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Alzheimer’s disease (AD) is broadly characterized by neurodegeneration, pathology accumulation,
and cognitive decline. There is considerable variation in the progression of clinical symptoms and
pathology in humans, highlighting the importance of genetic diversity in the study of AD. To address
this, we analyze cell composition and amyloid-beta deposition of 6- and 14-month-old AD-BXD
mouse brains.We utilize the analytical QUINTworkflow- a suite of software designed to support atlas-
based quantification, which we expand to deliver a highly effective method for registering and
quantifying cell and pathology changes in diverse disease models. In applying the expanded QUINT
workflow, we quantify near-global age-related increases in microglia, astrocytes, and amyloid-beta,
and we identify strain-specific regional variation in neuron load. To understand how individual
differences in cell composition affect the interpretation of bulk gene expression in AD, we combine
hippocampal immunohistochemistry analyses with bulk RNA-sequencing data. This approach allows
us to categorize genes whose expression changes in response to AD in a cell and/or pathology load-
dependentmanner. Ultimately, our study demonstrates the use of the QUINTworkflow to standardize
the quantification of immunohistochemistry data in diverse mice, - providing valuable insights into
regional variation in cellular load and amyloid deposition in the AD-BXD model.

Alzheimer’s disease (AD) is a multifaceted neurodegenerative condition
broadly characterized by the accumulation of amyloid-beta plaques, neu-
rofibrillary tangles, severe gliosis, and progressive neurodegeneration,
leading to clinical symptoms and cognitive decline1. There is significant
variation in the age at symptom onset and severity of cognitive decline;
highly susceptible individuals exhibit early onset and rapid decline, while
resilient individuals remain cognitively intact late in life and may display
differences in neuropathological load2–4. Additional characterization of
pathology development such as neurodegeneration, amyloid-beta deposi-
tion, and neuroinflammation is necessary to enhance our understanding of

the influence of this variation on clinical outcomes. This characterization is
particularly crucial as alterations in brain tissue composition and the onset
of neuropathology can precede, and possibly predict clinical symptoms.
Thus, it serves as a valuable resource for defining disease subtypes and
potential mechanisms of resilience5–7.

Mouse models of AD offer the opportunity to study changes in brain
pathology in a controlledmanner to gain a better understanding of howAD
manifests in humans8. To counteract the lack of heterogeneity in traditional
inbred AD mouse models, we used the AD-BXD mouse population that
better recapitulates the heterogeneity of genetic, molecular, and cognitive
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features of human aging and AD9. The AD-BXD population was generated
by crossing the 5XFAD AD mouse model on a congenic C57BL/6 J (B6)
background with strains from the BXD panel9. Despite carrying the same
five highly penetrant mutations associated with early-onset AD, the
genetically diverse AD-BXD strains exhibit phenotypes across a continuum
of severity, recapitulating the clinical andpathological variationof late-onset
AD9–12. Since the relationship between symptomatology and changes in the
composition of brain tissue is not fully understood, assessing changes in cell
and pathology organization across a population that models the hetero-
geneity of human ADmay highlight brain regions and cell types associated
with AD-related decline13,14.

In addition to characterizing the impact of AD on cell composition in
mouse models, AD-related changes can be described by deviations in gene
expression among different cell types of the brain. Bulk RNA-sequencing
(RNAseq) is a common method to study gene expression profiles of brain
regions of interest; however, gene expression data generated from tissue
using this method reflects an average gene expression profile across het-
erogeneous cellular populations15. AD induces detrimental changes in brain
composition16; therefore, changes in gene expression in bulk tissue may be
masked or confounded by changes in cell-type composition across varying
disease stages17. In many studies using RNAseq to determine AD disease
signatures, it is unclear whether observed differences in gene expression
amongADsamples or betweenADsamples and controls are due to changes
in transcriptional regulationor the relative proportions of different cell types
in the tissue18. Considering the contribution of cell abundance when asso-
ciating gene expression to disease traits is important for reducing spurious
associations between AD phenotypes and gene expression19–21. Deconvo-
lution methods have been created in an attempt to remedy this issue22;
however, the performance of deconvolution tools is highly variable19,23.

Ultimately, immunohistochemistry (IHC) quantification is the gold
standard for measuring brain composition in mouse models of disease.
When combined with brain-wide analysis methods that utilize reference
atlases of the brain24,25, IHC is a powerful tool that can be used to better
understand changes in brain composition that occur with age and AD and
the relative relationship between cellular load (percent-stain-positive cov-
erage/per region area) and gene expression. The QUINT workflow26, an
open-source analysis solution for brain histology, combines tools for regis-
tering brain section images to a reference brain atlas (DeepSlice27 and
QuickNII28) with tools for extracting (ilastik29) and quantifying IHC-stained
features (Nutil30). A key step in the QUINT workflow is that customized
atlas-planes, derived from a three-dimensional reference atlas, are linearly
registered tobrain section images28; however,withmorphological differences
seen among mouse strains, disease states, and ages31–35, and morphological
distortions occurring during histological processing, linear registration is
often insufficient to achieve accurate anatomical registration. Here, we add
increased functionality to theQUINTworkflow to improve thequality of the
atlas-registrationvianonlinear refinement (VisuAlign); andprovide ameans
to verify the atlas-registration by systematic random sampling (QCAlign).
We use this expanded workflow to characterize the regional composition of
neurons, astrocytes, microglia, and amyloid-beta across the brains of the
AD-BXD mice (including the AD-BXD founders: B6xB6:5XFAD and
B6:5XFADxDBA/2J) at different ages, in regions definedby theAllenMouse
Brain Common Coordinate Framework v3 (CCFv3)36. We provide an
expansive brain-wide characterization of diverse 5XFADmice and (1) assess
changes in cell and amyloid-beta composition between adult and middle-
aged AD-BXD animals, (2) assess variation in cellular abundance among
AD-BXD strains, and (3) interpret bulk RNAseq data with respect to
cellular-abundance todifferentiate effects drivenby agewithADfromeffects
driven by cellular composition in the hippocampal formation.

Results
Additional functionality added to the QUINT workflow supports
high-throughput analysis of diverse AD-BXD strains
The originalQUINTworkflowwas designed to support the quantification
of IHC-stained (or other labeled) features in serial brain sections by linear

registration to a reference brain atlas in combination with feature
extraction by supervised machine learning26. While this method works
well for high-quality serial sections, IHC processing often leads to dis-
tortions, tears, and artifacts that impact the quality of the atlas-
registration. Furthermore, since the reference atlases are based on stan-
dard reference animals (young adult male B6 mice in the case of the
CCFv3)36, sections originating from animals of varying ages and/or
genetically diverse strainsmay also have anatomical differences relative to
the reference template. Recognizing the need to customize linear atlas-
registration and provide a better match of the atlas overlay on individual
sections, an additional tool that supports nonlinear refinement was cre-
ated and incorporated into the workflow (VisuAlign) (Fig. 1a), along with
a quality control tool that utilizes systematic random sampling to validate
the atlas-registration to each region (QCAlign) (Fig. 1a). Here we
demonstrate the effectiveness of the expanded QUINT workflow to
quantify diverse cellular and pathological features in AD-BXD mice
(Fig. 1b) by quantifying all nuclei (thionine), neurons (NeuN), microglia
(Iba1), astrocytes (GFAP) and amyloid-beta (AB1-42) in customized
regions compiled from CCFv3 regions (Fig. 1c, d).

