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Forming cognitive maps for abstract
spaces: the roles of the human
hippocampus and orbitofrontal cortex
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How does the human brain construct cognitive maps for decision-making and inference? Here, we
conduct an fMRI study on a navigation task in multidimensional abstract spaces. Using a deep neural
network model, we assess learning levels and categorized paths into exploration and exploitation
stages. Univariate analyses show higher activation in the bilateral hippocampus and lateral prefrontal
cortex during exploration, positively associated with learning level and response accuracy.
Conversely, the bilateral orbitofrontal cortex (OFC) and retrosplenial cortex show higher activation
during exploitation, negatively associated with learning level and response accuracy.
Representational similarity analysis show that the hippocampus, entorhinal cortex, and OFC more
accurately represent destinations in exploitation than exploration stages. These findings highlight the
collaboration between the medial temporal lobe and prefrontal cortex in learning abstract space
structures. The hippocampus may be involved in spatial memory formation and representation, while
the OFC integrates sensory information for decision-making in multidimensional abstract spaces.

How do human brains build a cognitive map for guiding flexible behavior?
Since cognitivemaps were proposed by Tolman (1948)1 from observing the
foraging behavior of rats in mazes, they have been believed to support the
flexible behavior of animals. For humans, a cognitive map refers to a sys-
tematic organization of knowledge2. It has not only been used to explain
people’s spatial navigation inphysical spaces3–5 but has alsobeen generalized
to nonphysical spaces or abstract spaces to explain the flexible thinking and
behavior of humans2,6,7. Recent studies found that the medial temporal lobe
(MTL), especially the hippocampal-entorhinal (HIP-EC) system, and the
orbitofrontal cortex (OFC), were themajor brain regions supporting the use
of cognitive maps for both physical and abstract spaces4,8–10.

Previous studies suggested that the HIP-EC system is critical for
forming a cognitive map. First, the HIP-EC system was proposed as a core
region for developing a cognitivemap by providing amental representation
of the spatial layout of an environment and the structure of a nonspatial item
aswell as a spatio-temporal framework for relevant experiences11–13. Second,
the HIP was suggested to play a critical role in learning, spatial reasoning,
and relational memory12,14,15. Previous studies16,17 found that the HIP is
engaged in dynamically updating the representation of objects and trans-
mitting short-term memory into long-term memory18,19. The place cells in
theHIPwere found tomap the relative locations in a physical space13 and to

replay the spatio-temporal sequence to support the recollection and con-
solidation of newly acquired information20–22. In addition, different HIP
activation patterns were found for different stages of exploring the envir-
onment. For example, ref. 23 showed distinct activation patterns in theHIP
when humans tracked the distance to goal in highly familiar versus newly
learned environments. Similarly, ref. 24 observed different representations
in the HIP for visually similar but conceptually different stimuli after
learning the task structure.

The OFC is another candidate for involvement in forming a cognitive
map. Studies suggested that it encodes cognitive maps of the task space in
humans for planning complex behaviors and for making inferences when
the state was not directly observable25–27. The various functions attributed to
the OFC, such as value prediction, credit assignment, response inhibition,
and emotions, may stem from its representation of cognitive maps27–29. The
OFC receives inputs from the sensory areas, HIP, and striatum, suggesting
its involvement in integrating sensory observations and forming associative
representations28,30. Previous studies suggested that the OFC and HIP
encode different aspects of cognitive maps29. However, it remains unclear
how the two brain regions collaborate to support flexible behavior.

The current study aimed tounderstandwhether theHIP, EC, andOFC
build an internal representation when people are exploring an environment
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or learning a concept. When making decisions, we often need to integrate
various factors, which means that the decision space could be multi-
dimensional. For example, we only need to consider the size to know that a
basketball is bigger than a tennis ball (1D), but when choosing a school for
our children, we may consider factors such as the school’s ranking, history,
and geographical location (3D). To identify the brain regions involved in
constructing cognitive maps for multidimensional abstract spaces, we
designed navigation tasks in 1D, 2D, and 3D abstract spaces (Fig. 1) and
acquired fMRI data while the subjects were performing the tasks in abstract
spaces (Fig. 2). To capture the different brain activations and representa-
tions that occur while learning in the abstract spaces, we separated the
navigation paths into two stages, the exploration and exploitation stages,
according to each subject’s behavioral performance (response accuracy and
response time). Considering the differences in behavior performance
between exploration and exploitation are subtle, we applied a deep neural
network (DNN) to estimate how much the subjects have learned the
structure of abstract spaces (learning level) during each navigation path.
Then, a k-means algorithm was used to separate the navigation into
exploration and exploitation stages (Fig. 3). By analyzing task-fMRIdata,we
compared thebrain activations and representationpatterns between the two
stages while navigating in abstract spaces. If the HIP, EC, and OFC show

different activation strengths and representation patterns between the two
learning stages, and if the differences were correlated to the learning level or
behavioral performance, then they are involved in constructing cognitive
maps for the abstract spaces.

Methods
Subjects
Twenty-seven healthy adult subjects (14 women) took part in this experi-
ment (mean age, 21.78 years; range, 18−29 years). All had normal or
corrected-to-normal vision. None of them had any history of neurological
disease or brain disorders. All of the subjects finished five task-fMRI scans
within a single session. The data from two subjects were excluded due to
their poor taskperformanceduring fMRI scanning.The studywas approved
by the Institutional Review Board (IRB) of the SCNU (# 2019-3-062). All
ethical regulations relevant to human research participants were followed.
Each subject gave written informed consent prior to the study and was
compensated for participation after the experiment.

Experimental design and procedures
The experiment lasted two days (Fig. S1, Supplementary Information). On
Day 1, we performed the following items for each subject outside the
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Fig. 1 | Schematic of the construction of the abstract spaces and the fMRI scan-
ning procedure. a The two basic symbols and their four features (F1, F2, F3, and F4).
A certain feature or a dimension consisted of six discrete values. The four features of
the hat symbol were tilt angle, brim width, pompom size, and color lightness. The
four features of the dog symbol were tail direction, body length, leg length, and color
tone. The symbols and featureswere created by the authors.bExample of the 1D, 2D,
and 3D abstract spaces constructed with one feature (1 F), two features (2 F), and
three features (3 F) of the hat symbol. In the example, the hat was taken as the
primary symbol (denoted as P) to construct three different dimensional abstract
spaces, the S1P, S2P, and S3P. The other symbol, dog, was taken as the control symbol
(denoted as C) to construct another three abstract spaces, the S1C, S2C, and S3C (the
S3C was not used in the fMRI experiment). If the dog was taken as the primary
symbol, the S1P, S2P, and S3P would be constructed using the dog symbol, and the S1C,
S2C, and S3C would be constructed using the hat symbol. Each abstract space used in
the navigation task for a subject was constructed by randomly choosing 1−3 features
of a specific symbol. The compasses show the directions that the subjects could take
to move in the abstract space during the experiment. The circles and arrows below

