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A unified analysis of evolutionary and
population constraint in protein domains
highlights structural features and
pathogenic sites
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Protein evolution is constrained by structure and function, creating patterns in residue conservation
that are routinely exploited to predict structure and other features. Similar constraints should affect
variation across individuals, but it is onlywith the growth of humanpopulation sequencing that this has
been tested at scale. Now, human population constraint has established applications in pathogenicity
prediction, but it hasnot yet beenexplored for structural inference.Here,wemap2.4millionpopulation
variants to 5885protein families andquantify residue-level constraintwith a newMissenseEnrichment
Score (MES). Analysis of 61,214 structures from the PDB spanning 3661 families shows thatmissense
depleted sites are enriched in buried residues or those involved in small-molecule or protein binding.
MES is complementary to evolutionary conservation and a combined analysis allows a new
classification of residues according to a conservation plane. This approach finds functional residues
that are evolutionarily diverse, which can be related to specificity, as well as family-wide conserved
sites that are critical for folding or function. We also find a possible contrast between lethal and non-
lethal pathogenic sites, and a surprising clinical variant hot spot at a subset of missense enriched
positions.

Comparative analysis of homologous proteins and their three-dimensional
structures has systematically established that sequence is constrained by
structure and function1,2. This classic result is fundamental to our under-
standing ofmolecular evolution and underlies the development of methods
to predict protein structure3–10 and to interpret human genomes11–15. Key
elements of the sequence-structure-function relationship are that buried
residues evolvemore slowly than exposed residues16,17, residues at interfaces
tend to conservephysicochemical properties18–21 and co-varying residues are
often close in space9. These trends, together with secondary structure3 and
other positional physicochemical preferences22, are among the patterns that
AI algorithms like AlphaFold23 can exploit and are therefore crucial to their
success.

The same structural constraints that mark evolutionary variation were
also expected to influence population polymorphisms24. However,

systematic confirmation of the effect had to wait until resequencing
projects25,26 sampled enough variation to enable the analysis. Since then the
distribution of missense variants in humans was shown to be strongly
influenced by protein structure, with features like core residues, catalytic
sites, and interfaces showing evidence of constraint in aggregate27–29. In
parallel, several methods emerged to calculate population constraint at
different scales and were consistently found to be useful for variant
pathogenicity prediction25,30–34. However, despite this progress, the appli-
cation of population constraint for structural inference is less well-
developed.

One challenge is that structural constraints in proteins are inferred
from residue-level conservation patterns and so most existing constraint
scores, which apply to whole genes or domains, are too coarse for this task.
However, residue-level resolution is possible with the aid of protein family
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sequence alignments where the signal can be enhanced by combining var-
iation across homologous sites. This approach previously enabled the
detection of low-frequency cancer driver mutations35–37 and clusters of
pathogenic mutations in domain families38, while population variant dis-
tributions inpseudo-paralogous alignmentswere shown tohighlight a range
of genomic features, including start codons, 5’-UTRs, CDS regions, and
wobble nucleotides26. Since then, population constraint computed in this
way has also proven useful for pathogenicity prediction39–43, and its asso-
ciation with structural features has been observed in specific proteins39,44.

The capacity to calculate population constraint at the residue-level,
presents a unique opportunity to conduct a comparative analysis of popu-
lation and evolutionary constraint inproteins.At the outset,we can consider
the essential differences between the underlying datasets. The diversity
catalogued in databases like Pfam45 reflects the cumulative effects of hun-
dreds ofmillions of years of evolution, shapedby spatial and temporal scales
that give rise to an enormous potential for variation and selection. In con-
trast, population datasets like gnomAD46 capture genetic diversity influ-
enced by more recent events, migrations and drift, all within the genomic
context of a single species. Given these profound differences, the question
ariseswhether the signatures of population constraintwithinhumansoffer a
distinct perspective from the deep evolutionary conservation observed
across species. Theoretical frameworks, such as the McDonald-Kreitman
test47, have exploited such contrasts to discern selection pressures, under-
scoring the potential of an integrated approach, but to our knowledge, it has
never been applied at as fine a resolution as single amino acids.

In this work, we develop a new residue-level population constraint
metric computed over the columns of protein family alignments with var-
iants from gnomAD48. We apply this method to classify residues in thou-
sands of protein families from Pfam45, and assess their properties with
respect to features from experimentally determined protein three-
dimensional structures48,49, including solvent accessibility, protein-protein
and protein-ligand interfaces and pathogenic variants from ClinVar50. We
then combine our population constraint score with a conventionalmeasure
of evolutionary conservation, based on residue diversity in protein family
alignments, to reveal the structural and functional properties of a new
classification of residues.

