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A single-cell atlas of lung homeostasis
reveals dynamic changes during
development and aging
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Yixuan Sheng1, Ningning Zhang1, Hao Cui1, Lei Han1,3, Jian Zhang 4,7 , Xiaodong Fu 5,7 &
Jiangping Song 1,7

Aging is a global challenge, marked in the lungs by function decline and structural disorders, which
affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic
atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim
to apply the discoveries of lung’s development to address aging-related issues.We observe that both
epithelial and immune cells undergo a process of acquisition and loss of essential function as they
transition from development to aging. During aging, we identify cellular phenotypic alternations that
result in reduced pulmonary compliance and compromised immune homeostasis. Furthermore, we
find a distinctive expression pattern of the ferritin light chain (FTL) gene, which increases during
development but decreases in various types of lung cells during the aging process.

Aging poses a global challenge as human longevity increases and the
population’s age structure changes1. Despite longer life spans, the propor-
tion of disease-free life time has not kept pace, with 16%-20% of seniors
suffering from late-life illness and organ failure2,3.The lung, with its large
functional surface and complex cellular composition, is subjected to various
noxious stimuli in the aging process4. The aging lung experiences reduced
gas exchange and immune capacity along with structural changes including
airway remodeling and decreased pulmonary compliance. These changes in
the aging lung are the driving factors of lung failure and susceptibility to
respiratory diseases5–7.

Aging is the result of multiple factors, and treatment targets have been
explored for various mechanisms of aging8. However, these anti-aging
therapies are facing clinical challenges, including target non-specificity,
clinical safety risks, and the difficulty of translating animalmodels to human
treatment. The anti-aging approaches based on the theory of heterochronic
parabiosis have achieved a breakthrough, using the circulatory medium of
young individuals to resist the aging of organs and tissues9,10. Based on this
theory, we believe that the distinct gene expression patterns of the embryo,
themost vigorous life cycle, can provide insights to solve the aging problem.

Given the complexity of lung cell components, single-cell RNA sequencing
(scRNA-seq) is an ideal method for resolving gene expression patterns in
aging and embryonic lungs.

In this study, we built a consecutive atlas of human lung development
and aging. Results from scRNA-seq showed dynamic changes in compo-
nent cells and gene expression patterns.We identified genes, such as ferritin
light chain (FTL), that undergo specific expression change patterns, offering
a potential biomarker and therapeutic target for aging lungs.

Results
Total cell populations in the developing and aging lungs
The lungs of aborted fetuses and adult lungs were collected and divided into
five groups (gestational week or age dependent)11,12, including the first-
trimester group (T1, n = 2), the second-trimester group (T2, n = 3), the last-
trimester group (T3, n = 1), the non-aging adult group (T4, n = 2), and the
aging adult group (T5, n = 2). Sample information can be found in Sup-
plementary Table 1. The total pulmonary tissue cells in the five groups were
analyzed (Fig. 1a). Quality control filtered out nFeature_RNA< 200 and
percent.mt > 10 cells (Supplementary Fig. 1a, b), and captured the
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transcriptional profiles of 88,055 cells (T1 group: 26863; T2 group: 24488;
T3 group: 3707; T4 group: 6839; T5 group: 26158). The canonical correla-
tion analysis (CCA)methodwasused toadjust the batch effect. Anunbiased
clustering and uniform manifold approximation and projection (UMAP)

analysis was used to identify 29 cell clusters with distinct cellular tran-
scriptomic signatures (Supplementary Fig. 2a). The 29 cell clusters were
assigned to 10 main cell clusters, which were annotated as myeloid cell
(Mye),fibroblast (FB), smoothmuscle cell (SMC), epithelial cell (Epi), T cell

Fig. 1 | A single-cell atlas of the developing and aging human lungs. a Study
flowchart. b UMAP plots showing the main cell cluster distribution of the devel-
oping and aging human lungs. c Expression of classical marker genes used to define
the main cell clusters. dDot plots showing the specific marker genes of the main cell

clusters. e The number of cells of each main cell cluster. f UMAP plots showing the
cell distribution in 5 phases. g For each of the 5 phases, the fraction of cells origi-
nating from each of the 10 main cell clusters.
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(T), B cell (B), endothelial cell (EC), differentiating fibroblast (DiFB), neural
cell (NC), and erythroid cell (Ery) (Fig. 1b). Differentmain cell clusters were
characterized with specific marker genes and gene expression patterns13,
such as LYZ (Mye), COL1A2 (FB), ACTA2 (SMC), EPCAM (Epi), CD3D
(T), CD79A (B), and PECAM1 (EC) (Fig. 1c). Since the 2 clusters of fibro-
blasts had distinct differentiating characteristics, DiFB was described
separately (Fig. 1d and Supplementary Fig. 2b).

In the fetal lungs, the FB/DiFB cluster represented themost substantial
population at stages T1, T2, andT3. In contrast, epithelial and immune cells
were the dominant cell populations in adult lungs (Fig. 1e, f, g, and Sup-
plementary Fig. 2c, d). Our discovery in the cell proportion of human fetal
lungs was similar to that of fetal rodents14,15. The main cell cluster profile of
adults observed in our study was consistent with prior reports16.

Dynamic changes of pulmonary epithelial cells during develop-
ment and aging
In aging lungs, pulmonary dysfunction is characterized by altered gas
exchange and decreasedmucociliary clearance17, suggesting a critical role of
epithelial cells in the aging process. We detected 20458 epithelial cells and
clustered them into 8 subclusters. Among these cell subclusters, alveoli Epi
include alveolar epithelial type 1 cell (AT1) and alveolar epithelial type 2 cell
(AT2), and airway Epi include ciliated cell (Cil), club cell, pulmonary
neuroendocrine cell (PNEC), basal cell (Bas), goblet cell (Gob), and reactive
cell (Fig. 2a and SupplementaryData 1).We found a continuous decrease in
the Bas ratio in the proportion of airway Epi (Fig. 2a and Supplementary
Data 2). The relative loss of Bas as progenitor cells during aging might be
involved in airway regeneration and repair disorders18. The proportion of
Cil showed a unimodal trend (Fig. 2a). Each subcluster had a distinct gene
expression profile (Fig. 2b)19,20.

In terms of transcriptional noise21,22, we found that both AT1 and AT2
experienced a decrease in transcriptional noise during development, indi-
cating an enhancement in transcriptional stability. During aging, the tran-
scriptional noise of AT1 and AT2 increased, and the efficiency of
transcriptional stability, accuracy, and mature mRNA decreased (Fig. 2c).
This trend was not observed in the airway Epi.

