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varying health conditions
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Myopathy refers to a large group of heterogeneous, rare muscle diseases. Bulk RNA-sequencing has
been utilized for the diagnosis and research of these diseases for many years. However, the existing
valuable sequencing data often lack integration and clinical interpretation. In this study, we integrated
bulk RNA-sequencing data from 1221 human skeletal muscles (292 with myopathies, 929 controls)
from both databases and our local samples. By applying a method similar to single-cell analysis, we
revealed a general spectrum of muscle diseases, ranging from healthy to mild disease, moderate
muscle wasting, and severe muscle disease. This spectrum was further partly validated in three
specific myopathies (97 muscles) through clinical features including trinucleotide repeat expansion,
magnetic resonance imaging fat fraction, pathology, and clinical severity scores. This spectrum
helped us identify 234 genuinely healthy muscles as unprecedented controls, providing a new
perspective for deciphering the hallmark genes and pathways among differentmyopathies. The newly
identified featured genes of general myopathy, inclusion body myositis, and titinopathy were highly
expressed in our local muscles, as validated by quantitative polymerase chain reaction.

Myopathy is a general term that refers to a large group of diseases primarily
affecting the skeletal muscles. These conditions can be categorized into
inherited or acquired forms, according to their aetiology. Myopathies
exhibit heterogeneous phenotypes, including weakness, abnormal gait,
muscle pain, difficulty swallowing, contractures, and systemic impairments,
among others1–3. One common feature of myopathies is a large spectrum of
the degree of severity, similar to other progressive diseases, which includes
asymptomatic, mild-to-moderate, and severe stages4–7. However, this
spectrum is usually more based on clinical observation than on well-
established objective findings.

RNA-sequencing for bulk skeletal muscles has been utilized in the
diagnosis and research of muscle diseases (e.g., for ectopic splicing and
molecular mechanism investigation)8–10. It offers a sensitive perspective to
understand the ongoing molecular activities in the muscle. Numerous

studies have deposited their transcriptional data in various online databases,
and this data is of significant value for integration, especially considering the
rarity of most myopathies. However, these isolated datasets are somewhat
prone to various biases from small sample size, selection of control mate-
rials, sequencing methods, different read length, etc11.

Furthermore, with the emergence of more advanced and sophisticated
technologies developed for myopathies in the past decade, deep pheno-
typing (including quantitative MRI, muscle biopsy evaluation, CTG
expansion size in myotonic dystrophy) provides a multi-dimensional eva-
luation to depict themuscle deteriorationprocess. Correlating thesemuscle-
specific features with their genetic data can assist in characterizing and
deciphering myopathies.

In this study, we integrated transcriptional data from 1221 human
skeletalmuscles obtained fromboth online databases and our local patients,
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ultimately identifying a general spectrumseparating normal andmyopathy-
affected muscles. In contrast to the traditional approach of focusing pri-
marily on diseased samples, we reversed the perspective, emphasizing the
control samples to characterize this spectrum validated using clinical fea-
tures from different sources. We offered a novel perspective by using gen-
uinely healthy muscles as an unprecedented control reference, aiming to
identify both common pathways and specific features of the studied
myopathies.

Methods
Data source and participant selection
This is a retrospective integrative analysis (Fig. 1). The data sources include
803 muscles from the GTEx Consortium (dbGaP Accession
phs000424.v8.p2)12, 291 muscles from the GEO database (GSE11565013,
GSE14026114, GSE17586115, GSE18495116, GSE20125517, GSE20274518),
and 127 muscles from Helsinki (39 of which have also been reported as
GSE15175719). The ethics approval of using localmuscles (195/13/03/00/11)
was approved by HUS (Helsingin Uudenmaan Sairaanhoitopiiri) and
informed consent was obtained from each subject. All ethical regulations
relevant to human research participants were followed. The inclusion and
exclusion criteria for participant selection were as follows: (1) only human
skeletal muscle tissue was included (no cell lines or organoids); (2) bulk-
RNA sequencing was performed using high-throughput techniques (no
chip arrays or single-cell data); (3) datasets were preserved in raw count
format (those shared in transformed count format were excluded).