Quality of the atlas-registration performed in the QUINT work-
flow can be confirmed using QCAlign
QCAlign works by positioning a systematic random sampling grid over
brain sections that have been registered to a standard atlas using QuickNII
and VisuAlign (Fig. 2a), allowing raters to assess whether the points have
been registered correctly to their designated atlas region using anatomical
expertise (Fig. 2b). Assigned marker counts (accurate, inaccurate, or
uncertain) are used to calculate regional registration accuracy. Because only
a limited number of landmarks can be revealed by IHCor other staining, the
granularity of the reference atlas can be adjusted in QCAlign to a level that
supports this validation. This provides users a platform for flexible assess-
ment since individual reference regions can be compiled into larger themed
regions (e.g., isocortex), allowing an assessment tailored to each unique
experimental design. For thisQCAlign assessment, the full CCFv3 2015was
condensed into 77 regions of interest (Supplementary Data 1), creating
an intermediate hierarchy of regions that had visually discernable bound-
aries as detected in the thionine-stained sections (displayed for one brain
series in Supplementary Fig. 1). Here QCAlign was implemented by mul-
tiple raters to assess the quality of the atlas-registration achieved using
QuickNII (for linear registration) andVisuAlign (for nonlinear adjustment)
in conjunction.

There was high a consensus among the raters that the intermediate
hierarchy regions assessed after completing nonlinear adjustments with
VisuAlign were registered to the brain sections with high accuracy
(78.7–100% accuracy score) (Fig. 3a, green, Supplementary Fig. 2). Regions
with the greatest accuracy scores were those compiled of many subregions
(e.g., isocortex, 99.7 ± 0.057%) and/or those that had very distinct anato-
mical borders (e.g., caudoputamen, 99.4 ± 0.129%). Due to the selected
sampling rate (15-voxel grid spacing), some smaller regions had zero grid
markers placed within their area, reducing the number of assessments
contributing to the calculation of the mean accuracy scores (e.g., sub-
parafascicular area, n = 9 assessments) (Fig. 3a, green, see Supplementary
Data 2 for the number of assessments measured per region). Regions with
the lowest number of assessments were among the regions with the highest
variation and lowest accuracy scores. Regions with appropriate rater sam-
pling (n > 20 assessments) but lower accuracy scores included the posterior
amygdalar nucleus (89.1% ± 5.37%) and the ventricular systems
(78.7 ± 3.11%). The lower accuracy attributed to the posterior amygdalar
nucleus could be due to its relatively ambiguous border with the posterior
olfactory area and the subiculum. Regions of the ventricular system were
consistently difficult to align in bothQuickNII andVisuAlign since they are
prone to distortion (e.g. lateral ventricle) or are located in medial locations
along the midline where the brain was bisected (e.g. third ventricle),
resulting in low accuracy overall. In summary, we created an additional tool
for quality assessment of the atlas-registration and were able to confirm the
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ability of QUINT to achieve highly accurate registration to the regions
selected for the study.

Nonlinear adjustment increases regional registration accuracy
and impacts cell and amyloid-beta load estimates
VisuAlign provides users with an accessible graphical user interface (GUI)
where they can systematically make nonlinear adjustments to regional
boundaries of the atlas-plates from the Allen Mouse Brain Atlas as set in
QuickNII, to reflect the structural composition of the experimental section
more accurately (Fig. 2a). This process involves identifying mismatches
between the atlas-plate and the underlying experimental section and
manually positioning and dragging anchor points on the atlas-plate to their
correct position on the section. The importance of nonlinear adjustment
following linear registration is demonstrated by comparing the QCAlign
results following each atlas-registration step in the QUINT workflow
(Fig. 2b). Subregions of the hippocampal formation are particularly vul-
nerable and require more extensive nonlinear adjustment due to their

distinct shape, relatively small size, and distinctive cell layers (Fig. 2b inset).
Mean regional accuracy scores of five brains were calculated and compared
following atlas-registration performed using QuickNII alone (rated by 2
individuals) relative to the registration performed using QuickNII followed
by adjustment with VisuAlign (rated by 6-10 individuals). The use of
VisuAlign greatly improved atlas-registration to the brain sections (Fig. 3a,
green vs navy). Regions with the greatest increases in accuracy scores
included thosenotprioritizedwhen initially aligning atlas-plates to the brain
sections in QuickNII, thereby requiring more extensive nonlinear adjust-
ment (e.g., regions comprising the mid- and hindbrain). Regional quanti-
ficationof cellular and amyloid-beta loadwas also impacted by the increased
registration accuracy achieved followingnonlinear adjustment.Regions that
required the most adjustment in VisuAlign also had the greatest difference
in load values when comparing regional cellular and amyloid load output
achieved using QuickNII alone versus registration completed in QuickNII
and refined inVisuAlign (Fig. 3b, SupplementaryData 3). In conclusion, the
capability to perform nonlinear adjustments to QuickNII atlas-registration

Fig. 1 | Study design andQUINT workflow overview. a Regional cell and amyloid-
beta composition were quantified using the expanded QUINT workflow. (1) Raw
images were processed to meet size requirements. (2) Brain sections were registered
to the Allen Mouse Brain Atlas CCFv3 2015 in QuickNII and refined using
VisuAlign. Hemibrain masks were created in QNLMask (3) Ilastik pixel classifica-
tion was used to segment the images for the features-of-interest for each stain and
converted to RGB format in FIJI. (4) Post-registration quality control assessment
was performed using the QCAlign tool. (5) The output of the segmentation,

registration, and mask creation steps were combined using Nutil to determine the
percent stain-positive coverage per region area. b Immunohistochemistry was
completed for an experimental cohort of 40mice from theAD-BXDmousemodel of
AD (see Supplementary Table 1). Adapted fromNeuner et al., 20199,90. Created with
BioRender.com. cRepresentative images of brain sections of 6 mand14 mmicewere
sectioned and stained for thionine, NeuN, GFAP, Iba1, and AB1-42. The red scale
bar on each image represents 1000 µm.dRepresentative images from each step in the
QUINT workflow. B6 C57BL/6J, Ntg Nontransgenic.
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in VisuAlign is crucial because it improves regional registration accuracy
leading to more reliable cell and amyloid-beta load estimates.

AD-BXDmice exhibit widespread increases in glial and amyloid-
beta accumulation from 6m to 14m
We compared differences in cell composition and amyloid-beta load
between 5XFAD carriers of 6 m and 14m to detect regional changes that
occurwith age andAD (Fig. 4, SupplementaryData 4, all p-values are FDR
corrected). Overall, we observed only minor changes in NeuN load
between 6 m and 14m animals (Fig. 4a, i). The only regions that exhibited
significant age-related (p-value < 0.05) decreases in NeuN load were the
Ammon’s horn (p-value = 0.0472) anddentate gyrus, polymorph layer (p-
value = 0.00299). Slight, but significant (p-value < 0.05) age-related
increases in NeuN load were observed in the posterior amygdalar
nucleus (p-value = 0.0327) and striatum-like amygdalar nuclei (p-
value = 0.0258). Increased glial proliferation and reactivity are also hall-
mark symptoms of AD progression with age. With this dataset, we con-
firmed that regional astrocyte (Fig. 4a, ii) and microglial cell load
(Fig. 4a, iii) increased from 6m to 14m in AD-BXD animals. The cau-
doputamen exhibited the most significant increase in GFAP load
(p = 2.91E−10). The midbrain (motor-related) regions (p-value = 1.26E
−08) and olfactory tubercle (p-value = 1.55E−08) exhibited the greatest

microglial load increase from 6 to 14m. Aligned with previous reports in
5XFADanimals37, amyloid-beta depositionwasmost prevalent within the
subiculum at the 6 m time point (3.41 ± 0.227%, Fig. 4a, iv). In addition to
the subiculum, amygdalar regionswere highly susceptible to amyloid-beta
deposition by adulthood (6 m). As an aggressive amyloidosis AD model,
the AD-BXD animals exhibited a near-global increase in amyloid-beta
deposition between 6m and 14m. Increased amyloid-beta deposition was
strongly detected within the hippocampus and hippocampal-projected
regions, including the cortex, thalamus, and amygdalar regions as pre-
viously noted (Fig. 4a, iv)38.