Results
A residue level map of population constraint in the human
proteome
The distribution of population missense variants amongst humans
is correlated with evolutionary conservation in protein domain
families. We mapped 2.4 million population missense variants from
gnomAD46 to 1.2 million positions within 5,885 protein domain families
from Pfam45. This covers 5.2 million residues of the human proteome.
Figure 1 shows a schematic of a variant annotated alignment (Fig. 1a)
alongside illustrations of the distribution of variants within domains in
different contexts (Fig. 1b–e; Supplementary Fig. 1). In any given protein,
most residues are not variable at all in gnomAD and the observed mis-
sense variants are sparsely distributed across the sequence (Fig. 1b). As a
result, the distribution of missense variants along a sequence provides
limited information about constraint at individual residues, which is why
existingmethods average over larger windows, such as continuous ranges
of linear sequence31,33 or volumes in 3D space34,51.

An alternative is to collate variation that occurs at homologous posi-
tions in protein domains as embodied by the columns of multiple sequence
alignments. Sites within Pfam45 domains containing many human paralogs
have more missense variants (Fig. 1c), and so we hypothesised that a
comparative analysis of variants at homologous positions could yield a
residue-level resolution of population constraint. To test this hypothesis, we
compared the domain distribution of missense variants to Shenkin’s mea-
sure of evolutionary conservation52. Figure 1d shows this relationship in the
SH2 domain family and highlights the strong positive correlation between
populationmissense variants and evolutionary conservation such thatmore
population variation is observed at positions with greater evolutionary

diversity. This behaviour is also observed inmany other domains where we
detected a significant positive association in 900 Pfam domains, suggesting
that this is a general phenomenon (Fig. 1e). In contrast, synonymous var-
iants are not associated with evolutionary diversity, which serves as a con-
venient negative control. This result suggests that population variants are
broadly constrained by the same features that constrain evolutionary sub-
stitutions. For example, in the SH2 domain, evolutionary conservation and
population constraint are both indicative of structural constraints that can
be observed in protein structures, including inter-domain interaction sites
on the SH2 surface, as shown in Fig. 1f.We find a significant relationship in
85% of the 140 families with more than 100 human paralogs, compared to
12% among those with fewer human sequences, emphasising the depen-
dency on the number of human paralogs to observe this signal.

A Missense Enrichment Score (MES) to represent population con-
straint in protein domains. To compare population constraint between
different domains that vary in depth, we developed the Missense
Enrichment Score (MES), which quantifies relative population constraint
at each site in a domain. MES has two components: the odds ratio of the
position’s rate of missense variation compared to the rest of the domain
(MES), and a p value indicating the significance of the deviation of MES
from 1 (see Methods). This is a good formulation for structural analyses
across multiple families because it is intrinsically normalised for varying
numbers of human paralogs, as well as any heterogeneity in overall
constraint due to factors like gene essentiality. The p value is calculated
with Fisher’s exact test and so holds no distributional assumptions and is
appropriate even for small families where variant counts are low. The p
value is sensitive to the overall variant counts in the family, affected by the
number of human paralogs and their coverage in gnomAD.

From the MES, we define missense-depleted positions as those with a
lower rate of missense variation than other positions in the domain at a
specified, two-tailedp-value threshold (i.e.,MES < 1; p < 0.1), which are sites
that are under relatively strong constraint. We similarly define missense
enriched (MES > 1; p < 0.1) and missense neutral positions (p ≥ 0.1), which
represent different grades of polymorphic positions. We found 5086 posi-
tions in 766 families met this threshold of missense depletion (covering
365,300 residues in the human proteome), while 13,490 positions in 3591
families were enriched inmissense variants (340,829 residues in human). In
the following, we describe the structural and functional features of these
positions with reference to 61,214 three-dimensional structures from the
Protein Data Bank49, covering 40,394 sequences from 3661 Pfam domains,
and over 10,000 variants labelled pathogenic in ClinVar50.We also compare
their properties to comparable sets of evolutionarily conserved and
unconserved residues, defined with their Shenkin diversity (see Methods).

Population-constrained sites are enriched in buried residues and
binding-sites. Population constraint is strongly associated with solvent
exposure (χ2 = 1285, df = 4, p ≈ 0, n = 105,385; Supplementary Table 1;
Supplementary Fig. 2), such thatmissense-depleted sites arepredominantly
buried in the protein core, whilemissense-enriched sites tend tobe found at
surface-exposed positions. We also observe that missense-depleted posi-
tions are enriched for residues interacting with proteins or ligands (Fig. 2).
The effect is particularly pronounced for ligand binding sites, whereas for
protein-protein interfaces, it is detected only when considering solvent
accessibility due to the infrequent interactions of buried residueswith other
proteins, emphasising the importance of this control.