A total of 23 phenotypes were used to annotate participants,
encompassing 15 myopathies and 8 different controls. The diagnoses of
myopathy patients were based on their genetic, pathology, electro-
myography, and radiological evidence. Patients with unspecific genetic
causes were identified as “Myopathy (unsolved)”. Considering the rarity
of myopathy diseases (around 4 per 100,000 people globally), we pre-
sumptively categorized all GTEx muscles as not involved with
myopathy20. In total, 291 muscles were sequenced using the total RNA
method, while 930 were sequenced using the mRNA method (292

myopathies, 929 controls). The meta data for each muscle in the inte-
gration dataset is listed in Supplementary Data 1.

Preprocessing and integration analysis
The integrated raw data counts were adjusted using a negative-binomial-
regression-based batch effect adjustment tool, ComBat-seq (for bulk RNA-
seq count data), and a normalization algorithm, TrimmedMean ofM-values
(TMM) (https://gitlab.com/georgy.m/conorm), which is presumably better
for between-sample comparisons21,22. Different gene sets across all 1221
samples were initially intersected, resulting in 16,953 candidate genes. To
minimize the impact of genes with low expression, we applied a straight-
forward yet stringent filtering rule to each sample: counts for muscle-specific
genes must exceed 0 in all samples. Following this criterion, 9231 genes were
selected. The visualization of the integrated dataset was conducted using a
single-cell analysis pipeline (Scanpy), which includes principal component
analysis (PCA) and uniform manifold approximation and projection
(UMAP) analyses23. The data and code used for this study are publicly
available at GitHub (https://github.com/Hirriririir/Myopathy_spectrum).

Mapping theUMAPspectrumwithclinical features fromdifferent
myopathies
The myopathy spectrum order was validated using in-silico analysis and
clinical data sourced from the supplementary data of original studies.
Pseudo-time analysis and trajectory prediction (PAGA) were used to in-
silico predict the transformation ranks from healthy muscles to myopathy-
affected muscles24. Clinical features including DMPK CTG repeat number
(peripheral blood), Mercuri score from conventional MRI (cMRI), fat
fraction from quantitative MRI (qMRI), pathology and inflammation
scores, clinical severity score, 10-meter walk test, and 6-minute walk test
were mapped onto the integral UMAP result to validate the myopathy
spectrum. Note that only sequenced muscles with available clinical infor-
mationwere analyzed.Given that there are no linear relationships among all
muscles in the UMAP plot, for each myopathy, we categorized the muscles
into three categories by their UMAP X location and tested whether an

Fig. 1 | The workflow. Human skeletal muscle bulk-RNA-seq data from three
sources (GTEx database, GEO database, and Helsinki) were integrated into a
combined dataset (1221muscles × 9231 genes). A spectrumorder can be observed in
this integrated dataset: Healthy→Mild disease→Moderate muscle wasting→Severe
muscle disease. Different clinical features weremapped to the transcriptional data to
validate this spectrum order. Tissue deconvolution was performed using skeletal

muscle single-cell datasets as references, allowing us to infer the cell type compo-
sition in myopathy muscles. By utilizing genuinely healthy muscles from the GTEx
database as controls, we conducted differential expression analyses on general
myopathy and six distinct myopathies to explore shared and unique featured genes
and pathways among them. Finally, these newly identified featured genes were
validated in the Helsinki muscle samples using qPCR.
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Fig. 2 | The myopathy spectrum. This represents a Uniform Manifold Approx-
imation and Projection (UMAP) dimensional reduction of the integrated dataset,
where muscles with similar expression patterns are closely located. A Both gender
and age are evenly distributed across the spectrum. Myopathy muscles sequenced
using different methods, including those from the GEO database (100% sequenced
by total RNA) and Helsinki (100% sequenced by mRNA), are grouped together in
the upper-right corner of the spectrum. B This spectrum order was inferred from
detailed phenotypes of GTEx donors: (1) 234 very healthy donors (fast death of

natural causes or sudden unexpected deaths, e.g., car accident or suicide); (2) 470
donors with general diseases (ill but death was unexpected or ventilator using cases);
(3) 87 donors with wasting diseases (slow death after a long illness, e.g., cancer or
chronic pulmonary disease). Muscles located from the lower-left to the upper-right
represent a range from very healthy donors to donors with general diseases, to
donors with wasting diseases, and finally to myopathy donors. C The myopathy
spectrum progresses from Healthy→Mild disease→Moderate muscle was-
ting→Severe muscle disease.