Individual AD-BXD strains exhibit variation in region
neuronal load
While there were minimal significant regional differences in NeuN load
between the age groups (only 2 regions exhibited a significant decrease in
NeuN load (Fig. 4a, i)), we observed age-related strain-specific variation in
NeuN load in hippocampal subregions (Fig. 4b, Supplementary Fig. 3).
AD-BXD strains ranged from neurodegeneration to neuronal main-
tenance between 6m and 14m, modeling the heterogeneity observed in
human AD39. No strain effect was detected in stain load among the 43
intermediate atlas regions quantified (uncorrected and FDR p-value >
0.05, 2-way ANOVA), but since sample sizes per strain were relatively

Fig. 2 | VisuAlign andQCAlignwere used to refine
and verify the regional atlas-registration achieved
in the QUINT workflow. a VisuAlign GUI dis-
playing one thionine section with nonlinear refine-
ments applied to achieve an improved match of the
atlas delineations over the section. CCFv3 regional
borders are overlaid on the section with the position
of the bordersmanipulated using anchor points. The
lines indicate the start position of the points prior to
nonlinear refinement, with the black markers
denoting their final position after nonlinear refine-
ment. (i). Inset displaying the atlas-registration
achieved by linear registration using QuickNII. The
dentate gyrus cell layers are incorrectly positioned
over the section. (ii). Inset displaying the atlas-
registration achieved using QuickNII and VisuA-
lign. The positioning of the dentate gyrus cell layers
has been adjusted to match the cell layers in the
section. b QCAlign GUI displaying one thionine
section with a grid of systematic random sampling
points overlaid. Grid points are marked up as
registered accurately (+) or inaccurately (−) based
on the region name, which is displayed in theGUI by
hovering over a point (region name shown for point
indicated with the arrow). (iii). Inset displaying the
quality of the atlas-registration achieved by linear
registration with QuickNII only (87% accurate for
the inset) (iii). Inset displaying the quality of the
atlas-registration achieved by registration with
QuickNII and VisuAlign (with nonlinear refine-
ment) (100% accurate for inset iv.).
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after QuickNII registration alone (navy triangles) or after QuickNII and VisuAlign
registration (green circles). Two raters scored the same 5 randomly selected brains
after QuickNII registration alone, max n = 10 assessments per region (Raters: n = 2
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and VisuAlign registration, max n = 36 assessments per region (Raters: n = 6–10 per
brain, see Supplementary Data 2 for the exact number of assessments measured per
region). Dark shapes represent the mean score across raters per region for 5 brains
+/− SEM, with the opaque shapes representing the individual assessments

contributing to each mean calculation. b The impact of VisuAlign refinement on
regional stain load (%-stain-positive coverage/per region area) was measured by
calculating the difference in load following Nutil quantification after each method
(regional (QuickNII + VisuAlign output (%)) – regional (QuickNII output
(%)) = regional load difference (%)). Boxplots of individual regional differences in
load values are represented for all 5XFADanimals at 6 m and 14 m (6 m: n = 17mice,
14 m: n = 20 mice). Dots represent mean regional load difference +/− SEM for all
5XFAD animals at 6 m and 14 m (6 m: n = 17 mice, 14 m: n = 20 mice). DG dentate
gyrus, Nuc nucleus, Thal thalamus.
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small in this analysis, a potential strain effect cannot be excluded, and will
be evaluated in future analyses. Understanding that genetics strongly
contribute to variation in symptomonset and susceptibility to AD in both
humans40,41 and AD-BXD mice9,42,43, here we have highlighted the trans-
latable potential to investigate the influence of genetic background on the
presentation of neurodegeneration in animals carrying the 5XFAD
transgene.

Integration of paired IHC and bulk RNA sequencing data reveals
cell load is a confounding factor in age-by-gene expression
correlations among AD-BXDs
Due to the inherent properties of bulk RNAseq, which measures tissue-
averaged gene expression, the influence of cell composition is
often overlooked in the interpretation of gene expression data and
may conflate expression differences driven by other experimental factors
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such as age and pathology accumulation17,19,44,45. Using the output
from our QUINT analysis, we integrated hippocampal formation cell
(NeuN, GFAP, Iba1) and pathology (AB1-42) load output with gene
expression data measured via bulk RNAseq obtained from the con-
tralateral hippocampal formation of the same 5XFAD mice at two ages
(previously published9,10,12).

Hippocampal load per stain type was correlated with normalized read
counts to identify age-dependent relationships between load and gene
expression. The percentage of the 15,703 genes analyzed in the RNAseq
dataset whose expression was significantly correlated (uncorrected
p-value < 0.05) with load varied by stain type (NeuN: 16.35%, GFAP:
36.76%, Iba1: 34.78%, AB1-42: 31.86%) (Fig. 5a). Notably, stains that had
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Fig. 5 | Stain-specific load correlations with RNAseq gene expression to identify
genes impacted by changes in load within the hippocampal formation. a Gene
expression by load Pearson R correlation coefficients and p-value relationships
without age adjustment for each stain. Significantly correlated genes (uncorrected p-
value < 0.05) are colored in each plot. The percentage of uncorrected significant
genes is indicated within the plot. The top five positive and negative FDR significant
(FDR p-value < 0.05) correlated genes are labeled. b Gene expression by load
Pearson R correlation coefficients and p-value relationships after age adjustment for
each stain. Significantly correlated genes (uncorrected p-value < 0.05) are colored
according to stain. The percentage of uncorrected significant genes is indicated
within the plot. The top five positive and negative FDR significant (FDR p-value <
0.05) correlated genes are labeled. c Comparison of Pearson R correlation coeffi-
cients without and with age adjustment per stain. Gene correlations that were
exclusively significant (uncorrected-p-value < 0.05) without age adjustment are
considered age-dependent (orange). Gene correlations that were exclusively sig-
nificant (uncorrected-p-value < 0.05) with age adjustment are considered age-
independent (blue). The specific influence of age and load cannot be disseminated in

gene correlations that were significant (uncorrected-p-value < 0.05) under both
correlation conditions (green). All nonsignificant (uncorrected-p-value < 0.05)
genes are labeled in gray. The percentage of significant genes per category is
represented in the bottom right corner. The top 3 most significant genes per cor-
relation method category are labeled per stain plot (FDR p-value < 0.05).
d Individual relationship between gene expression and load with age for the top age-
dependent and independently correlated genes with Iba1. i. Galnt6 was exclusively
significantly correlated with Iba1 without age adjustment. An increase in Iba1 load
and Galnt6 expression occurs between 6 m and 14 m. A positive relationship
between Iba1 load and Galnt6 expression exists across both age groups as well as
within each age group. ii.Tmem39awas exclusively significantly correlatedwith Iba1
after age adjustment. An increase in Iba1 load but not inTmem39a expression occurs
between 6 m and 14 m. A weak relationship between Iba1 load and Tmem39a
expression exists across both age groups, but separate age-specific correlations with
load and gene expression exist. 5XFAD mice only, 6 m: n = 17 mice, 14 m:
n = 20 mice.
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the most significant gene correlates had the greatest age-related changes in
load. Since our population is comprised of two ages and agewas the primary
driver of variation in load (Fig. 4), we next sought to identify genes that are
related to load in an age-independentmanner.We tested the role of age as a
mediator of the relationship between stain load and gene expression using a
multilevel correlation approach adjusting for the effect of age. Like the
outcomesof the age-dependent correlationabove (Fig. 5a), thepercentageof
genes significantly correlatedwith load after age adjustment (uncorrected p-
value < 0.05) also varied by stain type (NeuN: 12.56%, GFAP: 23.53%, Iba1:
18.30%, AB1-42: 12.34%, Fig. 5b). The number of gene correlates (uncor-
rected p-value < 0.05) was reduced following age adjustment across all
stains, with AB1-42 exhibiting the greatest reduction of significantly cor-
related genes (19.52% reduction, Fig. 5a, b). Next, we sought to identify
genes that were exclusively significantly correlatedwith load either before or
after age adjustment. By comparing both analyses (age-unadjusted, Fig. 5a
and age-adjusted, Fig. 5b), we classified genes into (1) exclusively associated
with variation in load in an age-dependent manner (non-age-adjusted
output (orange in Fig. 5c)), (2) exclusively associated with load irrespective
of age (age-adjusted output (blue in Fig. 5c)), or 3) associatedwith both load
and age (non-age-adjusted and age-adjusted output (green in Fig. 5c))
(Supplementary Data 5). The majority of the significant correlations
between gene expression and load were driven by age as indicated by the
greater abundance of non-adjusted significant genes per stain (Fig. 5c). This
age-driven relationship is illustrated by the correlation between Iba1 load
and polypeptide N-acetylgalactosaminyltransferase 6 (Galnt6) expression,
which was identified to be a top gene positively associated with variation in
Iba1 load in an age-dependentmanner (Fig. 5d, i).Galnt6 has been found to
have increasedmRNAexpression in thebrains ofADpatients andbe related
to amyloid-betaproduction46,47.Here,Galnt6 exhibited increased expression
with age that parallels the increase in Iba1 load observed from 6m to 14m
(Fig. 5d, i, ii). On the contrary, only 0.78%-5.86% of the gene correlates per
stain were exclusively significant only after age adjustment, indicating that
these genes are likely associated with load in an age-independent manner
(Fig. 5c). These significant age-independent genes exhibited a pattern of
increased cell (GFAP and Iba1) and pathology (AB1-42) load but no dif-
ference in gene expression between 6m and 14m. This pattern is exem-
plified by the relationship between gene expression and load with age for
transmembrane protein 39 A (Tmem39a), a topmost correlated gene with
Iba1 load after age adjustment (Fig. 5d, ii).Tmem39a is a known contributor
to pathways implicated in AD, including inflammation, dysregulated type I
interferon responses, and other immune processes48. Tmem39a exhibited
specific within-age-group associations between load and gene expression
(Fig. 5d, ii). Tmem39a and other genes with significance following age
adjustment may be driven by load differences between groups independent
of the effect of age on load. We found that the relationship between gene
expression and GFAP, Iba1, and AB1-42 load is consistent among the
topmost significant correlated genes following FDR correction for each
adjustment method (not age-adjusted or age-adjusted). Genes exclusively
significant prior to age adjustment exhibit an age-related increase in gene
expression that mirrors the age-related increase in hippocampal formation
AB1-42, GFAP, and Iba1 load. Similarly, when evaluating the most sig-
nificantly correlated genes with GFAP, AB1-42, or Iba1 load exclusively
after age adjustment, we saw a consistent pattern of increased regional stain
load with age without age-related increases in gene expression.