To perform unsupervised clustering of genes with similar expression
change patterns during development and aging, we used the Time Course
Sequencing Data Analysis (TCA) method. In the AT2 subcluster, the TCA
results of cluster 4 reached the peak of the gene expression score in the T3
group (Supplementary Fig. 3a), with the up-regulated gene patterns in
development. Gene Oncology (GO) analysis suggested that the genes up-
regulated during development were functionally enriched in ribosome-
related protein synthesis (Fig. 2d). Similarly, cluster 1 of AT1 showed the
genes up-regulated during development were enriched in protein synthesis
(Fig. 2g and Supplementary Fig. 3b). To analyze the expression changes of
AT2 aging genes, we combined theTCAmethod (cluster 5) and the analysis
of T5/T4 DEGs. GO analysis revealed that AT2 had reduced antigen pro-
cessing and presentation ability, decreased surfactant homeostasis, and
increased gene expression associated with immune cell chemotaxis during
aging (Fig. 2e, f). For AT1, the gene expression related to cell adhesion and
morphogenesis was down-regulated (Fig. 2h), while the gene expression of
immune cell chemotaxis was up-regulated during aging (Fig. 2i). The
transcriptional profiles of AT1 and AT2 during development and aging
were similar, which suggested that AT2 retained age-related transcriptional
features when it differentiated into AT123.

Among the DEGs in alveoli Epi, FTL was the most significantly dif-
ferentially expressed gene between groups. FTL was up-regulated during
development and down-regulated during aging (Fig. 2j, l), which was
confirmed by immunostaining results (Fig. 2k, m, and Supplementary
Fig. 4a, b). The function of FTL was to maintain the homeostasis of intra-
cellular iron24,25. Lung iron homeostasis is closely related to oxygen sensing,
pathogen defense, and chronic respiratory diseases26. Combined with our
findings, we suggested that FTL was a marker and potential intervention
target for lung aging. The result of RT-qPCRsupported ourdiscovery (g. 3f).
In addition, we explored another distinctively expressed gene, Eukaryotic

Translation Elongation Factor 1 Alpha 1 (EEF1A1), in AT1. EEF1A1 was
up-regulated in both late embryos and aging adults (Fig. 2n, o, and Sup-
plementary Fig. 4c). It is associated with the translation of viral proteins and
viral replication in severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)27.We hypothesized that the relative susceptibility of the elderly and
infants to COVID-19 may be related to the high expression of EEF1A128,29,
which suggested that the antiviral drug plitidepsin may have an ideal effect
on elderly patients and infants30.However, this speculationwas based on the
drug target. Due to the unique pharmacokinetics in infants, we could not
give definitive clinical suggestions based on this study. We reconstructed
alveoli Epi relationships by pseudotemporal trajectory (Fig. 3a). The results
of trajectory feature andGO termswere consistentwith thefindings of TCA
andDEGs analysis.We also found the regular expression changes of FTL in
the trajectory (Fig. 3b).

We analyzed the dynamic changes of airway Epi transcription profiles.
For Cil, cluster 1 gene sets were enriched in cilium movement and
microtubule-based movement (Fig. 3c and Supplementary Fig. 3c), which
suggested that the structure and function of Cil progressively matured
during development. During aging, the expression of genes related to the
inflammatory process was up-regulated inCil, while the expression of genes
related to cell adhesion and epithelial cell migration was down-regulated
(Fig. 3d, e). Considering the progenitor cell identity of Bas, we conducted
TCA and DEGs analysis of Bas. GO terms suggested that the homeostasis
and metabolism patterns matured during development, which were lost in
aging andwere accompaniedbydecreased cell adhesion andupregulationof
apoptosis levels (Fig. 3f,–g,–h, and Supplementary Fig. 3d). These results
revealed that in addition to the changes in cell number distribution during
development and aging, therewere dynamic changes in cell function-related
transcriptionprofiles ofCil andBas31. The function of Club cells is to protect
airway epithelium, detoxify, and regenerate into Cil32. TCA and DEGs
analysis suggested that the proliferation of club cells was decreased and
immune-related processes were up-regulated during aging (Fig. 3i,–j,–k,
and Supplementary Fig. 3e). The pseudotime trajectory analysis showed the
transition from development to aging over the time course (Supplementary
Fig. 5a, b).

Collectively, we summarized the transcriptional pattern in Epi and
found that the cell function of each subcluster, such as protein synthesis for
AT2 and ciliummovement for Cil, graduallymatured during development.
Thismaturationprocess began in the fetus, preparing fornormal respiratory
function after birth. The above cell functions decreased during aging, with
the upregulation of inflammatory and immune-related processes. In addi-
tion, we found that stemcell depletion in airway Epi, including Bas and club
cells,was a continuousprocess fromdevelopment to aging,which could lead
to susceptibility to age-related chronic lung diseases33.

Phenotypic changes of fibroblasts during development
and aging
FB is involved in the morphogenesis of the lung during development34, and
during aging, lung compliance decreases, in which FB is involved in the
process of interstitial remodeling35. To investigate dynamic changes in FB
phenotype and gene expression pattern, we captured 27511 FBs and DiFBs
and divided them into 9 subclusters, including the alveolar FB, differ-
entiating FB, universal FB, myofibroblast, adventitial FB, peripheral nerve
FB, andpericyte (Fig. 4a). Each cluster had a specific gene expressionpattern
(Fig. 4b and Supplementary Fig. 6a)36,37. Alveolar FB was divided into two
clusters, and alveolar Fibs 1.2 (SCN7A+ GRIA1+) showed that they had the
potential to be excited by glutamatergic signaling inputs16. We analyzed the
transcriptional noise of FB and found that the transcriptional noise of FB
increased during aging (Fig. 4c).

We explored the dynamic changes of FB transcriptional profiles. Gene
clusters 2 and 6 of FB were enriched in epithelial tube morphogenesis, cell
junction assembly, mesenchyme development, and extracellular matrix
(ECM)organization (Fig. 4d, e, and Supplementary Fig. 6b), whichmatched
the role of FB in development34. During aging, GO terms of DEGs between
T4 andT5 groups suggested that FB in the aging groupwas characterized by
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increased immune cell chemotaxis and disordered ECM organization
(Fig. 4f). Our evaluation of elastin synthesis and collagen catabolism in FB
showed that elastin synthesis and collagen catabolism were reduced in the
aging group (Fig. 4g, h)38. According to previous reports39, these phenotypes
were associatedwith decreased lung compliance.Masson staining suggested
an increased fibrosis level in the aging lung (Fig. 4i). We collected cohort

data on lung function and found that vital capacity (VC), forced vital
capacity (FVC), and forced expiratory volume in one second (FEV1)/FVC
were significantly reduced in the aging adult group (Table 1), supportingour
findings of FB phenotypic changes40. A similar change pattern of FTL was
found in FB, aligned with the immunofluorescence results (Fig. 4j, k, and
Supplementary Fig. 6c).
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Our SCENIC analysis on FB showed that Zinc Finger Protein 217
(ZNF217) was up-regulated in FB of the aging group (Supplementary
Fig. 6d, e). The upstream positive regulator of ZNF217, Metastasis Asso-
ciated Lung Adenocarcinoma Transcript 1 (MALAT1)41, was highly
expressed in the senescent FB (Supplementary Fig. 6f). Thus, theMALAT1-
ZNF217 regulatory pathway might be involved in the cellular senescence
and phenotypic changes of FB in aging lungs42.