the compasses are examples of a shortest path from a starting point (blue circle) to a
destination (orange circle) in the 1D, 2D, and 3Dabstract spaces. Each dot represents
a location in the abstract space. More than one shortest path may exist between a
certain current and goal locations (Fig. S3, Supplementary Information), so the
arrow indicates one of the shortest paths. cThe procedure of the experiment. During
the fMRI scanning, the subjects performed the navigation task in five different
abstract spaces separately in a fixed order of S1P, S2C, S2P, S1C, and S3P. The S1P, S2C,
and S3P were collectively referred to as Set 1 because these three were the first space of
each dimensionality presented to the subject. The S1C and S2P were collectively
referred to as Set 2 because these two were the second space of each dimensionality
presented to the subject. Half of the subjects used the hat as the primary symbol, and
the other half of the subjects used the dog as the primary symbol. Abbreviations: D,
dimension; F, feature; P, primary symbol; C, control symbol; S1P, S1C, S2P, S2C, S3P,
and S3C indicate six different multi-dimensional abstract spaces; Set 1 and Set 2 refer
to the first and the second space of each dimensionality presented to the subject. rs-
fMRI, resting-state fMRI; sMRI, structural magnetic resonance image; HARDI, high
angular resolution diffusion-weighted imaging.

https://doi.org/10.1038/s42003-024-06214-5 Article

Communications Biology |           (2024) 7:517 2



scanner: (1) collected basic demographic information, (2) evaluated the
subject’s ability with respect to direction, reasoning, working memory,
discriminability, and rule learning, (3) measured the subject’s perception of
stress, and (4) let the subject familiarize with the navigation task in the
abstract spaces designed for the behavioral training (Figs. S1 and S2, Sup-
plementary Information). The detailed information about the experiment
andmaterials used onDay 1 is described in SupplementaryNote 1. The data
from items (2) and (3) were not used in the current study. On Day 2, each
subject was trained again outside the scanner to ensure that they fully
understood the navigation task (Supplementary Note 2). Afterward, they
attended theMRI scanwhenperforming the navigation task infive different
abstract spaces (Fig. 1).

For each subject, five abstract spaces were used in the task-fMRI
experiment. Figure 1 illustrates the steps for the construction of these
abstract spaces. Specifically, we first defined two basic symbols, hat and dog.
For each subject, oneof the basic symbolswasdefinedas theprimary symbol
(denoted as P), whichwas used to construct three abstract spaces used in the
fMRI experiment.The other basic symbolwas defined as the control symbol
(denoted as C), which was used to construct the remaining two abstract
spaces used in the fMRI experiment. We counterbalanced the two basic
symbols among the subjects; 13 of the subjects used hat as the primary
symbol and the other 14 subjects used dog as the primary symbol.

We defined a dimension by manipulating a feature of a basic symbol
(Fig. 1a). To avoid the potential effect of the fixed features used in the
experiment on the results, we defined four features corresponded to four
dimensions for each basic symbol. The number of dimensions in the
abstract space was in a range from one to three, so no more than three

features of a given symbol would be used to construct an abstract space. For
each subject, the features of each abstract space were randomly chosen from
the four features. Figure 1a shows that the four features of hat were tilt angle,
brim width, pompom size, and color lightness, and the four features of the
dog were tail direction, body length, leg length, and color tone.

After the symbols and dimensions were determined, the five multi-
dimensional abstract spaces were constructed with the corresponding
number of features for a specific symbol (Fig. 1). These multidimensional
spaces were denoted as follows (Fig. 1a, b). (1) S1P: a 1D space of the primary
symbol; (2) S1C: another 1D space of the control symbol; (3) S2P: a 2D space
of the primary symbol; (4) S2C: another 2D space of the control symbol; and
(5) S3P: a 3D space of the primary symbol. Specifically, when hat was the
primary symbol, S1P was constructed with a feature chosen randomly from
the four features of thehat,S1Cwith a feature chosen randomly fromthe four
features of the dog, S2P with two features chosen randomly from the four
features of the hat, and so on (Fig. 1b). The location of a point in the space
wasdescribed as a number (in 1D)or a pair of numbers (in 2D)or a triplet of
numbers (in 3D) that specified distances from the coordinate axes (Fig. S2,
Supplementary Information).

During the fMRI scanning, the subjects were required to perform the
navigation task infive abstract spaces in afixedorderofS1P,S2C,S2P, S1C, and
S3P. The spaces that appeared first for each dimension in the experimental
order, S1P, S2C, and S3P, were collectively referred to as Set 1. Similarly, the
spaces that appeared second for each dimension, S1C and S2P, were collec-
tively referred to as Set 2 (Fig. 1c). To control the total scanning time, we set
the maximum scanning time for each fMRI scan to 10min (400 volumes)
for the task in the 1D space and 15min (600 volumes) for the task in each of
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Fig. 2 | An example of the navigation task in a 2D abstract space for a subject and
the response accuracy of the paths (RApath) in the five abstract spaces. a Procedure
of the navigation task. In each path (from c0 to g), two locations (specific combi-
nation of features described in Fig. 1) in the abstract space were chosen randomly as
the starting point (also as the first current location) and the destination. The subjects
navigated to the destination from the starting point by choosing the given options.
With an optimal option, the subject can reach to the destination with the lowest
number of steps. In each trial, the options were chosen randomly around the current
location (within the dotted frame). For a subject, if the chosen optionwas not same as

the destination, the chosen option became the current location of the next trial and
the destination remained the same; otherwise, a feedback screen would indicate the
completion of the path. Each trial started with a cue indicating the current location
for 2 s, then showed the destination for 4 s, followed by the options, and ended with
the subject’s response. bAverage response accuracy for each path (RApath) across all
the 25 subjects. The error bars indicate standard deviation. The underlying source
data is supplied in Supplementary Data 1. Abbreviations: cn, the current location of
the nth step; g, goal location; S1P, S1C, S2P, S2C, and S3P represent the five abstract
spaces; R1, R2, …, and R10 indicate ten different paths or routes.
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the 2D and 3D spaces. For a given task, the fMRI scan ended at the max-
imum time even if the subjects did not complete the task. Only 2 subjects
failed to complete the navigation task within the maximum scanning time,
one in a 1D and a 3D spaces, and the other in a 3D space. The data of these
2 subjects were excluded from the subsequent analyses. Detailed informa-
tion of the scanning lengths is listed in Table S1 (Supplementary
Information).

