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MIM-CyCIF: masked imagingmodeling for
enhancing cyclic immunofluorescence
(CyCIF) with panel reduction and
imputation

Check for updates

Zachary Sims1, Gordon B. Mills 2 & Young Hwan Chang 1,2

Cyclic Immunofluorescence (CyCIF) can quantify multiple biomarkers, but panel capacity is limited by
technical challenges. We propose a computational panel reduction approach that can impute the
information content from 25markers using only 9markers, learning co-expression andmorphological
patternswhile concurrently increasing speedandpanel content anddecreasingcost.Wedemonstrate
strong correlations in predictions and generalizability across breast and colorectal cancer, illustrating
applicability of our approach to diverse tissue types.

Emerging Multiplexed Tissue Imaging (MTI) platforms1–5 produce rich,
spatially resolved protein expression information that enables analysis of
tissue samples at single cell resolution6–12. However, the broad application of
existingMTI platforms in cancer research and clinical diagnosis is hindered
by high material costs, data storage requirements, and the need for spe-
cialized equipment and technical expertise to mitigate experimental vari-
abilities. Moreover, the number of markers withinMTI panels is limited by
cost and time constraints encompassing image acquisition, marker selec-
tion, and validation. Tissue degradation through repeated staining and
removal cycles adds to this challenge4. Thus, the selection ofmarkers for the
panel becomes crucial to interrogate a wide spectrum of cell states and
phenotypes5,13,14.

Previous studies computationally optimizedMTI panel reduction and
marker prediction. Ternes et al.15 pioneered Cyclic Immunofluorescence
(CyCIF) panel reduction and imputation using a two-step approach:
exploring multiple strategies for marker selection and training a multi-
encoder variational autoencoder (ME-VAE)11 to reconstruct the full 25-plex
CyCIF images at the single cell level.Wu et al. proposed a three-stepmethod
using a concrete autoencoder and convolution neural network to reduce
CODEX markers and predict intensity via a regression model16. Sun et al.
iteratively trained a U-Net to reconstruct patch-level images, aidingmarker
selection for a reduced panel17. In contrast to prior research, where panel
selection is separate from full panel reconstruction, our method integrates
iterative marker selection within a pre-trained model, streamlining panel
reduction and reconstruction.Unlikefixed-size reduced panels, ourmethod
optimizes marker selection during inference, enhancing efficiency, relia-
bility, and practicality for model training.

Inspired by the success of masked language modeling in natural lan-
guage processing18, the concept of masked image modeling (MIM) has
gained traction in computer vision19,20. MIM-based models resemble
denoising autoencoders21, utilized for data restoration and model pre-
training.Nevertheless, the utilization ofmasked imagemodeling formissing
data imputation tasks has been minimally investigated.

Results
Employing a self-supervised trained masked autoencoder (MAE), we
reconstruct masked CyCIF image channels at the single-cell level and
identify optimal reduced panel sets for complete panel reconstruction.
Through the architecture and masked token prediction task outlined in
Fig. 1A, we demonstrate successful imputation of CyCIF image channels at
the single-cell level through ‘channel in-painting’. Our model takes in a
collection of single-cell images, each containing 25 channels representing
individual CyCIF marker stains. During training, we set a fixed ratio
of channels that will undergo random masking for each sample
(Fig. 1B left). Our model is then tasked with reconstructing these masked
channels (Fig. 1B right). After model training, the selection of masked
channels becomes feasible to determine the optimal unmasked channel
combination for accurate reconstruction of masked counterparts. This
strategy is harnessed to progressively curate an enhanced marker
panel (Fig. 1C).

In each iteration, the marker selection is the one maximizing the
Spearman correlation between actual and predictedmean intensities for the
remaining held-out markers (Methods: Iterative Panel Selection). Subse-
quently, this iterative process of refining panels establishes an order of
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markers that roughly represents predictive value regarding other markers
(Fig. 2A). Visualized in columns, the chosen markers’ influence on pre-
dicting withheld markers is depicted, while rows illustrate the corre-
sponding improvements in prediction for each withheld marker.