In conclusion, our analysis demonstrates that variations in cell and
amyloid-beta load can significantly affect the interpretation of age-by-gene
expression correlations. This highlights the importance of considering cell
composition as a potentially confounding factor, particularly in studies
involving age-related diseases like AD. By separating age-dependent and
age-independent gene correlates, we could better distinguish between genes
whose expression changes directly with age and AD pathogenesis versus
those whose expression changes are driven by age-related alterations in cell
populations. This distinction helps inform whether candidate gene
expression (e.g., overexpress or knockdown gene expression) or cell/amy-
loid-beta composition (e.g., target the maintenance of a cell type’s load)

should be targeted. This analysis also provides valuable insights into the
complex interplay between aging, cell composition, and gene expres-
sion in AD.

Mediation of age reveals differential overrepresentation of
Reactome pathways
Next, using the correlation coefficients in Fig. 5a and b, gene set enrichment
analysis (GSEA)49 was performed via WebGestalt50,51 to extract biological
insights from genes of interest and ultimately identify pathways biased by
individual differences in cell and amyloid-beta load (Fig. 6). The gene
Ensembl IDs and associated correlation coefficients calculated via the age-
dependent or age-independentmultilevel correlations discussed abovewere
input intoWebGestalt. The output normalized enrichment scores adjusted
for multiple test corrections (FDR) were evaluated to determine whether
gene sets for biological pathways are enriched among the positive and/or
negative multilevel correlations. As expected, immune pathways were
highlypositively enriched forGFAP, Iba1, andAB1-42 correlations.Wealso
observed a negative relationship between the enrichment of neuronal
pathways and GFAP, Iba1, and AB1-42, highlighting the potentially detri-
mental impact these cell types have on neuronal functioning in the context
of AD. Fewer significantly enriched pathways were associated with NeuN
load (age-adjusted and non-age-adjusted), consistent with the subtle
changes in load between 6m and 14m 5XFADs. The most highly enriched
pathways for each stain and correlationmethodwere involved in chromatin
organization, extracellular matrix organization, immune system, metabo-
lism of RNA, and the neuronal system. In comparing enriched pathways for
age-adjusted and non-age-adjusted correlations per stain, the greatest dif-
ference in enriched pathways was observedwithin the cell cycle category for
Iba1, GFAP, and AB1-42 stain types. Enrichment of these pathways is
consistentwith the proliferation of these cell types and amyloid-beta and the
potential increase in immunoreactive cell cycle proteinswith age52. A total of
42 cell cycle pathways were represented across these stain types after age
adjustment, while only 2were present prior to adjustment.Moreover,many
negatively enriched pathways including those in the gene expression
(transcription) and metabolism of RNA parent pathways were observed
almost exclusively within the non-age-adjusted category for GFAP, Iba1,
and AB1-42. This pattern of enrichment suggests a more pronounced
involvement of these pathways withAD-related deteriorationwith age than
necessarily with increased glial and amyloid-beta composition53,54. Ulti-
mately, by using these methods we have begun to disseminate the effects of
cell and amyloid-beta composition in the hippocampal formation and their
implication in biologically relevant pathways.

Discussion
Here, we report brain-wide IHCoutput from 37mice of theAD-BXDpanel
obtained using the QUINT workflow. The increased functionality in the
QUINT workflow enhanced the atlas-registration and enabled quality
control assessments, increasing the quality of regional quantification. We
quantified age-related differences and characterized the influence of genetic
diversity among AD-BXD strains on NeuN, GFAP, Iba1, and AB1-42 load
across a validated list of subregions from the CCFv3 2015. Lastly, the
importance of accounting for variation in tissue cell and amyloid-beta
composition was emphasized by integrating hippocampal load output with
RNAseq data.

Overall, we demonstrate the capacity of the QUINT workflow to
effectively detect subtle differences in regional loads accurately across the
whole brain,which is paramount in the context of high-throughput imaging
studies that incorporate genetic diversity models of disease. VisuAlign
provides the capability to make nonlinear adjustments to the linear atlas-
registration achieved using QuickNII, thus correcting for distortions in the
sections introduced during IHC section preparation as well as for structural
differencesamong regions indiverse diseasemodels andage groups31–35. The
importance of applying nonlinear refinements was demonstrated by
quantifying the regional differences in accuracy scores and stain load
achieved with QUINT using QuickNII only, relative to registration using
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QuickNII and VisuAlign. TheQCAlign tool enabled validation of the atlas-
registration to the regions selected for the study, which was important since
changes driven by genetic differences across strains were predicted to be
subtle and region-specific. The high accuracy and low variability of reported
QCAlign scores amongst raters and brains assessed heightened our con-
fidence that the present cohort of brains was registered to a high standard.
Another key functionality of QCAlign is its ability to produce customized
hierarchies via parsing through and selecting reference regions to compile
into related summary regions. This is an approach also used in other studies
to compensate for the difficulty in registering regions that lack anatomical
boundaries55–57. Defining a standardized regional hierarchy also promotes
the labeling of consistent regions of interest among laboratories.

The QUINT workflow has numerous advantages over alternative
methods. It promotes comprehensive regional analysis as defined by a
standardized reference atlas, facilitating comparison, integration, and
reproducibility of results across studies in compliance with the FAIR guiding
principles24,25. While traditional IHC methods that rely on the manual deli-
neation of regions and counting via stereology are more commonly used in

the field, they are inefficient for brain-wide exploration in studies with large
numbers of animals58–61. As demonstrated here, the QUINT workflow sup-
ports large-scale comparative studies62 and has the capacity to characterize
transgenic models of diseases of varying strains, ages, and genotypes. The
ability to share the intermediate results of the workflow provides transpar-
ency, which is important since atlas-registration and feature extraction are
inherently subjective processes guided by user-based expertise. This sub-
jective nature of the registrations is counteracted with the addition of
QCAlignwhich provides ameans to evaluate the atlas-registration. Themain
downside of QUINT is that it can be labor intensive, especially for damaged
and distorted sections as nonlinear adjustmentsmust be appliedmanually to
matchdeviations fromthe atlas-plates established inQuickNII.Although this
is time-consuming, we demonstrate that it is important since it considerably
improves the quality of atlas-registration, as well as the quality of regional
results. Efforts to further automate the atlas-registration step are underway
using deep neural networks (DeepSlice)27.

