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Investigating the causal associations
between metabolic biomarkers and the
risk of kidney cancer
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Metabolic reprogramming plays an important role in kidney cancer. We aim to investigate the causal
effect of 249metabolic biomarkers on kidney cancer from population-based data. This study extracts
data from previous genome wide association studies with large sample size. The primary endpoint is
random-effect inverse variance weighted (IVW). After completing 249 times of two-sample Mendelian
randomization analysis, those significant metabolites are included for further sensitivity analysis.
According to a strict Bonferrion-corrected level (P < 2e-04), we only find two metabolites that are
causally associatedwith renal cancer. They are lactate (OR:3.25, 95%CI: 1.84-5.76, P = 5.08e-05) and
phospholipids to total lipids ratio in large LDL (low density lipoprotein) (OR: 0.63, 95% CI: 0.50-0.80,
P = 1.39e-04). The results are stable through all the sensitivity analysis. The results emphasize the
central role of lactate in kidney tumorigenesis andprovide novel insights into possiblemechanismhow
phospholipids could affect kidney tumorigenesis.

Kidney cancer is increasingly acknowledged as a disease of metabolism1.
Renal cell carcinoma (RCC), the most common type of kidney cancer, has
been identified toholdnumerous genemutations impacting basicmetabolic
process2–4. Those mutations involve in glycolysis, the tricarboxylic acid
(TCA) cycle, fatty acid oxidation, glutamine metabolism and so on. How-
ever, most of those phenomenon were based on case-control study or
sample dataset research and only correlation could be investigated5,6.
Fortunately, recent publication emphasized the role of several metabolites,
including lactate and fatty acid, in tumor growth7,8. They drew causal
associations between certain metabolites and kidney cancer in cell-based
and animal-based models. These publication aroused our reflection that,
since quantities of metabolic biomarkers existed in human blood, which
ones or even which one played critical roles in kidney cancer occurrence?

As it is impractical to conduct randomized controlled studies (RCTs)
to investigate the effect of a certain metabolite concentration on kidney
tumorigenesis, we decide to applyMendelian randomization (MR) analysis
to explore the causal relationship between metabolites and kidney cancer,
which is thought as the best way to exploring such a question9,10. Here, we
conducted this multiple two-sample MR study to investigate the causal
effect of 249 metabolic biomarkers on kidney cancer from population-
based data.

Results
Two hundred and forty-nine metabolites were tested their causal effect on
kidney canceroccurrence. Finally, only twometabolic traitswere considered
causal association with kidney cancer and they went on for sensitivity
analysis. The study flowchart was depicted in Fig. 1.

Multiple two-sample MR analysis between 249 metabolic
biomarkers and kidney cancer
Totally, 249 metabolites were conducted two-sample MR analysis
on kidney cancer one by one. We summarized several common meta-
bolites’ effect on kidney cancer, including lipidic, glycemic and fatty acid-
related traits (Fig. S1). According to two-side P value at 0.05 level, we
discovered that lactate, sphingomyelins, phosphatidylcholines, linoleic
acid, omega-6 fatty acids, omega-3 fatty acids and polyunsaturated fatty
acids had suggestive causal association with kidney cancer. All of these
metabolites were positively correlated with kidney tumorigenesis
(Fig. S1).

To set P value at a strict Bonferrion-corrected level (P < 2e–04), we
only found two metabolites that were causally associated with renal
cancer, among all the 249 metabolic biomarkers (Table 1). They were
lactate (OR:3.25, 95% CI: 1.84-5.76, 99.98% CI: 1.13–9.33, P = 5.08e–05,
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Fig. 2 and Fig. S1) and phospholipids to total lipids ratio in large LDL
(low density lipoprotein) (OR: 0.63, 95% CI: 0.50–0.80, 99.98% CI:
0.41–0.98, P = 1.39e-04, Fig. S2 and Fig. S3). For further details, common
metabolites’ effect on renal cancer with 99.98% CI (Bonferrion-corrected
P value) and 95% CI was illustrated in Fig. 2 and Fig. S1, respectively.
While for phospholipid-related metabolites, two-sample MR effect was
elucidated in Fig. S2 and S3. Details about each metabolite’s effect on
kidney cancer and corresponding heterogeneity and pleiotropy test
results were shown in Supplementary Data 2 (MR analysis results),
Supplementary Data 3 (heterogeneity test results) and Supplementary
Data 4 (pleiotropy test results).

