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Unlocking the full dimensionality of single-cell RNA sequencing data (scRNAseq) is the next frontier to
a richer, fuller understanding of cell biology. We introduce g-diffusion, a framework for capturing the
coexpression structure of an entire library of genes, improving on state-of-the-art analysis tools. The

method is demonstrated via three case studies. In the first, g-diffusion helps gain statistical
significance for differential effects on patient outcomes when analyzing the CALGB/SWOG 80405
randomized phase llI clinical trial, suggesting precision guidance for the treatment of metastatic
colorectal cancer. Secondly, g-diffusion is benchmarked against existing scRNAseq classification
methods using an in vitro PBMC dataset, in which the proposed method discriminates IFN-y
stimulation more accurately. The same case study demonstrates improvements in unsupervised cell
clustering with the recent Tabula Sapiens human atlas. Finally, a local distributional segmentation
approach for spatial scRNAseq, driven by g-diffusion, yields interpretable structures of human cortical

tissue.

A cell’s phenotype is determined largely by the proteins that it expresses.
Though progress has been made on directly measuring proteins in single
cells' (via proteomics,) the full proteome is still an unwieldy proposition®
due to the vast diversity in protein shapes and their chemical properties.
Thankfully, RNA transcripts correspond to proteins currently under pro-
duction and offer important insights into cellular phenotypes. Modern
advancements in single-cell RNA sequencing (scRNAseq) have led to
consistent decreases in cost, enabling the characterization of complex bio-
logical processes—even with spatial resolution’.

However, few computational methods exist to study the large combi-
natorial interactions between genes that form biological processes, which
new scRNAseq datasets promise to capture’. The discrepancy between
acquisition and analysis is palpable in the algorithms themselves: toolkits in
the state of the art rely on combinations of aggressive feature selection™’,
dimensionality reduction’”, or marker-gene identification'’. Each of these
stages in the analysis pipeline discards a majority of the potential gene
interactions available in the original scRNAseq data. Those steps are not
without good reason: scRNAseq analysis suffers from the curse of dimen-
sionality, where the number of genes is too great to study all of them

together, even in the relatively large samples that are now feasible. Com-
pounding this issue is the noise, both technical and physiological, exacer-
bated by the granularity of scRNAseq.

The g-diffusion method presented in this paper enables scRNAseq
analysis to extract higher-order structures from the data that other
methods cannot. The general method hinges on a core novelty: a geo-
metry of cells in transcriptomic observational space. Concretely, a g-
diffused kernel function characterizes the transcriptional proximity of any
two cells. This kernel supports arbitrary dimensionality, thus overcoming
the “curse of dimensionality.” Notably it exhibits a multiscale nature that
reveals biological processes (noisily) diffused across many genes.
Internally, the kernel accounts for interactions of high order by incor-
porating not only pairwise (bilinear) terms, but all possible combinations
(trilinear, quadrilinear, ...) of variables in the data. These additional
terms effectively shift the focus of the kernel to large-scale,
possibly low-magnitude interactions of gene activities, as opposed to
considering each gene’s activity on its own. The additional benefits
conferred by this g-diffused geometry include robustness to noise and
sample efficiency.
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This paper ventures into three separate applications. The first
demonstrates the propensity of g-diffusion for revealing biologically
informative structure. We base that judgment on medical relevance, deemed
through predictive capacity on downstream clinical outcomes in a phase III
clinical trial. These results suggest precision guidance for the treatment of
metastatic colorectal cancer (mCRC). The second case study for g-diffusion
is benchmarked against the most popular scRNAseq clustering methods to
discriminate IFN-y stimulation in eight peripheral blood mononuclear cell
(PBMC) subtypes more accurately. An additional benchmark assesses the
unsupervised clustering of non-PBMC cells in small tissue samples from
four human organs. Finally, the g-diffused framework is harnessed in
developing an unsupervised local distributional segmentation (LDS) tech-
nique to segment structural regions of the human cerebral cortex.

Results

Common tasks in scRNAseq analysis include clustering, factorizing, and
classifying the cells. Respectively, these entail grouping cells based on a
notion of similarity, identifying common components among cells such as
gene expression programs (GEPs), and assigning phenotypic labels to cells.
All such tasks benefit from, or even require a way to quantify the relation of
one cell to another with regards to their gene expressions. With estimating
GEPs, a helpful statistical regularization would be to favor programs that are
expressed in cells that are similar to each other overall. Under g-diffusion,
cell-to-cell similarity is quantified by a kernel-like function that auto-
matically uses all orders of interaction to quantify the magnitude of a
(properly scaled; see Method for details) vector v of gene-expression dif-
ferences:
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For all g-diffused tasks described in this paper, the g-diffused kernel
was evaluated between all pairs of cells, and then the adjacency matrix was
symmetrified to produce a weighted, undirected graph of the cells. This
graph supplemented downstream analysis in the manners summarized by
Fig. 1. Namely, performing community detection directly produced cell
clusters. Indirectly, the graph was also used to further constrain the fac-
torization of cells into expression programs, lowering the risk of under-
determination. More applications are described later.

Three diverse case studies are showcased on g-diffusion applied to
human scRNAseq data. Each case enhances the findings of the original
analyses by exploiting the full transcriptome.

with O0<a<1.

First case study on treatment of colon cancer

We investigated whether the full dimensionality of the transcriptome from
the tumor microenvironment of metastatic colorectal cancer (mCRC) could
reveal novel treatment opportunities. mCRC is extremely heterogenous not
only from patient to patient but also between metastatic sites or even within
a single location'"". In order to convincingly validate the biological and
medical utility of ¢-diffusion, this section reports on whether the g-diffused
structure discovered in an scRNAseq mCRC atlas could produce novel
insights on existing records from a large clinical trial.