TheQUINTworkflow is a powerful approach for the high-throughput
exploration that is needed to unravel the complexity of AD. Using this

Fig. 6 | Gene Set Enrichment Analysis (GSEA) of
gene correlations per method categorized by
Reactome parent pathway. Pearson R correlation
coefficients from Fig. 5a and b were input into
WebGestalt GSEA to obtain significantly enriched
pathways associated with each stain and correlation
method (normalized enrichment, non-age-adjusted
and age-adjusted). The top three most significant
pathways per stain andmethods are labeled (FDR p-
value < 0.05) (right).
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approach,we validated the severity of neuroinflammation andamyloid-beta
accumulation in the brains of aging 5XFADanimals37,63–65 and expanded the
scope of regions investigated in this diverse AD population66. Near global
increases in AB1-42, GFAP, and Iba1 were reported as the AD-BXD mice
aged from 6m to 14m37,65. We also demonstrate that regions that exhibited
neurodegeneration, like the Ammon’s horn, were among those that
exhibited the greatest increase in amyloid-beta and neuroinflammation. In
contrast to the initial qualitative37 and later quantitative63–65 studies that
identified neuron loss in cortical layer V and subiculum starting at 6m in
5XFADs compared to controls, our study, due to the nature of the dataset,
could only detect age-related neurodegeneration in 5XFADs. While these
studies did not measure neurodegeneration in the hippocampus overall,
more recent studies quantified a decrease in NeuN protein in the hippo-
campus by 8 m67, 10 m68, and 12 m66 in 5XFAD mice compared to non-
transgenic animals (Ntgs). The differences in age, sex, and genetic
background as well as analytical differences amongst studies (e.g. regions
compared) may explain the discrepancy in the detection of neurodegen-
eration in these studies and ours. Since we studied the effects of the 5XFAD
transgene using the diverse AD-BXDpanel, we were uniquely positioned to
detect variation in NeuN load among AD-BXD strains. We demonstrate a
trend that certain AD-BXD strains exhibit a decrease in NeuN load from
6m to 14mwhile other strains do not.We believe that this NeuN variation
is not due to varying APP expression levels as we have previouslymeasured
transgene expression via quantification of human APP expression and
endogenous mouse APP levels and found no significant differences among
the panel of strains evaluated9. Instead, we hypothesize that genetic differ-
ences amongst the AD-BXD strains may influence how each strain copes
with the effects of the 5XFAD transgene and aging2,9,10,43. Ultimately, AD-
BXD strains can be classified into general AD subtypes69 or stratified as
resilient or susceptible to AD pathology11: with resilient strains potentially
mitigating neuron loss in response to neuroinflammation and pathology
accumulation or staving off severe pathology accumulation altogether.
Moreover, the AD-BXD panel has proven to be a robust population for
genetic mapping of behavioral traits9–12,70,71, and ongoing experiments per-
forming quantitative trait loci mapping aim to elucidate genetic factors
responsible for variation in heritable regional cell and amyloid-beta load72,73.

Further, we demonstrate how QUINT results can be integrated with
other data types, including omics data. RNAseq is a common method of
profiling gene expression changes between different disease stages.
However, results from bulk tissue samples reflect aggregate gene expres-
sion across heterogeneous populations of cells15, meaning that expression
differences may reflect cell-composition differences across tissue samples
and/or true transcriptional differences across groups. Determining whe-
ther gene hits from bulk RNAseq data are driven by changes in tran-
scriptional regulation or relative proportions of cell types in the samples is
crucial to establishing and properly validating gene candidates of resi-
lience or susceptibility to AD11,18,74. Recent AD case/control snRNAseq
datasets offer the opportunity to better resolve such cellular differences75,
but have restrictive technical and cost constraints that can limit the size of
such datasets in terms of cells collected and individuals sampled76. These
limitations as well as the variable performance of deconvolution methods
can make it difficult to establish cell-type specific differences in gene
expression among heterogenous AD populations. While traditional
methods for determining cell-type composition, such as IHC or flow
cytometry, rely on a limited set of molecular markers and lack scalability
relative to the current rate of data generation, the use of the QUINT
workflow can expedite this process.

To combat these limitationsofRNAseq,we integrated cell composition
and RNAseq gene expression data using mixed modeling correlations. We
were able to identify candidate genes associated with cell composition,
dependent and independent of the effect of age on AD, thereby creating a
guideline for subsequent analyses to distinguish whether gene expression or
overall cell or amyloid-beta composition should be targeted. The resulting
proportion of genes correlated with load stresses the importance of con-
sidering cell composition when analyzing RNAseq data.We also unmasked

a unique subset of genes that exhibited no age-related changes in gene
expression yet were correlated with variation in load within the age groups
examined. Many of the genes that were exclusively significantly correlated
with hippocampal formation load following age adjustment were enriched
for cell cycle and immune system pathways. This study serves as proof of
concept that IHCdata, quantified by theQUINTworkflow, can be used as a
proxy for cell-type composition in the analysis of RNAseq data, and
demonstrates that changes in gene expressionmay be relative to variation in
cell composition with age and AD. Due to the nature of this dataset, our
analysis was a partial mediation that begins to disentangle the effect of load,
gene expression, and age with AD. Further unraveling this relationship, as
well as the impact of diverse genetic backgrounds on the effects of the
5XFAD transgene and the identification of potential resiliencemechanisms
will require additional analyses includingnontransgenic animals,males, and
increased biological replicates.

A limitation of our study is the lack of consideration of tau pathology.
Initially, the 5XFAD transgene was not thought to induce tau tangle
pathology as no human tau transgene is expressed in this mouse line37;
therefore, the 5XFAD model was prominently used as a model to inves-
tigate amyloid-associated neurodegeneration and neuron loss64. More
recent investigations have reported the presence of varying pathogenic
phospho-tau proteins at different tau residue sites in the brains of 5XFAD
animals67,77–81. We have verified that AD-BXD animals exhibit strong
amyloid and neuroinflammatory responses with age and AD, display a
high level of concordancewith both familial and sporadic forms of human
AD at themolecular and behavioral level9, and that female AD-BXDmice
exhibit high translational alignment and conserved cell-type-specific
signatures of resilience to AD with human AD cohorts11, but technical
limitations have impeded our ability to explore the presence of tau epi-
topes across the AD-BXD panel. These consistent findings characterizing
tau in 5XFAD brains warrant the future investigation of phosphorylated
tau in AD-BXD strains. Like the variation in NeuN we described here, we
predict that strain-specific variation in tau may also be present in
this panel.

Our study demonstrates that the QUINT workflow, with the addition
of VisuAlign and QCAlign, proved to be a highly effective method for
registering and quantifying cell and amyloid-beta deposition changes.
Achieving high confidence regional output of AD-relevant cell types and
amyloid-beta facilitated the exploration of genotype, age, and cell compo-
sition relationships. We provide the most detailed regional IHC char-
acterizationof 5XFADmiceknown todate revealing age-related increases in
amyloid-beta and glia as well as strain-specific variation in NeuN load. In
response to characterizing the effects of age and genetic diversity in AD on
cell composition and gene expression, we suggest that bulk-RNAseq data
needs to be integratedwith corresponding cell load values to generate robust
and reproducible results that can be used to prioritize gene hits for future
exploration.Using thismethod,wewere able to reveal the enrichment of cell
cycle and immune pathways in association with astrocytes, microglia, and
beta-amyloid in an age-independentmanner as the disease progressed from
6m to 14m. By achieving cell and amyloid-beta quantification in our AD-
BXD population, we provide a framework for investigators to characterize
diverse diseasemodels and integrate their datawith a range of behavior and/
or omics data.