Table 1 | Demographic information of the integration dataset

Phenotype Sample size Sequencing
method

Data source Sex (male
proportion)

Age range

0−9 10−19 20−29 30−39 40−49 50−59 60−89

Control (accident death) 31 mRNA GTEx 71.0% 0.0% 0.0% 25.8% 16.1% 16.1% 25.8% 16.2%

Control (unex-
pected death)

203 mRNA GTEx 79.3% 0.0% 0.0% 0.5% 2.0% 8.9% 38.4% 50.2%

Control (inter-
mediate death)

46 mRNA GTEx 65.2% 0.0% 0.0% 2.2% 0.0% 6.5% 21.7% 69.5%

Control (ventilator case) 424 mRNA GTEx 63.0% 0.0% 0.0% 13.4% 12% 20.8% 32.3% 21.5%

Control (slow death) 87 mRNA GTEx 63.2% 0.0% 0.0% 0.0% 4.6% 9.2% 20.7% 65.5%

Control (others) 111 mRNA/total RNA GTEx/GEO 55.0% 42.5% 10% 12.5% 5.0% 5.0% 12.5% 12.5%

Control (amputee) 24 mRNA Helsinki 64.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

Control (hyperCkemia) 3 mRNA Helsinki NA NA NA NA NA NA NA NA

FSHD 61 total RNA GEO 64.7% 0.0% 0.0% 5.9% 5.9% 14.7% 35.3% 38.2%

DM1 44 total RNA GEO 47.7% 0.0% 0.0% 13.6% 27.3% 38.6% 20.5% 0.0%

LGMD R12 41 total RNA GEO 100.0% 0.0% 0.0% 7.3% 29.3% 34.1% 12.2% 17.1%

CDM 36 total RNA GEO 52.8% 69.5% 30.5% 0.0% 0.0% 0.0% 0.0% 0.0%

Titinopathy 31 mRNA Helsinki 76.7% 3.3% 10.0% 0.0% 13.3% 3.3% 33.3% 36.8%

IBM 28 mRNA/total RNA Helsinki
(GEO)

53.6% 0.0% 0.0% 0.0% 0.0% 0.0% 3.6% 96.4%

DMD 5 total RNA GEO NA NA NA NA NA NA NA NA

BMD 5 total RNA GEO NA NA NA NA NA NA NA NA

Actinin-2 myopathy 5 mRNA Helsinki 80.0% 0.0% 0% 0.0% 40.0% 20.0% 40.0% 0.0%

Myopathy (HNRNPA1) 5 mRNA Helsinki 60.0% 0.0% 0.0% 0.0% 0.0% 40.0% 40.0% 10.0%

SMPX myopathy 4 mRNA Helsinki 100.0% 0.0% 0.0% 0.0% 0.0% 25.0% 75.0% 0.0%

Myopathy (OBSCN) 1 mRNA Helsinki 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Myopathy (TNPO3) 1 mRNA Helsinki 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Distal ADB-filaminopathy 1 mRNA Helsinki 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

Myopathy (Unsolved) 24 mRNA Helsinki 68.3% 17.6% 0.0% 0.0% 41.2% 0.0% 17.6% 23.6%
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ordered relationship exists among these three groups using the Jonckheere-
Terpstra test.

Tissue deconvolution and differentially expressed analysis
Adeep-learning-based autoencodermethod (TAPE)was utilized to predict
the cell-type composition in the integrated dataset25. For tissue specificity,
two different skeletal muscle single-cell datasets were used as reference data
in the TAPE deconvolution and were analyzed separately26,27. Differentially
expressed gene analysis (DEG) was conducted in the classic EdgeR pipeline
using the batch-adjusted count data28. The significant genes were selected
based on both log2Foldchange ( | logFC | > 0.5) and adjusted p value
(FDR < 0.05). These significant genes were further enriched in different
databases (Human Phenotype Ontology, CellMarker Augmented, Kyoto
Encyclopedia of Genes and Genomes, Gene Ontology, Reactome, Wiki-
Pathway) for pathway analysis, which was performed using gseapy
(Python).