Collectively, the organization of ECMand themorphogenesis function
of FB increased throughout development. During aging, phenotypic
changes of FB contributed to reduced pulmonary compliance.

Dynamic changes of smooth muscle cells and endothelial cells
As themain components of the vascular system, EC and SMC contribute to
thedevelopment andagingof the lungs.Duringdevelopment, ECdirects the
differentiation of lung stem cell43. During aging, EC and SMC mediate the
pathological progression of pulmonary hypertension44,45.

We captured 4716 SMCs in 3 clusters, including vascular smooth
muscle cell (VSMC), airway smoothmuscle cell (ASMC), anddividingSMC
(Fig. 5a, b, and Supplementary Fig. 7a). VSMCs (NTRK3+MEF2C+) and
ASMCs (MYLK+HHIP+) had distinct gene expression profiles46,47. The
phenotypic transition regulates the structural and physiological profile of
VSMCs48,49. Using the TCAmethod, gene clusters 4 and 5 were enriched in
muscle contraction, muscle cell development, and aerobic metabolism
during development (Fig. 5c, d, and Supplementary Fig. 7b).

A total of 3155 ECswere captured and clustered, including capillary EC,
arterial EC, venous EC, lymphoid EC, and dividing EC (Fig. 5e, f, and Sup-
plementary Fig. 8a). Capillary ECs were divided into general capillary EC
(BTNL9+IL7R+) and airway capillary EC (HPGD+TBX2+)50. Changes in gene
expression of EC indicated that regulated genes in capillary EC, arterial EC,
and venous EC were enriched in endothelium development (Fig. 5g, h, and
Supplementary Fig. 8b,–c,–d,–e,–f,–g). Analysis of gene expression of capil-
lary EC during aging found the down-regulated genes were related to the
nitric-oxide synthase biosynthetic process, while the up-regulated geneswere
related to SMC proliferation regulation and cell adhesion (Fig. 5i). Given the
endothelial phenotypic changes as typical characteristics of pulmonary
hypertension51,52, we performed phenotypic scores across groups (Fig. 5j and
Supplementary Fig. 8h). The level of EC proliferation level decreased during
development, but no differences were observed between T4 and T5, and EC
apoptosis showed a similar trend (Fig. 5j). This suggested that the changes in
ECduring agingweremainly at the transcriptional profile rather than relative
cell number.Changes in the transcriptional characteristics of ECduring aging
might be involved in pulmonary vascular remodeling53, which was related to
the susceptibility of elderly people to pulmonary oxygen exchange disorder54.

Collectively, the contractile functionof SMChasbeenenhancedover the
course of development. For EC, loss of transcriptional identity and pheno-
typic change were involved in the remodeling of aging pulmonary vessels.

Changes in immunefunctionandcellproportionof lymphoidcells
A total of 16687 lymphoid cells (Lym) were collected and clustered into 12
subclusters. The clusters includedNK cell, proliferating lymphocyte, tissue-
resident memory CD4+ T cell (CD4+ TRM), effector memory CD8+ T cell
(CD8+ TEM), naïve T cell, immune response T cell, B cell, differentiating T
cell, dividing T cell, CD4+Treg cell, mast cell, and lymphoid lineage derived
dendritic cell (Fig. 6a, b, and Supplementary Fig. 9a)55–57. Changes in the cell

distribution ratio indicated that the proportion of NK cell and naïve T cell
increased during development. During aging, the percentage of NK cell and
naïve T cell decreased (Fig. 6a). The decreased proportion of naïve T cells
was one of the characteristics of immunosenescence58,59. We observed an
increased tendency for transcriptional noise during aging in the Lym sub-
clusters (Fig. 6c).

In the analysis of gene expression changes in Lym, we focused on naïve
T cell and NK cell. Our finding indicated during development, genes up-
regulated in naïve T cells were enriched in biological processes of T cell
activation, differentiation, and proliferation (Fig. 6d and Supplementary
Fig. 9b), which were related to T cell function and proliferation. Genes
down-regulated in agingwere enriched in cytoplasmic translation andT cell
activation (Fig. 6e). The results suggested that the renewal capacity and
immune functionofnaïveT cells decreasedduring aging.Analysis ofT4 and
T5 DEGs indicated that genes related to the regulation of immune cell
chemotaxis and the adhesion of leukocyte cells were strongly expressed
during aging. Genes related to cytoplasmic translation and T cell differ-
entiation were down-regulated (Fig. 6f), which was consistent with the
results of theTCAanalysis. InNKcells, genes thatwere up-regulated during
development were associated with leukocyte-mediated cytotoxicity, T cell
activation, and cell killing (Fig. 6g and Supplementary Fig. 9c), indicating an
increased NK cells’ immune activity. During aging, both TCA and DEGs
analysis indicated genes highly expressed in NK cells were related to
immune cell chemotaxis, whereas genes related to T cell activation, antigen
processing and presentation, and NK cell-mediated immunity were down-
regulated (Fig. 6h, i). The results of the pseudotime trajectory analysis of
T cells showed that the differentiation level of T cells increased during
development (Supplementary Fig. 9d). This confirmed that the differ-
entiation and maturation of T cells began before birth60.

Collectively, the proportion of subclusters and transcription profile of
Lym showed a dynamic change during development and aging.

Changes in the immune function of myeloid cell and cell-cell
interaction
ForMye,we captured 10383 cells and clustered these cells into 7 subclusters,
including tissue-resident macrophage, M1-like macrophage, M2-like
macrophage, monocyte-derived macrophage, dendritic cell, neutrophil,
dividing Mye (Fig. 7a, b, and Supplementary Fig. 10a)61–63. The relative
proportion of Mye subclusters suggested that the proportion of tissue-
resident macrophage increased in adult lungs, while the proportion of
dividing Mye decreased as development progressed (Fig. 7a). The above
trend of cell proportion changewas consistentwith thefindings of Li et al. 64.
Attention was paid to the transcriptional noise of Mye, and we found that
transcription noise increased with aging, except for M1-like and M2-like
macrophages (Fig. 7c).