For both ligand binding-sites and protein-protein interfaces
(Fig. 2a, b), the effects are greatest at surface sites, where residues encounter
fewer constraints from packing and folding, making external interactions
more relevant. These patterns align closely with observations at evolutio-
narily conserved sites, implying that the constraint captured by MES could
be useful to predict these features. In many cases, the feature enrichments
are similar for population-constrained and evolutionary-conserved sites,
even though only human paralogs contribute to the MES calculation. This
suggests that MES may be sensitive to a wider range of binding-sites,
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including those at evolutionarily diverse positions, a hypothesis that we
revisit later.

A complex distribution of pathogenic variants with respect to con-
straint and solvent accessibility. We also tested whether pathogenic

variants were enrichedwithin population-constrained positions (Fig. 2c).
Overall, ClinVar50 pathogenic missense variants are enriched within
missense-depleted sites. However, there is a complex pattern to the dis-
tribution of pathogenic variants in different solvent accessible regions.
While variants at missense-depleted sites among surface positions are
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over four times more likely to be pathogenic (OR = 4.1, p ≈ 0), among
core positions missense depleted sites are less likely to harbour reported
pathogenic variants (OR = 0.7, p = 0.00002). The effect is so great that
missense-depleted sites on protein surfaces have a higher proportion of
pathogenic variants to population variants (388 vs. 27,420; 1.4%), than
those in buried positions (155 vs. 27,504; 0.6%). A similar trend is
observed with respect to evolutionary conservation. These surprising
results could indicate that deleterious mutations at the most essential
sites, such as critical core positions, aremore likely to be genetically lethal
and thereby depleted in the sort of clinical pathogenic variants reported
in ClinVar.

A unified analysis of population constraint and evolutionary
conservation
Categorising residues by population and evolutionary variation. We
devised an approach to integrate signals from population and evolutionary
variation by subclassifying conserved and unconserved positions by MES
(Fig. 3). This scheme yields four primary categories corresponding to the
quadrants of a conservation plane (Fig. 3a). These are conserved-missense
depleted (CMD), conserved-missense enriched (CME), unconserved-
missense depleted (UMD) and unconserved-missense enriched (UME).
Among 109,790 sites from the 605 Pfam families with at least one missense
depleted site, the most common categories were CMD (3% of sites; 10% of
residues) and UME sites (2%; 10%), which show consistency between
evolutionary conservation and population constraint, while the discordant
CME (2%; 2%) and UMD categories (1%; 2%) were rarer (Fig. 3b). This
higher prevalence of CMDs and UMEs over CMEs and UMDs reflects the
overall correlation between evolutionary conservation and the missense
distribution described earlier, but despite this trend there are still over
100,000 residues of the human proteomewithin the uncommonUMD and
CME categories (Supplementary Table 2).

Comparing the functional properties of these classes reveals that popu-
lation constraint stratifies conserved and unconserved sites, where missense-
depleted positions are usually enriched in functional residues (Fig. 3c–f). For
example, among surface sites, CMDs are exceptionally enriched in ligand
interactions (OR= 5.0, p≈ 0), but CMEs are not (OR= 1.0, p = 0.77), and
there is a similar trend comparing UMD and UME positions (Fig. 3d). The
effect canbe so great that population constraint supersedes conservation, such
as how protein interface residues are depleted among CMEs (OR= 0.88,
p= 8.2×10-11), but enriched atUMDs (OR= 1.1,p= 2.7×10-9; Fig. 3e). These
patternsarebroadly reinforcedwhenconsideringpathogenicvariants (Fig. 3f),
and in partially exposed sites (Supplementary Fig. 4).

Population constraint at unconserved sites (UMDs) indicates
potential specificity determining positions. Unconserved sites are
often overlooked since it is hard to interpret their significance, but the
diversity at these sites can be the key to protein specificity. This raises the
prospect that population constraint at unconserved sites is a character-
istic of specificity-determining positions (SDPs), which are sites that
impart ligand or substrate specificity to the domain. Supporting this idea,
UMDs are prominent in the GPCR (Fig. 4a–d) and nuclear receptor
protein families (Fig. 4e–h), where several surround their highly variable
receptor binding pockets, regions clearly critical for ligand specificity. In
these families, UMD sites are the most enriched for ligand binding
residues (Fig. 4d and h), which reflects the fact that cognate ligands vary
across these proteins. We also found similar results in the Ankyrin
repeats where UMD-like sites were involved in functional interactions44.
While these examples illustrate the nature of UMDs, the consistent
enrichment of ligand interactions, protein-protein interfaces, and
pathogenic variants at UMD sites supports the conclusion that it is a
general phenomenon (Fig. 3 and Supplementary Table 3).

