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Prior evidence suggests that increasingly efficient task performance in human learning is associated
with large scale brain network dynamics. However, the specific nature of this general relationship has
remained unclear. Here, we characterize performance improvement during feedback-driven stimulus-
response (S-R) learning by learning rate as well as S-R habit strength and test whether and how these
two behavioral measures are associatedwith a functional brain state transition from amore integrated
to a more segregated brain state across learning. Capitalizing on two separate fMRI studies using
similar but not identical experimental designs, we demonstrate for both studies that a higher learning
rate is associated with a more rapid brain network segregation. By contrast, S-R habit strength is not
reliably related to changes in brain network segregation. Overall, our current study results highlight the
utility of dynamic functional brain state analysis. From a broader perspective taking into account
previous study results, our findings align with a framework that conceptualizes brain network
segregation as a general feature of processing efficiency not only in feedback-driven learning as in the
present study but also in other types of learning and in other task domains.

When humans are learning novel behaviors, they transition from a highly
controlled processing mode during initial rule acquisition towards a more
automatic processingmode associatedwith increasinglyfluent behavior1. In
human trial-and-error learning, the initial acquisition phase is dominated
by complex strategic rule extraction processes typically reflected by a
marked increase in response accuracy followed by a phase of rule con-
solidation at near-ceiling accuracy levels and decreasing response times2–4.
These behavioral learning-related changeshave been shown tobe associated
withwidespread changes in functional brain organization2,3,5–7. In particular,
analyses of functional brain network dynamics have revealed that the
learning-related transition from controlled to automatic processing modes
seems to be associated with increasingly segregated brain networks and a
close relationship between network segregation and learning rate, both on a
slow timescale8 and on a fast timescale7.

An influential theoretical framework has conceptualized the transition
from more controlled to more automatic processing modes as a transition
from goal-directed to habitual behavior. From this perspective, human
behavior is assumed to be initially goal-directed, involving the anticipation
of future outcomes, and an association is built between the response and the
outcome (R-O) in the respective stimulus context (S). With increasing

practice, however, behavior is assumed to become less and less governed by
outcome anticipation and instead becomes more and more driven by
stimulus-response (S-R) associations.9–12

To better understand how the transition from goal-directed beha-
vior into habitual behavior might be related to inter-individual differ-
ences in functional brain organization, our group has previously
developed a new experimental paradigm13 (Fig. 1). Specifically, subjects
learned novel stimulus-response (S-R) associations by trial-and-error
and practiced these for an extended period of time. This was followed by
a test phase during which the monetary outcomes associated with the
acquired habitual responses could no longer be obtained. Habit strength
was quantified by how strongly the acquired S-R associations interfered
with competing goal-directed actions (goal-habit competition test). More
recently, we have demonstrated that functional connectivity changes
involving the sensorimotor and the cingulo-opercular network (CON)
contributed most prominently to habit strength prediction14. However, it
still remains unclear how quickly goal-directed behavior transitions into
habitual behavior for different individuals and, most importantly, how
the transition speed is related to large-scale functional brain network
dynamics.
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To this end, the present study utilized network modularity analysis
as a method that enables us to characterize the balance between brain
network segregation and integration and reflects more directly the fun-
damental aspects of cortical and subcortical organization15–19. Indeed,
there is an emerging interest in understanding how modular brain
organization balances the network-level segregation and integration
states associated with changing task demands15,20–22. On the one hand,
previous research has shown that functional segregation (high mod-
ularity) is indicated by strong functional coupling within modules (i.e.,
communities) with little or no functional coupling across different
modules. On the other hand, functional integration (low modularity) is
indicated by globally strong functional coupling across different modules,
including strong information flow across different networks and their
mutual interconnections22,23. Moreover, it has been shown that dynamic
transitions between states of high integration and states of high segre-
gation are linked to different levels of attention24, cognitive
performance16,19, and also intelligence18. Network modularity analysis has
also been used to show that behavioral changes evolving over the course
of learning (e.g., indexed by learning rate) are associated with increas-
ingly segregated functional brain network organization8. But to date it
remains unclear how such brain state changes might be associated not
only with performance improvement during learning (i.e., learning rate)
but also with actual habit strength as assessed by the post-learning goal-
habit competition test. The goal of the present study was to examine both
aspects concurrently, with learning rate indicating how quickly indivi-
dual subjects are able to extract the new rules by trial-and-error and with
habit strength as a measure of how well the newly acquired rules were

being automatized through extended practice or, in other words, how
enduring the trained S-R associations are.

We proceeded in two steps. First, we tracked changes in brain network
segregation and integration during the goal-habit transition. The transition
between the two different brain states was quantified using dynamic sliding
window functional connectivity analysis19,25–27. For each time window, this
method estimates correlations between multiple brain regions over suc-
cessive time points, which are then clustered into sets of recurring patterns,
so-called dynamic connectivity states (DCS). Second, we investigated the
relationship between the individual transition rate of the two different brain
states (i.e., integrated vs. segregated states) and individual task performance
(learning rate and habit strength) as quantified via hierarchical drift-
diffusion modeling (HDDM)28. Importantly, to demonstrate the general-
izability and robustness of all our findings, we performed all the analyses
across two separate studies using similar (but not identical) experimental
designs anddifferent age groups.Wehypothesized that fast learnerswho are
characterized by reaching ceiling drift rate levels in a shorter period of time
than slow learners would exhibit a faster transition from a relatively inte-
grated brain state into a relatively segregated brain state. Moreover, we
examined whether this transition would also be related to post-learning
differences in habit strength.