In our prior study15, we pre-selected optimally reduced panels com-
prising 3, 6, 9, 12, 15, and 18 markers through Spearman Correlation. The
subset of markers exhibiting the highest correlation with the remaining
withheldmarkers was chosen as the reduced panel. Figure 2B illustrates the
enhancement in prediction resulting from the replacement of ME-VAE
with MAE. With the same 9-marker reduced panel, MAE improves the
average correlation of withheld marker predictions by 0.22 (yellow violin
plot). A further enhancement is achieved by utilizing the reduced panel
generated via iterative selection, yielding an additional 0.01 improvement
(green violin plot). Figure 2C describes the comparison between real and
predicted single-cell mean intensity values across different panel sizes (3, 6,
9, 12, and 15 markers) using plots. As the reduced panel size increases, we
observe an increase in prediction correlation.We also evaluate the structural
similarity index measure (SSIM) (Methods: Model’s Performance Evalua-
tion), awidely adoptedmetric capturing image similarity as perceived by the
human visual system22, between real and predicted single-cell expression at

the pixel level (Fig. 3A). Example reconstructions of image channels are
depicted in Fig. 3B, C.

In addition, we demonstrate similar effectiveness on the colorectal
cancer (CRC) tissue microarray (TMA) dataset (Supplementary
Figs. 1 and 2). Moreover, the model generalizes well to unseen data within
the same batch, demonstrated by conducting 5-fold cross-validation across
the CRC TMA cores. Cross-validation was performed on the CRC TMA
dataset to evaluate model performance on unseen data. We divide the
dataset at the TMA core level by separating the cores into 5 sets of 64 TMA
cores for the test sets and the remaining TMA cores are used to train
5 separatemodels. As TMAs typically encompassmultiple patients, this test
effectively demonstrates the model’s generalizability. The performance of
the 5 models on different reduced panel sizes is shown in Supplementary
Fig. 3. By splitting the data at the core level, we show that our model
generalizes well across different patient samples.

To further demonstrate model generalizability to samples stained in a
different batch,we test theCRCmodel on awhole-slide image (WSI) stained
using the same panel. Because three of the cores in the TMA were derived
from the tissue section in the WSI, we can directly assess the model’s
robustness to batch effect while preserving intra-patient intensity

Fig. 1 | Masked autoencoder for panel reduction and marker imputation.
A Model architecture: CyCIF image-derived single cells undergo channel-wise
masking followed by the encoding of unmasked channels using a Vision Trans-
former (ViT). A distinct mask token represents masked channels. A ViT decoder
then reconstructs the masked channels, completing the image reconstruction pro-
cess. B CyCIF channel-wise masking (left) and reconstruction (right): 25-channel
images arranged into a 5 × 5 grid format, facilitating conversion from a patch-wise

masking strategy into a channel-wise masking strategy.C Iterative marker selection:
leveraging the trained model, an optimal marker order is established by gradually
increasing the panel size. Each step selects the next marker based on its ability to
maximize the Spearman correlation between actual and predictedmean intensity for
masked channels. This refines marker panel ordering, enhancing prediction accu-
racy. Parts of Fig. 1A were created using BioRender (www.biorender.com).
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distributions. Supplementary Fig. 4 shows the performance of the model,
trained on the CRC TMA with reduced panels selected from the TMA, on
this dataset. Although the model exhibits a modest performance reduction
(0.26 reduction in Spearman correlation using the same 9 marker panel),
these results hold promise, particularly given potential limitations in gen-
eralizability stemming from ROI selection bias and a single TMA reference
for batch correction. A histopathologist would heavily favor tumor regions
for core punchouts, whereas the full WSI contains a more heterogeneous
tissue region. Therefore, markers that are not expressed in tumor cells are
potentially underrepresented in our training set. This finding aligns with
prior findings on small TMA cores, emphasizing the enhanced repre-
sentation provided by randomly selected multiple TMA cores in capturing
tumor or immune contexture as compared to WSI23–25.