Population constraint at evolutionary conserved sites (CMDs) is a
strong indicator of structural or functional importance. Conserved
sites across a family are typically recognised as important to folding and

Fig. 1 | Population diversity in Pfam domains is often positively correlated with
evolutionary diversity. a An excerpt of the Phospholipase A2 1 domain (PF00068)
highlighting sites withmissense variants from gnomAD (red). The histogram shows
the number of missense variants at each position across all 10 human sequences in
the Pfam domain. b Frequency distribution of gnomADmissense variants across all
amino acid residues in Pfam domains (n = 5,162,957 residues). c Frequency dis-
tributions of gnomADmissense variants over alignment columns of Pfam domains
containing 1, 5 or 9 human sequences (n = 635,974, 36,317, and 12,020 sites). d The
total number of gnomADmissense or synonymous variants vs. the Shenkin diversity
at each position across SH2 domains (PF00017) and linear regressions (left panel:

m = 0.33, p = 6.45 × 10−9; c = 28 p ≈ 0; right panel: m = 0.00, p = 0.46; c = 20, p ≈ 0;
both n = 75 sites). eThe distribution of regression coefficients for gnomADmissense
or synonymous variant totals against Shenkin divergence across Pfam (n = 5975
domains). Regression coefficients with p < 0.05 are coloured blue. f Inter-domain
interactions of the SH2 domain in inactivated Proto-oncogene tyrosine-protein
kinase Src (SRC; PDB ID: 2src76). The surface is coloured according to the Missense
Enrichment Score (MES; red to yellow) calculated from the SH2 Pfam domain
(PF00017). Figure created with Jalview77 and UCSF Chimera78. Additional dataset
statistics are shown in Supplementary Fig. 1.

Fig. 2 | The structural and functional properties of missense depleted positions
compared to evolutionarily conserved positions.Odds ratios (95% CI) measuring
the enrichment of a protein-ligand interactions, b protein-protein interactions and,
c pathogenic variants within conserved (orange) or missense depleted columns
(blue) and stratified by solvent exposure class. See Supplementary Fig. 3 for com-
parison to missense enriched and evolutionarily divergent positions.
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function, but it appears that differences in population constraint among
themprovides further discrimination. CMDs are predominantly found at
buried sites, with almost 75% corresponding to core or partially exposed
positions (Fig. 3c), emphasising their importance to structural main-
tenance. Where CMDs are found outside the core, they are the most
highly enriched in interactions (Fig. 3d, e), with ligand binding residues
5-fold enriched (OR = 5.0, p ≈ 0) and protein binding residues 1.5-fold
enriched (OR = 1.5, p ≈ 0) among surface sites, and similar trends found
at partially exposed residues (Supplementary Fig. 4), emphasizing the
role of interactions where packing constraints are reduced. A substantial
enrichment of pathogenic variants within CMDs at surface (OR = 4.6,
p ≈ 0) and partially exposed sites (OR = 2.2, p ≈ 0) underscores their
importance. The unexpected absence of an enrichment of pathogenic
variants at core CMDs (OR = 0.85, p = 0.06) is discussed later.

In our case-studies, CMDs are clustered around features that are
constant across all member domains. In GPCRs, this includes the allosteric
sodium binding site and the tryptophan toggle switch, which play pivotal
roles in the universal activation dynamics common across class A GPCRs
(Fig. 4a). In nuclear receptors, CMDs are found in the coactivator binding
cleft, including the important charge-clamp residue53, while others are
packed tightly at the interhelical interface bridging the coactivator and
hormone pocket, a region likely important for folding as well as coactivator
and hormone cooperativity 54 (Fig. 4e). Finally, outside this study we iden-
tified CMD sites as the critical folding residues in Ankyrin repeats44.

Pathogenic variant hotspots and putative genetically lethal sites.
CMDs at core sites were not enriched in pathogenic variants (OR = 0.85,
p = 0.06), despite substantial effects at surface (OR = 4.6, p ≈ 0) and
partially exposed residues (OR = 2.2, p ≈ 0). This pattern echoes the
results for population and evolutionarily constrained sites when con-
sidered in isolation (Fig. 2c). However, the combined analysis isolates this
effect specifically to CMDs, the most highly constrained sites, distin-
guishing them from CMEs and UMDs, which do not exhibit this unique
behaviour (Supplementary Fig. 4). This distinction refines our earlier
hypothesis: the lower prevalence of pathogenic variants in buried CMDs
is possibly related to the risk of genetic lethality, coupled with a sampling
bias in ClinVar. Buried CMDs are likely to be critical for structural
integrity or functional activity, with tight restrictions on permissible
amino acid substitutions. In contrast, although UMDs are implicated in
protein specificity, numerous substitutions between homologs at these
sites suggests an element of structural plasticity. Similarly, the accom-
modation of a variety of missense alleles in CMEs means that genetically
lethal variants must be rare at these sites.