We took two distinct approaches for discovering the g-diffused
structure in a transferable representation. Both were unsupervised statistical
estimators of latent variables in the transcriptome. We developed them as g-
diffused counterparts to well-established techniques. These two approaches
differed in objective. The first sought to represent cells in a small linear
(nonnegative) basis that can be interpreted as gene expression programs
(GEPs), via a g-diffused form of nonnegative matrix factorization (NMF)
that we term gNMF. These GEPs, which are supposed to capture common
biological processes or groups thereof, could easily be transferred to other
datasets by projecting new expression profiles onto them. The second
approach aimed to map the cells in a low-dimensional Euclidean space to

make phenotypic relations apparent. A number of embedding methods
exist to construct this mapping, of which PHATE" is celebrated for its
reliability in describing complex biological structures'’. PHATE with a g-
diffused kernel yielded a new kind of full-transcriptome embedding that we
term gPHATE. In both avenues of investigation, we compared the g-dif-
fused results to their analogs produced by standard methods without g-
diffused augmentation.

The gNMF and qgPHATE representations of discovered g-diffused
structure were validated for biological and medical utility by testing them
out of sample, since that is the gold standard in machine learning. The
procedure focused on downstream clinical relevance. We hypothesized,
teleologically, that the transfer of discovered structures onto new patients in
a clinical trial would facilitate strong statistical predictions of clinical out-
comes only if those structures were useful and biologically coherent. We
emphasize that the g-diffused structures were discovered without super-
vision, prior to the incorporation of any outcome or treatment information
from the clinical trial.

The data. The Human Colon Cancer Atlas (c295)"” that includes
malignant and infiltrating immune cells served as a reference scRNAseq
dataset with 26,980 genes across the 17,362 cells matching in disease
condition (stage 4) to the bulk RNA from the clinical trial. The latter was
the Cancer and Leukemia Group B (CALGB)/Southwest Oncology
Group (SWOG) 80,405 randomized phase III trial in first-line mCRC
patients treated with bevacizumab, cetuximab, or both, plus
chemotherapy'®"”. The first two treatment arms are considered standard
of care for newly diagnosed mCRC. To discern drug-specific effects we
sought differential outcomes between the treatment arms. The trial had
bulk RNA profiles from 557 patients with 56,674 genes. The allocation of
bevacizumab/cetuximab/both treatments was 227/207/123, with the
third arm having been discontinued early. Bevacizumab and cetuximab
are abbreviated as bev and cet, respectively. CALGB is now part of the
Alliance for Clinical Trials in Oncology.

The statistical evaluation. First we assessed whether the drug (cet or
bev) acted as an effect modifier'™"” on the biomarker (qNMF or
qPHATE) for clinical outcomes. Conversely, we looked at the biomarker
as an effect modifier on the drug. In either case we tested for differential
effects of one binary variable between strata of the other binary variable.
As mentioned in Fig. 2, we estimated multivariate Cox proportional
hazards for progression-free survival (PFS) and overall survival (OS). The
regressions included as covariates the type of chemotherapy, tumor
side®, sex, age, Eastern Cooperative Oncology Group (ECOG) perfor-
mance score”', and common tumor mutations. We excluded the minority
of patients with high microsatellite instability (MSI-H)*, who generally
require different protocols altogether.

In prior work, GEPs were estimated in the atlas by means of NME", as
is established practice™*. In this work we estimated gNMF and NMF GEPs
and contrasted their affinity for differential effects. Cox regressions were
performed on the nonnegative GEP weights to first identify the GEP with a
significant differential effect at false discovery rate (FDR) below 0.05. We
observed that gNMF produced one such GEP and NMF produced none. We
then binarized the patients’ weights for that GEP based on sparsity: 0 for zero
and 1 for nonzero, obtaining the gNMF biomarker. Analogously for
qPHATE, the patients were projected to the scRN Aseq latent space and then
binarized, as detailed in Fig. 3. These biomarkers allowed the production of
the result table in Fig. 2a. The strongly identified effects were also plotted as
survivals” in Fig. 2b and the GEP genes individually associated with out-
comes were further characterized in Fig. 2c. Most notably for our proposal of
g-diffusion, classical NMF or PHATE biomarkers were not informative
enough on clinical outcomes to produce a comparable Fig. 2a with statis-
tically significant differential effects in either setting—drug effects or marker
effects.

The gPHATE embedding coordinates transferred onto patients were
thresholded along their principal component, shown in Fig. 3¢, for a simple
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Fig. 1 | Schematic of the mechanisms behind g-diffusion. When comparing two
cells, the kernel fundamentally values expression differences that occur in many
genes concurrently. It can enter and augment several common analyses: a g-Dif-
fusion facilitates nuanced phenotype resolution via community detection, as with
the second case study in this paper. b g-Diffusion can regularize gene expression
program (GEP) estimators like nonnegative matrix factorization (NMF), to promote
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statistical enrichment of gene ontologies (first and third case studies). ¢ Recent
spatial scRNAseq modalities present a new opportunity for macro-segmentation
based on cellular transcriptomics, like in the brain (third case study). We present a
local distributional segmentation (LDS) algorithm that relies on g-diffusion applied
to maximum mean discrepancy (MMD), an established kernel-based statistic.

binary biomarker that could be tested for hazards. We remark that clinical
outcome-related findings were robust to this discretization procedure.
Bootstrap resampling of the patients revealed that the strong differential
hazard on PFS shown in Figure 2a remains strong (p < 0.05) for 95% of the
simulated (projected, then thresholded) samples. On interpreting the major
scRNAseq branches of Fig. 3a, we note that they differ in 197/204 (97%) of
the original GEPs", with U-test FDR < 107, suggesting modulation of the
whole tumor microenvironment.