Figure 2a illustrates the procedure of the navigation task in an abstract
space. The program was coded using PsychoPy (version 2021.2.3, https://
www.psychopy.org/). The stimuliweredisplayedagainst a graybackground.
For the task in each abstract space, the subjects needed to navigate to 10
destinations separately from 10 different starting points. The trajectory that
the subjects navigated from a starting point to a destinationwas defined as a
path. In other words, each subject generated ten paths in each of the five
abstract spaces. At the beginning of each path, two different locations were
selected in the abstract space randomly, one as the starting point and the
other one as the destination.

For each subject, a trial began with the presentation of a starting point
or the current location and endedwith the subject’s selection, followedby an
inter-trial interval (ITI) lasting 3−9 s (Fig. 2a). The current location along
with aword, “current”, was displayed at the top left of the screen, followedby
the destination along with a word, “goal”, displayed at the top right of the
screen after 2 s. Four seconds later, the options were displayed at the bottom
of the screen. These optionswere selected from locations around the current
location (within the dotted frames in Fig. 2a) following the rulesdescribed in
SupplementaryNote 3. The subject pressed one of four buttons on anMRI-

compatible 4-button bimanual button-box to make the selection when the
options were presented. The four options were arranged according to their
locations in the abstract space relative to the current location, with the
location below the current location as the first option, the location to the
right below the current location as the last option, and the other locations
arranged in a clockwise direction (Fig. S3, Supplementary Information).The
first two options corresponded to the buttons on the left, and the other two
options corresponded to the buttons on the right.

If the subject selected the option that was consistent with the goal
location, the path was completed with a word “Achieved!” and a coin dis-
played on the screen as feedback, indicating that the path had ended. The
subjects were told before the fMRI scans that they could obtain additional
compensation based on the number of coins that they obtained in the task.
Alternatively, if the subjects selected anoption thatdidnot correspond to the
goal location, the path continued, and the next trial started after the ITI. In
the new trial, the subjects’ selection in the last trial became the current
location and the goal remained the same as in the previous trial. These steps
repeated until the subject selected an option that corresponded to the goal
location. To avoid excessive time spent on a path, we implemented a 20%
chance of terminating a path if the subject failed to select the optimal option.
Once a path was terminated, the word “Break!” displayed on the screen,
indicating the end of the path, and the subject could not get a coin from a
terminated path. The terminated paths were also included in the following
data analyses. The next path began after a fixation cross, which lasted for
6−13 s. For each step of a path, we recorded the current location, goal
location, response accuracy (RA), and response time (RT) for each subject.

Fig. 3 | Schematic and results for the separation of
the navigation paths into the exploration and
exploitation stages. a Definition of the early learn-
ing (green), mid-learning (white), and late learning
(orange). The first three paths and the last three
paths of each space were labeled as the early and late
learning phases, respectively. These labeled paths
were used in training the deep neural network
(DNN). b Construction of the DNN prediction
model. The DNN contains 2 hidden layers between
the input and output layers. The input data were a
Nstep-by-2 matrix B ¼ ½RA1;RT1;:::;RANstep

;RTNstep
�

of a path, where RANstep
and RTNstep

represent
response accuracy and response time of theNth step,
respectively. The values of the two units in the out-
put layer indicate the probability of the path being
categorized as early learning phase (denoted as
P(early)) and being categorized as late learning
phase (denoted as PðlateÞ ¼ 1� PðearlyÞ). The
B matrices of all paths were input to the trained
DNN to obtain the P(early). c Categorization the
navigation paths into the exploration and exploita-
tion stages. A k-means algorithm was used to cate-
gorize the paths into the exploration and
exploitation stages based on the P(early).
d Performance of the DNN prediction model in the
25 subjects. During training, the DNN model pre-
dicted the label of the paths in the test set. The
accuracy was calculated as the ratio of correctly
predicted paths to the total paths in the testing set
and averaged across the 100 iterations. The model
accuracy value was significantly higher than the
chance level (0.25 = 0.5 / ntest). e The number of
paths categorized as exploitation stage by the k-
means algorithm in each space in the 25 subjects.
The error bars indicate standard deviation. The
underlying source data is supplied in Supplementary
Data 1. ***p < .001.
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The RA was set as 1 if the optimal option was selected and set as 0 if
otherwise.

MRI data acquisition
All imaging datawere collected on a SiemensPrismafit 3 TMRI scannerwith
a 64-channel receive phased-array head/neck coil. Tight but comfortable
foam padding was used to reduce headmotion, and earplugs were provided
to reduce acoustic noise. The stimuli were presented using a projector-
mirror-screen system. The subjects viewed the screen via amirrormounted
on the head coil. Behavioral responses were recorded using a 4-button
bimanual button-box.

The fMRI data were obtained using a single-shot simultaneous multi-
slice (SMS) or multi-band (MB) gradient-echo EPI sequence with the fol-
lowing parameters: repetition time (TR) = 1500ms, echo time (TE) = 31.0
ms, flip angle = 70°, slice acceleration factor = 3 without GRAPPA, field of
view (FOV) = 211 × 211mm2, data matrix = 88 × 88, slice thickness = 2.4
mm without inter-slice gap, voxel size = (2.4mm)3, anterior-to-posterior
phase encoding direction (A»P), bandwidth = 2186Hz/px, and 60 inter-
leaved transversal slices (multi-slice mode = interleaved, and series =
interleaved) covering the whole brain. To correct for susceptibility-induced
geometric distortions and BOLD signal loss in the acquired functional
images, we also acquired a field map of the whole brain by using a double-
echo gradient-echo sequence with the following parameters: TR = 620ms,
TE1/TE2 = 4.92ms/7.38ms, flip angle = 60°, FOV= 211 × 211mm2, voxel
size = 2.4 × 2.4 × 2.4 mm3, and 60 transverse slices. In addition, high-
resolution brain structural images were acquired using a T1-weighted 3D
MP-RAGE sequence with the following parameters: TR = 1800ms, TE =
2.07ms, flip angle = 9°, slice thickness = 0.8mm, FOV= 256 × 256mm2,
data matrix = 320 × 320, voxel size = (0.8mm)3, and 208 sagittal slices
covering the whole brain.

For each subject, the MRI scan started with a short localizer scan,
followed by a resting-state fMRI (rs-fMRI) scan, a field-map, five task-fMRI
runs consisting of each run for a navigation task in a specific abstract space, a
T1-weighted 3DMP-RAGEscan, aT2-weighted 3DSPACEhigh resolution
brain structural images, and a high angular resolution diffusion-weighted
imaging (HARDI) scan (Fig. 1c). All of the imaging data were acquired in
the same session in less than 110min. The rs-fMRI and HARDI data were
not analyzed in the current paper.