Results
Learning rate
We applied HDDM28 to investigate the changes in drift rate across the
stimulus repetitions, which represents learning progress. Changes in aver-
ageddrift rate across subjectswere calculated to illustrate the overall increase

Fig. 1 | Experimental paradigm for study 1 with three consecutive phases. For the
dynamic functional brain state analysis, only data from phase 2 were used. The
purpose of phase 1 and phase 3 was to generate a behavioral index of ‘habit strength’.
a Examples of the instructed hierarchical associations between stimulus category,
response, and outcome (background color) used in phase 1 and two exemplary trials
from phase 1. In phase 1, goal-directed behavior was established: given a certain
stimulus category (artificial or natural), participants had to execute a certain action
(left or right key press) in order to change or maintain the background color (no

stimulus-specific associations could be learned). b Exemplary trials from Phase 2. In
phase 2, participants had to learn by trial-and-error stimulus-specific associations
with the two response options (‘habits’). In the approach condition, a correct
response was indicated bymonetary gain (study 1 only). In the avoidance condition,
a correct response was indicated by the absence of monetary loss (study 1 and
study 2). c Examples for compatible, incompatible trials in Phase 3. In phase 3, goal-
directed responses established in phase 1 were put into competition with responses
trained in phase 2 in order to probe individual habit strength.
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in drift rate during learning. As shown in Fig. 2, drift rate of study 2 reached
ceiling level before study 1. This reflects that the learning task was easier in
study 2 than in study 1. Posterior predictive checks showed good agreement
between the observed data and the data generated from the model poster-
iors, as shown in Supplementary Fig. 1.

To obtain a single parameter estimate that represents the learning rate
in each subject, the power function was fitted to each individual drift rate
curve29. The originally estimated exponent parameter of the power function
reflects the steepness of the drift rate curve, but counter-intuitively, smaller
values indicate a higher learning rate. Hence, to facilitate interpretability,
individual learning rate was defined as the negative exponent parameter
such that a larger learning rate value represents faster learning. Accordingly,
the learning rate in study 2 (M =−0.1141, Sd = 0.0555) was significantly
higher than in study 1 (M =−0.3769, Sd = 0.1602), as evidenced by the
Welch’s t test (t = 11.3097, p < 0.0001).

Habit strength
Paired t test were applied to examine the difference of individual drift rates
between the compatible and incompatible conditions for study 1and study2
separately. The results show that the drift rates in compatible conditions
were significantly higher than those in incompatible conditions in both
study 1 (M = 1.48, Sd = 0.53 and M = 1.35, Sd = 0.46 for compatible and
incompatible conditions, t (49) = 3.2864, p = 0.0019) and study 2 (M = 1.35,
Sd = 0.42 andM = 1.24, Sd = 0.44 for compatible and incompatible condi-
tions, t (92) = 3.1903, p = 0.0019) indicating a behavioral impact of the habit
acquired in phase 2.

Whole-brain modularity analysis
To assess the dynamics of integrated and segregated brain states during
goal-habit transition in a time-resolved manner, k-means clustering was
applied to the 20 (aswell as 10, see Supplementary Fig. 3) taperedwindowed
FC matrices. As shown in Fig. 3a, each matrix represents the centroid of a
cluster and putatively reflects a connectivity state stably present within the
data. Descriptively, within-network connectivity strength in state 1
appearedweaker than in state 2, such as in CONand default-mode network
(DMN), while the anticorrelation between different functional brain net-
works in state 2 appeared much stronger than in state 1, such as between
SMN and DMN or between CON and DMN. More specifically, system
segregation was higher in state 2 when compared with state 1 in both data
sets (Fig. 3b). Thus, brain state 1 was associated with the more integrated
statewhile brain state 2 was associatedwith themore segregated state. Once
we had determined the integrated and segregated brain states, we then
examined their prevalence as a function of time. For both data sets, the
prevalence of the segregated state increased during learning, necessarily

paralleled by a decreasing prevalence of the integrated state. Since only two
states were considered here, the sum of the prevalence of the segregated and
integrated brain states always equals 1 (Fig. 3c). The primary purpose of the
k-means clustering analysis is to identify the prevailing brain states elicited
during our task. Therebywe aimed to establish that our task is dominatedby
two antagonistic states reflecting a more integrated vs. a more segregated
brain state akin to the general pattern described before for other cognitive
tasks19. Moreover, we aimed to establish that the prevalence of these two
brain states is systematically changing across learning. Following this initial
descriptive analysis, we performed amore rigorous statistical analysis based
on the modularity-Q value30,31. This allowed us to properly quantify statis-
tically how functional segregation evolves across learning.

As expected, and also consistent with the prevalence results, the
modularity-Q value, which represents the degree of segregation, increased
significantly across learning as evidenced by one sample t tests on the beta
coefficients of a linear regression, both in study 1 (t (49) = 7.3624, p < 0.001)
and in study 2 (t (92) = 5.3465, p < 0.001). Across studies, themodularity-Q
value increase in study 1 was numerically stronger than in study 2
(t = 1.8583, p = 0.0656). As depicted in Fig. 4a, a lower slope of Q does not
reflect lower overall or final segregation, but rather a very early increase in
segregation. In fact, the study with the overall higher learning rate (study 2)
exhibited a higher modularity-Q value already in the earlier phase of
learning which was hence accompanied by a smaller slope of the
modularity-Q value as compared to study 1. In other words, a very steep
learning curve (as in study 2) was associated with less additional increase in
brain network segregation across training. As reported in the next section, a
converging pattern was also revealed when analyzing the relationship
between the Q value time course and individual learning rate within
each study.

Relationship between the dynamics of network segregation and
behavior
Pearson correlation coefficients were calculated between the change in
network segregation (slope of the modularity-Q value) and learning rate in
phase 2 and habit strength in phase 3. We found a significant negative
correlation between the learning rate and slope of themodularity-Q value in
both study 1 (r =−0.3318, p = 0.0174) and study 2 (r =−0.2478, p = 0.016)
(Fig. 4b, c), which again indicated that the subjects with a higher learning
rate were the subjects who were faster in transition from a more integrated
into a more segregated brain state, therefore, showing less increase in seg-
regation across training.