Second case study on clustering phenotypes

Distinguishing complex cell conditions. We sought to study the ability
of the g-diffused kernel to discern phenotypes that are spread across
many genes. PBMCs are common in scRNAseq benchmarks”'*** due to
their well-understood subpopulations. They are also studied often
because they are involved in circulation, and are entangled with many
diseases. We obtained an existing PBMC dataset” where a single batch
contained cells from the same lineage, under two different but known

conditions. The single-batch multiplexing” avoids the problem of dis-
entangling significant batch-related noise from actual differences in cell
conditions. The two conditions studied were stimulation and non-
stimulation (control) by interferom gamma (IFN-y), a cytokine known to
induce complex changes in PBMCs through signaling pathways’. IFN-y
is involved in many distinct immune-related processes™, and would be
expected to modulate many groups of genes. For this reason, we postu-
lated that g-diffusion would help describe IFN-y stimulation across the
different PBMCs, in contrast with other methods that rely on reduced
dimensionality. The dataset contained 14,039 cells with a gene library of
size 17,796. The cell population contained 7466 control and 6573
stimulated cells.

Comparisons in Fig. 4 assessed each method’s ability to distinguish
stimulated and control PBMCs. They were scored on the basis of the
adjusted Rand index (ARI)*>" between detected communities and the true
conditions. The ARI is a standard metric for assessing the quality of
unsupervised clustering methods™, by measuring coherence/alignment
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Latent Variable Analysis on

differential effects of latent variables

= 1.00 T 1.00
Metastatic Colorectal Cancer (mCRCQC) - %o
fe g 0.50 g 0.50
? g” 0.25 = go,zs +
P E0.00 i + : ; go,uu E— : :
/'> qN M F ° M:gths 1% ° 25M0nt:§ 7
\
» - (cet) (bev)
5 ®)
——  gPHATE —— /N /C|>\ Q /C|>\ o
/
/\ /\
scRNAseq atlas g-diffused analyses bulk RNAseq clinical trial
a) c)
Marker Effects Drug Effects (bev:cet) 38 GEP Genes Helping bev
Marker Resp. | cet bev marker— marker+ all REM™
> =
S N [ gene low
gNMF PFS | 1.97* 0.81* | 1.00 0.58 0.94 %
OS | 1.97* 0.81* | 1.29 0.71 1.14 =
gPHATE  PFS | 1.26** 0.68** | 1.26%* 0.73* 0.94 o
OS | 105 072 |1.36 0.99 1.14 oo - - -
20 40 60
b) Time (months)
cet bev cet bev .
1 X 28 GEP Genes Hurting cet
W gNMF— W ¢PHATE— § 14
™ NMF+ \ qPHATE+ s
g 2
g
O T T T T T T 0 T 1 O 0 T T T
25 50 75 25 50 75 25 50 25 50 20 40 60

OS (months) OS (months) PFS (months)

Fig. 2 | Schematic of the methodology for estimating latent variables in the
scRNAseq atlas and then deconvolving them into the clinical-trial patient sample
in order to assess their potential as biomarkers that inform clinical outcomes.
The two outcomes investigated were progression-free survival (PFS) and overall
survival (OS) in accordance with the clinical trial’s protocol. Differential effects were
measured by heterogeneity of multivariate Cox proportional hazards. a Hazard-ratio
point estimates for patient biomarkers. Under “Marker Effects,” we compare hazard
ratios of biomarkers between cet and bev groups. Under “Drug Effects,” we
compare hazard ratios of bev to cet between biomarker groups. We test for
significant differential effects between groups. In contrast with the g-diffusion results

PFS (months) Time (months)

listed here, the structures uncovered by classical NMF and PHATE failed to produce
biomarkers with any significant differential effects. Bold: FDR < 0.1; Bold*:

FDR < 0.05; Bold**: FDR < 0.01. b Kaplan-Meier estimates of survivals with 95%
confidence illustrating the identified differential marker effects under the two
treatments. ¢ The gNMF biomarker appears to help bev overall survival (OS) and
hurt cet according to a. A number of member genes in the GEP were individually
associated with these differential outcomes, as determined by U-tests with FDR <
0.01. Survivals (90% confidence) are stratified by upper and lower quartiles of
expression.

with ground-truth labels. Performance for megakaryocytes was not dis-
played because all scores were essentially zero. In most cases, the g-diffused
graph structure outperformed the others. Notable exceptions include CD8
T cells, for which the existing methods performed better, and natural killer
(NK) cells, for which performance was similar under a few methods.

Sample-efficient organ tissue classification. The Tabula Sapiens
Consortium™ recently sequenced the single-cell transcriptomes of mul-
tiple human organs, and manually annotated the individual phenotypes.
This atlas promises to facilitate understanding of intercellular dynamics
across the human body™. Methods to cluster cells by phenotype are a
crucial tool in the annotation pipeline. As the Tabula Sapiens annotations
were verified manually by domain experts, they presented a benchmark

for clustering that was fair, in that the annotations were putatively less
biased towards the established clustering methods. To highlight the
sample efficiency of g-diffusion, we selected those organ tissues for which
fewer than 10,000 cells were sampled. We also screened out the PBMCs in
order to focus on organ-specific phenotypes—also because PBMCs are
already well characterized by existing tools, as discussed in the second
case study.

The Tabula Sapiens datasets were packaged with state-of-the-art
dimensionality reductions, including scVI*. We elected to compare g-dif-
fusion directly head-to-head against those embeddings, which were
assumed to be optimized for their respective datasets. In Fig. 5, g-diffusion
shows improved clustering alignment with the manual annotations, in
contrast with the other embeddings, for three of the four datasets. These
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Branching Phenotypes in Colon Cancer Atlas
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Fig. 3 | Exploration of gPHATE and its branched genes revealed in the mCRC
scRNAseq atlas. a g-Diffused and original PHATE embeddings of the atlas cells.
Plots are sized to their true aspect ratios. Cells are colored by their estimated local
intrinsic dimensionality (LID), which highlights possible branching points. Bran-
ches are annotated in red. They are less clear in the original PHATE embedding. See
Supplementary Results for a rigorous investigation. Major branch #1 had about
~19% of the cells, major branch #2 about ~9% of the cells, and the minor branch
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accounted for ~4% of the cells. Supplementary Fig. 3 provides details and further
evidence for our approach on defining branches in the embedding. b Major branches
#1& 2 were contrasted against each other to screen for genes that appear to drive the
branching. Expressions of the top screened genes are displayed in this heatmap.