Further sensitivity analysis of significant metabolic biomarkers
After multiple two-sample MR analysis between 249 metabolic biomarkers
and kidney cancer, two traits were considered significant (lactate and phos-
pholipids to total lipids ratio in large LDL). The Steiger test results indicated a
correct causal direction fromtheexposurevariable (lactate andphospholipids
to total lipids ratio in large LDL) to the outcome variable (kidney cancer,
SupplementaryData 5). Thenweapplieddetailed sensitivity analysis. Firstwe
removed SNPs that have been reported to be significantly correlated
(P < 5e–08) with any cancer phenotype (defined as sensitivity analysis 1,
Fig. 3a, b). Second, we removed SNPs significantly associated with blood
pressure-related phenotypes on the basis of sensitivity analysis 1 (defined as

Fig. 1 | Study flowchart to investigate the causal effect of 249 metabolic biomarkers on kidney cancer.MRMendelian randomization, IVW inverse variance weighted,
MR-PRESSO Mendelian Randomization Pleiotropy RESidual Sum and Outlier, LDL low density lipoprotein, SNPs single nucleotide polymorphisms.

Table 1 | Details of the two significant traits after multiple two-sample MR tests with Bonferrion-corrected P value (P < 2e–04)

Exposure Outcome SNPs Method Beta Se P value PHeterogeneity PPleiotropy

Phospholipids to total lipids ratio in
large LDL

Kidney cancer 43 Random-effect IVW −0.4587 0.1204 1.3942e-04

MR-Egger
(bootstrap)

−0.4116 0.1718 5.0000e-03

IVW −0.4587 0.1290 3.7817e-04 0.7073

MR-Egger −0.3261 0.2077 1.2407e-01 0.6957 0.4198

Weighted median −0.4866 0.1856 8.7579e-03

MR-PRESSO −0.4663 0.1159 2.1803e-04 0.8152

Lactate Kidney cancer 12 Random-effect IVW 1.1798 0.2912 5.0759e-05

MR-Egger
(bootstrap)

1.0318 1.1788 1.9300e-01

IVW 1.1798 0.3883 2.3767e-03 0.8607

MR-Egger 1.2362 1.2267 3.3736e-01 0.7996 0.9623

Weighted median 1.0720 0.4988 3.1605e-02

MR-PRESSO 1.1798 0.2912 1.9087e-03 0.8860

MRMendelian randomization; SNPs single nucleotide polymorphisms; Se standard error; IVW inverse variance weighted;MR-PRESSOMendelian Randomization Pleiotropy RESidual Sum and Outlier.
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sensitivity analysis 2, Fig. 3a, b). Third, we further conducted trait-specific
sensitivity analysis (defined as sensitivity analysis 3, Fig. 3a, b). For lactate
biomarker, whichwas thought to be involved in glycolysis, we removed SNPs
significantly associated with lipid-related phenotypes on the basis of sensi-
tivity analysis 2.While for the biomarker of phospholipids to total lipids ratio

in large LDL, which was related to lipid metabolism, we removed SNPs
significantly associated with glycemic phenotypes on the basis of sensitivity
analysis 2. We described those SNPs that were utilized for sensitivity MR
analysis in detail in Supplementary Data 5. Some SNPsmight be left out due
to their unavailability in the summary statistics of kidney cancer phenotype.