Through TCA analysis, we found that up-regulated genes during
development were enriched in cytokine production and myeloid cell
homeostasis (Fig. 7d and Supplementary Fig. 10b). Analysis of TCA and
DEG for aging suggested that genes regulating chemotaxis and migration
were highly expressed, and the expression of genes involved in detoxifica-
tion and antigen processing and presentation was down-regulated
(Fig. 7e, f). Due to the unique role of tissue-resident macrophage in devel-
opment and aging65,66, we examined the gene expression alternations within
this subcluster. TheTCAanalysis showed that, during development, the up-

Fig. 2 | Dynamic changes of epithelial cell during development and aging.
aUMAP plots of epithelial cells (left). Alveolar epithelial type 1 cell (AT1); Alveolar
epithelial type 2 cell (AT2); Pulmonary neuroendocrine cell (PNEC). Proportion of
epithelial cell subclusters in 5 groups (right). b Dot plots of specific marker genes.
c The age-associated changes of transcriptional noise of epithelial cell subclusters.
d Gene ontology enrichment analysis of gene set in cluster 4 of AT2 (development)
by TCA method. e Gene ontology enrichment analysis of cluster 5 of AT2 (aging).
fGene ontology enrichment analysis of up (top part, red)/down (bottom part, blue)-
regulated genes expression in aging AT2. g Gene ontology enrichment analysis of
gene expression in cluster 1 of AT1 (development). h Gene ontology enrichment

analysis of gene expression in cluster 3 of AT1 (aging). iGene ontology enrichment
analysis of up (top part, red)/down (bottompart, blue)-regulated genes expression in
aging AT1. j Relatively expression of FTL in AT2 subcluster in single-cell analysis.
k The expression of FTL in AT2 of immunofluorecence staining. l Relatively
expression of FTL in AT1.m The expression of FTL in AT1 of immunofluorecence
staining. n Relatively expression of EEF1A1 in AT1. o The expression of EEF1A1 in
AT1 of immunofluorecence staining. The choice of ANOVA tests was based on the
results of Shapiro-Wilk normality test. Dunnett tests were used to inter-group
comparison. *p < 0.05, ****p < 0.0001.
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Fig. 3 | Pseudotime trajectory analysis and dynamic changes of epithelial cell
during development and aging. a Pseudotime trajectory of alveoli epithelial cells
inferred usingmonocle2method. bHeatmap showing differentially expressed genes
(DEGs) alone with the pseudotime as in (a), catalogs into 4 gene module clusters
(left). Gene ontology terms enriched for each gene module clusters (right). c Gene
ontology enrichment analysis of gene expression in cluster 1 of ciliated cell (devel-
opment). d Gene ontology enrichment analysis of gene expression in cluster 6 of
ciliated cell (aging). eGene ontology enrichment analysis of up (top part, red)/down

(bottom part, blue)-regulated gene expression in aging ciliated cell. fGene ontology
enrichment analysis of gene expression in cluster 2 of basal cell (development).
g Gene ontology enrichment analysis of gene expression in cluster 6 of basal cell
(aging). h Gene ontology terms of up (top part, red)/down (bottom part, blue)-
regulated gene expression in aging basal cell. iGene ontology enrichment analysis of
gene expression in cluster 1 of club cell (aging). jGene ontology enrichment analysis
of gene expression in cluster 6 of club cell (aging). kGene ontology terms of up (top
part, red)/down (bottom part, blue)-regulated gene expression in aging club cell.
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Fig. 4 | Dynamic changes of fibroblast during development and aging. a UMAP
plots of fibroblast (FB) (left). Proportion of fibroblast subclusters in 5 groups (right).
b Dot plots of specific marker genes of fibroblast. c The age-associated changes of
transcriptional noise of fibroblast. d Gene ontology enrichment analysis of gene
expression in cluster 2 of fibroblast (development). e Gene ontology enrichment
analysis of gene expression in cluster 6 of fibroblast (development). fGene ontology
enrichment analysis of up (top part, red)/down (bottom part, blue)-regulated gene
expression in fibroblast. g Elastin synthesis (GO: 0071953) score of fibroblasts

between 5 groups. hCollagen catabolic (GO: 0030574) score of fibroblasts between 5
groups. iMasson-stained sections of lung tissues between 5 groups and relative
fibrosis area of the lung tissues shown as the means ± SD, tested by two-tailed t-test.
*p < 0.05. j Relatively expression of FTL in fibroblast in single-cell analysis. k The
expression of FTL in fibroblast of immunofluorecence staining. The choice of
ANOVA tests was based on the results of Shapiro–Wilk normality test. Dunnett tests
were used to inter-group comparison. **p < 0.01, ****p < 0.0001.
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regulated genes of the tissue-resident macrophage were enriched with
phagocytosis, cell killing, and defense response. These results suggested that
the immune function of tissue-resident macrophage gradually matured
during development (Fig. 7g and Supplementary Fig. 10c). During aging,
chemotaxis andmigration geneswere highly expressed, and genes related to
detoxification, T-cell activation, myeloid activation, and antigen processing
and presentation were down-regulated (Fig. 7h, i). We found that hotspot
genes associated with age-related pulmonary diseases (pulmonary hyper-
tension, pulmonary emphysema, COPD, and asthma) were highly enriched
in Mye and Epi (Supplementary Fig. 10d).

The cellPhoneDB results showed that the interactionbetween themain
cell clusters increased during development and declined during aging
(Fig. 8a). However, the interaction betweenMye and other cell populations
remained elevatedduring aging (Fig. 8a), which suggested that the immune-
related processes were relatively active during aging.

We then focused on the cell-cell interactions of the AT2 and AT1
subcluster.We found that inAT2 andAT1, the interaction scores of AT2-
Mye and AT1-Mye through SCGB3A1-MARCO were significantly
increased, especially in tissue-resident macrophage (Fig. 8b, c). This
observation aligned with prior findings that identified the ligand-receptor
relationship SCGB3A1 (UGRP1)-MARCO as a facilitator of pulmonary
inflammation. In addition, this prior study suggested that this ligand-
receptor interaction occurred primarily through tissue-resident alveolar
macrophage, which was similar to the findings of our study67.

In terms of cytokine activation and signaling,we observed a decrease in
the expression level of CISH within both Epi and Mye clusters. CISH
functioned as a suppressor of the cytokine signaling system (Supplementary
Fig. 11a)68, and its reduced expression disrupted the negative feedback
regulatory circuits, which was associated with chronic pulmonary
inflammation69. Correlation analysis suggested that CISH was significantly
correlated with cellular senescence (Supplementary Fig. 11b).

Decreased FTL expression induced cellular senescence
The cell homeostasis of the aged lung decreased, and our single-cell atlas of
development and aging lungs suggested that the dysregulation of iron
homeostasis caused by FTL down-regulation might be involved in this
process. The decrease in FTL affects the ferritin ensemble. Correlation
analysis suggested thatFTL expression level inAT2 subclusterwas positively
correlated with the intracellular iron storage pathway (P-value < 0.0001;

cor = 0.865) (Fig. 9a). The decrease of FTL expression led to an increase in
the level of intracellular free iron ions, and these excess iron ions disrupted
redox homeostasis70–72. Correlation analysis also found that FTL expression
level was negatively correlated with cellular senescence (P-value < 0.0001;
cor =−0.436) (Fig. 9b). We used siRNA transfection system to verify the
relationship betweenFTL expression level and cellular senescence.Aimed at
exploring the roles ofFTL in cellular senescence of lungEpis, weused siRNA
transfection systemto treatBEAS-2B cells. ThroughRT-qPCRandWestern
Blot analysis, siRNA-FTL#3 showed reliable knockdown ability (Fig. 9c and
Supplementary Fig. 12). Considering the relationship between cell vitality
and cellular senescence73, weusedCellCountingKit-8 (CCK-8) to detect the
effect of FTL on cell vitality. Compared to the control group, the cell vitality
of FTL-knockdown group was significantly decreased (Fig. 9d). We next
performed the cellular senescence assay, SA-β-gal staining results showed
that BEAS-2B cells were induced to senescence after siRNA treatment
(Fig. 9e). Moreover, BEAS-2B cells treated with siRNA-FTL showed
increased expression of p21 (Fig. 9f and Supplementary Fig. 13).