RNA isolation and real-time polymerase chain reaction
(RT-qPCR)
Six high-ranked featured genes (MGST1,AOX1, FASN, PRKCDfor general
myopathy, CD163 for IBM, and CYP4B1 for titinopathy) were validated in
our local muscles, and primer information can be found in Supplementary
Table 1. In further detail, RNAwas extracted from lower legmuscle biopsies
of 13 patients and 6 controls using the Qiagen RNeasy Plus Universal Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instruc-
tions. cDNA synthesis was performed using SuperScript III Reverse Tran-
scriptase (Invitrogen TM) and random primers, according to the
manufacturer’s protocol. RT-qPCR assays were performed using the iQ
SYBRGreenSupermix (BIO-RAD) and25 nMof each specific primer. Each
assay was performed with technical triplicates for each of the biological
samples. To normalize, 18S was used as the reference gene. The results were
calculated in double Delta Ct method and presented in relative quantifi-
cation (RQ) form.
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Fig. 3 | Clinical features and transcriptional spectrum. The spectrum order was
validated using both in-silico algorithms and clinical features from different myo-
pathies. Given that there are no linear relationships in the muscle UMAP plot, for
each myopathy, we categorized the muscles into three categories by their UMAP X
location and tested whether an ordered relationship exists among these three groups
using the Jonckheere-Terpstra test. A The results of the in-silico pseudo-time and
trajectory algorithms were consistent with the GTEx inference. B CTG expansions
(in peripheral blood) increased with the spectrum progression in congenital myo-
tonic dystrophy (CDM)patients.CMercuri scores, aswell as 10-meter and 6-minute
walk test results, were also consistent with disease progression in limb girdle

muscular dystrophies R12 (LGMD R12) patients. The more compact distribution
seen in LGMD R12, as compared to CDM and FSHD, might be due to the repeated
biopsies taken. For each LGMD R12 patient, three biopsies were collected (repre-
sented by three purple dots), whereas for each CDM and FSHD patient, only one
biopsywas taken (represented by a single purple dot).DFat fractions, pathology, and
clinical severity scores of facioscapulohumeral muscular dystrophy (FSHD) patients
did not show as clear a trend with disease progression as seen in CDM and LGMD
R12. This is presumed to be related to the heterogeneousmuscle locations (thigh and
leg) in the FSHD study.
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Statistics and reproducibility
Python (version 3.8.1) and R (version 4.2.2) were used to analyze the data.
All relevant code anddata used in this studyhave been depositedonGitHub
(https://github.com/Hirriririir/Myopathy-Spectrum) and Zenodo29.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
A myopathy spectrum revealed after integration
The integrated datasets included muscles from 292 individuals with
myopathies (Fig. 2): facioscapulohumeral muscular dystrophy (FSHD,
n = 61), myotonic dystrophy type 1 (DM1, n = 44), limb girdle muscular
dystrophies R12 (LGMD R12, n = 41), congenital myotonic dystrophy
(CDM, n = 36), titinopathy (n = 31), inclusion body myositis (IBM,
n = 28), Duchenne muscular dystrophy (DMD, n = 5), Becker muscular
dystrophy (BMD, n = 5), actinin-2 myopathy (n = 5), HNRNPA1 myo-
pathy (n = 5), SMPX myopathy (n = 4), OBSCN myopathy (n = 1),
TNPO3-myopathy (n = 1), distal ADB-filaminopathy (n = 1), and
unsolved myopathy (n = 24) (Table 1). The control groups included
muscles from 929 controls: accident death control (n = 31), unexpected
death control (n = 203), intermediate death control (n = 46), ventilator
case control (n = 424), slow death control (n = 87), other controls
(n = 111), amputee control (n = 24), and hyperCkemia control (n = 3).
The female to male ratio is 363:737, and the sex information is not

available for 121 donors. The age range is as follows: 0−9 years (n = 46),
10−19 years (n = 20), 20−29 years (n = 83), 30−39 years (n = 105),
40−49 years (n = 165), 50−59 years (n = 303), 60−89 years (n = 389).
Age information is not available for 119 donors.