Fig. 2 | The causal effect of 28 commonmetabolites on kidney tumorigenesis based onBonferrion-correctedP value (P < 2e–04).Error barswere defined asORwith 95%
CI. VLDL very low density lipoprotein, LDL low density lipoprotein, HDL high density lipoprotein, OR odds ratio, CI confidence interval.
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In our sensitivity analysis, we found all the results were stable (Fig. 3a,
b). To bemore specific, lactate was positively associated with kidney cancer,
while phospholipids to total lipids ratio in large LDL was negatively cor-
relatedwithkidney cancer (Fig. 3a, b).We furtherperformedthe reverseMR
analysis to validate the positive results and avoid bidirectional causality. As a
genome-wide P value threshold (5e–08) excluded all the SNPs of kidney
cancer variable, we used a loose P value threshold (1e–05). The summary
statistics of included SNPs were detailed in Supplementary Data 6a and
Supplementary Data 6e. We did not find any causal effect of kidney cancer
on lactate orphospholipids to total lipids ratio in largeLDL(beta of random-
effect IVW:0.007 for lactate and -0.002 for phospholipids to total lipids ratio
in large LDL, standard error: 0.004 for lactate and 0.004 for phospholipids to
total lipids ratio in large LDL, P value: 0.138 for lactate and 0.602 for
phospholipids to total lipids ratio in large LDL, Supplementary Data 6b and
Supplementary Data 6f). The heterogeneity and pleiotropy effects were not
observed (Supplementary Data 6c, Supplementary Data 6d, Supplementary
Data 6g and Supplementary Data 6h).

Discussion
In this study, we conductedmultiple two-sampleMR analysis to investigate
the causal effect of 249metabolic biomarkers on kidney cancer risk.We did
find several metabolites had suggestive causal association with kidney
cancer, which included lactate, sphingomyelins, phosphatidylcholines,
linoleic acid, omega-6 fatty acids, omega-3 fatty acids and polyunsaturated
fatty acids (Fig. S1). Theywere common products or components necessary
for renal tumor development and growth.However, after we applied amore
restricted P threshold, only two traits were thought to be significant. They
were lactate (OR:3.25, 95% CI: 1.84–5.76, 99.98% CI: 1.13–9.33,
P = 5.08e–05, Fig. 2 and Fig. S1) and phospholipids to total lipids ratio in
large LDL (OR: 0.63, 95%CI: 0.50–0.80, 99.98%CI: 0.41–0.98,P = 1.39e–04,
Fig. S2 and Fig. S3). These two metabolic traits played different roles in
kidney tumorigenesis and the results were still stable through all the sen-
sitivity analysis (Fig. 3a, b).

We stressed the influence of lactate in kidney tumorigenesis among all
those metabolites. Actually, a recent publication revealed that perinephric
adipose tissue could release excess lactate, which promoted clear cell RCC
growth, invasion and metastasis7. The study reminded us that RCC was
much involved with metabolism and lactate might serve as a key factor to
facilitate the growth of kidney cancer. However, the evidence based on
population of large sample size was lacking. On the other hand, numerous
researches also discovered aberrant metabolites deposition in the tissue of
renal cancer or in urine4,11–18. Nevertheless, all these were just correlation
analysis and a causal effect could not be determined. Moreover, since RCC
interacted with quantities of metabolites, it was difficult for us to figure out
which ones were of great importance in kidney tumorigenesis according to
conventional basic and clinical studies. Luckily, recent high-quality GWAS

with large sample size gave us the opportunity to investigate the causal
relationship between hundreds of metabolites and kidney cancer utilizing
genetic instruments. Based on a strict P value threshold, we finally con-
sidered lactatewas themost important pro-tumor factor in the development
of kidney cancer. The results could guide the direction of future researches.

In addition to lactate, we also observed another metabolic biomarker,
phospholipids to total lipids ratio in large LDL, was causally negatively
associatedwithkidney cancer andmight act as aprotective factor.Thiswas a
novel insight.We could see fromFig. S3, higher phospholipids to total lipids
ratio in both large andmediumLDL reduced the risk of kidney cancer.How
phospholipids interacted with renal cancer and whether the biomarker
could be targeted as new therapy needed further investigations. However, it
has been recognized that the peroxidation of phospholipids could trigger
ferroptosis, a form of programmed cell death19,20. Recent studies illustrated
that ferroptosis exerted anti-tumor effect on renal cancer21–24. From this
point of view, we hypothesized that elevated phospholipids level posed a
negative impact on kidney cancer through regulating ferroptosis. Our
results provided a new basis for further investigations to focus on the effect
of phospholipids on kidney cancer risk.