Focusing on CMEs, we observe a consistent enrichment of pathogenic
variants across all exposure levels, including the protein core (OR = 2.4,
p ≈ 0; Supplementary Fig. 4). This result significantly diverges from pre-
viously reported trends, which show an anti-correlation between the loca-
tions of population and clinical variants28,29,55. Moreover, this observation
suggests that pathogenic variants at CME sites are a significant contributor
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Fig. 3 | Classifying sites in protein domains with evolutionary conservation and
population constraint. a The missense enrichment score (MES) vs. normalised
Shenkin diversity for a random sample of 10,000 sites from 282 Pfam domains. The
quadrants of this conservation plane correspond to sites that are conserved-missense
depleted (CMD; pink), conserved-missense enriched (CME; green), unconserved-
missense enriched (UME; blue) and unconserved-missense depleted (UMD;
orange). Missense neutral sites where MES p < 0.1 are coloured grey. Points on the
x-axis represent sites with nomissense variants (i.e., MES = 0). bArea plot depicting

the relative proportion of residues in each category. Note that the main categories
have been positioned to the corners of the plot for clarity. c The proportions of site
solvent exposure class across different constraint classes (dark to light blue corre-
sponds to core, partially exposed and surface). d–fThe enrichment of protein-ligand
binding residues, protein interacting residues and ClinVar50 pathogenic variants
amongst surface sites in each category. Error bars indicate 95% confidence intervals.
Supplementary Table 3 presents related data focussed on comparing UMD and
UME positions.
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to the documented enrichment of pathogenic variants within core
residues28,55. The identification of CMEs as a pathogenic variant hotspot
thereforemarks a significantdeparture fromestablishedpatterns and invites
further investigations of the underlying mechanisms driving pathogenicity
at these sites.

Finally, the UMDswe suggest are implicated in specificity, are another
pathogenic variant hotspot. They are significantly enriched in pathogenic
variants among surface and partially exposed sites (OR = 2.2, p = 2.7 × 10-8

and OR = 2.2, p ≈ 0), and despite high uncertainty, are significantly more
likely to harbour pathogenic variants than UME sites in the core
(OR = 0.90–2.5 vs. 0.14 – 0.65 [95% confidence intervals]; Supplementary
Fig. 4). Some of the relative differences in pathogenic variant enrichment
betweenUMDandUMEsites are exceptional (SupplementaryTable 3). For
example, surface UMDs are 6.5-fold enriched in pathogenic variants
compared to UMEs (OR = 6.5, p ≈ 0). These data are consistent with our
characterisation of UMD sites as specificity determinants, but they also
highlight the increased relevance of population constraint to clinical
variation.

Discussion
In this study, we have explored the interplay between population and
evolutionary variation within protein families, establishing a nuanced
understanding of how these forces reflect protein structure and function.
Our results that missense depleted residues are enriched in structural
and functional features demonstrate that population constraint can be
exploited for structural inference. We have shown that an integrated
analysis of evolutionary and population constraint discriminates sites

with distinct functional properties. We have defined new constraint
categories that not only highlight functional and pathogenic sites, but
also distinguished residues conferring protein specificity (UMDs) from
those maintaining family-wide attributes (CMDs). When further inte-
grated with residue solvent exposure, we also found sites where dele-
terious variants may pose a greater risk of genetic lethality (buried
CMDs) and uncovered several pathogenic variant hotspots (CMEs,
UMDs and exposed CMDs).