Pre-processing of the task-fMRI data
The fMRI data were preprocessed using fMRIPrep 21.0.031, a standar-
dized and efficient fMRI preprocessing pipeline based on Nipype 1.6.132.
For each subject, we obtained five fMRI datasets with each dataset cor-
responding to a navigation task in an abstract space. For a given subject,
each fMRI dataset was preprocessed using the following steps. We (1)
generated a reference volume and its skull-stripped brain using a custom
method of fMRIPrep; (2) estimated the head-motion parameters with
respect to the reference volume, including the transformation matrices,
and six corresponding rotation and translation parameters, using FSL/
mcflirt (version 6.0.5.1:57b01774)33. (In the statistical analysis, these six
head-motion parameters were set as covariates to account for the residual
effects of the subjects’ movements.); (3) registered the magnetic field
coefficients estimated from the field-map to the functional reference
volume with rigid-registration; (4) corrected the slice-time of the func-
tional images to 50% of the slice acquisition range (0.702 s, 0−1.41 s)
with 3dTshift from AFNI34; (5) co-registered the functional reference
volume to the T1-weighted 3D images using a boundary-based regis-
tration (BBR from FreeSurfer)35 with six degrees of freedom; (6) calcu-
lated the framewise displacement (FD) and extracted the signals within
the cerebrospinal fluid (CSF), white matter (WM), and gray matter
(GM). (To reduce the impact of excessive head motion on the results, we
set the threshold to exclude the data with an average FD > 0.25. No data
was excluded according to this threshold.); (7) resampled the functional
data into (2.0 mm)3 in the MNI standard space; (8) used a high pass filter
with a cutoff of 1/100Hz to remove low-frequency drifts. The images

were smoothed with an isotropic Gaussian kernel of 6 mm full-width
half-maximum (FWHM) for the univariate analysis of the fMRI data.
The functional images were not smoothed for the representational
similarity analysis (RSA) to retain the multi-voxel pattern36,37.

Analyzing behavioral data in the task-fMRI scan
We sorted the subjects’ RA and RT, which were recorded during the task-
fMRI scanning, according to the paths in each abstract space. To study
whether the subjects’ behavioral performance was improved as the navi-
gation progressed, we classified the paths into three phases: early learning
(consisting of thefirst threepaths in each space),mid-learning (consisting of
themiddle four paths in each space), and late learning (consisting of the last
three paths in each space) (Fig. 3a).

A linearmixed-effectmodel (LMM)was used to capture each subject’s

response accuracy (RApath ¼
PNstep

i¼1 ðRAiÞ=Nstep; i 2 ð1; 2; :::;NstepÞ, where
Nstep represents the number of steps in the path) and response time

(RTpath ¼
PNstep

i¼1 ðRTiÞ=Nstep) for each path during the navigation task.We
assessedwhether the subjects’behavioral performancewas improvedas they
progressed through the navigation in the multidimensional abstract spaces.
LMMs are an extension of simple linear regression models that consider
both fixed and random effects and are suitable for designs that include
multiple observations on each subject38. The subsequent LMM analyses
were achievedby lmerTest (version3.1-3), anRpackagedesigned for tests in
LMM39. The LMM was given by

Y ¼ XLMMβþQγþ ε ð1Þ

whereY, XLMM, andQ represent the dependent variable, fixed effect factor,
and the random effect factor, respectively. The β and γ represent the fixed
effect and the random effect, respectively. The ε represents the
random error.

The first LMM analysis (LMM1) tested whether the subjects had a
better performance (defined as higher RApath or shorter RTpath) in the late
learning than in early learning phases.RApath andRTpath were separately set
as the dependent variable (Y). The early and late learning phases were set as
thefixedeffect factor (XLMM). The subject identity and the spatial dimension
were combined andwere set as the random effect factor (Q). In this way, we
could compare whether the subjects showed significantly different beha-
vioral performance between the early and late learning phases. The learning
effect exists if a better performance was achieved in the late learning than in
the early learning phase.

The second LMM analysis (LMM2) tested whether the acquired
knowledge about the abstract space can be transferred into another abstract
space with the same structure. The settings of the LMM2 were the same as
those of the LMM1, except that the fixed effect factor (XLMM) was the space
index (Set 1 or Set 2). If the transfer learning effect existed, the subjects
should respondmore quickly andmore accurately in the Set 2 than the Set 1.

The RAstep or RTstep in each path were combined into a Nstep × 2
matrix B.

B ¼
RA1 RT1

..

.

RANstep

..

.

RTNstep

2

6
6
4
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7
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We developed a DNN prediction model to estimate the subjects’ learning
level of the abstract spatial structure based on the B matrix. DNN is a
powerfulmachine learning algorithm that can capture subtle characteristics
in the input data by stacking layers of neural networks40. We first used the
paths of the early learning and late learning phases to train the DNN,
enabling it to learn and recognize the distinctive features of each phase.
Subsequently, we used the trained DNN to estimate the probability of each
path belonging to either the early or late learning phase (Eq. 3), which was
defined as the learning level of the abstract space.
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The DNN procedure included the following steps for each subject.
First, theBmatrix of the paths in the samedimensional spaceswere grouped
together and sorted according to the time sequence ([S1P, S1C], [S2C, S2P],
and [S3P], Fig. 3a). The phase of the path (early or late learning) was used as
the label of the sorted data. Second, using a DNN algorithm40, we extracted
the B matrix patterns of the early and late learning phases. The DNN
algorithm was achieved by TensorFlow (version 2.8)41, an open-source
software library for machine intelligence. Figure 3b shows that the DNN
consisting of four dense layers, an input layer, two hidden layers, and an
output layer. The input data (XDNN) was theBmatrix of each path in a task.
One-hot encodingwas used to quantify the label (y) to a binary 1 × 2 vector.
The behavioral data and labels were separated into a training set and a test
set. Specifically, in each dimensionality, two paths were chosen randomly as
the testing set, and theother labeledpathsweredefinedas the training set (10
paths in the 1Dand2D spaces, and 4paths in the 3D space). The twohidden
layers contained 64 and 32 units. The value of each unit in the DNN was a
linear combination of the units in the previous layer, with the ReLU (rec-
tified linear unit)42 as the activation function for thehidden layers.TheDNN
was given by

Xiþ1 ¼ ReLUðwT
i Xi þ bÞ ð2Þ

where Xi, wi, and b represent the unit matrix, weight vector, and bias
respectively, of the ith layer of the network. The output layer contained two
units, corresponding to the probabilities of the path belonging to the early
and late learningphases, respectively.Apredicted label (ypred)was calculated
from the unit values of the previous layer, with softmax43,44 as the activation
function, by using the following equation.