To provide a more easily interpretable representation of this rela-
tionship, we performed a complementary analysis that compared the time
courses of themodularity-Qvalue for different groups of subjects defined by

Fig. 2 | Changes in averaged drift rate across
subjects during habit learning (thick lines) toge-
ther with individual drift rate curves (thin lines).
Repetition in x axis denotes the number of occur-
rences of each stimulus.
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a median split according to individual learning rate (Fig. 4d, e). This shows,
for both studies, that the group of subjects exhibiting a higher individual
learning rate exhibited a smaller (additional) increase in segregation (i.e., a
smaller slope of themodularity-Q value) across learning since they achieved
a higher modularity-Q value and higher performance levels already in the
earlier learning phase. As suggested by visual inspection of Fig. 4d, e, net-
work segregation seems to happen earlier for quicker learners (and for the
easier task, see Fig. 4a). To confirm this statistically, we averaged ‘early
modularity values’ from sliding windows 1–3 and correlated it with both
learning rate and habit strength. Therewas a significant correlation between
the early modularity values and learning rate in study 2 (r = 0.2961,
p = 0.0019, one-tailed) and also in study 1 (r = 0.2548, p = 0.0355, one-
tailed). However, and again as in the primary analysis, we did not find a
significant correlation between the early modularity values and habit
strength neither in study 1 (r = 0.1192, p = 0.4049) nor study 2 (r = 0.0151,
p = 0.8853).

In addition, no significant correlations were observed between the
slope of the modularity-Q value and habit strength in both study 1
(r =−0.1955, p = 0.1737) and study 2 (r = 0.0288, p = 0.7852). Refer to
Supplementary Fig. 4 for similar results based on habit strength defined by
the RT-based compatibility effect (higher compatibility effect indicated
stronger habit strength).

Individual functional brain networks
While the modularity analysis described above demonstrated that the seg-
regation of thewhole-brain systemwas gradually increasing across learning,
we also observed that the degree of segregation and integration varied
between different functional brain networks. As shown in Fig. 5, the DMN
exhibited an increasing segregation accompanied by a decreasing integra-
tion, which is consistent with the result of the whole-brain system

modularity analysis. This was evidenced by a positive value of the slope of
the module-degree Z (MDZ) score (y axis) paralleled by a negative value of
the slope of the participation coefficient (x axis). By contrast, different from
most other functional brain networks, the fronto-parietal network (FPN)
exhibited a decreasing segregation accompanied by a stable integration
across learning. This was evidenced by the negative value of the slope of
MDZ score (y axis) while the slope of the participation coefficient (x axis)
remained close to zero. Statistically, one sample t tests conducted on each
individual functional brain network with FWE-correction demonstrated
that the decreased segregation of the FPN, the increased segregation of the
DMN as well as the decreased integration of the DMN were significantly
different from zero in both studies (SupplementaryTable 1). In addition, we
also observed a decreased integration of the salience network (SN) in both
studies, and a decreased segregation of the auditory network and ventral
attention network but only in study 1 (Supplementary Table 1). We finally
correlated the individual learning rate aswell as the individual habit strength
score with the integration and segregation coefficients of those individual
brain networks that were identified to exhibit significantly changed coeffi-
cients across learning. Importantly, we found a significant negative corre-
lation between the increased segregation of DMN and the learning rate in
both study 1 (r =−0.2959, p = 0.0390, uncorrected) and study 2
(r =−0.2234, p = 0.0314, uncorrected). No significant correlations were
found regarding habit strength (all p > 0.633).

Discussion
In the present paper, we characterized howmodular brain organization re-
balances network-level segregation and integration during the transition
from more goal-directed to more habitual behavior. We found that in the
initial learning phase, which is supposed to be governed by goal-directed
control, the whole-brain network was more integrated with globally strong

Fig. 3 | Dynamics of brain states during learning in phase 2. a Cluster centroids
derived from k-means analysis in study 1 and study 2 are shown as connectivity
matrices; b whole-brain system segregation computed from cluster centroid
matrices. The histogram represents study 1-state 1, study 1-state 2, study 2-state 1,

and study 2-state 2 from left to right separately, and the color index is the same as in c;
c changes in frequency of the occurrence of integrated (state 1) and segregated brain
(state 2) states during learning in study 1 and study 2.
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functional coupling across different modules. However, across learning, the
whole-brain network became more segregated, as reflected by an increased
modularity-Q value. Furthermore, the transitional speed from more inte-
grated to more segregated brain states was correlated with the individual
behavioral learning rate but not with the habit strength. This suggests that
brain modularity dynamics, as assessed here, are associated with perfor-
mance improvement speed early during trial-and-error learning rather than
with continuously evolving training-related habit strengthening as assessed
by the goal-habit competition test. The primary aim of the current paper is
not to identify potential neural differences between Study 1 and Study 2.
Instead, we aimed to identify brain state transitions underlying S-R learning
that generalize across studies. That is common learning-related brain state
changes that are independent of study-related differences in task difficulty,
gender distribution, and age range.

Whole-brain modularity changes
In the field of human learning, the present results resemble previous find-
ings from studies investigating learning either on a much slower timescale8

or on amuch faster timescale7. Both studies reported increasingly segregated
brain networks over the course of learning and significant relationships

between network segregation and learning rate. The key difference between
those previous studies and the present study relates to the type of learning.
Both previous studies examined ‘task automatization’ of fully known task
rules involving either long-term motor skill consolidation related to repe-
ated implementation of the same motor sequence8 or short-term con-
solidation of newly instructed stimulus-response rules7. Hence, in both
studies, learning progress was behaviorally reflected by increasingly shorter
response timeswhile accuracy levelswere close tooptimumalready fromthe
outset and increasing network segregation was associated with response
time-related learning rate. By contrast, in the present study, novel task rules
had to be established in the first place via trial-and-error learning. In turn,
learning progress was reflected by the increasing drift rate, which is more
closely related to the traditional measure of performance accuracy rather
than response times32,33, and this was associated with increasing network
segregation (please refer to Supplementary Fig. 5 for the correlation results
derived from performance accuracy). Moreover, different from previous
studies, thepresent study allowedus to compare functional networkchanges
associated with trial-and-error learning under different task difficulties (8
S-R rules in study (1) vs. 4 S-R rules in study (2). The crucial observationwas
that despite very different mean learning rates in the two studies (higher