Discussion
Our study highlights the efficacy of utilizing MAE to generate high-plex
CyCIF data from only a few experimental measurements, significantly
reducing the required biomarkers to interrogate a sample. The ability to
identify a biomarker subset and perform in silico prediction offers several

advantages. Our method empowers users to access a more extensive set of
biomarkers beyond those experimentallymeasured. Additionally, it enables
the allocation of resources for the exploration of novel biomarkers, thereby
enhancing cell type differentiation and disease characterization. Further-
more, it canmanage instances of assay failures such as low-qualitymarkers,
technical noise, and/or potential tissue loss in laterCyCIF rounds. It also can
artificially up-sample and incorporate additional panel markers.

In this current study, we present advancements in upstream perfor-
mance that are anticipated to yield downstream benefits, specifically
enhancing population-scale assessment and spatial interaction. We avoid
directly comparing and classifying cell types in subsequent analysis to avoid
oversimplifying complex cellular phenotypes. This improvement stems
from a reduction in modeling errors at the single-cell level within our
proposed approach. It is important to note that cell type determination in
MTI settings involves diverse methodologies and can be influenced by
factors like imperfect cell segmentation, marker selection, data preproces-
sing and normalization26–28, and algorithm choice29. It is also noteworthy
that a recent investigation by Wu et al.16 achieved promising outcomes,
exhibiting an average Pearson correlation coefficient (PCC) of 0.534 for all

Fig. 2 | Model Evaluation. A Impact of individual markers: Depicting the effect of
marker selection on the prediction of specificmarker intensities. Each row tracks the
improvement in prediction for a specific marker as new markers are added to the
reduced panel. A heatmap illustrates themean Spearman correlation between actual
and predicted mean intensities. B Comparison to prior work15: The yellow dashed
line shows the mean Spearman correlation achieved for predicted marker intensities
utilizing ME-VAE. The corresponding yellow violin plot demonstrates the

performance of MAE on the same reduced panels that showed the optimal results in
Ternes et al.15. Green violin plot showcases MAE performance using reduced panels
selected using the iterative panel selection approach. C Real versus predicted single-
cell mean intensity values. Plots of actual versus predicted single-cell mean intensity
values are presented for reduced panel sizes of 3,6,9,12, and 15markers, respectively.
A random subset of 10,000 cells is shown. The Spearman correlation for eachmarker
is indicated.
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predicted biomarkers. Their study emphasized the significance of imputed
biomarkers in accurately classifying cell types, as evidenced by anF1 score of
0.727, and predicting patient survival outcomes. Our objective is to further
elevate our model’s performance, aiming for a correlation score of 0.9,
surpassing existing standards. This aspiration is grounded in our results,
which have already demonstrated performance that exceeds accepted
benchmarks for biomarker prediction accuracy.

While our work demonstrates a promising framework for unifying
panel reduction and marker imputation into a single model, we emphasize
that our results serve as a proof-of-concept study and acknowledge the
limitations that may prevent our method from being incorporated into
traditional biological studies, such as error propagation from single-cell
intensities down to population-scale assessments. Another limitation is that
we only evaluate our model on one MTI platform (CyCIF). Assessing the
generalizability of our trainedmodel to other platforms is an important step
toward leveraging our model to democratize MTI. In future work, we will
address these limitations by exploring different normalization strategies26–28

to reduce marker intensity variability across batches. Additionally, we will
explore a more diverse training dataset, incorporating WSIs in different
batches, effectively mitigating TMA sampling bias and batch effects. This
expanded dataset will also allow for a rigorous analysis of downstream
performance.

Methods
CyCIF image dataset
Our data consists of CyCIF images from two TMAdatasets, one containing
breast cancer (BC) tissue and the other containing colorectal cancer (CRC)
tissue. The tissuemicroarrays (TMAs) CyCIF imaging data are available via
HTAN (https://humantumoratlas.org/). The breast cancer (BC) TMA
contains 88 cores representing 6 cancer subtypes. The colorectal cancer
(CRC) TMA contains 332 cores. Biomarker panels for the two TMAs are
shown in Supplementary Table 1.