After integration, all muscles from different sources and sequenced by
different methods were harmonized together in the PCA analysis by
adjusted read counts, clearly contrasting with the previous state by original
read counts (Supplementary Fig. 1). It is noteworthy that most myopathy
muscles from both GEO (100% sequenced by total RNA) and Helsinki
(100% sequenced bymRNA) were located at the right corner of the UMAP
plot. All of this indicates that the batch-effect among different studies may
have been well-adjusted. Considering the heterogeneous health status
within the control muscles used in the myopathy studies (GEO and Hel-
sinki), we re-classified the GTEx muscle donors into three control groups:
(1) 234 very healthy donors (fast death of natural causes or sudden unex-
pecteddeaths, e.g., car accident or suicide); (2) 470donorswithmilddiseases
(ill but death was unexpected or ventilator using cases); (3) 87 donors with
moderate muscle wasting (slow death after a long illness, e.g., cancer or
chronic pulmonary disease). With the detailed classification of control
muscles, a potential myopathy spectrum order was reflected: Healthy→-
Mild disease→Moderate muscle wasting →Severe muscle disease. Inter-
estingly, unlike single-cell analysis where similar cell types cluster together,
the distribution of myopathy muscles in our study is not as compact. We
observed a ribbon-like intrusion of myopathy muscles into the healthy and
general disease group. This pattern is analogous to the asymptomatic pre-
clinical stages observed in clinical practice.

Fig. 4 | Featured genes and qPCR validation. A The top five up-regulated genes in
general myopathy and six myopathies with more than 25 muscles are shown. These
are compared sequentially with the genuinely healthy control group (n = 234).
B Since both the GEO andHelsinki controls, which were used in previousmyopathy
studies, were located in the “Wasting” state of the myopathy spectrum, we chose to
use genuinely healthy muscles from the GTEx as unprecedented controls. This

provided an alternative perspective onmyopathy and informed the creation offigure
(A). C Featured genes in general myopathy (MGST1, AOX1, FASN, PRKCD),
titinopathy (CYP4B1), and IBM (CD163) were validated in Helsinki myopathy and
control muscles (randomly selected). The results were compared using the Mann
−Whitney test.
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Spectrum order validation with clinical features
This spectrum order was first validated by in-silico analyses (Fig. 3A).
Both pseudo-time analysis and trajectory prediction algorithms provide
similar muscle deterioration transformation to the severity spectrum.
Interestingly, 21 pediatric control muscles, which were specifically iso-
lated from the “Control (others)” category, were closely located to the
slow death controls in the trajectory prediction result. This is a finding
quite contrary to common expectations (muscles from control children
should be healthier). We examined the original article and discovered
that these were histopathologically normal muscles, suggesting their
health status might be comparable to most GEO controls and our
amputee and hyperCkemia controls17. Then, clinical features of three
myopathies (CDM, LGMD R12, and FSHD) were analyzed14,17,18. Repe-
ated muscle biopsies taken from donors can disturb the distribution. For
instance, three biopsies were taken from three muscles in each LGMD
R12 donor, hence the distribution of LGMD R12 was a compact oval,
contrasted with the elongated ribbons in CDM and FSHD (where only
one biopsy was taken from each patient).

The clinical features ofmyopathy donors also generally correlatedwith
the severity spectrum order (Healthy→Mild disease→Moderate muscle
wasting→Severe muscle disease). CTG repeat sizes (peripheral blood)
showed increased expansion in the spectrum order (n = 29): JT = 181,
p = 1.07 e-03 (Jonckheere-Terpstra test) in Fig. 3B. In LGMDR12, Mercuri
score (a semi-quantitative scoring system for muscular fat infiltration,
JT = 459, p = 2.09e-06), 10-meter walk test (JT = 369, p = 0.011), and 6-min
walk test (JT = 164, p = 0.014) also exhibited statistically significant
increased order in these three groups (Fig. 3C). However, this increased
order was not evident in FSHD muscles: fat fraction (a quantitative calcu-
lation of muscular fat infiltration using specific MRI series, JT = 139,
p = 0.36), pathology score (JT = 147, p = 0.19), and clinical severity score
(JT = 125, p = 0.75) (Fig. 3D).