¢ The scRNAseq embedding in a was translated to the clinical-trial patients by linear
projection. Then the principal component of that embedding was discretized around
its mean for downstream analysis as a putative biomarker.

organs were the skin (4918 cells kept out of 9424), trachea (6894 cells keps
out of 9522), and uterus (6154 cells kept out of 7124), with the exception of
the liver (2506 cells kept out of 5007) exhibiting degraded clusters from g-
diffusion.

We also contrasted the gene expression programs (GEPs) identified
from g-diffused nonnegative matrix factorization (gNMF) versus NMF.
There were numerous differentially expressed meta-genes (DEMGs, see
Method) between stimulated and control cells for each subtype, under both
methods. DEMGs are like differentially expressed genes (DEGs), but for
GEPs that carry statistically different weight between the two conditions. In
Fig. 6a, we observe how DEMG commonality in cell-type pairs mostly
decreased after ¢-diffused regularization. Overlap in DEMGs was measured
through Jaccard similarity, which is normalized to the sizes of both sets.

Figure 6a shows that the g-diffused DEMGs are more specific to particular
cell types.

It is common to study the statistical enrichment of gene ontologies™ in
GEPs as a way to validate their biological coherence™. Figure 6b tallies the
number of enriched GEPs under competing methods and various settings.
gNMF consistently outperforms the other three. The false discovery rate
(FDR) was held below the critical threshold of 0.1. The threshold was higher
than the more traditional 0.05 as the FDR spanned the combination of all
ontologies and all GEPs.

Third case study on brain structure
Spatial transcriptomics are gaining immense traction in biological and
translational research”**. For the purpose of this case study, we found ten
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Fig. 4 | Adjusted Rand indices (ARIs)" of Leiden community detection® in the
PBMC dataset. Bars represent the alignment of clusters with IFN-y stimulation and
control conditions for each of the cell types. Error bars are computed from boot-
strapped estimator standard deviations. Our g-diffused kernel-induced graph

CD4 T cells CD8 T cells
0.8 1 0.8 1
0.6 1 0.6
@ [
< <
0.4 1 0.4
0.2 1 0.2 1
NK cells
0.8 1
0.6 -
x .
< I ¢-Diffused
0.4 1 N Seurat
. I Monocle
0.2 - Scanpy
I sC3
N Optimal Transport

structure is compared to the neighborhood graph methods in Seurat’, Monocle®,
Scanpy’, and optimal transport [e.g. ref. 50]. Clusters computed by SC3* are
included as well.

samples of human cortical tissue extracted by MERFISH”. The immense
spatial fidelity of this particular modality comes with the compromise in
gene library size, limiting it to 4000 genes in the human samples. MERFISH
is enabled by robust error-correcting barcodes to multiplex these gene
readings”. Other spatial scRNAseq modalities like Visium*' have lower
spatial resolutions for the trade-off of more genes.

A rather challenging aspect of analyzing brain tissue is the spatial
nonlocality at the cellular level. In concrete terms, adjacent cells in the tissue
may serve vastly different roles, like those of neurons, immune cells, and
astrocytes. Therefore, classifying individual cells provides little information
on larger-scale structure in the tissue. It is well known that the cortex has
distinct functional layers. In the study that introduced this dataset”, cells
could not be segmented by the known layers L1-L6 vis-a-vis their spatial
transcriptomes. The original t-SNE visualization and clustering identified
cell types, which were labeled by hand, but these only partly associated with
specific layers.

In our experiments, we computed pairwise distance matrices between
the small tissue regions termed rexels. These distances either came from the
proposed local distributional segmentation (LDS) method (either g-diffused
or Gaussian), or by k-Nearest Neighbors (kNN) on principal components of
the rexels’ average expressions. Briefly, LDS takes into account the entire
heterogeneous sample of cells in a rexel, in order to compare rexels as
distributions of transcriptomes. In comparison to the other two case studies,
the smaller samples in each rexel-rexel pairwise comparison justified a
k =16 neighborhood size for LDS. Finally the segmentation was performed
by two popular algorithms*: Leiden community detection’® or hierarchical
clustering with Ward’s linkage™®.

Evaluations. A comprehensive visual comparison of rexel clusterings is
shown in Fig. 7. Clustering parameters were optimized by a grid search

over the silhouette scores* for each case. The objective in such a visual
evaluation is to seek alignment with prior knowledge. The human cere-
bral cortex is organized into parallel functional layers™". It is apparent
that the clusterings, which operate entirely on transcriptomic distribu-
tions and not pixel-wise spatial arrangements, ultimately tend to spatial
contiguity. In more than half of the samples, notably Samples 1,2, 3,7, 8,
and 9, parallel stripes appear to emerge clearly under g-diffused LDS. For
a more quantitative assessment, we also contrasted the mean silhouette
scores for various resolutions of rexel-lation (in multiples of 32 rexels.)
The bars with significance markings in Fig. 8 suggest that g-diffused LDS
was never significantly worse than the alternatives, and in many cases
performed significantly better.

Discussion

g-Diffusion led to demonstrable improvements in the multivariate analyses
of differential effects between treatments in a clinical trial for mCRC (first
case study). We identified groups of genes that could inform future treat-
ment assignment through their prognostic implications. Additionally, it
helped with classification and identificatio of GEPs for PBMCs with control
and stimulated conditions (second case study). It also proved to be a
necessary ingredient of LDS for recovering biologically relevant structures in
human cortical tissue (third case study).