ypred ¼ SoftmaxðwiXi þ bÞ ð3Þ

In the DNN training, the weights (w) and biases (b) were initialized
with random numbers in the first iteration. A predicted 1 × 2 vector (ypred)
was calculated from the input data of the training set (Xtrain) and the
initialized weights and biases (Eqs. 2 and 3). The ypred was compared with
the true label (ytrain) to calculate a loss (ltrain) using a categorical cross-
entropy as the loss function43,44. In the next iteration, the weights and biases
of the first layer were updated on the basis of the loss using the Adam
(AdaptiveMoment Estimation) optimizer45. TheAdam is an algorithm that
canbeused toupdatenetworkweights iteratively basedon trainingdata.We
set the learning rate to 0.001 in the optimization. After each iteration, the
values of the testing set (Xtest) were input into the DNN. Using the weights
and biases obtained from the iteration, we calculated a predicted label. The
predicted label was compared with the true label (ytest) to calculate the loss
(ltest)

43,44. Themodel underwent 100 iterations (epochs), and the parameters
were saved when the loss function reached its minimum. In each iteration,
the model’s prediction accuracy was computed as the ratio of correctly
predicted paths to the total paths in the testing set. The prediction accuracy
of the trained model was calculated by averaging the accuracy values across
the 100 iterations. Finally, the B matrix of each path was input into the
trained DNN to obtain the predicted learning level (Fig. 3b).

Figure 3c shows that a k-means algorithm was used to categorize the
paths into the exploration and exploitation stages based on the learning level
predicted by the trained DNN. The k-means algorithm is an unsupervised
machine learning algorithm, which groups the input data into k clusters
based on their similarities46,47. For each subject in each dimensional space,
the predicted learning level of the paths were input to the k-means algo-
rithm. An optimized k-means algorithm46 was used to categorize the paths
into two clusters, corresponding to the exploration and exploitation stages.
The paths corresponding to the cluster with a higher probability to be early
learning paths were categorized into the exploration stage, and the other
cluster was defined as the exploitation stage (Fig. 3c). In this way, we cate-
gorized the paths into the exploration and exploitation stages for each
subject in the 1D, 2D, and 3D spaces, separately.

After defining the exploration and exploitation stages, we tested
whether the subjects’RApath andRTpath were significantly different between
the two stages by using a LMManalysis (LMM3). In LMM3, the exploration
and exploitation stages were set as the fixed effect factor (XLMM),RTpath and
RApath were separately set as the dependent variable (Y), and the combi-
nation of the subject identity and the spatial dimension was set as the
random effect factor (Q) in themodel (Eq. 1). The categorization of the two
stages was considered reasonable if the exploitation stage showed a higher
RApath or a shorterRTpath than the exploration stage.Otherwise, if neither of
these conditions was met, the categorization of the two stages would be
considered as unreasonable.

Univariate analyses of the fMRI data
The GLM analyses were carried out with FSL (version 6.0.5.1:57b01774).
We set up GLM1 to examine the differences in brain activity between the
exploration and exploitation stages. The navigation task included three
events, whichwere navigationpaths, feedback, andfixationperiods between
the paths and between trials (Fig. 2). In the subject-level GLM1 analysis, we
included nine regressors for each of the five task-fMRI datasets, 1 for the
paths of exploration stage, 1 for the paths of exploitation stage, 1 for the
feedback, and 6 nuisance regressors for the head motion parameters. The
fixation periods were treated as the baseline. The regressors for the
exploration paths, exploitation paths, and feedbackwere convolvedwith the
double-gammahemodynamic response function (HRF).We contrasted the
estimated parameter for the exploration paths with the baseline to obtain a
COPE map (contrast of parameter estimates) for the exploration paths.
Similarly, we obtained a COPEmap for the exploitation path by contrasting
the estimated parameter for the exploitationpathwith the baseline.Next, we
applied a fixed effects model to compare the COPE maps between the
exploration and exploitation paths across the five task-fMRI scans for each
subject (exploration – baseline vs. exploitation – baseline). Finally, in the
group-level GLM1 analysis, we used a random effects model to determine
the brain regions with significant activation differences between the
exploration and exploitation stages across all the subjects, taking the sub-
jects’ gender and age as covariates.

GLM2 was conducted to examine the association between the brain
activation and the learning level predicted by the DNN. In the subject-level
analysis, we included 17 regressors for each of the five task-fMRI datasets,
including 10 regressors for the ten different paths, 1 for the feedback, and 6
nuisance regressors for head motion parameters. The estimated parameter
for each path was contrasted to the baseline to obtain a COPE map for the
path. Next, we loaded the COPE maps of the paths, set learning level as a
regressor, and applied a fixed effects model to estimate the brain activation
associated with the learning level. Finally, in the group-level analysis, we
used a random effects model to identify brain regions with significant
activation associativewith the learning level. In addition, we tested the effect
of spatial structure on learning by comparing brain activation associated
with the learning level across the three different dimensionalities.

GLM3 was set up to detect the brain activation associative with the
response accuracy of each step (RA). In the subject-level GLM3 analysis, we
set 9 regressors for each of the five task-fMRI datasets, including 1 regressor
for the navigation, 1 for the feedback, 1 forRA on the navigation period, and
6 nuisance regressors for head motion parameters. Next, we averaged the
effect of RA on brain activation across the five datasets using a fixed effects
model. Finally, in the group-level analysis, we used a random effects model
to identify the brain region with significant activation associative with RA.

Representational similarity analysis (RSA) on the fMRI data
A voxel-wise whole-brain searchlight RSA was performed separately for
each stage to test whether the brain regions encoded a more accurate
representation of destinations in the exploitation stage than the exploration
stage. The RSA involved comparing the theoretical representational dis-
similarity matrix (RDM) with the neural RDM for each brain region. First,
for each subject in both stages, we constructed a theoretical RDM based on
the Euclidean distance between the destinations of different paths (Fig. 4c).
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Second, for a given brain region, we calculated a neural RDM for each
subject in both stages. To achieve this, we conducted the subject-levelGLM2
analysis on the unsmoothed preprocessed fMRI data, resulting in a para-
meter estimation (PE) map for each path. We then used NeuroRA48, a
Python toolbox designed for performing RSA, to calculate the dissimilarity
(1 - r) between the PEmaps of each path, obtaining the neural RDM. Third,
we computedSpearman’s rank correlation (ρ) between theneural RDMand
the theoretical RDM for each subject. The searchlight size was set to a
3-voxel cube, with a stride of 1 voxel along each axis (x, y, and z). For each
stage, we obtained a whole brain ρ-map representing the correlation
between the neural RDMand the theoretical RDM for each subject through
searchlight RSA. After applying Fisher’s transformation to standardize the
ρ-maps, we compared the ρ-maps between the two stages to identify brain
regions that showed a more accurate representation of destinations in the
exploitation stage than the exploration stage.