We found fatty acid might participate in kidney tumorigenesis,
although the results did not pass the strict P value threshold. In our study, we
tested the effect of docosahexaenoic acid, linoleic acid, omega-3 fatty acids,
omega-6 fatty acids, polyunsaturated fatty acids, monounsaturated fatty
acids and saturated fatty acids on kidney cancer. We just observed linoleic
acid, omega-3 fatty acids, omega-6 fattyacids andpolyunsaturated fatty acids
had suggestive causal associations. These all belonged to unsaturated fatty
acids, which served as necessary components of cell membrane to maintain
its fluidity. We considered it was polyunsaturated fatty acids instead of
monounsaturated fatty acids or saturated fatty acids that contributed to the
growthof kidney cancer.Among thoseunsaturated fatty acids, omega-6 fatty
acids held the strongest effect (OR: 1.58, 95% CI: 1.18-2.12). Actually, there
had been one study exploring the role of fatty acid in renal tumor growth,
despite the research did not focus on the exact type of fatty acid8. The results
might inspire our thinking about the causal effect of unsaturated fatty acids,
particularly the omega-6 fatty acids, on renal cancer development.

The study had several strengths. Firstly, we explored the causal rela-
tionship between 249 metabolic biomarkers and kidney cancer. We figured
out that lactate was themost critical metabolite that impacted the growth of
renal cancer, among all those metabolites. Secondly, we discovered the
metabolic biomarker, phospholipids to total lipids ratio in large LDL, was
negatively causally associated with kidney tumorigenesis. Such findings
were interesting andcould facilitate further investigations.Thirdly,weposed
our reflection that polyunsaturated fatty acids rather thanmonounsaturated
fatty acids or saturated fatty acids had the potential to induce RCC. Among
those polyunsaturated fatty acids, omega-6 fatty acids attracted the most
attention due to its suggestive effect size, although not significant.

Fig. 3 | Sensitivity analysis of the significant metabolites filtered from all the 249
metabolites. a Sensitivity analysis of lactate effect on kidney cancer phenotype.
b Sensitivity analysis of phospholipids to total lipids ratio in large LDL effect on

kidney cancer phenotype. Error bars were defined as OR with 95% CI. SNPs single
nucleotide polymorphisms, LDL low density lipoprotein, OR odds ratio, CI con-
fidence interval.
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The study also had limitations. Albeit we enrolled 249 metabolic bio-
markers in our analysis, which covered most common metabolites, there
were still several biomarkers not available in our study, for instance betaine
and acetylcholine, as a result of lacking in powerful GWAS. Moreover, we
performed sensitivity analysis to excluded SNPs associated with potential
confounders as possible as we could. There also existed several unknown
confounders that we might not exclude, which could violate the indepen-
dence assumption. But substantially large sample size was included in our
study, with strict Bonferrion-corrected P threshold for multiple tests and
several sensitivity analysis. We could still draw our conclusions with suffi-
cient power. In addition, it was frustrating that FinnGen Biobank did not
provide summary statistics of kidney cancer with different clinical stages
and histologies. That prevented us from exploring the causal effect of
metabolites on the prognosis of kidney cancer. Moreover, the Finnish
population is considered a bottleneck population and genetically differ-
entiated from other European populations, so our results should be inter-
preted cautiously from this point if view.

In conclusion,we identified lactate, among all 249metabolites, thatwas
causally associatedwith kidney cancer growth.Moreover, we discovered the
metabolic biomarker, phospholipids to total lipids ratio in large LDL,might
serve as a protector to reduce kidney cancer risk. The results emphasized the
central role of lactate in kidney tumorigenesis and provided novel insights
into possible mechanism how phospholipids could affect kidney tumor-
igenesis. We were looking forward to subsequent experimental verification
emphasizing on the causal role of phospholipids in kidney cancer risk.

Methods
This study extracted data from previous genome wide association studies
(GWAS) with large sample size. All the data were manually curated by the
MRC Integrative Epidemiology Unit (IEU) at the University of Bristol,
which could be accessed through the IEU OpenGWAS project25,26. Only
European population were included.

