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Metabolic network analysis of pre-ASD
newborns and 5-year-old children with
autism spectrum disorder
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Lin Wang1,2, Lori Haapanen4, Chelsea A. Kelland4, Judy Van de Water 4,5 & Robert K. Naviaux 1,2,6,7

Classical metabolomic and new metabolic network methods were used to study the developmental
features of autism spectrum disorder (ASD) in newborns (n = 205) and 5-year-old children (n = 53).
Eighty percent of the metabolic impact in ASD was caused by 14 shared biochemical pathways that
led to decreased anti-inflammatory and antioxidant defenses, and to increased physiologic stress
molecules like lactate, glycerol, cholesterol, and ceramides. CIRCOS plots and a new metabolic
network parameter, _Vnet, revealed differences in both the kind and degree of network connectivity. Of
50biochemical pathways and 450polar and lipidmetabolites examined, the developmental regulation
of the purine network was most changed. Purine network hub analysis revealed a 17-fold reversal in
typically developingchildren. This purine network reversal did not occur inASD.These results revealed
previously unknown metabolic phenotypes, identified new developmental states of the metabolic
correlation network, and underscored the role of mitochondrial functional changes, purine
metabolism, and purinergic signaling in autism spectrum disorder.

Autism spectrum disorder (ASD) now affects 1 in 36 children born in the
United States1. Despite clinical heterogeneity, all children with ASD share
the three core features of difficulty with language, social communication,
and restrictedor repetitive behaviors or interests.With current therapy, only
about 20%of childrendiagnosedwithASD in childhood gain independence
as adults2. Advanced methods in biochemical genetics and metabolomics
over the past 65 years have shown that many metabolic changes can be
found in children and adults with ASD, but the specific differences change
by age, sex, and severity of symptoms3–9. The developmental nature of
metabolic changes in ASD has been attributed in part to a delayed
maturational program10–12, which in turn, is coupled to corresponding
developmental changes in brain structure and function, immunity, the
microbiome, and the autonomic nervous system4,13–15. A root regulator of
these multisystem changes in ASD has not yet been discovered.

Whole genome sequencing efforts have identified 134 genes and
structural DNA variants in 5100 children and adults with ASD16. However,
no single genetic change accounted for more than 0.5% of the children.

Diverse environmental factors are also known to increase the risk of ASD.
These range from gestational fever17 to early exposure to environmental
pollutants18, but no single environmental risk factor is found in every child
with ASD. Exhaustive DNA sequencing and epidemiologic studies in ASD
over the past 10 years have reinforced the findings that genes do notwork in
isolation, and that polygenic and gene-environment interactions are the
dominant contributors to the development of ASD19.

The conceptual framework of the cell danger response (CDR) was
developed to explain how genes and environment are connected through
metabolism20,21. The CDR is a universal response to genetic or environ-
mental stress21 and describes how different genetic and environmental
stressors alter development and increase the risk of ASD22. Starting with
mitochondria and the cell, theCDRpropagates from local to remote systems
to coordinate the metabolic, inflammatory, autonomic, neuroendocrine,
and other responses needed to heal and recover from any stress or injury,
and to adapt to future exposures23. When triggered by chronic or repeated
exposure to certain environmental pollutants or other early life stresses24,
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elements of the CDR that were acutely adaptive, become chronic and
pathologic. When the triggering factors occur during gestation or early in
childhood, ASDand several other neurodevelopmental disorders can result.
In the case of ASD, four features of systemic stress are universally present.
These include changes in mitochondrial function, oxidative stress, innate
immune activation, and changes in the microbiome25. These are each
established features of the CDR20.

The root regulator of the CDR is extracellular adenosine triphosphate
(eATP). eATP release is triggered by both genetic and environmental
factors26. eATP is released in a graded fashion in vesicles and through
pannexin 1 and other membrane channels in proportion to the magnitude
of stress27,28. ATP is metabolically expensive to make, and proper com-
partmentalization is essential for normal cell function. The intracellular
functions of ATP (iATP) in metabolism are well known29. More universal
than any gene, iATP is used as an energy carrier by all forms of life on
Earth30. However, when released to the outside of the cell, the function of
ATP shifts seamlessly from matter to information. Outside the cell, eATP
becomes a signaling molecule that binds purinergic receptors31, and signals
danger. eATPsignaling changesmetabolismand initiates a cascadeof events
that starts with innate immunity, and spreads from acute, short-distance
responses at the site of infection or injury, to chronic, long-distance
responses that affect organ systems and regulate child development32. eATP
is one of the most powerful signaling molecules known, capable of binding
to receptors found on every cell in the body and regulating their function.
Acute injection of eATP profoundly regulates mitochondria and over 200
molecules in the metabolome33. When given during pregnancy in a mouse
model, a single injection of eATP causes life-long neurodevelopmental
changes and ASD-like behaviors in the offspring34. Specific aspects of the
CDR are triggered by specific threats like a viral infection, toxic metals,
drugs, or environmental pollutants. The generalized functions of the CDR
are triggered directly by eATP and its metabolites.