The results of scRNA-seq and cell experiment indicated that decreased
FTL expression was related to cellular senescence, and this finding sup-
ported FTL as the biomarker of lung aging (Fig. 9g). Due to the expression
pattern of FTLwas discovered from the normal physiological process, using
FTL as the recovery target of lung aging couldhave ahigh translational value
and clinical safety.

Discussion
Aging is the cumulative result ofmultiple factors, including the reduction of
genomic stability, mitochondrial homeostasis, epigenetic modification
changes, senescence-associated secretory phenotype, telomere shortening,
telomerase activity decrease, and stemcell depletion74,75. In response to these
mechanisms of aging, many studies have proposed various potential ther-
apeutic strategies, such as telomerase reactivation76, stem cell induction/
transplantation77, lifestyle intervention78, and the development of universal
anti-aging drugs79. However, the transition of anti-aging therapies from
research to clinical practice has faced substantial challenges. For instance,
some studies, such as the adeno-associated vector mediated telomerase
reverse transcriptase protein expression80, have not progressed beyond
preclinical testing in animal models. Additionally, due to the long-term and
heterogeneous problem of aging research, some clinical studies have
encountered great difficulties, such as dietary restriction for anti-aging81.

Table 1 | Lung function characteristics in non-aging and aging adults

Variables Non-aging adults (n = 18) Aging adults (n = 16) P-value

Age (years) 45.00 (43.00–49.00) 68.50 (66.00–74.25) <0.0001#

Male (n, %) 3 (16.67) 8 (50.00) 0.088§

FVC (forced vital capacity) (L) 3.17 ± 0.58 2.50 ± 0.64 0.003*

FEV1 (forced expiratory volume in one second) (L) 2.55 (2.34-2.80) 1.78 (1.50-2.51) 0.002#

FEV1/FVC (%) 81.72 ± 5.43 77.50 ± 6.37 0.045*

VC (vital capacity) (L) 3.07 ± 0.56 2.47 ± 0.64 0.007*

FEV1/VCmax (%) 81.50 (77.50-84.25) 77.00 (72.25-82.50) 0.156#

PEF (peak expiratory flow) (L/s) 5.99 ± 1.57 4.69 ± 1.51 0.020*

FEF50% (forced expiratory flow 50%) (L/s) 3.65 (2.90–4.48) 2.22 (1.71–3.20) 0.004#

PIF (peak inspiratory flow) (L/s) 3.07 (2.38–4.09) 2.07 (1.26–2.65) 0.004#

TV (tidal volume) (L) 1.14 ± 0.40 1.08 ± 0.36 0.669*

IRV (inspiratory reserve volume) (L) 1.11 ± 0.58 0.85 ± 0.46 0.159*

ERV (expiratory reserve volume) (L) 0.87 ± 0.31 0.63 ± 0.38 0.051*

RR (respiratory rate) (1/min) 18.54 ± 4.72 18.35 ± 4.58 0.904*

MVV (maximal voluntary ventilation) (L/min) 108.30 ± 22.58 68.57 ± 20.64 <0.0001*

Dependingon the normality, lung function characteristics of non-aging and aging adultswere presentedbymean ± SDormedian (IQR). Normalitywas testedbyShapiro–Wilk test. Homogeneity of variance
was tested by Variance Ratio test.
P-value: * Two-sided t-test; # Mann–Whitney test; § Chi-square incorporating Yates’ correction for continuity. A two-sided p-value of <0.05 was considered statistically significant.

https://doi.org/10.1038/s42003-024-06111-x Article

Communications Biology |           (2024) 7:427 8



Fig. 5 | Smooth muscle cell and endothelial cell. a UMAP plots of smooth muscle
cell (SMC) (left). Proportion of SMC subclusters in 3 groups (right). b Dot plots of
specific marker genes of SMC. c Gene ontology enrichment analysis of gene
expression in cluster 4 of VSMC (development). d Gene ontology enrichment
analysis of gene expression in cluster 5 of VSMC (development). e UMAP plots of
endothelial cell (EC) (left). Proportion of endothelial cell subclusters in 5 groups
(right). f Dot plots of specific marker genes of endothelial cell. g Gene ontology
enrichment analysis of gene expression in cluster 4 of capillary endothelial cell

(development). hGene ontology enrichment analysis of gene expression in cluster 6
of capillary endothelial cell (development). i Gene ontology enrichment analysis of
up (top part, red)/down (bottom part, blue)-regulated gene expression in aging
capillary endothelial cell. j The proliferative (GO: 0001935) scores and the apoptotic
(GO: 0072577) scores of endothelial cells. The choice of ANOVA tests was based on
the results of Shapiro–Wilk normality test. Dunnett tests were used to inter-group
comparison.
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Moreover, interventions targeting the marker genes in aging may posed
potential clinical safety concerns82.

To explore more effective solutions for aging lungs, we used high-
throughput omics data to observe the dynamic change of development and
aging at the single-cell level of the lungs. We took advantage of the fact that
human data enhanced the translational value, and the results of this study
might be more consistent with the physiological rationale for identifying
intervention targets from the normal life cycle, thus reducing the risk of
clinical safety.

We identified dynamic transcriptional changes through a continuum
atlas of the human lung during development to aging. For transcriptional
noise, it has been theorized that transcriptional instability and increased

transcriptional noise can cause cell fate drifts and lead to aging83. In 2019,
Angelidis et al. found the increased transcriptional noise in the lung cells of
aging mice21. Our study found that transcriptional noise was increased
during aging, especially in AT2, FB, and neutrophils. We detected a com-
mon trend in epithelial cells during development, marked by a gradual
decrease in transcriptional noise during development, a process related to
the maturation of cell fate84.

Additionally, our analysis revealedadynamic functional enrichment in
lung component cells, characterized by a gradual acquisition of specific
cellular functions during development and loss during aging, such as sur-
factant homeostasis of AT2. This trend is consistent with previous findings
in single-cell sequencing of the nervous system in mice85.