Fig. 4 | Correlation between the dynamics of segregated network state and
behavior. a Changes in mean modularity-Q value across all subjects in each single
study; correlation between the learning rate in phase 2 and the slope ofmodularity-Q
value in study 1 (b) and study 2 (c); changes in mean modularity-Q value for high
learning rate and low learning rate subgroups for study 1 (d) and study 2 (e). The

shaded area represents the 95% confidence interval, and each individual data point
represents one single subject. To facilitate interpretability, the individual learning
rate was defined as the negative exponent parameter of the fitted power function
such that a larger learning rate value represents faster learning.
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learning ratewas associatedwith the easier learning task), we still found that
increasing functional network segregation was commonly associated with
inter-individual differences in learning rate. More specifically, in both our
studies, the transitional speed from a more integrated to a more segregated
network state was related to the individual learning rate such that indivi-
duals exhibiting a faster brain state transition (the individualswho reached a
more strongly segregated network state earlier, and hence showed less
additional increase in segregation across training) were learning faster than
individuals exhibiting a slower brain state transition.

On a more general level, our current findings are consistent with
previous studies which suggested that network segregation was lowest
(while integration was highest) during high-demanding tasks, such as an
n-back task, when compared with less demanding tasks, such as a simple
motor task or resting state15,16,19–22,34. Results like this are in line with the
Global Workspace Theory by demonstrating that less demanding, highly
automated/habitual tasks can be performed within segregated modules,
while more challenging controlled/goal-directed tasks require the integra-
tion between multiple modules16,23,35.

Together, it seems that our current finding of increasing learning-
related network segregation reflects a general phenomenon not only com-
mon to various types and timescales of learning but also appears to bemore
prevalent in less demanding task conditions. However, it should be noted
that despite the common finding of increased network segregation with less
demanding task conditions across a variety of different experimental
paradigms, future studies need to examine potential differences in themore
fine-grained structure of these connectivity changes that might potentially
reveal differences depending on paradigm-specific task affordances. This
can only be achieved by directly statistically comparing network changes
across paradigms on the level of individual functional brain networks.

Network-specific modularity changes
Default-mode network. Regarding the present study, when considering
different functional brain networks individually, the DMN emergesmost
prominently in our dynamic network analysis. Traditionally considered a
‘task-negative’ functional network, the DMN normally exhibits high
activity during internally oriented processing, such as mind
wandering36–39, and was anti-correlated with the activity of systems that
engage in demanding cognitive tasks, such as the FPN and dorsal
attention systems16,40–43. Previous studies have shown that the modularity
of the DMN increased across working memory training16,34. Consistent

with that, in the present study, the modularity of the DMN increased
significantly across learning, with stronger positive intra-network con-
nectivity paralleled by stronger negative inter-network functional con-
nectivity (Fig. 3a).

Fronto-parietal network. In contrast to the DMN findings that resem-
bled whole-brain network connectivity changes, the FPN showed a dif-
ferent pattern. The FPN, which is considered to comprise flexible hub
regions involved in high-level cognitive control44–46, demonstrated
decreasing modularity across learning in the present study. These results
are consistent with previous studies, which demonstrated a positive
correlation between FPN activation and S-R rule difficulty47 as well as
between the within-network functional connectivity strength of the FPN
and working memory load48. In Repovs et al., the within-module func-
tional connectivity was lower for lower working memory load/task dif-
ficulty, which might suggest that simpler tasks require less coordination
and communicationwithin the FPN.Applied to the present study results,
this implies that the learning-related decrease in FPN segregation reflects
the reduced requirement for communication within the FPN due to
reduced cognitive control demands when the task becomes more auto-
matized. All this evidence suggests that the more cognitively demanding
the task, the stronger the activation of FPN as well as the within-FPN
functional connectivity. Moreover, previous studies focusing on the local
activity level have found a decreasing activation within the FPN during
instruction-based learning and other types of learning6,49,50. This might
suggest that the high-level computations of correct responses derived
from FPN were only necessary at the early learning phase7, but with
increasing practice, high-level control of abstract S-R representations and
general guidance by the FPN was needed to a lesser extent44,51,52.

In summary, the current study provides important new insights into
how inter-individual differences in trial-and-error learning are related to
brain state dynamics. Replicated across two independent data sets, we
demonstrated a transition from a more integrated brain state to a more
segregated brain state during the goal-habit transition. Crucially, the
faster this transition proceeded, the quicker the learning of novel
stimulus-response associations proceeded, as evidenced by the significant
correlation between the changes in brain modularity and learning rate. In
contrast, we did not observe a relation between changes in brain mod-
ularity and habit strength. We also failed to find a significant correlation
between learning rate and habit strength (r = 0.0149, p = 0.9172 in study
1 and r = 0.054, p = 0.6049 in study 2). Together with the significant
correlation results between early modularity values and learning rate, this
again suggests that learning rate indicates how quickly individual subjects
are able to extract the new rules by trial-and-error. This contrasts with
the absence of a significant correlation between early modularity values
and habit strength as a measure of how well the newly acquired rules
were being automatized through extended practice or, in other words,
how enduring the trained S-R associations are. This exclusive link
between brain network modularity dynamics and learning speed nicely
demonstrates that profound changes in global network organization can
occur rapidly already during the initial phase of rule extraction. In
contrast and maybe counter-intuitively, the arguably more profound and
more enduring impact of training on behavior as indexed by habit
strength does not seem to leave a measurable trace on global network
segregation. Importantly, this does, of course, not exclude the possibility
that other neural indices might be associated with behavioral indices of
habit formation. For example, previous research found that training-
related brain activity changes in angular gyrus13 and head of caudate53

were associated with habit strength. Connectivity-wise, from our pre-
vious research, we found that the functional connectivity changes
involving the sensorimotor and the CON contributed most prominently
to habit strength prediction14. In addition, Mill et al. found that the
geometry of neural representations changes, originating in the subcortex
(hippocampus and cerebellum) and slowly spreading to cortex to support
a transition from novice to practiced performance54. Moreover, by

Fig. 5 | Functional cartography of individual functional brain networks. Each
brain network is represented in a position defined by its averaged slope value of
segregation and integration coefficients across subjects. CON cingulo-opercular
network, SMN sensorimotor network, DAN dorsal attention network, SUB sub-
cortical network, VAN ventral attention network, SN salience network, FPN fronto-
parietal network, DMN default-mode network.
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applying representational similarity analysis, Tambini et al. found that
the specific hippocampal representations emerge early, followed by both
specific and schematic representations at a gradient of timescales across
hippocampal-cortical networks during the longitudinal memory repre-
sentation task55.