Image preprocessing
The original CyCIF marker intensities (16 bit) were rescaled to the 8 bit
image ([0,255] range). For the BC TMA, we simply used preprocessed data

in our previous work15. For the CRC TMA, any core containing a channel
with amean intensity beyond2 standarddeviations from themean intensity
of the entire TMA for that channel was dropped. This resulted in 12 cores
being removed. For the CRC WSI, to mitigate batch-to-batch staining
variations, the intensity distributions for each channel in the WSI were
normalized using histogram matching with 3 cores from the CRC TMA -
obtained from the same tissue section as the WSI. Individual cores and the
WSI were then segmented using MESMER30. We use the whole cell masks
generated using themax projection of the PanCK andCD45 channels as the
membrane marker to crop each cell down to a 32 × 32 pixel region. The
background of each single-cell image is then zeroed out, and the polar axis
and center of mass are aligned. This resulted in 742,169 cells for the CRC
TMA,742,799 cells for theCRCWSI, and691,893 cells for theBCTMA.We
use 90% of the cells randomly selected as the training set and withhold 5%
for validation/panel selection and 5% for testing.

Masked image modeling
We modify the patch-wise masking strategy in MAE19 to a channel-wise
masking strategy. This involves resizing the 32 × 32 × 25 multichannel
single-cell image (32 × 32) to a 5 × 5 grid format (Fig. 1B), creating a
resulting image size of 160 × 160 (i.e., (32 × 5) × (32 × 5)) with a single
channel. Consequently, the patch size forMAE is adjusted to 32 × 32, where
each patch now corresponds to an individual channel within the original
multi-channel image.

We use a Vision Transformer (ViT) encoder and a ViT decoder as in
MAE, both set to 8 heads and 6 layers, and a 2048-dimension multilayer
perceptron layer.The embeddingdimensionswere1024 for the encoder and
512 for the decoder. We train the model using 8 Nvidia A40 GPUs for 300
epochs using a batch size of 4096, Adam optimizer and a learning rate of
1e-3.

Although the trained model works on a range of reduced panel sizes,
during training the number of channels to be masked is set to a fixed ratio.
We evaluate different masking ratios for training by assessing the perfor-
mance of different reduced panel sizes in inference on the BCTMAdataset.
For testing, we choose the optimal reduced panels identified in Ternes
et al.15,whichhave sizes of 3,6,9,12,15, and18markers (88%, 76%, 64%, 52%,

Fig. 3 | Structural Similarity Index and Pixel-level Reconstructions. A The
structural similarity index for the BC TMA. B Example reconstruction of a single-
cell image using a 9-marker reduced panel. Top row shows the image channels for

the markers in the reduced panel. Bottom two rows show real and predicted pixel
values for the imputed marker channels. C Examples show multiple predicted
channels overlaid.
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40%, and 28% masking ratios, respectively). We train three models using a
fixed masking ratio of 25%, 50%, and 75%, and find that the 50% masking
ratio results in the best overall performance across different panel sizes in
inference (Supplementary Fig. 5).

Iterative panel selection
To obtain optimal reduced panel sets, we leverage the trained model to
determine which markers are most informative. To do this, we iteratively
determine an ordering of markers such that the first kmarkers result in the
best reconstruction of the remaining n� k markers, measured by the
Spearman correlation of the predictedmean intensity at the single cell level.
We start with k ¼ 2, setting the first marker to be DAPI, as nuclear staining
is important for downstream analysis such as registration as well as deter-
mining cellmorphology.We then iterate through the remaining 24markers
to determine which marker, along with DAPI, results in the best recon-
struction of the remaining 24 markers (Figs. 1C and 2A). We repeat this
process until we find the best k ¼ 24 marker panel:

Panel1 ¼ fcDAPIg

Panelk ¼ Panelk�1 ∪ argmax
c

ρY ; f ðX;Panelk�1 ∪ fcg;θÞ
� �� �

Where c is themarker channel being considered for inclusion into Panelk,Y
is the set of ground truth masked channels, X is the set of unmasked
channels, f is the trainedMAEmodel parameterized by θ, which returns the
reconstructedmasked channels, and ρ is the Spearman correlation between
the mean intensities of Y and the output of f.