Statistics and reproducibility
For the behavioral data, a paired-sample t-test was used to estimate the
significance of fixed-effect in the LMM. A one-sample t test was used to test

whether the prediction accuracy of theDNNmodel was significantly higher
than the random level,whichwas set at 0.25 (=0.5/2). The reasonwas that, at
the random level, the DNN model has a probability of 0.5 to select the
correct label, and the DNNmodel needed to judge the 2 paths of the testing
set in each iteration (detail described in Learning level estimated by the deep
neural network algorithm). A repeated measure analysis of variance
(ANOVA) was used to test the difference in the prediction accuracy of the
trained DNN across the three dimensionalities. A paired-sample t test was
used to compare thepathnumbers of the explorationandexploitation stages
categorized by the k-means algorithm. The significant level was set
at p < 0.05.

For the GLM analysis of the fMRI data, we performed a paired-sample
t test to test the differences in brain activations between the exploration and
exploitation stages, and a one-sample t test to test the effect of the learning
level and RA on the brain activation. A Gaussian random field (GRF)
correction was used to control for multiple comparisons. The significance
level was set at p < 0.05, with the cluster forming threshold at p < 0.001. A
repeated measures ANOVA was used to test whether the brain activation
modulated by the learning level was different among the three
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Fig. 4 | Brain regions associated with learning in abstract spaces. a Brain regions
showing significant differences in activation between the exploration and exploi-
tation stages.Warm (cold) colors stand for the contrast of exploration > exploitation
(exploration < exploitation). b Brain regions with the activation associated with
response accuracy. Warm (cold) colors stand for a positive (negative) association.
The color bar represents theZ-values. c Schematic for the representational similarity
analysis (RSA). The lower triangular matrix depicts a theoretical representational
dissimilarity matrix (RDM) where each element was the Euclidean distance (d)
between goals of different paths. The upper triangular matrix depicts a neural RDM,
with each element was the dissimilarity (1 - r) between two paths, where r is the

Pearson’s correlation coefficient. The neural RDM was constructed by calculating
the dissimilarity of voxel-wise parametric estimations within brain regions between
paths. The Spearman’s rank correlation coefficient (ρ) was then computed between
the theoretical RDM and the neural RDM. d Brain regions identified through voxel-
wise searchlight RSA in the whole-brain. Significant regions indicate improved
representation on destinations after learning. The color bar represents the Z-values.
The underlying statistical maps are available at https://identifiers.org/neurovault.
collection:16948. Abbreviations: HIP hippocampus, EC entorhinal cortex, OFC
orbitofrontal cortex, FP frontal pole, ACC anterior cingulate cortex, LOC lateral
occipital cortex, TP temporal pole, V1 primary visual cortex.
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dimensionalities. For the searchlight RSA, a paired-sample t test was used to
compare the destination representation between exploration and exploita-
tion stages. Threshold-free cluster enhancement (TFCE) was used to
identify the statistically significant cluster size (10,000 permutations) using
the family-wise error (FWE) method for multiple comparisons correction.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Behavioral performance in the scanner
Overall, the subjects’ performance improved as the task progressed in the
abstract spaces of each dimensionality (Fig. 2b and Table S3 in Supple-
mentary Information). From the LMM1 analysis, we found significantly
lower RApath in the early learning than late learning phase (t =−3.89,
p < 0.001). The LMM2 analysis showed significantly lower RApath in Set 1
than in Set 2 (t =−4.86, p < 0.001). No significant difference in RTpath was
found either between the early and late learning phases from LMM1
(t = 1.76, p = 0.079) or between Set 1 and Set 2 from LMM2 (t =−0.37,
p = 0.711). The detailed information is listed in Table 1.

The paths were divided into the exploration and exploitation stages
using a DNNmodel and a k-means algorithm. The DNNmodel showed a
significantly higher prediction accuracy than the chance level (t = 41.74,
p < 0.001, Fig. 3d), and therewereno significant differences in theprediction
accuracy across the three dimensionalities (F(2, 48) = 8.68, p = 0.134). Based
on the behavioral performance characteristics extracted by the DNN, the k-
means algorithm assigned 50.32% of the paths to the exploration stage
(24.84 ± 3.53), while the remaining 49.68%were assigned to the exploitation
stage (25.16 ± 3.53) (Fig. 3e and Table S2, Supplementary Information). At
the group-level, there were no significant difference in the number of paths
between the two stages for any of the three dimensionalities (1D: t =−0.92,
p = 0.365; 2D: t = 0.71, p = 0.485; 3D: t = 0.12, p = 0.903). From LMM3, we
found that RApath was significantly lower in the exploration stage than the

exploitation stage (t =−5.63, p < 0.001, Table 1). Additionally, the RTpath
was significantly larger in the exploration stage than the exploitation stage
(t = 2.06, p = 0.040). These results indicated the reasonability of separating
the paths into the exploration and exploitation stages.

Univariate analysis of the fMRI data
From the GLM1 analysis, we observed 13 clusters that showed significantly
stronger activation in the exploration stage than the exploitation stage
(Fig. 4a). The largest cluster was primarily located in the right HIP and
extended to the left HIP (peakMNI coordinates (x, y, z) = (28,−66,−16)).
The other clusters were located in the bilateral inferior frontal gyrus (IFG)
(left:−24, 2, 60; right: 42, 12, 28), bilateral insula (left:−36, 16, 0; right: 34,
20, 4), bilateral medial frontal gyrus (MeFG) (0, 20, 42), bilateral inferior
parietal lobule (IPL) (left: −58, −24, 32; right: 62, −32, 38), left middle
frontal gyrus (MiFG) (−42, 30, 18), right ventral anterior cingulate cortex
(ACC) (4, −2, 30), right thalamus (32, −14, −6), and bilateral cerebellum
(left: −16, -38, −48; right: 16, −72, −46). Furthermore, we identified two
clusters that showed significantly weaker activation in the exploration stage
than the exploitation stage. These clusters were located in the right posterior
cingulate cortex (PCC) (2, −48, 22) and in the right superior frontal gyrus
(SFG) (2, 56, 26). The detailed information about these clusters is listed in
Supplementary Data 2.