We believe there are good reasons to argue that increased segregation
observed in our study mainly reflects learning-related changes in task dif-
ficulty/automatization rather thanmore unspecific effects merely related to
the passage of time, as would be the case during resting state studies. Spe-
cifically, brain state transitions in resting state studies seem to follow dif-
ferent patterns than we observed in the present study. One previous study
found that the prevalence of segregated vs. integrated states during resting
was fluctuating over time but there was no systematic trend in one or the
other direction like in our study19. Moreover, another study found that
segregation actually decreased across resting state scanning25. This is the
opposite direction than in the present study and in other learning studies7,8.
Moreover, a resting state study that involved sleep deprivation demon-
strated that different arousal states were indeed associated with different
brain states56. However, this association was opposite to what would be
expected if our own present results were driven by hypothetical changes in
arousal being confounded with progress in learning (i.e., high arousal in the
beginning associated with a more integrated state vs. low arousal in the end
associated with a more segregated state). Specifically, inWang et al. (2015),
the low arousal state was associated with amore ‘integrated’ brain state with
reduced within-network functional connectivity of default mode and dor-
sal/ventral attention networks, as well as reduced anticorrelation between
these networks. In contrast, the high arousal state was associated with the
more ‘segregated’ brain state withmore decoupling between theDMNs and
higher-order cognitive networks that included dorsal/ventral attention
networks56. To conclude, in light of previously published resting state
studies19,25,56 as well as previous studies on learning7,8, our present observa-
tionof increasednetwork segregationacross learning seemsmost likely to be
related to progress in learning, not least suggested by the significant asso-
ciation with learning rate.

There is still one limitation we should bear in mind when computing
the functional connectivity, that is, the strategy for regressing out the average
task-related activity. Cole et al.57 found that finite impulse response (FIR)
basis functions might be a better choice than others for removing the
potential influence of mean task-related co-activations from estimates of
connectivity. Further studies might consider using FIR or other more
flexible basis functions like Fourier sets as theprimarymethod for regressing
the mean task activity when computing the task-based functional
connectivity.

More generally speaking, our present findings are in line with the
notion that increasing network segregation might be a common con-
sequence of more efficient task performance not only in feedback-driven
learning but also in different types of learning and task domains other than
learning. An important next step for future studies will be to examine the
more fine-grained structure of these large-scale network changes in order to
disentangle potential domain-specific and domain-general aspects asso-
ciated with differences in task efficiency.

Methods
Study 1
Participants. After excluding three subjects from further analyses due to
excessive head movement (see “fMRI preprocessing” for more details),
fMRI data offifty subjects (28 females, 22males;mean age: 23 years, range
19–31 years) were re-used from our previous study13. All subjects were
right-handed, neurologically healthy, had normal or corrected vision,
and normal color vision. The experimental protocol was approved by the
Ethics Committee of the Technische Universität Dresden. All subjects
gave written informed consent prior to taking part in the experiment, and
they were compensated with 8€ per hour in addition to the money they
gained during the experiment. All ethical regulations relevant to human
research participants were followed.

Experimental procedure. The experimental paradigm consisted of
three consecutive phases. During the first phase (goal-directed training),
which was performed outside of theMRI scanner, goal-directed behavior
based on hierarchical S-R-O associations was established. During the
second phase (habit induction), which was performed inside the scanner,
subjects were required to learn novel responses to gain monetary reward
or to avoid monetary loss for a subset of the stimuli already used in the
first phase. The training was continued beyond asymptotic performance
levels in order to further strengthen habitual S-R associations by over-
training, during which each stimulus was repeated 98 times. Finally,
during the third phase (goal-habit competition), which was also per-
formed inside the scanner, monetary outcomes associated with habitual
responses putatively established in phase 2 could no longer be obtained,
and habitual responding and goal-directed actions established in phase 1
were put into competition to measure the habit strength developed in
phase 2. In the current study, we utilized and analyzed fMRI data from
phase 2 (goal-habit transition) and behavioral data from phase 2
(learning rate) and phase 3 (habit strength during goal-habit
competition).

Phase 1 (goal-directed training). The purpose of phase 1 was to
establish hierarchical S-(R-O) associations where the correct response
upon a given stimulus category depended on the outcome to achieve.
Hence, no stable associations between stimuli and responses (i.e., no S-R
habits) could be learned. Ten stimuli were grouped into five “artificial”
and five “natural” stimuli (natural stimuli: tree, snowflake, cow, mush-
room, lungs; artificial stimuli: scissors, computer mouse, car, cupboard,
ball). Responding to a stimulus from one group of stimuli (e.g., artificial)
with the right key led to a blue outcome color, and responding with the
left key led to an orange outcome. This R-O association was inverted for
the other group of stimuli (e.g., natural), such that pressing the right key
led to an orange outcome and pressing the left key led to a blue outcome.
Phase 1 comprised 240 trials and each trial started with the presentation
of a cue containing either the German words for “change” or “maintain”.
This word was framed by a colored square displaying the present out-
come color that was produced in the previous trial. The subjects’ task was
to press the key that would either change or maintain the current out-
come color for the associated category the currently displayed stimulus
belonged to. For a more detailed description, see Zwosta et al.13.