Fig. 6 | Lymphoid cell. a UMAP plots of Lymphoid cell (Lym) (left). Proportion of
Lymphoid cell subclusters in 5 groups (right). bDot plots of specificmarker genes of
Lym. c The age-associated changes of transcriptional noise of Lym subclusters.
d Gene ontology enrichment analysis of gene expression in cluster 6 of naïve T cell
(development). eGene ontology enrichment analysis of gene expression in cluster 3
of naïve T cell (aging). f Gene ontology enrichment analysis of up (top part, red)/

down (bottom part, blue)-regulated gene expression in aging naïve T cell. g Gene
ontology enrichment analysis of gene expression in cluster 2 of NK cell (develop-
ment). h Gene ontology enrichment analysis of gene expression in cluster 6 of NK
cell (aging). iGene ontology enrichment analysis of up (top part, red)/down (bottom
part, blue)-regulated gene expression in aging NK cell.
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Moreover, we documented shifts in the relative proportions of cell
subclusters throughout the human lifespan, characterized by stem cell
population loss, such as Basal cells. Lung regeneration involves the acti-
vation of progenitor cells as well as cell replacement through the pro-
liferation of remaining undamaged cells86, which suggests that the
embryonic lung has a relatively greater capacity for regeneration and
repair87.

Our results indicated a loss of immune homeostasis during the aging
process, revealing a connection between immune cell dysfunction and
chronic lung inflammation88. This overlapprovides insights into the chronic
inflammatory mechanisms in aging research89.

To address the problems of lung aging, we found a key phenomenon in
several cellular components of the lung. Expression of FTL increased in
development and decreased in aging. As the component of ferritin, FTL
regulates ironhomeostasis in the cell90, anddysregulated ironhomeostasis is a
hallmark of human aging91. It can be inferred from our results that the
decrease of FTL expression in lung epithelial cells can impair cell homeostasis
and induce cellular senescence. In addition to the function of FTL as an aging
marker, restoring FTL expression levels has the potential to become an anti-
aging treatment in the future. For example, Nodosin (a diterpenoid isolated
from Isodon Serra) can be used to improve the expression of FTL92, and this
natural product has been shown to have anti-inflammatory and regulatory

Fig. 7 | Myeloid cell. a UMAP plots of myeloid cell (Mye) (left). Proportion of
Myeloid cell subclusters in 5 groups (right). b Dot plots of specific marker genes of
Mye. c The age-associated changes of transcriptional noise of Mye subclusters. d.
Gene ontology enrichment analysis of gene expression in cluster 4 of Mye (devel-
opment). eGene ontology enrichment analysis of gene expression in cluster 6 ofMye
(aging). f Gene ontology enrichment analysis of up (top part, red)/down (bottom

part, blue)-regulated gene expression in aging Mye. g Gene ontology enrichment
analysis of gene expression in cluster 1 of tissue-resident macrophage (develop-
ment). hGene ontology enrichment analysis of gene expression in cluster 4 of tissue-
resident macrophage (aging). i Gene ontology enrichment analysis of up (top part,
red)/down (bottom part, blue)-regulated gene expression in aging tissue-resident
macrophage.
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effects on cell proliferation93. In addition to interfering with FTL expression,
restoration of intracellular iron homeostasis using therapies, including iron
chelation, also provides an option for intervention in lung aging91,94.

Gender differences were included by default but not analyzed in this
study. The sample size of last-trimester embryo individuals included in this
study was relatively small.

Methods
Human lung specimens
The use of human lung tissue in this study was approved by the Human
Ethics Committee of Fuwai Hospital, Chinese Academy ofMedical Sciences.
Adult lung specimens were collected with the informed consent of the
patients, and aborted embryo specimens were obtained with the informed

Fig. 8 | Cell-cell interaction and pulmonary inflammation. aOverall intercellular communication between main cell clusters (prob.cut.off = 0.3). b The interaction score
betweenAT2 (left) / AT1 (right) andmyeloid cell in T5 group. cThe interaction score of SCGB3A1 (ligand) -MARCO (receptor) pair between 5 groups. *p < 0.05, **p < 0.01.
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consent of the pregnant women. Embryonic lung tissue samples were col-
lected from aborted embryos at 10, 12, 17, 20, 25, and 40weeks of gestation.
Adult lung tissue samples were collected from adults 47, 54, 67, and 74 years
of age who underwent lung surgery. These adult patients underwent surgery
for lung nodules (<30mm in diameter), and the samples were obtained from
thenormal tissue far away fromthenodules thathadbeen surgically removed.

Pulmonary nodules were reported as non-cancerous after surgery. All ethical
regulations relevant to human research participants were followed.

Collection of adult lung function parameters
Static lung function monitoring data were retrospectively obtained from
non-aging adults (n = 18) and aging adults (n = 16) in the third affiliated
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hospital of Sun Yat-sen University. The age inclusion of the 2 groups
matched the age of the T4 and T5 groups. Both groups of monitored
individuals had no disease status or history of disease affecting lung func-
tion. These data were collected with the informed consent of themonitored
individuals.

Isolation of lung cells
Lung tissue samples were washed with phosphate buffer solution (PBS) and
immersed in DMEM (Gibco, #11885084, USA) supplemented with 10%
fetal bovine serum (Gibco, #10091148, USA). Samples were cut into small
pieces. After washing with PBS, samples were digested in PBS containing
1000 U/mL Collagenase II (Worthington, #43J14367B, USA) at 37 °C for
15min with gentle shaking. The above steps were repeated 3 times. The cell
suspensionwas filteredwith a 40 μmcell strainer (Falcon, #431750,USA) to
get a single-cell suspension. Cells were collected by centrifugation at 400 g,
4 °C for 5min. The supernatant was discarded. The cell pellets were re-
suspended in DMEM containing 2% fetal bovine serum. The cell pellet was
treatedwith 200 μL red blood cell lysis buffer (Beyotime, #C3702,China) for
10min on ice. After centrifugation, the suspension was re-suspended.
Single-cell suspension was harvested again with a 40 μm cell strainer.

Single-cell library preparation and sequencing
Single-cell suspensions were loaded onto a Chromium Single Cell Con-
troller (10xGenomics) to generate Gel Bead-In-Emulsions (GEMs). cDNA
libraries were prepared using the single cell 5' solution v2 reagent kit
(Chromium, 1000020) according to the protocol provided in the 10x
Genomics Chromium Single Cell Immune Profiling Solution. After the
reverse transcription step, droplets were disrupted and barcoded cDNAs
were purified with DynaBeads, followed by 14 cycles of PCR amplification
(98 °C for 45 s; [98 °C for 20 s, 67 °C for 30 s, and 72 °C for 1min] × 14
cycles; 72 °C for 1min). The resulting amplified cDNAs were sufficient to
construct 5′ gene expression libraries. The cDNAs from single-cell tran-
scriptomes (50 ng) were fragmented, subjected to 2 rounds of size selection
with SPRI beads (avg. size 450 bp), and sequenced on the Illumina NextSeq
platform (High Output V2 Kit, 150 cycles). All libraries were sequenced by
an Illumina HiSeq 4000 sequencer.

