and unimodality (e.g., Fig. S3). We then reported
the estimated percentage and the variances for eachmodel by extracting the
post-distribution means, credible intervals, and effective sample sizes for
each acoustic parameter (Fig. 4B; Figs. S4–S6). The effective sample sizes
ranged from915.4 to 2883.6 for theGmodel, 3213.4 and9,000.0 for Smodel,
and 966.7 and 8,335.8 for the G & S model which satisfied the recom-
mendations of 1000 < effective sample size < 10,000 to run ourmodels126–129.
Non-overlapping credible intervals indicated a strong separation between
variance components (genetic, social, and residual), and a credible interval
diverging away from zero best supported the effect of the variance com-
ponents on call parameters.

Finally, we used DIC for model selection (i.e., based on the smallest
DIC values) to determine which model best predicted the proportion of
variance components for each acoustic parameter of rifleman feeding calls
(Fig. 4A; Table S5). We conducted the above analyses with R (v4.2.0; 2022-
04-22)123.

Comparisons of rifleman phenotypic vocal variances with a
known vocal learner
We compared the phenotypic vocal variance profiles of rifleman to a
known vocal learner, the zebra finches to further situate rifleman phe-
notypic vocal variance along a phenotypic plasticity continuum45 and
assess whether vocal learning may be a potential mechanism underlying
rifleman phenotypic vocal variance (Fig. 4C). Different methods were
used to estimate social proximity and acoustic measurements in riflemen
and zebra finches, thus we only conducted qualitative rather than quan-
titative comparisons to assess differences between the phenotypic vocal
variance profiles of rifleman and zebra finches. We extracted the pheno-
typic vocal variance profiles of zebra finches from a reference study by
Forstmeier et al.54 (TablesA6–A8),which relied on pedigree-based animal
models to determine the phenotypic variance and heritability of female
zebra finch innate calls andmale. The social variance in zebra finches was
based on cross-fostering methods (“Foster parent” and “Peer” variances),
while for riflemen it was based on geodesic distances between individuals
provisioning at the same nest. For zebra finches, we combined the “Foster
parent” and “Peer” variances54, and we excluded the maternal effects on
zebra finches’ vocalizations because maternal effects were not accounted
for in the rifleman models. We then selected a subset of variance com-
ponents of rifleman feeding calls (i.e., four acoustic parameters: duration,
entropy, frequency modulation, and mean frequency) and compared
them against those of zebra finches (Fig. 4C). We then compared the
relative social and genetic ratios between the phenotypic variances of
rifleman feeding calls (best explained by our genetic and social proximity
model) and non-learned zebra finch female calls, learned male calls, and
learned male songs54 (Fig. 4C).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Thedata supporting thefindings of this study is available inFigshare under a
license CC BY 4.0: Moran et al.130. Dataset. Vocal learning in a vocal non-
learner? Social proximity and vocal convergence shape the calls of the most
basal Passeriformes,NewZealandWrens. 2024.figshare.Dataset. https://doi.
org/10.17608/k6.auckland.25549466.

Code availability
The R code which performed the study analyses is available in Figshare
under a license CCBY 4.0:Moran et al.130. Dataset. Vocal learning in a vocal
non-learner? Social proximity and vocal convergence shape the calls of the
most basal Passeriformes, New Zealand Wrens. 2024. figshare. Dataset.
https://doi.org/10.17608/k6.auckland.25549466.
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