The granular nature of scRNAseq introduces sparsity and increases
vulnerability to technical or biological noise*’. Novel statistical methods like
g-diffusion are required to intentionally handle the curse of dimensionality
and its myriad of related effects’. Our results focused on findings that
directly improved upon the state of the art for enhancing the utility of
scRNAseq samples for foundational or clinical research.

The breadth of applications proposed for g-diffusion naturally inter-
mingles with innumerable other approaches. For instance, the field is seeing
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Tabula Sapiens Clustering Benchmark
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Fig. 5 | The benchmark involving the Tabula Sapiens® human atlas. a ARIs of
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b)

Skin Trachea
PR
L U . -
t v ?”
Uterus Liver
& > et
S %« y _ :
“ PRYTEE

assisted annotations in the four sans-PBMC small-sample organs. b UMAP
embeddings of the organ tissues colored by the unsupervised g-diffusion clusters.

renewed interest in framing scRNAseq problems in terms of optimal
transport (OT)***. Multiple competing formulations exist for OT even in
the generic problem of clustering cells***’. The main point of disagreement is
how to define distances between genes, which shape the OT distances
between cells. Gene-to-gene distances could be defined through a corpus of
ontologies, external reference datasets, or through their coexpressions in the
same cells that are to be analyzed. A more fundamental limitation of OT is
that cell-to-cell comparisons will always take quadratic time in the number
of genes to evaluate, notwithstanding the Sinkhorn relaxation™. g-Diffusion
takes linear time in the number of genes. The two orthogonal methodologies
are both posed as improved geometries for transcriptomics. We compared
them once in the second case study of this paper, but anticipate com-
plementary use cases in the future.

The vast field of deep learning offers techniques that are com-
plementary to, and perhaps synergistic with g-diffusion. We hope that g-
diffusion could be harnessed upstream of a generative model’s objective
function to inform its target geometry™.

Alternative cell-similarity metrics like the Spearman correlation appear
more effective than a Euclidean distance in clustering™. Our benchmarks
(second case study) were conducted against the standard analysis tools
because to ad hoc insert correlation distances into an established pipeline
would probably require adjusting the other hyperparameters. SC3 employs
correlations, and was included in the benchmark. All of the benchmarked
standard tools, which are close to the state of the art, are listed in Supple-
mentary Table 1 alongside their key differences from g-diffusion.

Concretely, the benchmark on determining IFN-y stimulation in
PBMCs was remarkable because it represented a task that was more
difficult than annotations of coarse cell types. Translational research
often considers such workflows, in which certain broad phenotypes are
sampled from patients and controls. The disease condition within a
phenotype can be rather subtle. This is clearly the case for T cells pre-
seroconversion of celiac disease in genetically predisposed individuals™.
A similar challenge exists in beta or gamma cells from the pancreas of
type-2 diabetic patients™*".

The Tabula Sapiens benchmark evaluated g-diffusion against the
dimensionality reductions supplied by the authors of the atlas, which were
carefully selected for their data. Out of the four small-sample organ tissues

34,48,52,53

tested, the g-diffused clusters vastly outperformed the baselines in alignment
with ground-truth labels for three organs. The fourth organ, the liver, had
62% of its non-PBMC cells labeled as hepatocytes. The g-diffused clusters
completely missed this separation, perhaps gravitating to other phenotypic
differences in the tissue. Even though g-diffusion offers a novel and valuable
perspective on scCRNAseq datasets, it should be used in conjunction with
more traditional analyses for a more complete picture of the phenotypes.

As for LDS with spatial scRNAseq, we address other approaches to
spatial segmentation. A recent hidden Markov random field model for
seqFISH™ needs a matching scRNAseq reference to disentangle cell-type
variation from spatial variation, whereas the proposed LDS with MERFISH
does not. DestVI®, a method based on variational autoencoders, requires
external cell-type annotations. More comparable is an unsupervised method
termed SSAM®', which detects cell-type signatures and then identifies spatial
domains by comparing cell-type counts in sliding windows. We cluster on
the basis of small tissue regions without discretizing to cell types. Also, we
compare distributions of cellular transcriptomes rather than cell-type
counts, by means of MMD. One of the baselines in the third case study was
based on regional aggregates of principal components, reminiscent of SSAM
sans the discretization.

The capability to reliably segment macro-scale structures from
MERFISH should be contextualized in the broader field of brain research.
Not only are the cells immensely heterogeneous even in small
neighborhoods®, but signaling networks are highly reliant on spatial
organization®>®. As spatiotemporal dimensions in scRNAseq samples
become more accessible, there is immense promise in studying the
process of memory formation®, among other phenomena in the brain.
The first case study on g-diffusion was aimed at demonstrating
outcomes-based biological and medical relevance by identifying potential
mCRC biomarkers in a phase III clinical trial. It was important to isolate
the findings to differential effects of treatments, or between treatments, in
order to ensure that the tumor biomarkers possibly interacted specifically
with the drug mechanism. Such findings could offer precision guidance
for mCRC treatment and prognostication. Tumor angiogenesis—the
growth of new blood vessels to supply oxygen and nutrients to cancer
cells—is a critical process in the development and progression of CRC.
Bevacizumab (bev), an anti-angiogenetic drug, is considered a standard