Metabolic biomarkers phenotype
The summary statistics data ofmetabolic biomarkerswere derived fromUK
Biobank consortium, measured by Nightingale Health 2020 (https://www.
ukbiobank.ac.uk/learn-more-about-uk-biobank/news/nightingale-health-
and-uk-biobank-announces-major-initiative-to-analyse-half-a-million-
blood-samples-to-facilitate-global-medical-research). Nightingale Health is
a health technology company that provides a blood analysis platform for
population-scale research and personalized health services. Its technology
for profiling biomarkerswas utilized to examine blood samples from theUK
Biobank, measuring metabolic biomarkers that have been identified in
recent studies as predictors of future risk for several common chronic dis-
eases. In total, a variety of 249 metabolites was measured in blood samples
from hundreds of thousands of participants (100,000 ~ ) and analyzed by
tens of millions of single nucleotide polymorphisms (SNPs, 10,000,000 ~ ).
Briefly, these metabolites contained glycemic, lipidic, amino acid-related,
fatty acid-related and some other biomarkers. More details were described
in Supplementary Data 1. The summary statistics data mainly included
SNPs information (chromosome, position, effect allele, reference allele and
the frequency of effect allele), their effect size on the concentration of each
metabolite (beta, standard error and P value) and sample size information.

Kidney cancer phenotype
We utilized kidney cancer data from FinnGen Biobank with 971 cases and
217,821 controls (Supplementary Data 1). The data excluded malignant
neoplasm of renal pelvic, so only RCC samples were included. Generally,
FinnGen is a large-scale academic-industry research consortium that aims
to study the genetic and environmental factors underlying common chronic
diseases in the Finnish population. FinnGen has established a biobank that
includes genetic data and longitudinal health records from over 500,000
participants, making it one of the largest biobanks in the world. Its biobank
contains comprehensive health data, including electronic health records,
national health registers, and biobank samples from study participants. The

data is collected from various sources, such as hospitals, health centers, and
registries, and is linked with genetic data obtained from biobank samples.
This allows for the identification of genetic and environmental factors that
contribute to the development of common chronic diseases, including
kidney cancer.

Statistics and reproducibility
We conducted such an MR study to test the causal role of “exposure” (249
metabolites) in “outcome” (kidney cancer). First, significant SNPs
(P < 5e–08) associated with each metabolic biomarker were extracted, after
linkage disequilibrium (LD) clump (r2 < 0.001, kb = 10000). Then we
extracted corresponding SNPs’ data from kidney cancer phenotype. During
the process, proxy was allowed with minimum LD r2 equal to 0.8. In this
way, the exposure and outcome datawere harmonized and two-sampleMR
effect was calculated. The primary endpoint wasMR causal effect calculated
by random-effect inverse variance weighted (IVW) method. We also
applied the other five methods for sensitivity analysis: IVW, MR Egger
(bootstrap), MR Egger, weighted median and Mendelian Randomization
Pleiotropy RESidual Sum and Outlier (MR-PRESSO) (Fig. 1). Hetero-
geneity and pleiotropy test were used. After completing 249 times of two-
sample MR analysis, those metabolites with significant primary endpoints
were included for further sensitivity analysis. In this way, we were able to
investigate the causal effect of certain metabolites on kidney cancer.

All the analysis was based on R software (4.1.2). TwoSampleMR and
ieugwasr were the main packages. The r square value was calculated as:

R2 ¼ 2 � ð1�MAFÞ �MAF � β

SE � ffiffiffiffi

N
p

In the equation, MAF and N referred to the minor allele frequencies
and sample size, while β and SE referred to the effect size and standard error
of the SNP. In our first step of multiple two-sample MR analysis,
Bonferrion-corrected two-side P value was applied (P threshold equal to
0.05/249 = 2e–04) as a result of 249 tests (Fig. 1). The results were plotted as
odds ratio (OR)with 99.98% confidence interval (CI), whichwas equivalent
to the Bonferroni-corrected type I error rate alpha=2e-04. Any metabolite
passed the threshold Bonferrion-corrected P value was considered sig-
nificant. While metabolites with two-side P < 0.05 were thought to be sug-
gestive. As we intended to investigate the causal effect of 249 metabolic
biomarkers on kidney cancer, it was hard to remove all the SNPs sig-
nificantly associated with confounders for each metabolites. Thus, we tried
to include all the possible significant metabolites in our initial analysis.
Metabolites with significant primary endpoints were included for further
strict and comprehensive sensitivity analysis to validate the causal role of
significant metabolites in kidney cancer risk. The sensitivity analysis
included three steps:

i. Removal of SNPs significantly associated with any cancer phenotype,
so as to eliminate possible pleiotropy;

ii. Removal of SNPs significantly associated with any cancer phenotype
plus blood pressure-related phenotypes; so as to eliminate possible
pleiotropy and confounders;

iii. Trait-specific sensitivity analysis according to the actual situation.