Methods
Bioethics
All mouse experiments occurred at the University of Tennessee Health
Science Center andwere carried out in accordancewith the principles of the
Basel Declaration and standards of the Association for the Assessment and
Accreditation of Laboratory Animal Care (AAALAC), and the recom-
mendations of the National Institutes of Health Guide for the Care andUse
of Laboratory Animals. The protocol was approved by the Institutional
Animal Care and Use Committee (IACUC) at the University of Tennessee
Health Science Center. We have complied with all relevant ethical regula-
tions for animal use.
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Animals
All data used in this study are from theAD-BXDpanel including the founder
strains9 (Fig. 1b). This panel consists of female B6 mice hemizygous for the
5XFAD transgene (B6.Cg-Tg (APPSweF1LonPSEN1*M146L*L286V)
6799Vas/Mmjax, Stock No. #24848-JAX) mated to males from the BXD
genetic reference panel to produce isogenic F1 AD-BXD strains carrying the
5XFAD transgene and their nontransgenic (Ntg)-BXD littermate “normal
aging” controls.Male and femaleAD-BXDmicewere group-housed as amix
of 5XFAD and Ntg same-sex littermates (2-5 per cage) and maintained on a
12-hour light-dark cycle with ad libitum access to food and water. All mice
were genotyped for the 5XFADtransgene througha combinationof in-house
genotyping by The Jackson Laboratory Transgenic Genotyping Services
(strain #34848-JAX)or byTransnetyx (TN,USA). This study included a total
of 40 mice (2 males and 38 females) at 6 months (6m; n= 20 mice) or
14 months (m) (14m; n = 20 mice). These included 29 mice from 14 AD-
BXD strains (n= 1–3 mice per strain per age group); 8 mice from founder
strains C57BI/6 J (B6)x B6:5XFAD (n = 2mice), and F1 B6:5XFADxDBA/2J
(B6/D2) 5XFAD(n= 6mice); and 3Ntg-BXDmice (all 6m).An overviewof
all the animals in the study is given in Supplementary Table 1.

Tissue Collection and Shipment
Mice were deeply anesthetized using isoflurane before decapitation and
rapid removal of the brain at 6m or 14m. The hypothalamus was dissected
out and the brain was bisected down the sagittal midline. One half of the
brain was immediately further dissected and snap-frozen to be used for
RNAseq. The other hemisphere was placed in 4% paraformaldehyde and
kept at 4oC to be used for IHC9,10,12. Tominimize technical variation in IHC,
hemibrains were sent overnight to Neuroscience Associates (NSA)
(Knoxville, TN), where the cerebellum was removed and hemibrains were
embedded, processed, and stained simultaneously in blocks of 40
hemibrains.

Neurohistology embedding and sectioning
Hemibrains received at NSA were treated overnight with 20% glycerol and
2% dimethylsulfoxide to prevent freeze artifacts. The specimens were
embedded in a gelatin matrix using MultiBrain®/ MultiCord® Technology
(NSA, Knoxville, TN). The blocks were rapidly frozen after curing by
immersion in 2-Methylbutane chilledwith crushed dry ice andmounted on
a freezing stage of an AO 860 sliding microtome. The MultiBrain®/ Mul-
tiCord® blocks were sectioned coronally at 40 µm. All sections were cut
through the entire length of the specimen and collected sequentially into a
series of 24 containers. All containers contained Antigen Preserve solution
(50% PBS pH7.0, 50% Ethylene Glycol, 1% Polyvinyl Pyrrolidone); no
sections were discarded.

IHC staining
Free-floating sections were stained for AB1-42 (amyloid-beta), glial fibril-
lary acidic protein (GFAP, astrocytes), and ionized calcium-binding adapter
protein 1 (Iba1, microglia) on every 24th section spaced at 960μm, yielding
approximately 9 sections per hemibrain. Staining for NeuN (neurons) and
thionine (Nissl, cell bodies) was performed on every 12th section spaced at
480μm, yielding approximately 19 sections per hemibrain. For AB1-42,
GFAP, Iba1, and NeuN, all incubation solutions from the blocking serum
onward used Tris-buffered saline (TBS) with TritonX-100 as the vehicle; all
rinses were with TBS. After a hydrogen peroxide treatment and blocking
serum, sections were immunostained with primary antibodies listed in
Supplementary Table 2 overnight at room temperature. Vehicle solutions
contained Triton X-100 for permeabilization. Following rinses, sections
were incubated with biotinylated secondary antibody, followed by ABC
solution (avidin-biotin-HRP complex; VECTASTAIN® Elite ABC, Vector,
Burlingame, CA). The sections were rinsed and then treated with diami-
nobenzidine tetrahydrochloride (DAB) and hydrogen peroxide to create a
visible reactionproduct. Following further rinses, sectionsweremounted on
gelatin-coated glass slides and air-dried. The slides were dehydrated in
alcohol, cleared in xylene, and cover-slipped. For thionine-Nissl staining

sections were mounted on gelatin-coated glass slides, air dried, and carried
through the following sequence: 95% ethanol, 95% ethanol/Formaldehyde;
95% ethanol, Chloroform/Ether/absolute ethanol (8:1:1), 95% ethanol; 10%
HCl/ethanol, 95% ethanol, 70% ethanol, deionized water, thionine (0.05%
thionine/acetate buffer, pH 4.5) (Fisher, T40925), deionized water, 70%
ethanol, 95% ethanol, Acetic Acid/ethanol, 95% ethanol, 100% ethanol,
100% ethanol, 1:1 100% ethanol/xylene, xylene (x2), coverslip.

Imaging
NSA performed scanning of each slide at 20x using a Huron Digital
Pathology TissueScope LE120 (0.4 μm/pixel). Brain image series were
compiled by reconstructing the IHC sections as sectioned and indi-
cated by NSA.

Further information and requests for resources and reagents should be
directed to the Corresponding author.

QUINT workflow development
The QUINTworkflow enables brain-wide quantification of histological data
relative to a reference atlas such as theCCFv336. In theworkflow (Fig. 1a), the
QuickNII software28 is used to spatially register atlas-plates from a 3D digital
atlas to serial section images, ilastik29 is used to extract features from the
images (by segmentation), and Nutil30 is used to quantify features per atlas-
region. To meet the needs of the current project, two additional tools,
VisuAlign (RRID: SCR_017978) and QCAlign (RRID: SCR_023088) were
developed and integrated into the workflow. VisuAlign is used to apply in-
plane nonlinear adjustments to the atlas-plates established in QuickNII to
achieve the best fit over the sections. Nonlinear adjustments are made by
identifyingmismatches between the atlas-plate and the underlying section in
the VisuAlign GUI, manually positioning anchor points on the atlas-plate,
and dragging the points to their correct position on the section. VisuAlign
then uses these anchor points to create a continuous, nonlinear deformation
field covering the entire section image. QCAlign is used to 1) detect sections
or regions not suited for QUINT analysis (i.e., due to damage), 2) assess the
quality of the atlas-registration to the sections, and 3) explore atlas-hierarchy
levels. All QCAlign assessments are performed by systematic random sam-
pling. The second assessment is based on anatomical expertise by evaluating
how well delineations supplied by the atlas match up with boundaries
revealed by labeling. Since validation of the atlas-registration is only possible
for regions that have boundaries visible in the sections, and reference atlases
are structured in systematic hierarchies that group related regions36, func-
tionality is implemented for adjusting the hierarchy to a customized level that
supports this validation (i.e. a levelwhere the atlas delineations approximately
match the boundaries that are visible in the sections).