Communications Biology | (2024)7:400



https://doi.org/10.1038/s42003-024-06104-w

Article

PBMC Expression Programs
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Fig. 6 | Exploring the PBMC expression programs, derived by gNMF and com-
peting algorithms. a DEMGs between control and stimulated conditions are more
unique to individual PBMC subtypes after g-diffused regularization is imposed on
NMEF. This effect is evidenced by the greater number of decreases (blue) in Jaccard
similarity than increases (red) between the cell-type pairs of DEMGs. Decreases

account for 75% and 89% of the off-diagonal entries, respectively. In the diagonals,

gNMF kNMF NMF PNMF

gNMF kNMF NMF PNMF

we list the actual numbers of g-diffused DEMGs. b Total number of GEPs with at
least one statistically enriched biological pathway. Competing NMF methods are
shown for different amounts of GEPs, in powers of two. We analyzed gNMF, reg-
ularized NMF with a Seurat-style neighborhood graph (kNMF), typical NMF, and
the recent Projective NMF (PNMF).

treatment in combination with chemotherapy in first- or second-line.
However, no predictive marker for bev efficacy is currently available for
patient selection in the clinical setting. Through our analytical approach
we were able to identify several genes associated with differential effects
on bev treatment outcomes in mCRC. The majority of these genes are
known to play a role in cancer, including CRC, and several are involved
in angiogenesis-related pathways. However, we are the first to report a
connection with bev efficacy in patients (except EREG, which had been
previously identified”). Supplementary Discussion discusses the identi-
fied genes in detail.

This study has a few important limitations. First, g-diffusion arguably
makes parametric assumptions on the data that might be restrictive in some
use cases. Deep learning methods, on the other hand, offer more general
avenues, but they notoriously demand large datasets and require extensive
hyperparameter optimization. We also believe that g-diffusion is more
interpretable than most solutions involving neural networks because despite

its nonlinearities, g-diffused geometry is straightforward and supplements
linear analyses like NMF.

Second, given the scope of this study, we did not consider batch-effect
correction® or alignment of disparate datasets. Presumably, various pre-
existing tools can be coopted upstream of the analysis for this purpose. It is
also of note that removal of batch effects also sacrifices some truly biological
variation™, so it is important to conceive methodologies that can function
without the corrections. Another limitation of g-diffusion is that non-
linearities are less directly interpretable, generally. We ameliorated this
concern in the particular case of GEPs by formulating a g-diffused NMF to
produce linear programs while guided by nonlinear dynamics. Finally, we
note that there is room for improving the runtime efficiency of the algo-
rithm evaluating the g-diffused kernel across all pairs of cells. With the
Tabula Sapiens experiments serving as an example, which had an expansive
library size of 58,870 genes, one server with four NVIDIA GeForce RTX
2080 Ti graphics cards took between 20 minutes (for the liver) to 3 hours
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Community Detection on 64 Rexels from The Human Cerebral Cortex
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Fig. 7 | Side-by-side comparisons of local distributional segmentation with two
alternatives, for ten human cortical tissue samples. Prior knowledge of the cerebral
cortex compels the identification of parallal stripes to represent functional layers.
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Fig. 8 | Quantifying the spatial contiguity of the
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(for the trachea) for the complete affinity matrix. A simple heuristic based Methods

on approximate nearest neighbors is likely to drastically improve runtime
with minimal cost in accuracy.

Moving forward, we seek to study precisely when g-diffusion would be
beneficial to a particular scRNAseq problem. Such an exploration would
invite a careful selection algorithm for non-Euclidean deformation g and
inner bandwidth ¢, the two vital parameters to g-diffusion. At present, our
custom software QDiffusion. j1 has been released to the public with
sufficient documentation for others to use.

The core of our approach is a coexpression geometry for the transcriptome
that overcomes the curse of dimensionality. Its name g-diffused points to the
heavy inspiration from Tsallis statistics, which build on smoothly deformed
g-analogs to many classical functions”. The g-diffused geometry can be
framed as a deformation of Euclidean geometry, stemming from a g-
deformed Gaussian function. In effect, a g-diffused norm differs from the
Euclidean norm by introducing several interaction terms of increasing
order, up to the entire dimensionality of the vector space. The consequence
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g-Diffusion Improves Phenotype Resolution in Simulations
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Fig. 9 | Simulated scRNAseq experiments for low-to-high technical/background
noise and low-to-high diffusion across multiple genes of the phenotype separa-
tion. We showcase the superior ability of our proposed deformed geometry to

recover two different phenotypes, compared to a typical undeformed geometry.
Performance under various settings is assessed via the adjusted Rand index (ARI)
Details and more illustrative figures are in Supplementary Methods.

30

of these additional terms is that interactions spanning many variables are
weighed heavily. Borrowing on historical notation, we parametrize the
deformations by a single parameter g, in the range 1 < q < 2 for our context,
where the limit g — 1 reconstructs the original function for each g-analog.
Witha =: g — 1 € (0, 1], the g-diffused version of a Euclidean distance for
vector v becomes

JIl= e e e e g B e S
first order (Euclidean) second order (pairs) )
+ U+ )+ )t +
third order higher order

From this perspective, « can be viewed as a discount factor on interactions of
increasing order. Figure 1 illustrates these interaction terms. Realizations of
the method are described below, and details are in Supplementary Methods.

A plethora of nonlinear analytical methods rely on a kernel: a function
that quantifies the proximity between two points in an observational space.
The most common such kernel is the Gaussian kernel, sometimes called the
radial basis function. The major benefit of drawing inspiration from the
Tsallis framework is that it serves as a heuristic for constructing our g-
diffused kernel. Fundamentally, all g-analogs are based on the g-exponential
function, a polynomial that approximates the exponential and grows or
decays slower for g > 1:

equ(x) =[1+01- q)x]'flq, xeR,
(2)

l—q_l

o log,(y) = y17q y € (0, 00).