Sequencing data processing
Raw gene expression matrices were generated for each sample by the Cell
Ranger (Version 6.1.2) Pipeline coupled with human reference version
GRCh38-2020-A. The output-filtered gene expression matrices were ana-
lyzed by R software (Version 4.1.2) with the Seurat package (Version 4.1.1).
A custom R script was used to combine the expression data and metadata
from all libraries corresponding to a single batch, and cells with fewer than
200 Features were removed. The expression data matrix was filtered to
retain genes with >5UMI counts and then loaded into a Seurat object along
with the library metadata for downstream processing. The percentage of
mitochondrial transcripts for each cell (percent. mt) was calculated and
added as metadata to the Seurat object. Cells were further filtered before
dimensionality reduction (nGene-min. 200; percent. mt-max. 10%). Low-
quality libraries identifiedwere removed from the dataset. Expression values
were then scaled to 10,000 transcripts per cell and Log-transformed. Effects
of variable (percent. mito) were estimated and regressed out using a GLM
(ScaleData function, model.use = ” linear”), and the scaled and centered
residuals were used for dimensionality reduction and clustering. Before the

clustering, we first applied Canonical correlation analysis (CCA) imple-
mented in Seurat to correct the batch effects among the experiments and
integrate the gene expression matrix of all samples into a whole matrix.

Dimensionality reduction
We used 2000 genes with high cell-to-cell variation, which were calculated
using the FindVariableFeatures function in Seurat for further dimension-
ality reduction. To reduce the dimensionality of the datasets, the RunPCA
function was conducted with default parameters on linear-transformation
scaled data generated by the ScaleData function. Next, the ElbowPlot and
DimHeatmap functionswere used to identify the properdimensions of each
dataset.

Cell clustering and identification of marker genes
After non-linear dimensional reduction and projection of all cells into two-
dimensional space by UMAP, we initially built a graph of cells by using the
K-Nearest Neighbours (KNN) algorithm applied to the PC-reduced space
where each cell was connected to its 50 most similar cells using the man-
hattan distance. Then, to build the final graph of cells, the edge weight
between any two cells was computed as the Jaccard similarity, i.e. the pro-
portion of neighbors they share. The Louvain algorithm with a resolution
parameter equal to 0.25 was used to find communities of cells in this graph.
Differentially expressed genes in each cluster were identified by the fin-
dAllMarkers functionof the Seurat package,which compares the expression
of a gene in each cluster versus all the others by using the t-test.

Reclustering of major cell types
To identify subtypes or cells in different states within a major cell type, we
used a two-round clustering strategy. Firstly, cells belonging to a cell type
were extracted from the normalized gene expressionmatrix of each sample
and a combined gene expressionmatrix of all sampleswas prepared. Likewe
did on the whole dataset, variably expressed genes were identified by the
FindVariableGenes function in Seurat. After PCA analysis, we selected the
top PCs and performed clustering analysis using CCA.

Differential expression genes identification and functional
enrichment
Differential gene expression testing was performed using the FindMarkers
function in Seurat with the parameter “test.use=t” by default, and the
Benjamini-Hochberg method was used to estimate the false discovery rate
(FDR). Enrichment analysis for the functions of the DEGs was conducted
using clusterProfiler version 4.2.2 R package. “Biological Processes” gene
ontology annotations for all molecules on the surface screen were compiled
from org.Hs.eg.db(v3.14.0).

Functional module analysis
Weusedcell scores to evaluate the degree towhich individual cells expressed
a certain predefined expression functional gene set. The cell scores were
initially based on the average expression of the genes from the predefined
gene set in the respective cell. For a given cell i and a gene set j(Gj), the cell
score SCj(i) quantifies the relative expression of Gj in cell i as the average
relative expression (Er) of the genes in Gj compared to the average relative
expression of a control gene set (Gjcont): SCj(i) = average (Er (Gj, i))
−average (Er (Gjcount, i)). The control gene set was randomly selected
based on aggregate expression levels bins, which yield a comparable

Fig. 9 | Down-regulation of FTL induced decreased iron homeostasis and cellular
senescence. a Correlations between the FTL expression level and the iron storage
pathway (PW: 0000592) score of AT2 cell cluster. b Correlations between the FTL
expression level and the cellular senescence (GO: 0090398) score of AT2 cell cluster.
c RT-qPCR analysis of relatively mRNA expression levels of FTL in BEAS-2B cells
after transfecting with siRNA, by ANOVA test (left), shown as the means ± SD.
Western Blot (mid) and semi-quantitative analysis (right) of relatively protein
expression of FTL in BEAS-2B cells after transfecting with siRNA, by ANOVA test,
shown as the means ± SD. d The CCK8 assay showed the viability of BEAS-2B cells,

by two-tailed t-test, shown as the means ± SD. e SA-β-gal activity was measured by
X-gal staining, by two-tailed t-test, shown as the means ± SD. f Western Blot (left)
and semi-quantitative analysis (right) of relatively protein expression of p21 in
BEAS-2B cells after transfecting with siRNA, by two-tailed t-test, shown as the
means ± SD. g Schematic drawing. The choice of ANOVA tests and two-tailed tests
was based on the results of Shapiro-Wilk normality test. Dunnett tests were used to
inter-group comparison. ***p < 0.001, ****p < 0.0001. For results in c and d, 5
replicates from different cell samples were used in each group. For results in (e, f), 3
replicates from different cell samples were used in each group.
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distribution of expression levels and oversize to that of the considered gene
set. The AddModuleScore function in Seurat was used to implement the
method with default settings. Detailed information on the gene sets can be
found in Supplementary Table 2.

Temporal patterns of time course data
We applied the R package TCseq (v1.18.0) to analyze the differentiation of
experimental conditions. TCseq compares the temporal patterns of a gene
between experimental conditions, taking into consideration all of the pos-
sible co-expressionmodules that this genemay participate in. By default, we
use k = 6 to get the co-expression modules.

Estimation of transcriptional noise
To ascertain the robustness of age-dependent transcriptional noise, for each
time course measurement, we first divided the cells into cell types and
computed themean expression vector for each cell type.We then calculated
the Euclidean distance between each cell and its corresponding cell type
mean vector. The individual data points were summarized as boxplots.
Finally, as an alternative method to obtain a measure of the transcriptional
noise of a single cell, we selected a set of invariant genes evenly across the
range ofmean expression. First, we binned the genes in 10 equally sized bins
by mean abundance, then we used these genes to determine the Euclidean
distance from each cell to the average profile across all cells.

Pseudotemporal ordering of cells
Monocle (v2.16.0) aims to resolve cellular transitions during differentiation
through pseudotemporal profiling of scRNA-seq data. After inputting the
cell-gene matrix into the “newCellDataSet” function with its clustering
information, it was computed into a lower dimensional space based on the
discriminative dimensionality reduction with trees (DDRTree) method, a
more recent manifold learning algorithm, and then cells were ordered
according to pseudotime.

Transcriptional factor (TF) activity analysis
Transcription factor activity was analyzed using pySCENIC (v0.11.2) per
cell type with raw count matrices as input. The regulons and TF activity
(AUC) for each cell were calculated with the pySCENIC pipeline withmotif
collection versionmc9nr. The differentially activated TFs of each subcluster
were identified by the test against all the other cells of the same cell type.