Image pre-processing
To prepare the images for segmentation with ilastik, they were inspected,
cropped, and downscaled using different scaling factors for the different
stains (AB1-42: 0.20, GFAP: 0.40, Iba1: 0.40, NeuN: 0.40, thionine: 0.35).
Scaling factors were determined by gradually increasing the scaling factor
and manually determining the level at which the images were maximally
reduced without visually losing information and inducing blur. For the
atlas-registration, images were downsampled to fulfill the image size
requirements of QuickNII (scaling factor: 0.50) (detailed online under
“Imaging preprocessing requirements”)82.

Image Registration to the CCFv3 with QuickNII and VisuAlign
For each brain, QuickNII (RRID: SCR_016854, QuickNII-ABAMouse-v3-
2015 version 2.2) was used to perform linear registration of serial section
images (combined irrespective of stain) to the CCFv3 2015, followed by
nonlinear refinementwithVisuAlign (RRID: SCR_017978, version0.8). For
each image series, the thionine-stained sections were registered first since
they provided the greatest visualization of region boundaries. Subsequently,
all remaining sections were registered serially. Thionine staining was
included topromote accurate atlas-registrationand regiondetectionbutwas
not included in downstream analyses in this study. Two independent raters
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verified the registration performed with QuickNII and the refinements
made with VisuAlign.

Cell Segmentation with ilastik
The ilastik software (RRID: SCR_015246) enables feature extraction by
segmentation using supervised machine learning. For each stain, ten
training images were loaded into the Pixel Classification workflow (v.1.3.3),
two classes were created (“label” and “background”), and annotations of
each class were applied in all the training images until the segmentationwas
deemed satisfactory and confirmed by two independent raters. The trained
classifiers were applied to all the images of that stain using ilastik’s batch-
processing function. Segmentations were exported and colorized using the
Glasbey Lookup Table in FIJI ()83.

Evaluation of section image quality with QCAlign
QCAlign (RRID: SCR_023088, version 0.7) was used to assess brain section
integrity for each image series (all 40 brains were assessed) using a 5-voxel
grid spacing. This involved marking up points that overlapped areas of
damage (tissue tears, folds, artifacts, and errors in image acquisition) for all
sections. Marker counts were exported and used to calculate the percentage
of damage per section by dividing the number of damage markers by the
total number of markers overlapping the section (damage = # damage
markers per section / # of total markers per section). Section images with
more than 30% damage were deemed unsuited for QUINT analysis (Sup-
plementary Table 3). Nutil results per brain were re-calculated in R-Studio
following the removal of results from the damaged sections.

Creation of a customized atlas-hierarchy with QCAlign
Brain reference atlases such as the CCFv3 are organized in systematic
hierarchies that group related regions36. A customized hierarchy level was
created withQCAlign to use for quality assessment of the atlas-registration,
and to define regions to be quantifiedwithNutil (hereafter referred to as the
“intermediate hierarchy”). To create this intermediate hierarchy, the atlas
delineations supplied by VisuAlign were overlaid on the thionine-stained
sections at the finest level of atlas-granularity (full expansion of the CCFv3).
A grid of points with a 15-voxel grid spacingwas applied to the images, with
the registration accuracy of each point marked up based on anatomical
expertise (“accurate”, “inaccurate”or “uncertain”). If a region receivedmany
“uncertain”markers due to obscure region boundaries, the hierarchy level
was adjustedone level up; theprocesswas repeateduntil thepositionofmost
of the markers could be verified (either “accurate” or “inaccurate”). The
customized hierarchy was exported and used in the Nutil software to define
the regions for quantification (Supplementary Data 1).

Quality control assessment of atlas-registration to the section
images using QCAlign
To determine the quality of the atlas-registration to each region in the
intermediate hierarchy, ten raters (researchers in neuroscience and neu-
roanatomy) across two institutions were recruited to perform quality
assessment using the QCAlign software. Assessments were performed on
the atlas-registrationachievedusingQuickNII only (2 raters) andusingboth
QuickNII andVisuAlign (10 raters). All assessmentswere performedon the
thionine-stained sections from five brains (selected at random) at the
established intermediate hierarchy level. To perform the assessment, mar-
kers with a 15-voxel grid spacing were overlaid on the sections and the
position of each marker was assigned as either “accurate”, “inaccurate” or
“uncertain” using anatomical expertise. This was determined by inspecting
the position of the marker with respect to landmarks, in comparison to the
name of the region which was revealed by hovering over each marker
(the atlas delineations were not visible during the assessment).

The QCAlign results were exported with marker counts indicated per
region, per section, and per brain. Regional accuracy, inaccuracy, and
uncertainty scores were calculated per rater per brain, and per brain overall
in R-Studio (scripts shared on the BRAINSPACE GitHub repository84).
Uncertainty scores were calculated by dividing the number of uncertain

markers by the total number of markers in the region, reflecting the region
percentage for which the registration could not be verified (Uncertainty
Score = (# uncertain markers)/(# accurate markers+ # inaccurate markers
+ # uncertainmarkers). Since it was not possible to verify the registration of
all the points (due to a lack of landmarks or limited expertise), the calcu-
lation of accuracy and inaccuracy scores correspond to the parts of regions
for which the registration could be verified. Regional accuracy scores were
calculated by dividing the number of accurate markers by the total number
of accurate and inaccurate markers within the region (Accuracy Score = #
accurate markers/ (# accurate markers + # inaccurate markers)). Mean
scores were calculated by dividing the summed score of all assessments by
the total numberof assessments. For each region, thenumberof assessments
contributing to themean calculation depended on the number of raters and
number of brains assessed, as well as how often accurate or inaccurate
markers could be assigned by the raters (depending on the presence of grid
markers in the region, tissue quality, and/or anatomical expertise). In some
cases, regions were marked entirely as uncertain, excluding the assessment
from the mean calculation. For the registration achieved with QuickNII
only, 10 assessments were averaged across all raters and brains. For the
registration achieved with QuickNII and VisuAlign, a maximum of 36
assessments were averaged across all raters and brains. See Supplementary
Data 2 for the exact number of assessments measured per region.

Regional quantification of stain load with Nutil
Nutil (RRID: SCR_017183) enables regional quantification of labeled fea-
tures by applying the Quantifier feature to combine the output from the
atlas-registration (QuickNII and VisuAlign) and feature extraction (ilastik)
steps.Nutil (v0.7.0)was used to quantify the percentage of IHC-stained area
per region area (hereafter referred to as “load”) in the intermediate hierarchy
regionsperbrain series. Sincehemibrain sectionswere analyzed in the study,
customizedmaskswere created andused to exclude the atlas regions located
in the missing hemibrain from the quantification. The hemibrain masks
were created with the QNLMask software shared with the VisuAlign
download. Nutil analysis was performed separately for each stain, with the
quantification of neurons (NeuN), microglia (Iba1), astrocytes (GFAP), all
nuclei (thionine), and amyloid-beta 1-42 (AB1-42) achieved according to
the parameters defined in theNUTfile shared in theBRAINSPACEGitHub
repository84. The regional load values obtained from the Nutil reports were
used in downstream analysis. Regional loads were quantified for QuickNII
registration alone and following refinement with VisuAlign.

Sample and region exclusion from post-analyses
One female 6m mouse of AD-BXD strain 44 was removed from the down-
stream analysis because the majority of the sections were severely damaged
prohibiting successful atlas-registration. While the 77 regions in the inter-
mediate hierarchy are included in the Nutil reports85, some of the regions did
not give results since theywere not present in the sections, or corresponded to
a parent structure with results provided at a finer level of atlas-granularity.
Regions with no biological results were disregarded from all analyses. In the
present study, 55 of the regions were included in the QCAlign assessment of
the atlas-registration across 5 brains; 43 of these regions were included in the
assessment of cell and pathology load across 37 5XFAD brains. Region-
specific exclusion criteria are reported in Supplementary Data 6.