A kernel that decays by power law rather than exponentially makes up
for the overall increase in distances after incorporating the interaction terms
in Eq. (1). Generally the Gaussian kernel takes on the form of f(x) =
exp —Bx?. In a multivariate setting, x is a vector norm. We shall outline the
g-exponential’s link with the interaction terms in x discussed above. First,
observe the following identity for isotropic Gaussian functions in two
dimensions, x and y: exp(—f(x? + y*)) = exp(—px?) - exp(—py*). This
does not hold in the g-analog. Specifically, we have instead

exp,(—Bx?) - exp, (") = exp, (=)D, (—By)),
where aéqu =a+ b+ (1— q)ab,

from which the interaction term, (1 — q)ab=— f*(q — 1)x’y’, emerges
within the g-exponential. The binary @, operator is termed a g-sum.

Applying the g-sum recursively generates all orders of interaction. The
following perfectly recreates the g-diffused norm Il of Eq. (1), with
a(g—1):

H equ(—vf) = exp, (—v%GBq(—V%@q(_Vg@q T an))) 3)
i=1

= exp,(—,lIv]1).

The kernel above can be expressed as a product of univariate g-exponentials,
or a single g-exponential with the g-sum quadratic form. The full g-diffused
kernel incorporates two scaling terms, the inner and outer bandwidths, to
control its behavior. The outer bandwidth breaks this duality of the multi-
variate kernel with the univariate-kernel product. Figure 9 as well as
Supplementary Figs. 1 and 2 highlight the desirable properties of this
construction.

Definition 1. The g-diffused kernel on vector v € R™, with outer band-
width p > 0 and inner bandwidth ¢ > 0, is given by

f(v) = exp, <—7qH(P_ il )

iz

We always employ the g-diffused kernel at an adaptive resolution,
where the outer bandwidth p(k) is set to the kth nearest g-diffused normin a
cell’s neighborhood. This kNN parameter is set from the scope of the pro-
blemy; for instance, when performing community detection, this k takes on
the same role as in the kNN graph construction that is common in other
methods. Notably, our adaptive approach follows that of PHATE". The
kernel is truly anisotropic, in that p(k) depends on the origin point. So
fla, b) := fib — a) with p(k) scaled by the neighborhood of a.

The inner bandwidth

The inner bandwidth ¢ acts as a soft threshold for the magnitude of
interactions. Gene differences exceeding ¢ in magnitude tend to cascade
more strongly up the higher-order terms of the g-diffused norm (Eq. (1)). It
is widely recognized that the variance (post-normalization) of expressions
across a gene library is massively imbalanced: an instance of Pareto’s
principle at work in nature. This is the reason that common analysis
pipelines perform aggressive feature selection based on variance or disper-
sion, and sometimes rescale the remaining genes to equalize their impor-
tance. One of the main motivations behind our work is the belief that those
preprocessing steps are too crude for complex gene processes. First, most
genes are discarded; second, the rescaling of those remaining inevitably
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distorts their processes. It is often seen as necessary in order to analyze low-
expression but important genes like transcription factors®. Our approach
avoids the aforementioned pitfalls via this inner-bandwidth mechanism, a
knob that allows us to navigate the spectrum of multiscale processes.
Roughly, expression magnitudes far above this knob are amplified and those
below are discounted.

We devised a simple heuristic for choosing the inner bandwidth, and
adhered to it for all the results presented. For each gene, we computed the
average pairwise squared distance across cells. Then we picked a quantile of
these gene scatters for the inner bandwidth. Since the variance is con-
centrated to just a few genes, ideally one could choose a relatively high
quantile like 90% and still pay attention to most genes. However, for sim-
plicity, we opted with the 50% (median) quantile. This endows us with a
setting for the inner bandwidth prior to analysis.

Choosing the deformation parameter. As there was both a wide (in
terms of clustering, factorization, embedding) and deep (for competing
methods) set of comparisons to perform against the novel g-diffused
framework, we chose to narrow the space by considering only g = 1.2 for
g-diffusion. See Supplementary Methods for an exploration on the effect
of other settings.

Using the kernel

After filtering and basic normalization, scRNAseq data consist of # observed
cells with m sparse gene measurements each. We denote them as a matrix
with cell column vectors X = [x() x® ... x™] € R™*". The most com-
mon methods of analysis involve clustering or embedding, where cells are
categorized into apparent phenotypes, and plotted in a low-dimensional
space representing their semantics or relations. Figure 1 shows how g-
diffusion improves on common analyses.

All the augmentations to existing methodologies that we explored
involved some form of an affinity matrix A € R™ " filled with kernel
evaluations between pairs of data points in X. As with PHATE", we sym-
metrified the anisotropic matrix arithmetically:

A= fGOx0), A=A +4"))2. (4)
The recursive structure of Eq. (1) revealed a divide-and-conquer algorithm,
which was implemented and released as open-source software to compute
these matrices while taking advantage of massively parallel GPUs using the
CUDA platform. Numerical stability is maintained by performing the
computations in a logarithmically transformed space.

Community detection

Considering the affinity matrix as a weighted, undirected graph adjacency
matrix (by subtracting the diagonal,) we performed community detection
on the basis of the state-of-the-art Leiden algorithm optimizing for
modularity”*”. This was benchmarked in the second case study of
this paper.

Gene expression programs (GEPs)

We also adopted nonnegative matrix factorization (NMF), of demonstrated
efficacy in scRN Aseq studies™. The estimated basis vectors of such a method
are often called gene expression programs (GEPs) or meta-genes because
they capture sparse sets of genes that express together and are likely cor-
egulated. Each cell is deconstructed into a set of combination weights on the
GEPs. This factorization often serves as the first step to data-driven cell
phenotyping'**. For the sake of biological coherence, it is valuable to require
a cell's GEP weights to be similar to those of nearby cells in the tran-
scriptomic space. We consider, in particular, the affinity matrix that is
induced by our g-diffused kernel. The structure encoded in this matrix is
highly nonlinear, and even though the GEPs themselves are linear, we may
attempt to guide them by the nonlinear structure’ in order to improve
downstream results.