Tissue deconvolution showed shared features among
myopathies
Two different skeletal muscle single-cell datasets were utilized to decipher
the tissue deconvolution in the integrated dataset. The cell composition of
five controls (accident death (n = 31), unexpected death (n = 203), inter-
mediate death (n = 46), ventilator case (n = 424), slow death (n = 87)) was
compared with the myopathy groups. Although these were in-silico pre-
diction results, the first Tabula Sapiens dataset (30,746 cells) found fewer
vasculature structure cell proportions (vascular tree endothelial cells and
pericytes), and a higher proportion of satellite stem cells, natural killer (NK)
T cells, and fibroblast (tendon) cells in the myopathy groups (Supplemen-
tary Fig. 2). Similarly, using another skeletal muscle single-cell dataset
GSE143704 (n = 22,058) as a reference, fewer vasculature structure cell
proportions (endothelial cells and pericytes), and a greater proportion of
adipocytes and COL1A+ fibroblasts were found in the myopathy groups
(Supplementary Fig. 3). Note that the proportion deconvoluted can be
significantly impacted by biopsy selection; therefore, minor differences
should be interpreted with caution.

Featured transcriptional genes and pathways using unprece-
dented control healthy muscles
After integration, an obvious phenomenon observed in theUMAPplot was
that the control muscles used in almost all myopathy studies (GEO and
Helsinki) were predominantly located within the moderate and severe
musclewasting stageswhencomparedwith theGTExmuscles as a reference
(Fig. 4B). This is consistent with clinical practice; since doctors most often
cannot obtain healthy muscles due to ethical reasons and instead use his-
tologically normalmuscles to represent ‘control’muscles. Considering these
‘control’muscles are not genuinely healthy andmay introduce some biases,
we utilized the GTEx’s genuinely healthy muscles (from accident and
unexpecteddeath cases,n = 234) as controls to provide anewperspective on
these myopathies (Supplementary Data 2).

General myopathy (n = 292) and six differentmyopathies (each with a
sample size >25) were selected for the DEG analysis (Fig. 4A). The six
different myopathies included CDM (n = 36), DM1 (n = 44), FSHD
(n = 61), IBM (n = 28), LGMD R12 (n = 41), and titinopathy (n = 31). For
all myopathies, 200 up-regulated genes and 568 down-regulated genes were
revealed. The top five up-regulated genes were MGST1, AOX1, FASN,
PRKCD, and CHRNA1 (logFC > 1.28, FDR < 1.24 e-22), while the top-
ranked down-regulated genes were SMOC1, ATP2B2, PLXNA4, WDR62,
and MYH7B (logFC <−1.09, FDR < 4.09 e-29). Pathway analysis of the
DEGs underscored changes in the myopathy muscles, including biophy-
siological pathways like muscle contraction, lipoatrophy, myotube cell
involvement, and FATZ (filamin-, α-actinin-, and telethonin-binding pro-
tein of the Z-disk) binding (Supplementary Fig. 4). These pathway anno-
tations are of interest and will be further analyzed (Supplementary
Figs. 5−10).

For validating the consistency of the integration results to previous
studies, we reanalyzed the original and batch-adjusted read counts using the
sameprocessing pipeline (EdgeR) and the same criteria of |logFC | > 0.5 and
FDR < 0.05. We then compared the differences between the two sets of
results. The overlap of DEG genes between the integrated dataset and the
original studies varied from 4.2% to 18.1% across the FSHD, LGMD R12,
IBM, and CDM groups (Supplementary Fig. 11). However, the myopathy-
featured genes (top 15 upregulated) identified by the integration dataset
(based on genuinely healthy muscles from GTEx) were consistently pre-
served in each myopathy and the p values drastically decreased with
enlarged sample sizes, even when compared with different control groups.
Specifically, 80% of the featured genes were preserved in FSHD (adult
control, Supplementary Table 2), 80% in LGMD R12 (adult control, Sup-
plementary Table 3), 73.3% in IBM (amputee control, Supplementary
Table 4), and 13.3% in CDM (pediatric control, Supplementary Table 5).
Interestingly, when we enlarged our previous IBM data (GSE151757, IBM
vs. amputee control = 24:9) using updated samples fromour center (IBMvs.
amputee control = 28:24), we found that the preservation of the top featured
genes increased to 100%. This was a similar case in the re-analysis of the
original data from the longitudinal FSHD follow-up studies conducted by
Wang et al.