Overlap genes analysis
The differential expression of genes between cell types and sample groups
was computed separately using the Seurat FindAllMarkers function. Genes
with afiltered criterion of a p-value < 0.05 and an average log2 fold change >
0.25 were identified as representative genes for each group. Subsequently,
within the databases encompassing hotspot genes from DisGeNET, we
specifically identified a subset ofDifferentially ExpressedGenes (DEGs) that
exhibited overlap with genes associated with Pulmonary Hypertension
(C0020542), Emphysema (C0034067), Chronic Obstructive Pulmonary
Disease (COPD) (C0024117), and Asthma (C0004096).

Cell-cell communication analysis
Weapplied theCellphone database of known receptor-ligand pairs to assess
cell-cell communication in our dataset. Genes from the Seurat object were
renamed toHuman gene names and then reformatted into the input format
described on the CellphoneDB website. Cells were fed into the cellphonedb
calculate programusing 50 iterations, a precision of 3, and a 0.1 ratio of cells
in a cluster expressing a gene. Then interactions were trimmed based on
significant sites with p < 0.05.

Correlation analysis
Signature scores of each AT2 were defined as the mean expression of gene
signatures. Genes associated with ’iron storage pathway (PW: 0000592)’,
and ‘cellular senescence (GO: 0090398)’ were used to define the signature
score.Cells inT4 andT5 groupswith all scores upper than 0.01were used to

calculate the Pearson correlation between normalized gene expression of
“FTL”/”CISH” and each score.

Immunofluorescence staining
About 5-μm-thick formaldehyde-fixed paraffin-embedded sections were
prepared and followed by antigen retrieval with EDTA solution (pH 9.0,
ZSBG-BIO, #ZLI-9068, China). After being blocked by goat serum (ZSBG-
BIO, #ZLI-9021, China) for 1 h, the sections were incubated with primary
antibodies overnight at 4°C. The next day, sections were incubated with
fluorescence-labeled secondary antibodies for 1 h at room temperature, and
then counterstained and mounted with DAPI (ZSGB-BIO, #ZLI-9557,
China). Antibodies used for immunofluorescence staining were follows:
anti-FTL (Proteintech, #10727-1-AP, China), anti-SFTPC (Abcam,
#ab90716, GBR), anti-AGER (Abcam, #ab216329, GBR), anti-EEF1A1
(Proteintech, #11402-1-AP,China), andanti-VIM(Abcam, #ab8978,GBR).
Fluorescence was observed under a ZEISS LSM800 confocal laser scanning
microscope. The intensity of target gene expression was measured with
Image-Pro Plus (Version 6.0, Media Cybernetics, USA).

Masson’s trichrome staining
Paraffin-embedded sections were deparaffinized and rehydrated. Sections
were rinsed with distilled water and stained with potassium dichromate
solution at RT overnight. Sections were then stained with iron hematoxylin
working solution for 5min, followed by staining with Ponceau-acid fuchsin
solution for 5min. Sections were incubated in the phosphomolybdic-
phosphotungstic acid solution for 2min, and stained in aniline blue solution
for 2min. After rinsed with distilled water, sections were dehydrated and
mounted. Image-Pro Plus (Version 6.0, Media Cybernetics, USA) was used
to semi-quantify the area ratio of fibrosis (blue).

Cell culture and siRNA transfection
BEAS-2B cells were culturedwith Epithelial CellMedium (ScienCell, #3211,
USA) according to the protocol of ATCC. BEAS-2B cells were seeded in the
12-well plates and were transfected 24 h later with siRNA-FTL using ribo-
FECTTM CP Transfection Kit (RIBOBIO, #C10511-05, China) according
to the manufacturer’s protocol (The final concentration of siRNA-FTL−3
was 30 nmol/L).

RT-qPCR analysis
Total tissue RNA was isolated by using TRIzol™ reagent (Invitrogen,
#15596018, USA). cDNA was prepared from 500 ng of total RNA using a
cDNA synthesis kit (TaKaRa, #RR036A, Japan). Real-time Quantitative
PCR (RT-qPCR) was conducted with PowerUp™ SYBR™ Green Premix
(ABI, #A25742, USA). Expression of FTLmRNAwas calculated relative to
that of 18 s rRNA. FTL: Forward primer 5’- CAGCCTGGTCAATTTGT
ACCT-3’, Reverse primer 5’-GCCAATTCGCGGAAGAAGTG-3’; 18 s
rRNA: Forward primer 5’-CGGCTACCACATCCAAGGAA-3’, Reverse
primer 5’-GCTGGAATTACCGCGGCT-3’.

Western Blot analysis
Total protein was extracted by using RIPA (Beyotime, #P0013, China), and
then quantified using the BCA protein assay kit (ThermoFisher Scientific,
#23227, USA). The protein solution was separated by SDS-PAGE (10%).
After incubation with the blocking buffer, PVDF membranes were probed
with primary antibodies, and subsequently with secondary antibody con-
jugated with horseradish peroxidase. The visualization of the Blot was
achieved through chemiluminescence (Roche, #11500708001, Switzerland).
Primary antibodies were as follows: anti-FTL (Proteintech, #10727-1-AP,
China), anti-p21 (Proteintech, #10355-1-AP, China), and anti-GAPDH
(GeneTex, #GTX100118,USA). The semi-quantitative analysis was realized
by Image J software (National Institutes of Health, USA).

Cell vitality assays
Cell CountingKit-8 (CCK-8) (Beyotime, #C0038, China)was used to detect
cell vitality. BEAS-2B cells were seeded in the 96-well plates. The cell vitality
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rates were detected by multimode microplate reader (Tecan, #Infinite-
M200, Swiss).

Measurement of senescence-associated beta-galactosidase
(SA-β-gal)
The activity of SA-β-gal of BEAS-2B cells was determined using Senescence
β-Galactosidase Staining Kit (Beyotime, #C0602, China). SA-β-gal positive
cells (blue color) were counted under microscope and expressed as per-
centage of total cells.

Statistics and reproducibility
For non-scRNA-seq analysis, for 2-group comparisons, according to the
characteristics of datanormality andvariancehomogeneity, two-tailed t-test
andMann–Whitney test were used. The method of data normality test was
the Shapiro-Wilk test. Multiple group comparisons were made by one-way
ANOVA and Dunnett test. According to the characteristics of qualitative
data distribution, Chi-square incorporating Yates’ correction for continuity
was used to compare qualitative variables across the groups of study sub-
jects.ValueswithP < 0.05were considered statistically significant.Normally
distributed data were presented as Mean ± SD, and non-normally dis-
tributed data are presented as Median (IQR). This non-snRNA-seq statis-
tical analysis was performed by SPSS software (Version 23.0, IBM Corp.,
USA) and GraphPad Prism (Version 8.3.1, GraphPad Software, USA). For
snRNA-seq data, analysis was performed in R software, and statistical sig-
nificance was accepted for P < 0.05.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The raw sequence data and processed expression matrix files have been
deposited in the Gene Expression Omnibus (GSE: 260769). Any other data
are available from the corresponding author on reasonable request.
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