Model’s performance evaluation
We evaluate the model’s performance using Spearman correlation. We
assess the agreement between actual and the predicted mean marker
intensities within the cell boundaries. This analysis is crucial as it quantifies
specific cellular component expression levels acrossmarkers, characterizing
cellular phenotypes. To address potential concerns about the sensitivity of
Spearman correlation to differences in predicted intensities, we computed
the correlation variance across stains. This approach allows us to assess the
consistency of stain predictions, ensuring that the model performs well
across all stains rather than excelling in some while performing poorly in
others. By considering correlation variance, we aim to provide a more
nuanced understanding of the model’s predictive capabilities.

In addition to Spearman correlation, we incorporated the Structural
Similarity Index Measure (SSIM) to assess the quality of reconstructed
CyCIF images. SSIM is a standardmetric for tasks such as image translation,
denoising, and restoration, as it evaluates both intensity and spatial infor-
mation. This dual evaluation approach enhances the comprehensiveness of
our assessment, addressing concerns about potential noise, background
interference, or extreme outliers influencing the results.

Statistics and reproducibility
We calculate the mean of the Structural Similarity Index (SSIM) and
Pearson correlation coefficients for each marker. This approach ensures a
robust statistical evaluation of the dataset, providing insights into the con-
sistency and reliability of the observed trends across different markers. We
also provide all the code necessary to ensure reproducibility of our results.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
As part of this paper all images at full resolution, all derived image data (e.g.
segmentation masks), and all cell count tables will be publicly released via
the NCI-recognized repository for Human Tumor Atlas Network (HTAN;

https://humantumoratlas.org/) at Sage Synapse (associated Identifiers:
HTAN TNP – TMA, OHSU_TMA1_004-XX) where XX represents TMA
core ID. For CRC TMA, see source publication24 (https://doi.org/10.1016/j.
cell.2022.12.028). All the source data for graphs and figures are available at
the following link31: https://doi.org/10.5281/zenodo.10724928.

Code availability
All software used in this manuscript is detailed in the article’s Methods
section and its Supplementary Information. The associated scripts32,33 are
freely available via GitHub as described at https://github.com/zacsims/IF_
panel_reduction (https://doi.org/10.5281/zenodo.10835282).

Received: 5 September 2023; Accepted: 26 March 2024;

References
1. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with

CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).
2. Angelo, M. et al. Multiplexed ion beam imaging of human breast

tumors. Nat. Med. 20, 436–442 (2014).
3. Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry

reveals myeloid-inflamed tumor-immune complexity associated with
poor prognosis. Cell Rep. 19, 203–217 (2017).

4. Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of
human tissues and tumors using t-CyCIF and conventional optical
microscopes. Elife 7, e31657 (2018).

5. Jackson, H. W. et al. The single-cell pathology landscape of breast
cancer. Nature 578, 615–620 (2020).

6. Mi, H. et al. Quantitative spatial profiling of immune populations in
pancreatic ductal adenocarcinoma reveals tumor microenvironment
heterogeneity and prognostic biomarkers. Cancer Res. 82,
4359–4372 (2022).

7. Mi, H. et al. Predictive models of response to neoadjuvant
chemotherapy in muscle-invasive bladder cancer using nuclear
morphology and tissue architecture.Cell Rep.Med. 2, 100382 (2021).

8. Sorin, M. et al. Single-cell spatial landscapes of the lung tumour
immune microenvironment. Nature 614, 548–554 (2023).

9. Keren, L. et al. A structured tumor-immunemicroenvironment in triple
negative breast cancer revealed by multiplexed ion beam imaging.
Cell 174, 1373–1387.e19 (2018).