From the GLM2 analysis, we identified brain regions with activity
significantly associated with the learning level, which corroborated the
findings from theGLM1analysis (Fig. S5, Supplementary Information).We
detected 11 clusters showing positive association with the learning level.
These clusters encompassed the right HIP (28, −46, −8), bilateral MiFG
(left:−38, 30, 12; right: 24, 6, 46), bilateral insula (left:−26, 6, 0; right: 30, 20,
−8), left SFG (−18, −6, 50), left MeFG (−6, 12, 46), left postcentral gyrus
(PoCG) (−60, −28, 40), right IPL (56, −36, 18), and bilateral cerebellum
(left:−16,−38,−48; right: 18, −76, −48). Additionally, we identified two
clusters in the left MeFG (−2, 58, 10) and right PCC (4, −50, 24), with
negative association with the learning level. The detailed information about
these clusters is listed in Supplementary Data 3. No brain region showed
significantly different learning-associative activation across the three
dimensionalities.

From the GLM3 analysis, we observed seven clusters showing positive
associationwithRA (Fig. 4b). These clusters were located in the right lingual
gyrus (20, −84, 4), bilateral MiFG (left: −38, −6, 50; right: 28, −2, 48),
bilateral IFG (left:−46, 4, 32; right: 48, 10, 30), right thalamus (24,−26,−2),
and leftHIP (−20,−32,−2). In addition, we detectednine clusters showing
negative association with RA. These clusters encompassed the left ACC (4,
56, 4), bilateral IPL (left: 56, −28, 26; right: −66, −28, 22), right PCC (12,
−30, 44), left retrosplenial cortex (RSC) (−12, −58, 14), bilateral middle
temporal gyrus (MTG) (left: −58, −20, −10; right: 54, −2, −14), right
superior temporal gyrus (STG) (50, −62, 30), and right parahippocampal
gyrus (PHG) (26,−48, 12). The detailed information about these clusters is
listed in Supplementary Data 4.

RSA on the fMRI data
Using whole-brain searchlight RSA, we identified 14 clusters that showed a
significantlymore accurate representationof destinations in the exploitation
stage than the exploration stage (Fig. 4d). These clusters were located in the
bilateral entorhinal cortex (left:−16,−2,−22; right: 34,−2,−34), bilateral
cuneus (left:−4,−68, 8; right: 8,−86, 34), left inferior temporal gyrus (ITG)
(−54, −20, −36), right ACC (22, 34, 6), left frontal pole (−16, 64, 18),
bilateral SFG (left: −8, 54, 40; right: 22, 38, 24), bilateral OFC (left: −4, 70,
−8; right: 6, 36,−30), left IFG (-30, 32, -22), and right cerebellum (42,−82,
−30). The detailed information about these clusters is listed in Supple-
mentary Data 5.

Discussion
This study analyzed the subjects’ behavioral performance and revealed
different brain activation patterns during the exploration and exploitation
stages in the abstract spaces (Fig. 1). The subjects performed a navigation

Table 1 | Analysis of behavioral data in the scanner using linear
mixed effect models (LMM), with a sample size of 25 subjects

Response β Standard error t value p value

Response accuracy

LMM1 (early vs.
late learning)

−0.13*** 0.03 −3.89 <0.001

LMM2 (Set 1 vs.
Set 2)

−0.14*** 0.03 −4.86 <0.001

LMM3 (exploration
vs. exploitation)

−0.15*** 0.03 −5.63 <0.001

Response time

LMM1 (early vs.
late learning)

0.22 0.13 1.76 0.079

LMM2 (Set 1 vs.
Set 2)

−0.03 0.09 −0.37 0.711

LMM3 (exploration
vs. exploitation)

0.17* 0.08 2.06 0.040

LMM1 testedwhether the subjects had a higherRApath or a shorterRTpath in the late learning than in
early learning phases. LMM2 testedwhether the acquired knowledge about the abstract space can
be transferred into another abstract space with the same dimensionality. LMM3 tested whether the
subjects’ RApath and RTpath were significantly different between the exploration and exploitation
stages. The general form of the LMMwas given byY ¼ XLMMβþQγþ ε (Eq. 1), whereY, XLMM, and
Q represent the dependent variable, fixed effect factor, and the random effect factor, respectively;
andβ, γ, and ε represent thefixedeffect, randomeffect, and randomerror, respectively. InLMM1, the
dependent variable (Y) corresponded to the response accuracy (RApath) or response time (RTpath),
the fixed effect factor (XLMM) corresponded to the early and late learning phases, and the random
effect factor (Q) corresponded to the subject identity and spatial dimension. For LMM2 and LMM3,
the settings were similar to those of LMM1, except for the fixed effect factor, which was the space
index (Set 1 or Set 2) for LMM2 and the stage of the path (exploration or exploitation) for LMM3.
*p < 0.05; **p < 0.01; ***p < 0.001.
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task in five different abstract spaces during fMRI scanning (Fig. 2). We
conducted two LMM analyses to capture the subject’s behavioral perfor-
mance and found that the subjects achieved higher accuracy as the navi-
gation progressed (Table 1). To reveal the neural mechanisms supporting
this improvement in response accuracy, we separated the navigation paths
into exploration and exploitation stages by combining the DNN and k-
means algorithms (Fig. 3). Using a GLM analysis, we compared the dif-
ference in the brain activity between the two stages and found that (1) the
bilateral HIP, PFC, and visual cortex had significantly stronger activation in
the exploration than in exploitation and (2) thebilateralmedialOFCand the
RSC had significantly stronger activation in the exploitation than in the
exploration (Fig. 4a, GLM1). These differences were also related to the
learning level predicted by the DNN (Fig. S5, GLM2), but not related to the
dimensionalities. Activation in the bilateral HIP and visual cortex were
positively correlated to the response accuracy, while activation in the
bilateral OFC and RSC was negatively correlated to the response accuracy
(Fig. 4b, GLM3). Using the RSA method, we found that the bilateral OFC,
bilateral entorhinal cortex, and left HIP formmore accurate representation
to the navigational destinations in the exploitation than in the exploration
stage (Fig. 4d).

Regarding the learning in the abstract spaces, fromLMM1,wedetected
a higher path accuracy in the exploitation than the exploration (Table 1 and
Fig. S4), indicating that the subjects became familiar with the abstract space
as the task proceeded. This result indicates that subjects may refine their
maps of an abstract space as they explore from a first-person perspective.
This is consistent with previous observations in both physical and abstract
spaces23,24,49,50.