Bulk RNA sequencing
The RNAseq data used in the current study was previously published9,10,12

and the dataset series (GSE) are accessible via the National Center
for Biotechnology Information Gene Expression Omnibus (GEO)
(GEO:GSE101144, GEO:GSE119215, GEO:GSE119408). The published data
reported on the results of bulk RNA sequencing completed with snap frozen
hippocampi from AD-BXD strains and Ntg-BXD littermate controls at 6m
and 14m Neuner et al. 9 GEO accession number GSE101144 and (Neuner
et al., 2019)12 GEO accession number GSE119215: AD-BXDs: [6m, n= 71
mice (47 females/24 males) and 14m, n= 86 mice (45 females/41 males)],
and Ntg-BXD counterparts: [6m, n= 31 mice(17 females/14 males) and
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14m, n = 33 mice (17 females/16 males)]), and (Heuer et al., 2020)10 GEO
accession number GSE119408: Ntg-BXD counterparts [6m, n= 27mice (22
females/5 males) and 14m, n= 44 mice (28 females/16males)])9,10,12.

In brief, RNA was isolated using the RNeasy mini kit (QIAGEN) and
treatedwithDNase to remove contaminatingDNA.ABioAnalyzer (Agilent
Technologies) was used to confirm RNA quality. All samples had RNA
Integrity Numbers (RIN values) > 8.0. Sequencing libraries were prepared
using Truseq Stranded mRNA Sample Preparation Kit (Illumina Inc.) and
sequenced by 75 base pair paired-end sequencing on aHiSeq2500 (Illumina
Inc). TheGBRS/EMASE pipeline86 was used to align reads to a diploid BXD
transcriptome. An expectation maximization algorithm was used to align
reads to the correct B or D allele.

Only 5XFADsampleswith paired IHCandRNAseq datawere selected
(n = 34 mice); therefore, all animals in this analysis had one hemisphere
fixed for IHCand the contralateral hippocampus dissected for bulkRNAseq
(Supplementary Table 1). Expected read counts (ERCs) were filtered to
include geneswith>10ERCs inmore than 50%of the samples from5XFAD
mice, resulting in 15,703 of 47,645 genes that passed filtering. After the
exclusionof geneswith low read counts, datasetswere batch-correctedusing
the R/Combat-Seq package, then normalized and transformed using the
default pipeline of R/DESeq287.

Statistics and Reproducibility
For each stain, the load values of 43 regions were used for comparative
analysis across 5XFAD brains at 6 m (n = 17mice) and 14m (n = 20mice).
Data are expressed as means ± standard error of the mean (SEM) or as
otherwise indicated in graphs. Statistical analysis of data was performed
using R version 4.0.0 (2020-04-24) -- “Arbor Day”. Wilcoxon two-way
assessment (strain and age factors) was implemented to determine if there
were significant differences in the stain load as registered using QuickNII
alone vs registered using QuickNII and VisuAlign. Analysis of variance
(ANOVA) (age and strain factors) was used to determine whether there
were significant differences in regional stain load between the 6m and 14m
groups. Multilevel Pearson correlations with and without age corrections
were used to evaluate the relationship between hippocampal stain load and
gene expression. Multiple testing corrections for each test were performed
using false discovery rate (FDR) correction. The criterion formeasures to be
considered uncorrected significant was p-value < 0.05 and significant after
correction was FDR p-value < 0.05. Data normality was assessed using the
Shapiro-Wilks method in R.

The relationship between gene expression and stain load (AB1-42,
NeuN,GFAP, and Iba1) fromthehippocampal formation (region “Hippo” in
Supplementary Data 1) was assessed using Pearson’s correlation from linear
mixed models88, which allowed the effect of age on the association between
gene expression and load to be accounted for by including age as a random
effect. P-values per stain and gene correlation were corrected for multiple
comparisons via FDR correction and considered significant if the FDR p-
value < 0.05.Genes thatwere exclusively significantly correlated (uncorrected
p-value < 0.05) prior to age adjustment were deemed to be age-dependent
correlates.Genes thatwere exclusively significantly correlated (uncorrectedp-
value < 0.05) following age adjustment were deemed to be age-independent
correlates. Gene Set Enrichment Analysis (GSEA) was queried against
Reactome pathways in WebGestalt50,51 using the output correlation coeffi-
cients per gene and stain for each multi-level correlation method (age-
adjusted and non-age-adjusted). AdvancedGSEAparameters used included:
Minimumnumberof IDs in the category: 20,Maximumnumberof IDs in the
category: 2000, Significance Level: FDR < 0.05, andNumber of permutations:
1000). Lastly, individual ERCs and hippocampal load datawere incorporated
into a DESeq model, and the design was run on the intercept (~1). Trans-
formed normalized counts for boxplots in Fig. 5 were obtained using the
DESeqDataSetFromMatrix() and counts() functions. Scripts used for RNA-
seq normalization and modeling, IHC and RNAseq correlations, and
visualization can be accessed on the BRAINSPACE GitHub repository84.

The sample size per data point is indicated in each figure legend.
QCAlign output measurements are defined as the number of assessments

per region.Assessments per region are aggregated acrossmultiple raters and
distinct brains (see Supplementary Data 2 for the exact number of assess-
ments measured per region). Age groups are defined in terms of individual
mice (i.e., 6 m 5XFADs, n = 17 mice). Biological replicates per strain are
defined as multiple genetically identical mice of the same AD-BXD strain
background. In our study, we had a range of n = 1-3 biological replicates per
strain (see Supplementary Table 1).

Inclusion & Ethics
The authors are committed to making materials, data, code, and associated
protocols promptly available to readers without undue qualifications.

Sharing of QUINT tools and disclaimer
All the software in the QUINT workflow is open-source and shared on
GitHub andnitrc.org underMIT license forQuickNII andVisuAlign;GNU
General Public License (GPL) v3.0 forNutil; andGPLv2 /GPL v3 for ilastik.
To validate the QUINT workflow for the present study, Nutil v0.7.0 was
used to analyze two synthetic datasets with objects of known size and
anatomical location based on the parameters selected for the study. The
validator feature in Nutil confirmed that the results were identical to the
ground truth. The datasets, ground truth, and results of Nutil v0.7.0 are
shared in the BRAINSPACE repository84. The QUINT workflow is shared
on EBRAINS (https://ebrains.eu/service/quint), with user documentation89

and user support available through EBRAINS.

Data availability
The collection of section images, accompanyingmetadata, atlas-registration
files, QCAlign output, and Nutil output is shared as the BRAINSPACE
project via the EBRAINS Knowledge Graph85. This EBRAINS dataset85

includes a data descriptor that details the exact contents of each deposited
folder, information on how to download the data, as well as how to cite this
data. The source QCAlign and Nutil output (QuickNII only and QuickNII
and VisuAlign registration) located on this portal were compiled to create
Figs. 2–5 and Supplementary Figs. 2, 3. Gene expression data used in this
analysis is deposited on GEO (datasets GSE101144, GSE119215, and
GSE119408). Individual input files and scripts to reproduce the analyses
conducted in this manuscript are included on our GitHub page84 (as
described in the Code Availability section). Supplementary Data 1 lists all
the regions and their Allen Brain Atlas ID that comprise the intermediate
hierarchy created for this study. Supplementary Data 2 lists the number of
assessments contributing to the mean accuracy/inaccuracy or uncertain
scores presented in Fig. 3a and Supplementary Fig. 2c. The output of sta-
tistical analyses used to denote significance in the plots are included in
Supplementary Data 3-5 (Supplementary Data 3: Fig. 3, Supplementary
Data 4: Fig. 4, Supplementary Data 5: Fig. 5). SupplementaryData 6 lists the
origin of regions selected, any abbreviations used to denote these regions in
figures, and in what analyses these regions were included.

Code availability
R scripts used to organize, analyze, and complete statistical analyses of the
represented data are publicly available on the BRAINSPACE GitHub
repository84. More information about the use of each script is available on
the BRAINSPACEGitHubWiki page. This wiki page details the purpose of
each script, the input data, the output data, and the application of data in the
manuscript. The data necessary to implement these scripts are located in the
corresponding script folder or can be downloaded from the EBRAINS
portal85 and the GEO (GEO:GSE101144, GEO:GSE119215,
GEO:GSE119408)9,10,12.
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