10. Kim, E. N. et al. Dual-modality imaging of immunofluorescence and
imaging mass cytometry for whole-slide imaging and accurate
segmentation. Cell Rep. Methods 3, 100595 (2023).

11. Ternes, L. et al. A multi-encoder variational autoencoder controls
multiple transformational features in single-cell image analysis.
Commun. Biol. 5, 255 (2022).

12. Spitzer, H., Berry, S., Donoghoe, M., Pelkmans, L. & Theis, F. J.
Learning consistent subcellular landmarks to quantify changes in
multiplexed protein maps. Nat. Methods 20, 1058–1069 (2023).

13. Burlingame, E. A. et al. Toward reproducible, scalable, and robust
data analysis across multiplex tissue imaging platforms. Cell Rep.
Methods 1, 100053 (2021).

14. Radtke, A. J. et al. IBEX: A versatile multiplex optical imaging
approach for deep phenotyping and spatial analysis of cells
in complex tissues. Proc. Natl Acad. Sci. USA 117,
33455–33465 (2020).

15. Ternes, L., Lin, J.-R., Chen, Y.-A., Gray, J. W. & Chang, Y. H.
Computational multiplex panel reduction to maximize information
retention in breast cancer tissuemicroarrays.PLoS Comput. Biol. 18,
e1010505 (2022).

16. Wu, E. et al. 7-UP: Generating in silico CODEX from a small set of
immunofluorescence markers. PNAS Nexus 2, gad171 (2023).

17. Sun, H., Li, J. & Murphy, R.F. Expanding the coverage of spatial
proteomics: a machine learning approach. Bioinformatics 40,
btae062 (2024).

https://doi.org/10.1038/s42003-024-06110-y Article

Communications Biology |           (2024) 7:409 5

https://humantumoratlas.org/
https://doi.org/10.1016/j.cell.2022.12.028
https://doi.org/10.1016/j.cell.2022.12.028
https://doi.org/10.5281/zenodo.10724928
https://github.com/zacsims/IF_panel_reduction
https://github.com/zacsims/IF_panel_reduction
https://doi.org/10.5281/zenodo.10835282


18. Devlin, J., Chang,M.-W, Lee, K. & Toutanova, K. BERT: pre-training of
deep bidirectional transformers for language understanding. In Proc.
of the 2019 Conference of the North {A}merican Chapter of the
Association for Computational Linguistics: Human Language
Technologies, Vol. 1 (Long and Short Papers) 4171–4186 (NACACL-
HLT, 2019).

19. He, K. et al. Masked autoencoders are scalable vision learners. In
Proc. of the IEEE/CVF conference on computer vision and pattern
recognition. 16000–16009 (2022).

20. Chen, M. et al. Generative pretraining from pixels. In International
Conference on Machine Learning. 1691–1703 (PMLR, 2020).

21. Zhang, C., Zhang, C., Song, J., Yi, J. S. K. & Kweon, I. S. A survey on
masked autoencoder for visual self-supervised learning. In Proc. of
the Thirty-Second International Joint Conference on Artificial
Intelligence. 6805–6813 (IJCAI, 2023).

22. Brunet, D., Vrscay, E. R. &Wang, Z. On themathematical properties of
the structural similarity index. IEEE Trans. Image Process 21,
1488–1499 (2012).

23. Liudahl, S. M. et al. Leukocyte heterogeneity in pancreatic ductal
adenocarcinoma: phenotypic and spatial features associated with
clinical outcome. Cancer Discov. 11, 2014–2031 (2021).

24. Lin, J.-R. et al. Multiplexed 3D atlas of state transitions and immune
interaction in colorectal cancer. Cell 186, 363–381.e19 (2023).

25. Burlingame,E. et al. 3Dmultiplexed tissue imaging reconstructionand
optimized region of interest (ROI) selection through deep learning
model of channels embedding. Front Bioinf. 3, 1275402 (2023).

26. Chang, Y. H. et al. RESTORE: Robust intEnSiTy nORmalization
mEthod for multiplexed imaging. Commun. Biol. 3, 111 (2020).