We detected a transfer learning effect across the navigation task in the
abstract spaces (Table 1 and Fig. S4). From LMM2, a higher path accuracy
wasdetected inSet 1 (S1Pand S2C) than inSet2 (S1C and S2P).This resultmay
indicate that the acquired information can be transferred from one space to
another space with the same structure, even though the spaces look entirely
different. This result is consistent with previous ones that showed that an
internal representation of a task structure (e.g., a solution of a problem)
could be transferred to a new situation when the structure was actually the
same even though the situations looked different51,52.

The navigation paths were separated into exploration and exploitation
stages using a combination of the DNN prediction model and the k-means
algorithm.The results showed an improvement in bothRApath andRTpath in
the exploitation than in the exploration stage (Table 1). This separation
outcome indicated the inseparability of exploration and exploitation in a
sequential manner, where an exploitation path may follow an exploration
path. These results align with the trade-off between exploration and
exploitation in reinforcement learning theory53. Exploration enables indi-
viduals to gather more information about the environment and ultimately
improve long-term performance.However, pure exploration strategiesmay
lead to prolonged uncertainty and inefficiency. Conversely, exploitation
uses existing knowledge and experience to efficiently select the currently
optimal choice for maximizing immediate rewards. However, relying solely
on exploitation may cause individuals to miss out on potentially better
alternatives54. Our results show that the exploration and exploitation are
intertwined during the learning process of abstract spaces.

Regarding the brain activation related to the learning, from GLM1
analysis, we observed distinct brain regions engaged in the exploration and
exploitation stages (Fig. 4a). In the exploration, the HIP, lateral PFC, insula,
thalami, IPL, and visual cortex showed significantly stronger activation than
in the exploitation. These regions likely form a network for mapping
abstract spaces during the exploration. Previous studies highlighted the
complementary roles of the PFC and HIP in learning and inference12,18,19,55

and constructing cognitive maps15,24,56. Additionally, the insula, visual cor-
tex, thalamus, and IPLwere implicated in various learningprocesses57–60 and
coupled with the PFC and HIP in explicit memory61–63.

In the exploitation, we observed stronger activation in the bilateral
mPFC, OFC, and RSC than in the exploration (Fig. 4a). In the exploitation
stage, individuals primarily need to compare sensory inputs to the memory

retrievedbasedon the formedmapof abstract spaces.ThemPFC is ahigher-
level brain region associated with outcome evaluation, goal planning, action
execution, and event prediction64,65. The OFC is involved in inference and
formation of cognitive maps in abstract spaces25,29, while the RSC plays a
major role in anchoring the cognitive map in mind to the actual environ-
ment and facilitating perspective shifts66,67. Furthermore, we found that the
brain regions significantly activated in the exploration and exploitation
stages, including theHIP, OFC, and RSC, were associative with the learning
level predicted by the DNN (GLM2, Fig. S5). This result further supports
their involvement in forming cognitive map in abstract spaces.

From GLM3 analysis, we also observed that activation in the HIP,
lateral PFC, and visual cortex positively correlated with response accuracy,
while activation in the OFC and RSC showed a negative correlation with
response accuracy (Fig. 4b). The HIP has been implicated in representing
distance to goals in both physical and abstract spaces10,49,68,69. The visual
cortex, alongwith the PHG, is involved in estimating distance70. TheOFC is
necessary for forming appropriate behavior-outcome associations71.

The HIP and OFC have been proposed as core regions for encoding
cognitive maps29. From three GLM analyses (Fig. 4), we found different
activation patterns of the HIP and OFC. The HIP exhibited greater
engagement in the exploration stage or a lower learning level, and its acti-
vation was positively associated with behavioral performance. The OFC
showed greater engagement in the exploitation stage or a higher learning
level, and its activation was negatively associated with behavioral perfor-
mance. These results indicated that these two regions may adopt different
roles in forming and representing a cognitive map. Previous studies sug-
gested that the HIP and OFC are involved in different aspects of a cognitive
map29,72,73. Our results indicated that the HIP may be responsible for
updating the map of spaces and the OFC for utilizing the map to make
inferences. In our recent study72, we also found that theHIPwas involved in
collecting and updating information, whereas the OFC was associated with
the relationships between agents in the environment.

During the goal-directed navigation in abstract spaces, we found that
several brain regions, including the HIP, entorhinal cortex, OFC, and LOC,
showed more accurate destination representations in the exploitation stage
than the exploration stage (Fig. 4d).Whensubjects navigated to destinations
of nearby locations, these brain regions displayed more similar activation
patterns in the exploitation stage. The HIP and entorhinal cortex are well-
established central regions for cognitive map-based navigation68,74,75. The
OFC was also found representing the future goals during spatial
navigation76, and cooperating with the HIP in forming cognitive maps73,77.
The LOC was suggested as the region for representing object identity,
encoding perceptual information of visual stimuli, and coding object
interaction78–80. Though the LOCwas not a typical brain region of cognitive
map, previous studies also found that the LOC was essential in processing
boundaries and navigational affordances81–83. These regions may be
involved in encoding and representing spatial information, including the
locations of destinations.

The following limitations of the current study should be addressed.
First, the abstract spaces used in the current study were constructed artifi-
cially, so they may not fully reflect the complex concepts in the real world.
We took measures to encourage the subjects integrating different dimen-
sional information during making decisions. Nevertheless, we cannot rule
out thepossibility that the subjectsmay consider the informationof different
dimensions separately. Second, the BOLD signal in the brain regions (HIP,
EC, andOFC) that we primarily focused on is sensitive to the fMRI settings,
such as hardware, multi-band acceleration factors of the gradient-echo EPI
sequence, BOLD sensitivity related to slice orientation and susceptibility
effect, and the resolution of the fMRI84–89.

The current study revealed the behavioral and neural patterns during
learning in abstract spaces. We found that the subjects showed better
behavioral performance as theyprogressed through thenavigationprocess in
multidimensional abstract spaces, indicating a potential refinement of the
internal representation of the abstract spaces. A brain network including the
hippocampus, lateral prefrontal cortex, and visual cortex showed stronger
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activation inexploration thanexploitation, and theactivationof these regions
were positively associative with response accuracy. Another brain network
including themedial prefrontal cortex, orbitofrontal cortex, and retrosplenial
cortex showed stronger activation in exploitation than exploration, and the
activation of these regions were negatively associative with response accu-
racy. The hippocampus, entorhinal cortex, and orbitofrontal cortex showed
more accurate representation to the navigational destinations with the
learning in the abstract spaces. These findings may help understanding how
our brain encode the encountered environments or problems.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request. Source data underlying
Figs. 2 and 3 are supplied in Supplementary Data 1. Statistical maps
underlying Fig. 4 are supplied at https://identifiers.org/neurovault.
collection:16948.

Code availability
The navigation task programs and data analysis codes are available at
https://github.com/YidanQiu/AbsNvg.git90.
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