For such sensitivity analysis, OR with 95% CI was reported to validate
previous results (Fig. 1).

In MR analysis, assumptions of instrumental variables were of great
importance: relevance, independence and exclusion restriction. First, we
extracted significant SNPs (P < 5e–08) associated with each metabolic
biomarker to obey the relevance assumption. Then, sensitivity analysis to
remove SNPs associated with any cancer phenotype (particularly kidney
cancer) and potential confounders was applied to stick to the independence
and exclusion restriction assumption. In addition, Steiger analysis was also
performed to certify the direction of causality from the exposure variable to
the outcome variable. Lastly, the reverse MR analysis was conducted to
validate the positive results and avoid bidirectional causality.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this pub-
lished article and its supplementary information files (Supplementary
Data 1–6). All the phenotypes could be accessed through the corresponding
id number in Supplementary Data 1 from the IEU OpenGWAS project
(https://gwas.mrcieu.ac.uk/).

Code availability
All the analysis was based on R software (4.1.2). TwoSampleMR and
ieugwasr were the main packages.

Received: 9 January 2024; Accepted: 26 March 2024;

References
1. Yong,C., Stewart, G. D. & Frezza, C.Oncometabolites in renal cancer.

Nat. Rev. Nephrol. 16, 156–172 (2020).
2. Linehan, W. M. et al. The metabolic basis of kidney cancer. Cancer

Discov. 9, 1006–1021 (2019).
3. Dinges, S. S. et al. Cancer metabolomic markers in urine:

evidence, techniques and recommendations. Nat. Rev. Urol. 16,
339–362 (2019).

4. Wettersten, H. I., Aboud, O. A., Lara, P. N. Jr &Weiss, R. H. Metabolic
reprogramming in clear cell renal cell carcinoma. Nat. Rev. Nephrol.
13, 410–419 (2017).

5. Breeur, M. et al. Pan-cancer analysis of pre-diagnostic blood
metabolite concentrations in the European Prospective Investigation
into Cancer and Nutrition. BMC Med 20, 351 (2022).

6. Sun, Z. et al. Construction of a lactate-related prognostic signature for
predicting prognosis, tumor microenvironment, and immune
response in kidney renal clear cell carcinoma. Front Immunol. 13,
818984 (2022).

7. Wei,G. et al. The thermogenic activity of adjacent adipocytes fuels the
progression of ccRCC and compromises anti-tumor therapeutic
efficacy. Cell Metab. 33, 2021–2039.e8 (2021)

8. Du, W. et al. HIF drives lipid deposition and cancer in ccRCC
via repression of fatty acid metabolism. Nat. Commun. 8, 1769
(2017).

9. Lin, L., Wang, W., Xiao, K., Guo, X. & Zhou, L. Genetically elevated
bioavailable testosterone level was associated with the occurrence of
benign prostatic hyperplasia. J. Endocrinol. Invest 46,
2095–2102 (2023).

10. Lin, L., Ning, K., Xiang, L., Peng, L. & Li, X. SGLT2 inhibition and three
urological cancers: Up‐to‐date results.DiabetesMetab. Res. Rev. 40,
e3797 (2024).

11. Ganti, S. et al. Urinary acylcarnitines are altered in human kidney
cancer. Int J. Cancer 130, 2791–2800 (2012).

12. Nizioł, J. et al. Metabolomic study of human tissue and urine in clear
cell renal carcinoma by LC-HRMS and PLS-DA. Anal. Bioanal. Chem.
410, 3859–3869 (2018).

13. Falegan, O. S. et al. Urine and serum metabolomics analyses may
distinguish between stages of renal cell carcinoma.Metabolites 7,
6 (2017).