Phase 2 (goal-habit transition). The purpose of Phase 2 was to enable
the formation of S-R habits for a subset of the stimuli already used in
Phase 1. Eight of the ten stimuli (four artificial and four natural stimuli)
were re-used fromphase 1. In the beginning, subjects were instructed that
the categories of the stimuli were now irrelevant and that they had to find
out the correct key for each of the eight stimuli individually by trial and
error. For both categories, each of the four stimuli belonging to one
category was associated with one of the four combinations of correct
responses (left or right) and outcome types (approach or avoidance).
Subjects were also explicitly told that for four of the stimuli, the correct
response would allow them to gain points, while for the other four sti-
muli, the correct response would allow them to avoid losing points.
Rewards were+10 points printed in green color, punishments were−10
points printed in red, and outcomes of 0 points were printed in black. If
subjects failed to execute any response during the response window, they
also received an unfavorable outcome, i.e., they lost 10 points (“−10”) in
avoidance trials and gained zero points (“0”) in approach trials. Trials in
phase 2 were clustered into seven task blocks with 112 trials each (14 per
stimulus). Hence, the whole phase 2 consisted of 784 trials (98 per
stimulus).

Phase 3 (goal-habit competition). Prior to phase 3, subjects were
instructed that they could no longer gain or lose any points, and thereby,
the contingency between stimulus, response, andmonetary outcome was
removed. Hence, any tendency to continue to perform the trained
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response established in phase 2 should not bemotivated by aiming to gain
reward or avoid loss but should be based on habitual responding instead.
Phase 3 had 384 trials, and each trial startedwith afixation cross, followed
by a colored frame (cue), which was either one of the two outcome colors
(blue and orange) previously introduced in Phase 1 or a new third color
(purple) indicating free-choice trials. If the frame was blue or orange,
then subjects were required to press the response that would lead to this
particular outcome color for the displayed stimulus according to the R-O
contingencies introduced in phase 1 (goal-directed trials). If, however,
the frame was purple, then subjects could freely choose one of the two
responses (free-choice trials). We were interested in two different trial
categories: (1) trials for which the trained response towards the stimulus
was identical to the required goal-directed response either because it had
previously been rewarded or not punished (compatible condition, 96
trials in total). (2) trials for which the trained response did not match the
required goal-directed response (incompatible condition, 96 trials in
total). The habit strength was computed as the response time difference
between the incompatible and compatible conditions.

Study 2
The original purpose of study 2was to investigate the potential difference in
goal-habit transition between healthy controls and anorexia nervosa
patients. In the current study, only the participants of the healthy control
group were included.

Participants. After excluding two subjects from further analyses due to
excessive head movement (see “fMRI preprocessing” for more details),
fMRI data of ninety-four subjects (all females, mean age: 19 years, range
12–30 years) were re-used in the current study.

Experimental procedure. The experimental procedure in study 2 dif-
fered from the experimental procedure in study 1 such that (1) instead of
the original two conditions, “approach” and “avoidance” in phase 2, we
only used the avoidance condition; (2) instead of 10 stimuli, we reduced
the number of stimuli to 6 (3 “artificial” and 3 “natural”) and con-
sequentially the total number of trials in each phase: phase 1 consisting of
132 trials (240 in study 1), phase 2 consisting of 392 trials (784 in study 1)
and phase 3 consisting of 112 trials (384 in study 1); (3) we replaced
stimuli associated with food (mushroom, cow) to prevent an adverse
reaction by the anorexia nervosa patient group (which was not part of the
present analysis). To this end, we used stimuli depicting a sun, a tree, and
a flower for the natural category and a scissor, a car, and a ball for the
artificial category.

Statistics and reproducibility
Behavioral analysis
Learning rate. A drift-diffusion model was applied to identify the condi-
tional drift rate (v) corresponding to the rate of evidence accumulation for
each roundof stimulus repetition across learning for each subject. The faster
the drift rate increases, the quicker learning proceeds. Compared with the
mere analysis of accuracy or reaction time, the drift rate model is based on
the premise that reaction time and response output can be decomposed into
parameters reflecting the latent cognitive processes driving task
performance58. This model provides a parsimonious account of complex
behavioral phenomena, including response latency distributions59 as well as
speed-accuracy trade-offs60.

Consistent with previous research on deterministic learning proce-
dures similar to ours61,62, the current study analyzed the behavioralmeasures
with HDDM28. This choice was made mainly based on the reason that
HDDM assumes that participants are random samples drawn from group-
level distributions, and uses Bayesian statistical methods to simultaneously
estimate parameter distributions at both the group level and the individual-
participant level28,63. Therefore, compared with alternative diffusion fitting
routines (e.g., fast-dm, EZ-dm, or DMAT), HDDM optimizes the trade-off
betweenwithin and between subject random effects. It accomplishes this by

accounting for both within-subject variability and group-level similarities.
Individual parameters in HDDM are constrained by a group-level dis-
tribution but can vary from this distribution to the extent that their data are
sufficiently diagnostic64,65.

To examine changes in key parameter estimates across learning in
phase 2 of the experiment, two parameters, mean drift rate (v) and decision
threshold (a),were allowed to varyacross the98repetitionsof eight (study1)
or four (study 2) different stimuli61,62. The non-decision time (ter) and
starting point (z) were estimated at the subject- and group levels, while
variance parameters (variance in drift, sv, non-decision time, st, and starting
point, sz) were estimated only at the group level. Data were accuracy-coded,
such that the upper threshold (a) of the model corresponded to a correct
choice, whereas the lower bound (0) corresponded to errors. We generated
10,000 samples from the joint posterior distribution of allmodel parameters
by using Markov chain Monte Carlo methods66. The initial 1000 samples
were discarded as burn-in to minimize the effect of initial values on the
posterior inference (seeWiecki et al.28 formore details of the procedure). To
ensure model convergence, we inspected traces of model parameters and
their autocorrelation to check that therewere nodrifts or large jumps,which
would also suggest non-convergence. To further evaluatewhether themodel
fits to the data, we ran posterior predictive checks by averaging 500 simu-
lations generated from the model’s posterior to confirm it could reliably
reproduce patterns in the observed data64,65,67.