qPCR validation in Helsinki muscles
The batch correction step in data processing may influence the final
DEG results; hence, we used the qPCR method to further validate these
newly identified high-ranked genes (Fig. 4C). We selected four up-
regulated genes for general myopathy (MGST1, AOX1, FASN, PRKCD),
CD163 for IBM, and CYP4B1 for titinopathy, aiming to validate their
actual expression in our local muscles. Since genuinely healthy muscles
were also unavailable to us due to ethical reasons, we randomly selected
four amputee and two hyperCkemia muscles as controls30. Compara-
tively, five general myopathy muscles (two Actinin-2 myopathy and
three IBM), four IBM muscles, and four titinopathy muscles were
selected as experimental groups (Supplementary Data 3). The genes
featured for general myopathy indeed showed relatively higher expres-
sion trend in the myopathy muscles: MGST1 (RQ 10.34/2.09, p = 0.02),
AOX1 (RQ 4.53/2.41, p = 0.42), FASN (RQ 3.75/1.75, p = 0.10), PRKCD
(RQ 2.10/1.23, p = 0.19). Similarly, titinopathy featured CYP4B1 showed
higher expression in titinopathy muscles (RQ 19.71/1.41, p = 0.03), and
IBM featured CD163 showed higher expression in IBM muscles (RQ
27.87/10.05, p = 0.23).

Discussion
This integrative study provides a general view of the “Healthy→Mild dis-
ease→Moderate muscle wasting→Severe muscle disease” transformation
in muscle diseases. Firstly, we bridged the gap between muscle bulk-RNA
sequencing and the phenotypes associated with muscle deterioration. Sec-
ondly, byutilizing theGTExgenuinely healthymuscles as anunprecedented
control, we identified new featured genes inmyopathies, which offer a novel
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perspective on the usage of muscle bulk-RNA sequencing in muscle
diseases.

This transcriptional spectrum correlates well with actual clinical
progression in muscle diseases. Given the randomness of sex and age as
shown in Fig. 2, it is unlikely that these demographic factors are the
cause of the observed spectrum order. Due to the hereditary nature of
most myopathies, they usually begin insidiously during life, if not
present at birth. Their clinical spectrum is versatile, starting from
changes in the muscle itself (genetic, myofiber type, pathology) to the
overall capabilities of a patient (force, endurance, involvement of other
organs)31–33. In this study, the muscles from CDM and LGMD R12
patients showed a strong correlation with clinical features, which was
not statistically evident in FSHD muscles. We suspect this may be
related to the muscle selection for the RNA-seq and the large variability
of different and often asymmetric muscle involvements between
patients. FSHD was also more heterogeneous in terms of muscle
selection: one biopsy was taken from each patient, either from the
tibialis anterior, gastrocnemius muscles, vastus lateralis, or biceps
femoris muscle14. The muscles were more homogeneous in the CDM
(where one vastus lateralis biopsy was taken from each patient) and
LGMD R12 (where three biopsies of semimembranosus, vastus later-
alis, and rectus femoris muscles were taken from each patient)
studies17,18. However, muscle physiology may not correlate with overall
clinical manifestations, because biopsy selection is not a standardized
process, and muscle involvement has its own specific patterns that vary
among different myopathies34.