To our knowledge, the only existing framework that integrates popu-
lation and evolutionary variation is theMcDonald-Kreitman test47, which is
widely used to detect selection effects at gene-level. This test compares the
ratios of non-synonymous to synonymous substitutions between species
(D =Dn/Ds), to the within-species ratio (P = Pn/Ps), where D > P indicates
positive selection, D < P implies negative selection and D = P suggests
neutrality. Although the test is defined with respect to substitutions and
polymorphisms in two species, we can compare these states to our residue
categorisation. Accordingly, unconserved-missense depleted sites (UMDs),
which diverge across homologs but are constrained in the population, are
aligned with positive selection, which has interesting implications for the
evolution of protein specificity. Meanwhile, conserved-missense enriched
sites (CMEs) are aligned with negative selection, in keeping with the high
prevalence of pathogenic variants at these sites. Taking the diagonal of the
conservation plane (Fig. 3a) to approximate D = P, conserved-missense
depleted (CMDs) and unconserved-missense enriched sites (UMEs) would
be interpreted as neutral. However, although this appears a reasonable label
for UMEs, which are consistently devoid of functional features, it is poor
description of CMDs, which are clearly under the strongest constraint. This
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Fig. 4 | The contrasting roles of unconserved-missense depleted (UMD) vs.
conserved-missense depleted (CMD) sites in the Class A Rhodopsin GPCRs and
nuclear receptors. UMD (gold) and CMD (pink) sites in a 5-hydroxytryptamine
receptor 2 A (5-HT2A) bound to serotonin (yellow) and monoolein (tan) in the
GPCRdb79 refined model derived from PDB ID: 7wc480. b The side-extended pocket
of 5-HT2A with bound monoolein. Residues within 5 Å of monoolein are shown as
sticks. c Conformational changes in 5-HT2A upon receptor activation in the vicinity
of the W336 toggle position. The activated state in the GPCRdb refined PDB ID:
6wha81.dEnrichment of ligand binding residues amongst sites in Class ARhodopsin

GPCRs. e Steroidogenic factor 1 (STF1) bound to phosphoinositide PIP2 and the
coactivator peptide PGC1-ɑ (olive) in PDB ID: 4qk454. f the lipid hydrophobic tails of
PIP2 bound within the hormone pocket showing close interactions with UMD
positions that contribute to the interior surface of the pocket in this receptor. g The
coactivator binding groove includes the CMD residue R281 located toward the
C-terminal end of H3, which is part of the CMD cluster. h Enrichment of ligand
binding residues amongst sites in the nuclear receptor ligand binding domain Pfam
(PF00104). Structural illustrations created with Jalview77 and UCSF Chimera78.
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breakdown of an otherwise logical correspondence suggests a possible
advantage of our approach.

The strength of our method to highlight important sites among
unconserved positions could overlap with the signal from evolutionary
covariation or other alignment-based methods, such as phylogeny-aware
approaches that exploit conservation inorthologous andparalogous groups.
In preliminary work we found no systematic relationship between our
constraint categories and EVcouplings scores56 in the nuclear receptor
ligand binding domains (Supplementary Data 1). We also found little
overlap between UMD sites and specificity-determining positions (SDPs)
predicted by SDPfox57 (Jaccard similarity = 0.02, between 1902 SDPfox
predicted SDPs and 604 UMDs, across 130 Pfam domains). These initial
comparisons suggest that our approach is complementary to existing
methods.

Given the pervasive application of evolutionary conservation in
biology, we expect our missense enrichment score will have broad
relevance to a variety of research communities; we have ourselves
appliedMES to help characterise ligand binding sites58 and for a detailed
analysis of Ankyrin repeats44. Residue-level population constraint pre-
sents an opportunity to augment the evolutionary data now routinely fed
tomodels developed for variant pathogenicity prediction, functional site
identification and structure prediction. Modern machine learning
methods can exploit the complex relationshipswe have revealed between
population constraint, evolutionary conservation, residue burial, inter-
actions and pathogenicity, and our results could help to guide appro-
priate implementations to this end. Models designed to exploit these
patterns could be superior at recognising functional or pathogenic
unconserved residues, successful at distinguishing specificity-
determining sites or flagging potentially lethal variants. As population
datasets continue to grow, this could be particularly helpful is for pro-
teins with limited homology that generate shallow alignments, especially
when data for more species become available.

Methods
Mapping population variants to Pfam alignments (Pfam-
gnomAD)
Protein family alignments were downloaded from Pfam (v31)59,60 and
parsed using Biopython (v1.66, with patches #768 #769)61. Alignments with
at least one human sequence were filtered to exclude TrEMBL sequences
and leave the higher confidence SwissProt sequences. This yielded a set of
6042 alignments containing 392,703 sequences—including 44,530 human
sequences—that we will refer to as PfamSP.

Population variants from the gnomADVersion 2datasetweremapped
to the human sequences in PfamSP. For each sequence in an alignment,
genomic mappings were retrieved from Ensembl62,63 via the Ensembl API
and variants in these regions were loaded from a local copy of the gnomAD
VCF with PyVCF. The PyVCF variant records were parsed into a Pandas
DataFrame and UniProt residue mappings were derived from the Ensembl
VEP SwissProt and Protein_position annotations. We provide a schematic
of the procedure in Supplementary Fig. 5. In this way, we could link each
variant in gnomAD to a column in PfamSP. This gave 2,405,900 missense
variants from gnomAD mapped to 5,194,362 residues within 1,188,133
columns in 5985 PfamSP domains.