14. Hakimi, A. A. et al. An integratedmetabolic atlas of clear cell renal cell
carcinoma. Cancer Cell 29, 104–116 (2016).

15. Wettersten, H. I. et al. Grade-dependent metabolic reprogramming in
kidney cancer revealed by combined proteomics and metabolomics
analysis. Cancer Res 75, 2541–2552 (2015).

16. Perroud, B., Ishimaru, T., Borowsky, A. D. & Weiss, R. H. Grade-
dependent proteomics characterization of kidney cancer.Mol. Cell
Proteom. 8, 971–985 (2009).

17. Cancer Genome Atlas Research Network. Comprehensive molecular
characterization of clear cell renal cell carcinoma. Nature 499,
43–49 (2013).

18. Perroud, B. et al. Pathway analysis of kidney cancer using proteomics
and metabolic profiling. Mol. Cancer 5, 64 (2006).

19. Ding, K. et al. Acyl-CoA synthase ACSL4: an essential target in
ferroptosis and fatty acid metabolism. Chin. Med J. (Engl.) 136,
2521–2537 (2023).

20. Cao, L. et al. Managing ferroptosis-related diseases with indirect
dietarymodulators of ferroptosis. J.Nutr. Biochem120, 109427 (2023).

21. Hao, J. et al. Combination treatment with FAAH inhibitors/URB597
and ferroptosis inducers significantly decreases the growth and
metastasis of renal cell carcinoma cells via the PI3K-AKT signaling
pathway. Cell Death Dis. 14, 247 (2023).

22. Li, Y. et al. Energy-stress-mediatedAMPKactivationpromotesGPX4-
dependent ferroptosis through the JAK2/STAT3/P53 axis in renal
cancer. Oxid. Med. Cell Longev. 2022, 2353115 (2022).

23. Yangyun, W. et al. Everolimus accelerates Erastin and RSL3-induced
ferroptosis in renal cell carcinoma. Gene 809, 145992 (2022).

24. Lu, Y. et al. KLF2 inhibits cancer cell migration and invasion by
regulating ferroptosis through GPX4 in clear cell renal cell carcinoma.
Cancer Lett. 522, 1–13 (2021).

25. Hemani, G. et al. The MR-base platform supports systematic causal
inference across the human phenome. Elife 7, e34408 (2018).

26. Ben, E. et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv
10, 244293v1 (2020).

Acknowledgements
The work was supported by the National Natural Science Foundation of
China (82303659), Natural Science Foundation of Sichuan Province
(2022NSFSC1526), China Postdoctoral Science Foundation
(2022M722260) and China Primary Health Care Foundation, Urological
OncologyResearch Fund (016).Weexpressour thanks to those peoplewho
have contributed to the IEU GWAS database project and the MRC
Integrative Epidemiology Unit (IEU) at the University of Bristol. Sincere
thanksalsogo to themanyGWASconsortiawhohavemade theGWASdata
that they generated publicly available, and many members of the IEU who
have contributed to curating these data.

Author contributions
Conception anddesign of study: L.L., Y.T. andK.N. Acquisition of data: L.L.,
Y.T. andK.N. Data analysis and/or interpretation: L.L., Y.T. andK.N. Drafting
of manuscript and/or critical revision: L.L. and Y.T. Approval of final version
of manuscript: L.L., Y.T., K.N., X.L. and X.H.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06114-8.

Correspondence and requests for materials should be addressed to
Xiang Li or Xu Hu.

Peer review information Communications Biology thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary
Handling Editor: Joao Valente.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s42003-024-06114-8 Article

Communications Biology |           (2024) 7:398 6

https://gwas.mrcieu.ac.uk/
https://doi.org/10.1038/s42003-024-06114-8
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-06114-8 Article

Communications Biology |           (2024) 7:398 7

http://creativecommons.org/licenses/by/4.0/

	Investigating the causal associations between metabolic biomarkers and the risk of kidney�cancer
	Results
	Multiple two-sample MR analysis between 249 metabolic biomarkers�and kidney�cancer
	Further sensitivity analysis of significant metabolic biomarkers

	Discussion
	Methods
	Metabolic biomarkers phenotype
	Kidney cancer phenotype
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