Finally, a single learning rate parameter was determined for each
subject based on the conditional drift rate across 98 stimulus repetitions
during learning, averaged across eight (study 1) or four (study 2) different
stimuli. More specifically, the learning rate was considered as the negative
exponent parameter that was determined by fitting the one-term power
function to the averaged conditional drift rates with the logarithm of the
number of stimulus repetitions as an independent variable8. The fitting was
achieved using a robust outlier correction in MATLAB (using the function
“fit.m” in the Curve Fitting Toolbox with the option “Robust” and type
“Lar”)8.Welch’s t test was applied to examine the differences in the learning
rate between the two studies.

Habit strength. HDDM was applied again in phase 3 with the same
procedure as for the learning rate of phase 2 to identify the individual drift
rate corresponding to the rate of evidence accumulation for compatible
and incompatible conditions. Paired t test was then applied to examine
the potential drift rate difference between the two conditions. The indi-
vidual compatibility effect was further considered as an indicator of habit
strength, reflecting the impact of the trained habits on goal-directed
behavior, and computed as the drift rate difference between the com-
patible and incompatible conditions. The compatibility effect of one
subject was identified as an abnormal value (three standard deviations
above the mean) in study 2, and this subject was hence discarded from
further analysis. Our previous studies13,14 computed the habit strength as
the response time difference between the incompatible and compatible
conditions. However, for consistency with the calculation of learning
rate, habit strength was also based on the drift rate derived from HDDM
in the current study. Please refer to the Supplementary Fig. 4 for the
results based on response times.

fMRI data analysis
MRI scanning. MRI data were acquired on a 3 T Siemens whole body
Trio System (Erlangen, Germany) equipped with a 32-channel head coil.
Ear plugs dampened scanner noise. Structural images were acquired
using a T1-weighted sequence (TR = 1900 ms, TE = 2.26 ms,
T1 = 900 ms, flip = 9°) with a resolution of 1 mm × 1mm× 1mm.
Functional images were acquired using a gradient echo-planar sequence
(TR = 2000 ms, TE = 30 ms, flip angle = 80° in study 1; TR = 2070 ms,
TE = 25 ms, flip angle = 80° in study 2). Each volume contained 32 slices
(4 mm, 20% gap) that were measured in ascending order in study 1,
whereas 36 slices (3.2 mm, 20% gap) were measured in descending order
in study 2.
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fMRI preprocessing. Data preprocessing was performed with SPM12
running inMatlab 9.5. The same processing steps were applied to study 1
and study 2 which included the following steps: discarding the initial 3
volumes; slice timing correction; motion correction; co-registering the
T1-weighted images to the mean functional images and segmenting it
into gray matter (GM), white matter (WM) and cerebrospinal fluid
(CSF); spatial normalization (3 mm resolution); nuisance regression
which included the original six motion parameters, average signals in
WM, CSF masks and their expansions (the first-order temporal deriva-
tive, as well as their squares and squared derivatives) as well as the whole-
brain signal; spatial smoothing (6 mm FWHM).

In order to improve the test-retest reliability68 and to reduce spurious
correlations between different brain regions in task-based functional con-
nectivity analyses, the average task-related activity was regressed out57. To
this end, we performed the single-subject GLM analysis to obtain the resi-
dual timeseries for each subject which were then used for further functional
connectivity computation. Learning trials were assigned to the correct
approach or avoidance and error trials (irrespective of approach and
avoidance) in Study 1 and correct avoidance and error trials in Study
2 separately. To appropriately capture BOLD activation, we used Fourier
basis set regressors, including 14 different sine-wave regressors spanning
30 s, which were time-locked to the onset of the learning trials. After that,
only for study 1 (no voluntary break in study 2), breaks between task blocks
were also included as regressors with an additional GLM, the break-related
regressors were based on the standard hemodynamic response function of
SPM12 and convolved with the duration of breaks which varied con-
siderably. With each subject-specific GLM, the high-pass filter was set to a
cutoff of 128 s in SPM12, and estimated with ordinary least squares (that is,
AR (1) off).

Since even small head motion can confound functional connectivity
analyses, subjects with spike events, diagnosed as the frame-wise displace-
ment over 0.2mm in >20% of the fMRI data samples, were excluded from
further analysis. Three subjects in Study 1 and two subjects in Study 2 were
excluded. In addition, we also tested whether headmovement artifacts were
responsible for individual differences in brain state dynamics. No correla-
tion was observed between themeasures of headmovement artifacts (mean
relative and max absolute head displacement) and the slope of modularity-
Q value from themodularity analysismentioned below for both study 1 and
study 2 (all p value > 0.05).

Dynamic functional connectivity. The signals across all voxels within
each ROI were averaged and Fisher z-transformed for the functional
connectivity analysis. The dynamic functional connectivity across the
refined 227 Power nodes7,51,69 associated with 10 different functional net-
works was then calculated using 20 exponentially tapered sliding windows
without overlap in study 1 and half-window overlapping in study 2. The
duration of the sliding windows and overall duration are slightly different
among subjects depending on their individual response speed. There were
784 and 392 learning trials in Study 1 and Study 2. The average number of
scans across subjects is 1366.92 in study 1 and 655.09 in study 2, since the
whole task was divided into 20 non-overlapping windows in study 1 and 20
overlapping windows with half-window step in study 2. We chose over-
lapping windows in study 2 to obtain the same number of windows as well
as duration of windows as in study 1, considering that timeseries were only
half as long as in study 1. The average duration of the sliding window is
68.35 scans in Study 1 and 65.51 scans in Study 2. To make sure that our
results are independent of the arbitrary choice regarding number, overlap,
and length of the sliding window, we repeated the analyses using 10
tapered sliding windows without overlap. This supplementary analysis
showed similar results as the original analysis in both data sets (Supple-
mentary Fig. 3). Please refer to Pozzi et al.70 for the codes of exponentially
tapered sliding windows analysis.