The resultant programs between gNMF and NMF GEPs were quali-
tatively similar, partly because they were always initialized with the same
random seed, but mostly because NMF picked up the strong coexpression
patterns. The most heavily weighted genes in each GEP were almost
equivalent between their two versions. What differed were the precise
weightings, which trickled into subsequent quantitative findings.

Local distributional segmentation (LDS)

We developed an approach to spatial segmentation of a tissue informed by
spatially resolved transcriptomics for the third case study in this paper.
Undoubtedly, an unsupervised technique could massively aid in the dis-
covery of structures’”” in tissue samples. Functional segmentation of a
tissue must be performed at a scale coarser than that of the single cell, yet still
informed by cellular heterogeneity. Still, the scale must be granular enough
to preserve the intricacies revealed by MERFISH. We chose to operate on
small neighborhood groupings of cells, termed rexels for region-level pixels.
Concretely, each tissue sample was divided into an approximate Voronoi
parcellization by repeated k-means.

We hypothesized that categorizing rexels through their distributions of
heterogeneous cells would provide stronger functional information than
any neighborhood-level aggregation. A rexel is expected to be a sample of
neurons, immune, and auxilliary cells, which together make up the func-
tionality of that part of the brain. Our novel LDS approach entailed the
computation of distances between all rexel pairs through the maximum
mean discrepancy (MMD)”, a recently popular kernel-based measure for
comparing two multivariate samples’. Intuitively, to compare two sets of
high-dimensional points, MMD averages the pairwise kernel values within
each set and contrasts them with the averaged pairwise kernel values
between the sets. We experimented with our g-diffused kernel and a more
typical Gaussian baseline for MMD. Moreover, we compared with a simpler
segmentation method on the basis of neighborhood aggregates, where rexels
were represented by the gene expressions averaged over their
constituent cells.

Dimensionality reduction

Researchers are rather concerned over the amount of unseen distortion of
global-structure biological patterns in the most popular embedding meth-
ods for scRNAseq””. For this reason, t-SNE and UMAP are often relegated to
mere visualization. A lesser known, albeit well founded and characterized"
alternative is PHATE". We augmented PHATE with the g-diffused kernel
of Definition 1, symmetrified by Eq. (4). We harnessed the g-diffused
PHATE embedding for a task beyond mere visualization: to screen
important genes in mCRC, and estimate a biomarker for clinical-trial
patients.

Differential effects of latent variables
Groups of latent variables were tested in the first case study of this paper, on
mCRC for identifying transcriptomic interactions with treatments onto
patient outcomes. The effects of the latent varibles were modeled as Cox
proportional hazards™.

Two sets of latent variables were identified with the help of g-diffusion.
For each set, their regression coefficients on outcomes were contrasted
between the treatment cohorts. Each pair of coefficients for the same latent
variable, corresponding to its effects under the two treatments, was tested for
a nonzero difference using the asymptotic normal approximation”. The z-
tests were performed on the basis of variance estimates through observed
Fisher informations, which is established practice’, and then corrected for
multiple testing”’. Statistically significant differences, especially with
opposing signs, signified differential effects from these latent variables. The
dichotomy in an effect’s value would suggest a biomarker for a possibly
causal interaction with a treatment, since treatment-cohort assignments
were fully randomized.

For gNMF, we limited our investigation a priori to 16 potentially novel
latent variables. This amount was chosen as a round power of two, and
probably the maximal supported by the sample size of 557 in the clinical
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trial. We avoided further explorations of different amounts as they would
risk a loss of statistical power™. As some GEP weights transferred to patients
were entirely zero or entirely nonzero, we also screened for GEP weights
with sparsity no less than 5% and no greater than 95% for our tests of
significance.

The latent variables were inferred from an scRNAseq “atlas” reference
dataset””. The stage-4 portion of the atlas was selected, matching the con-
ditions of the patients in a clinical trial, so that insights from the atlas could
be translated directly to the patients. This clinical trial recorded patient
outcomes for two different treatments, alongside bulk RNA profiles from
tumors. As presented in Fig. 2, the inferred latent variables consisted of two
sets of 16 gene expression programs and branching gene components.
Translation of atlas-inferred latent variables onto patients’ RNA profiles was
performed by linear deconvolutions with the estimated single-cell programs
or components.

Differentially expressed genes (DEGs)

A multitude of techniques exist for identifying differentially expressed genes
(DEGs). These approaches can transfer to the meta-genes™ revealed by
whole GEPs, yielding differentially expressed meta-genes (DEMGs). A
recent benchmark on single-cell DEG identification suggested that the
earth-mover’s distance (EMD)"' offers the best tradeoff between precision
and recall”. The Mann-Whitney U test (or Wilcoxon rank-sum test) is a
simpler statistic often used for DEGs*. A study on bulk RNA sequencing
provided some evidence that more complex techniques tend to exaggerate
the false positives™. Hence, the EMD permutation tests and U-tests for
differential expression facilitated assessments of GEP estimators for isolat-
ing DEMGs. The Benjamini-Hochberg’® procedure corrected for multiple
testing by controlling the false discovery rate (FDR).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

All datasets considered in this study have been previously reported in the
literature. Accession codes or links are provided for all datasets besides the
clinical trial: the Human Colon Cancer Atlas can be accessed at GEO:
GSE178341; the PBMC benchmark at GEO: GSE96583; the Tabula
Sapiens benchmark at https://doi.org/10.6084/m9.figshare.14267219.v5;
the human MERFISH sample at https://doi.org/10.5061/dryad.x3ffbg7mw.
For the CALGB/SWOG 80405 clinical trial, a summary of clinical and
genomic data will be made available upon reasonable request.

Code availability
Please visit https://github.com/marmarelis/QDiffusion.jl for access to the
Julia package.
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