27. Graf, J. et al. FLINO: a newmethod for immunofluorescence bioimage
normalization. Bioinformatics 38, 520–526 (2022).

28. Harris, C. R. et al. Quantifying and correcting slide-to-slide variation in
multiplexed immunofluorescence images. Bioinformatics 38,
1700–1707 (2022).

29. Hickey, J. W., Tan, Y., Nolan, G. P. & Goltsev, Y. Strategies for
accurate cell type identification in CODEX multiplexed imaging data.
Front Immunol. 12, 727626 (2021).

30. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with
human-level performanceusing large-scaledata annotation anddeep
learning. Nat. Biotechnol. 40, 555–565 (2022).

31. Chang Y. H. Raw dataset and corresponding images 2024. https://
doi.org/10.5281/ZENODO.10724928.

32. IF_panel_reduction: A ViT-MAE for inferring biomarker channels from
cyclic immunofluorescence images. Github: https://github.com/
zacsims/IF_panel_reduction.

33. Chang, Y. H. A Masked Image Modelling Approach to Multiplex
Tissue Imaging Panel Reduction. Zenodo. https://doi.org/10.5281/
zenodo.10835282 (2024).

Acknowledgements
We thank Jerry Lin, Yu-An Chen, and Peter K. Sorger (Harvard Medical
School) for sharing data and providing useful feedback. This work was
carried out with major support from the National Cancer Institute (NCI)
Human Tumor Atlas Network (HTAN) Research Centers at OHSU
(U2CCA233280). Y.H.C. is supported by R01 CA253860 and Kuni Foun-

dation ImaginationGrants. The resourcesof theExacloudhigh-performance
computing environment developed jointly by OHSU and Intel and the
technical support of the OHSU Advanced Computing Center are gratefully
acknowledged.

Author contributions
Conceptual development: Z.S., G.B.M, Y.H.C. Data analysis and
computational implementation: Z.S. Manuscript writing: Z.S., Y.H.C.

Competing interests
The authors declare the following competing interests: G.B.M. is a SAB
member or Consultant: for Amphista, Astex, AstraZeneca, BlueDot,
Chrysallis Biotechnology, Ellipses Pharma, GSK, ImmunoMET, Infinity,
Ionis, Leapfrog Bio, Lilly, Medacorp, Nanostring, Nuvectis, PDX
Pharmaceuticals, Qureator, Roche, Signalchem Lifesciences, Tarveda,
Turbine, Zentalis Pharmaceuticals. G.B.M. has Stock/Options/Financial
relationships with: Bluedot, Catena Pharmaceuticals, ImmunoMet,
Nuvectis, SignalChem, Tarveda, and Turbine. G.B.M. has Licensed
Technology: HRD assay to Myriad Genetics, DSP patents with Nanostring.
G.B.M. has Sponsored research with AstraZeneca. The other authors
declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06110-y.

Correspondence and requests for materials should be addressed to
Young Hwan Chang.

Peer review information Communications Biology thanks Jia-Ren Lin and
the other, anonymous, reviewer(s) for their contribution to the peer review of
this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-06110-y Article

Communications Biology |           (2024) 7:409 6

https://doi.org/10.5281/ZENODO.10724928
https://doi.org/10.5281/ZENODO.10724928
https://doi.org/10.5281/ZENODO.10724928
https://github.com/zacsims/IF_panel_reduction
https://github.com/zacsims/IF_panel_reduction
https://github.com/zacsims/IF_panel_reduction
https://doi.org/10.5281/zenodo.10835282
https://doi.org/10.5281/zenodo.10835282
https://doi.org/10.5281/zenodo.10835282
https://doi.org/10.1038/s42003-024-06110-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	MIM-CyCIF: masked imaging modeling for enhancing cyclic immunofluorescence (CyCIF) with panel reduction and imputation
	Results
	Discussion
	Methods
	CyCIF image dataset
	Image preprocessing
	Masked image modeling
	Iterative panel selection
	Model’s performance evaluation
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