The selection of controls can greatly impact the muscle RNA-seq
results. Since genuinely healthymuscle samples are difficult to obtain due
to ethical reasons, we propose that these 234 GTEx muscle samples from
accident and unexpected death donors could provide a reasonable
source12. Our study not only supports the results regarding clinical pro-
gression but also complements these excellent original work on CDM,
DM1, FSHD, LGMD R12, IBM, as new featured genes were identified
using our method13,14,16–19. Typically, the top 10−20 ranked genes are
considered the most important in an RNA-seq dataset, analogous to a
pyramid structure. The featured genes identified by our integration
dataset consistently persist when compared with different control phe-
notypes, whichmay indicate that the tip of the pyramid remains relatively
constant (with larger overlapping in the featured genes), while the bottom
can be easily disrupted (smaller overlapping in all DEG genes). The
relatively smaller overlapping of featured genes in the case of CDMcan be
explained by the age difference in the control samples. The control
samples used in the original CDM study consist of histologically normal
pediatric muscles (0−9 years old), whereas the GTEx genuine healthy
muscles are all >20 years old17.

Our integrated dataset has helped identify common and specific
featured genes and pathways for myopathies. The top five up-regulated
genes in general myopathy are MGST1, AOX1, FASN, PRKCD, and
CHRNA1, which have been rarely reported in previous myopathy stu-
dies. MGST1 (Microsomal Glutathione S-Transferase 1) has been
reported for its potential role in protecting against oxidative stress and in
aging35. AOX1 (AldehydeOxidases 1) has been identified as a contributor
to myogenesis36. The role of FASN (fatty acid synthase) is evident, as
muscular fat infiltration is common in myopathic muscles. PRKCD
(Protein Kinase C delta) also participates in the regulation of
lipogenesis37. The functions of CHRNA1 (Cholinergic Receptor Nico-
tinic Alpha 1 Subunit) have been thoroughly investigated in the elderly
and aging rodents, as its levels increase in aging skeletal muscle. Upre-
gulation of CHRNA1 can also induce and aggravate sarcopenia38. The
elevated expression of CYP4B1 may be associated with altered fatty acid
metabolism, while increased levels of CD163 could correspond to an
enrichment of CD163+macrophages in IBM muscles39,40. Additionally,
CD163 has shown increased expressionwith statistical significance in our
previous work and in the study conducted by Hamann et al.19,41. Pathway
enrichment analysis also confirms the clinical understanding of

myopathy, such as muscle contraction impairment, and FATZ binding
(FATZ forms a tight complex and phase-separated condensates with α-
actinin)42. However, some detailed pathomechanisms in these myo-
pathies are not easily categorized with the currently available knowledge.

Limitation
This study has several limitations. First, numerous biases may be intro-
duced during data integration, including those related to biopsy site and
muscle selection, control selection, bulk RNA-seq method selection, and
sample size. Additionally, the batch adjustment algorithm has altered the
count data from the original studies. Second, sample selection and cell
type classifications as defined in the original single-cell dataset may also
lead to misinterpretations of the predicted deconvolution results.
Therefore, flow cytometry or large-scale single-cell analysis are recom-
mended to address this issue more effectively. Third, genuinely healthy
control muscles are currently unavailable for qPCR validation. Control
muscles with healthier physiological states should be considered in future
studies. Fourth, due to biopsy sample restrictions, we could only validate
the featured gene expression in titinopathy and IBM. More genes and
myopathies can be validated in multi-center studies. Fifth, clinical
information is not available for most muscles in the integrated dataset.
Encouraging data sharing and collaboration could facilitate future
myopathy studies.

Conclusions
In summary, we created an integrated human skeletal muscle bulk-RNA-
seq dataset (1221 muscles × 9231 genes) by combining public datasets with
our local data. The myopathy spectrum (Healthy→Mild dis-
ease→Moderate muscle wasting→Severe muscle disease) was revealed
upon integration, and the clinical features of myopathies were well-
correlated with the spectrum order. By utilizing genuinely healthy muscles
as unprecedented control samples, we provided an alternative perspective
for deciphering changes in the studiedmyopathies. This approach identified
new featured genes and pathways not only generally inmyopathies but also
for specific types of myopathies.

Data availability
The source data for graphs and figures is available on GitHub (https://
github.com/Hirriririir/Myopathy-Spectrum). The original data of each
public datasets used in this study are available in their original research
(links are also provided in the Myopathy-Spectrum GitHub repository).

Code availability
The analyzing code for the integration dataset is available on GitHub
(https://github.com/Hirriririir/Myopathy-Spectrum).
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