Tapering provides better suppression of spurious correlations and
may reduce sensitivity to outliers and was defined by the weight vector
wt =w0 e

(t−T)/θ, t = 1,…, T, and w0 = (1−e−1/θ)/(1−e−T/θ). The parameter t

is the tth time point within the sliding window, N is the sliding window
length, and the exponent θ controls the influence from distant time
points. θ was set to a third of the window length, consistent with previous
studies26,70,71. We then constructed a functional connectivity matrix by
computing the weighted Pearson correlation between timeseries of any
two nodes xt and yt for each time window, and finally Fisher
z-transformed the resulting weighted Pearson correlation matrix for the
subsequent analyses:

rw ¼
PT

t¼1 wt xt � �x
� �ðyt � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 wt xt � �x

� �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1 wt yt � �y
� �2

q

where �x =
PT

t¼1
wtxt

T and �y =
PT

t¼1
wtyt

T .

K-means clustering. A k-means clustering algorithm was applied to all
windowed connectivity matrices (subjects × windows) using city block
distance as the similarity measure. Since the current study focused on the
integrated and segregated brain state transition from goal-directed to
habitual behavior, as done in previous studies19,72, the number of states/
clusters (k) was set to two, and each connectivity matrix window was
assigned to one of two states. Clustering was repeated 10 times with
random initialization of starting centroid locations. Here we chose a two-
state k-means solution mainly for two reasons. First, previous studies
have demonstrated that cognitive processes are mainly driven by two
antagonistic brain states (i.e., integrated and segregated), and the pattern
of brain states identified at different k values was highly similar to the
pattern identified for k = 219. Since themajor purpose of the current study
was to investigate the evolution of these two antagonistic brain states
during feedback-driven stimulus-response (S-R) learning, we set k = 2 as
an a-priori choice here. Second, based on our current data we confirmed
for both studies that k = 2 was a reasonable choice compared to alter-
native k > 2 solutions. Most importantly, the k = 2 solution resulted in
one more integrated state and one more segregated state, respectively.
Moreover, the relative prevalence of both states changed with learning
(Fig. 3). Please refer to Supplementary Fig. 2 for more detailed quanti-
tative information regarding alternative clustering solutions25,73.

The system segregation15,74 of each resulting FC cluster centroid was
computed to examine the relative strength of within-network connectivity
compared to between-network connectivity of the two different brain states
derived from k-means:

system segregation ¼ 1� �zb
�zw

where �zw represents the mean connectivity strength of edges between all
pairs of nodes within the same network and �zb represents the mean con-
nectivity strength of edges between all pairs of nodes that spanned two
different brain networks.

Finally, the frequency of the occurrence of each brain state in each time
window was computed as the proportion of a number of subjects classified
in that brain state.

Modularity-Q. The Louvain modularity algorithm from the brain con-
nectivity toolbox (BCT)30 was applied to investigate the optimal modular
structure within the functional connectivity matrix by optimizing a
quality function Q that maximizes within-module connectivity and
minimizes between-module connectivity30,31. Themodularity-Q value is a
widely used index when considering the whole brain as a globally
interconnected modular system. Higher modularity values (Q), there-
fore, indicate stronger separation of networks. For each time window, the
community assignment for each node, within which each node was
assigned to its own community, was assessed 500 times, and a consensus
partition was identified using a fine-tuning algorithm from the
BCT (http://www.brain-connectivity-toolbox.net/), which afforded an
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estimate of both the modularity values and community assignment for
further analysis. All graph theoretical measures were calculated on
weighted and signed connectivity matrices to avoid the use of arbitrary
thresholds, overcoming limitations of information loss18,26,30,34. The γ
parameter was set to 119.

Segregation transition rate. The Louvain modularity algorithm men-
tioned abovewas applied to all the 20windowed connectivitymatrices for
each subject separately. Thereby, each subject has 20 consecutive
modularity-Q values across learning. To capture the segregation transi-
tion rate of each subject during learning, a linear regression was fitted to
the individual modularity-Q value with the logarithm of the number of
total trials as the independent variable.Welch’s t test was again applied to
examine the difference in the segregation transition rates between the two
studies. In addition, the subjects were further divided into fast and slow
learning subgroups based on the median value of learning rates for each
single study separately. The mean segregation transition curves across
each subgroup were then plotted to characterize the segregation transi-
tion pattern that was associated with each group.

Correlation between network segregation dynamics and
behavior
The slope of the modularity-Q value curve across 20 consecutive windows
was used as a measure of each subject’s network segregation dynamics.
Pearson correlations between the dynamics of network segregation and the
learning rate in phase 2 and habit strength in phase 3 were calculated to
examine the relationship between fluctuations in network topology and
behavioral performance in goal-habit transition.

Individual functional brain networks
To investigate the integrational and segregational role of each individual
functional brain network during learning, we applied two nodal metrics
here: the participation coefficient (PC) and MDZ. The PC and the MDZ
score are complementary indices that allow for more fine-grained conclu-
sions regarding individual brain networks/modules. PC quantifies the
extent to which a region connects across all modules (i.e., between-module
strength or the degree of integration), while MDZ score is the z score of a
node’swithin-module strength (i.e.,within-module strengthor thedegreeof
segregation)19,30,69. We followed a previous suggestion to combine PC and
MDZ into a two-dimensional plot or cartographic profile19. Both thePCand
MDZ were computed using the BCT30. The mean PC and MDZ for each
individual functional brain network node were computed separately for
each timewindow.Asdescribed above, a linear regressionwas againfitted to
the individual PC andMDZ value with the logarithm of the number of total
trials as an independent variable for each subject. We then projected the
mean slope value ofPCandMDZacross subjects fromeach functional brain
network into a 2-dimensional interaction space19. Finally, one sample t tests
were computed based on the slope value of PC andMDZ across subjects for
each brain network separately.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Thedata that support thefindings of this study are available on request from
the corresponding author. The source data behind the graphs in the paper
can be found in Supplementary Data 1.

Code availability
The codes that support the findings of this study are available here: https://
github.com/xiaoyu-TUD/functional-brain-network-segregation.
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