Mapping clinical variants to Pfam alignments
The same procedure outlined above was used to map ClinVar50 variants to
PfamSP from a VEP-annotated ClinVar VCF.

Pfam alignment conservation
Conservation scores for the alignments in PfamSP were calculated with
AACons64. AACons provides 18 different conservation scores spanning
identity-based (e.g., Shenkin52), physicochemical-based (e.g., Taylor65,
Zvelebil3, redundancy weighted (e.g., Valdar66) and others and all scores are
present in our provided datasets. In this analysis, we opted to use the
Shenkin score to represent evolutionary conservation due to its simple

interpretation as reflecting the amino acid diversity at each site. This score
has also proven effective in our previous work on Ankyrins44.

Throughout the text we refer to alignment column occupancy, which
we define as the number of aligned residues in a column (i.e., nseqs - ngaps).

Regression model of column missense counts
Linear regressions of Pfam domain multiple sequence alignment column
missense totals (ΣXmissense) against evolutionary divergence (VShenkin) were
calculated with the R lm function and model equation:

ΣXmissense ¼ β1nhuman þ β12nhuman � VShenkin

This model treats the evolutionary divergence as a modifier of the rate
of missense variation per human residue. Independent regressions were
calculated for eachPfamdomain andparameterp-valueswere adjustedwith
Benjamini&Hochberg’s FDRmethod. β1 represents the average number of
missense variants per human residue in the Pfam domain whereas β12 is a
measure of the sensitivity of this rate to the evolutionary divergence. A
positive β12 indicates that there are more missense alleles per site at diver-
gent positions than there are at conserved positions; only positive β12 is
observed when this parameter is significant (Fig. 1e).

The missense enrichment score (MES)
Columns were classified as depleted, enriched or neutral with respect to the
missense variants in the columnrelative to the average for the other columns
in the alignment. For each alignment column x, a 2 × 2 tablewas constructed
of the form a, b, c, d with elements: a. the number of variants mapped to
residues in column x, b. the total number of variants mapped to all other
alignment columns, c. the number of human residues in column x and d. the
total number of human residues in the rest of the alignment. The R stats
function fisher.test (two-sided Fisher’s exact test) yielded odds ratios OR > 1
if the column contained more than the alignment average number of var-
iants per human residue or OR < 1 if there were fewer than the average
number of variants per human residue. For a specified threshold columns
with p ≥ pthreshold were defined as missense netural and columns with p <
pthreshold were defined as missense depleted if OR < 1 or enriched if OR > 1.
In addition to the effect size, p is sensitive to data availability (i.e., variant
counts) and alignment column occupancy.

In this analysis, we defined missense depleted and missense enriched
sites with a p-value threshold of 0.1. This allowed sensitive capture of both
extremes, while acknowledging a higher tolerance of false positive classifi-
cations. In our two-tailed test, this threshold yields the same critical regions
for each extreme as one-sided tests with p < 0.05, highlighting how our
standard for significance is aligned with this convention. Importantly, the
collection of tests across the sites in an alignment does not warrantmultiple
test correction due to the inherent interdependency of each result. For
instance, in a simplified scenario with two sites, the MES odds ratios are
reciprocal and the p values identical. This diverges from the assumptions of
standard test corrections, which require independent or at most weakly
dependent tests. Finally, beyond the statistical justification, the clear biolo-
gical relevance of our scheme underlines its effectiveness. Sites identified as
missense depleted are consistently enriched in structural features and
pathogenic variants, providing strong evidence that MES captures real
biological effects.

Determining conserved and divergent sites for comparison to
missense depleted and enriched sites
TheMES automatically corrects for domain-specific observations. In order
to represent conventional conservation scores as calculated by Shenkin in a
similar domain-specific way, we took the N most evolutionarily conserved
columns in each family where N is the number of missense depleted posi-
tions in that family (i.e., MES < 1 and MES p < 0.1). We considered this a
better approach than setting fixed Shenkin thresholds for the comparison to
missense depletion because MES is the measure of the constraint at a
position relative to the rest of the domain in contrast to Shenkin, which is an
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absolute measure with its range significantly influenced by the depth of the
alignment.

Mapping structural features to Pfam alignments
Residue relative solvent accessibilities (RSAs) were calculated from the
DSSP accessible surface67 as described in Tien et al.68 and were classified as
surface (RSA ≥ 25%), partially exposed (5% ≤ RSA < 25%) or core
(RSA < 5%). To differentiate residues that are buried within a single bio-
polymer from those buried by interacting molecules (e.g., small-molecule
ligands, bound DNA, other proteins, etc.) RSA calculations were per-
formed on each PDB chain separately after stripping all nonprotein atoms.

Interatomic interactions were calculated with Arpeggio69 using
defaults. A residuewas considered to participate in a domain interaction if it
interacted with a Pfam domain on a different PDB chain. Ligand-protein
interactions were filtered by BioLip70 to identify the most biologically rele-
vant contacts.

Solvent accessibility and residue interactions were mapped to Pfam
alignments via UniProt-PDB cross-references in SIFTS71.

Aggregating structural features over Pfam Domains
In this work, we aggregated data from all available PDB structures for all
sequences in each alignment. This meant that any given sequence could
have many, one or zero-mapped PDB structures. Since there may be more
than one PDB structure for a sequence, in order to obtain Pfam domain-
level summary statistics that are unbiased by the PDB coverage, we first
summarised the structure features over each sequence before calculating
alignment level statistics. For example, if a sequence has 20 3D structures
and a specific residue interacts with a ligand in 5 of the structures, then we
count this as only one interaction at the alignment level. This ensures that
the Pfam-level structural classifications are representative of the sequence
distribution of properties rather than skewed towards the properties of the
sequences with the most PDB structures.

The PDB coverage of a residue is the number of PDB chains that cover
that residue. The PDB total coverage of an alignment column would be the
sumof the residue PDB coverages. The PDB sequence coverage of a column
is the number of residues with PDB coverage of at least one.

Pfam consensus solvent accessibility class
The solvent exposure class of an alignment columnwas defined as themost
frequent exposure class (buried, part-exposed, surface) of the residues in the
column, where the residue exposure class was defined as the most frequent
exposure class calculated for that residue across all mapped PDB chains.

Conservation plane categories
Columns were classified as conserved or unconserved with respect to resi-
due diversity indicated by the Shenkin entropy across all sequences in the
alignment relative to the other columns (i.e., including non-human
sequences). This was achieved by taking the percentage rank of the Shen-
kin entropy for each alignment column within each family. Unconserved
residues aredefinedas those amongst the50%mostdivergent residues in the
Pfamdomain (i.e., Shenkin percent-rank≥ 50%) and conserved residues are
those that are less divergent than these (i.e., Shenkin percent rank < 50%).
This constant rank threshold is effectively the same as setting a custom
Shenkin entropy threshold for each Pfam and is simpler than our previous
definition (above), which effectively set a different rank threshold per family
too. The reason for this simpler approach is that we are no longer looking to
compare the properties of population-constrained positions to evolutio-
narily conserved ones but to see how they complement each other.

Cross-classification by the missense enrichment score and conserva-
tion classes yields four distinct classes. These are unconserved-missense
depleted (UMD), unconserved-missense enriched (UME), conserved-
missense depleted (CMD) and conserved-missense enriched (CME). Col-
umns where p ≥ 0.1 are classed as conserved-missense neutral (CMN) or
unconserved missense-neutral (UMN). See Fig. 3a.

Feature enrichment tests
Where we report that a feature is enriched in a particular class of residues
(e.g., protein-ligand interactions within missense-depleted positions) we
quote the p value from the two-sided Fisher’s exact test.

Statistics and reproducibility
Statistical analyseswere conducted inR as outlined in detail in the preceding
methods subsections and may be reproduced by running the R markdown
notebooks available as specified in the Code Availability section of this
manuscript.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
This study employed the following publicly accessible datasets: Pfam31.0
(https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam31.0/Pfam-A.full.gz),
gnomAD v2 (https://gnomad.broadinstitute.org/downloads#v2), ClinVar
(https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/archive_2.0/2018/
clinvar_20180401.vcf.gz) and the Protein Data Bank (https://www.ebi.ac.uk/
pdbe/). The aggregated datasets generated during this study, encompassing
integrated analyses of protein families, genetic variants, and structural data are
available from BioStudies repository S-BSST1137.

Code availability
The code supporting this work is openly available from GitHub. R mark-
down notebooks used to produce the statistical results and figures in this
manuscript can be accessed at https://github.com/bartongroup/SM_Pfam-
gnomAD-statistics72, and provide numerical source data for graphs and
charts. Python packages developed for aggregating variant and structural
data over multiple sequence alignments are available at the following
GitHub repositories: https://github.com/bartongroup/SM_VarAlign73,
https://github.com/bartongroup/ProIntVar74 and https://github.com/
bartongroup/ProteoFAV75. The specific versions of these software tools
used in our study have been archived and are available in Zenodo, with the
DOI identifiers provided in the References section of this manuscript.
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