Differences in purine metabolism and ATP-related purinergic signal-
ing have now been reported in every experimental model and every human
study of ASD in which purines have been interrogated5,8,34–37. Unbiased
multiomics analysis has independently underscored this discovery38. eATP
fundamentally regulates mast cells39, microglia40, neuronal sensitization41,
vagal function42, and synaptic plasticity43. Each of these is a known issue in
ASD44,45. Mitochondria make over 90% of ATP used for energy and pur-
inergic signaling. Mitochondria also serve as the information processing,
early warning, and early response system that allows cells to adapt to
changing environmental conditions46,47. The mitochondrial proteome
contains the enzymes for up to 789 metabolic reactions48. These enzymes
drive the functional changes in cells needed for growth, differentiation,
healing, adaptation to stress, child development, and healthy aging. Over
half of these enzymes are regulatedbyATPandrelatednucleotides48, andare
thus responsive to changes in the CDR that regulate ATP production and
release. Chronic changes in mitochondrial functions are an established
feature of ASD that are capable of remodeling the metabolic network8,
regulating gene expression49,50, and shifting the trajectory of
neurodevelopment51. In the following study, we tested the hypothesis that
developmental patterns in the metabolic network of infants at risk and
children with ASD can provide mechanistic insight into the developmental
neurobiology of ASD.

Theaimsof this studywere:1) to identify thedevelopmental patterns in
metabolism that distinguish children with ASD, and 2) to identify the
changes in metabolic networks that can be used as early biomarkers of risk
and to gain new insights into the pathophysiologic mechanisms of ASD
between birth and 5-years of age.

Results
Participant characteristics
Cohort 1—The newborn study. Figure 1 illustrates the biological sys-
tems interrogated and the analytical workflow of this study. Participant
characteristics are shown in Supplementary Table 1. There were no dif-
ferences between the pre-ASD and typically developing (TD) groups by

birthweight, or the frequency of births by in vitro fertilization, gestational
diabetes, or the occurrence of a gestational fever. There was also no
difference in the number ofmedications prescribed during pregnancy, C-
section, infant age at sample collection, child immunization history,
maternal or paternal age, or ethnicity. We found that 48% of the children
in the pre-ASD group had at least one episode of developmental
regression. The frequency of regression in the TD group was 2%
(p < 0.0001). The mean age of the first spoken word was 14.7 months in
the ASD group and 11.4 months in the TD group (p < 0.0001). The mean
age of diagnosis of ASD was 3.3 ± 1.1 years (Supplementary Table 1).

Cohort 2—The 5-year-old child study. Participant characteristics are
shown in Supplementary Table 2. Fifty-three (53) children were enrolled
in this study. All children had been diagnosed with ASD by a healthcare
professional or were typically developing children enrolled as controls.
This cohort consisted of children recruited prior to planned enrollment
in kindergarten and before routine pre-kindergarten immunizations. The
mean age was 5.3 ± 0.8 years. There were 23 males and 8 females with
ASD, and 16 TD control males and 6 TD females (Supplementary
Table 2).

Metabolomics overview
Developmental progression of ASD-associatedmetabolic changes.
Multivariate partial least squares discriminant analysis (PLS-DA)
showed that newborns who later developed ASD could not be completely
separated from TD newborns using classical metabolomics (Fig. 2a). The
metabolic differences between 5-year-olds with ASD and TD controls
allowed for greater separation, but still showed significant overlap
(Fig. 2b). The top 60 most discriminating metabolites were aggregated
into pathways by variable importance in projection (VIP) scores ≥ 1.5 for
comparison of the metabolic impacts in newborn and 5-year-old groups.
Fourteen of 24 dysregulated metabolic pathways (58%) were shared by
pre-ASD newborns and 5-year-old children with ASD (Supplementary
Fig. 1a, b, shaded pathways). Rawmetabolomics data for newborns and 5-
year-olds are reported in Supplementary Data 1 and 2, respectively.
Detailed statistical analysis is reported in Supplementary Data 3 and 4.
The pathways shared between the two cohorts accounted for 79% of the
metabolic impact in newborns and 80% of the impact in 5-year-olds.
Altered lipid metabolism accounted for 63% and 71% of the fractional
impact in the newborn pre-ASD and 5-year-old ASD cohorts, respec-
tively. About 25% of the impact was produced by changes in sphingoli-
pids like sphingomyelins, ceramides, and glycosphingolipids, and
another 20–26% was produced by changes in phospholipids (Supple-
mentary Fig. 1a, b). See Supplementary Results and Discussion for
additional details.

Quantitatively, themagnitude ofmetabolic disturbances in 5-year-olds
with ASDwas greater than in the pre-ASDnewborns (Fig. 2c, d). Themean
z-scores for metabolites that were significantly increased (+z-score and
VIP ≥ 1.5) or decreased (-z-score andVIP score ≥ 1.5)were compared in the
pre-ASD newborns and 5-year-olds. We found that the metabolites that
were increased in newborns were increased by 54% more in the 5-year-old
cohort (p < 0.0001; Fig. 2c, Supplementary Data 3 and 4). Molecules that
were increased in ASD included several stress response metabolites like
lactate, alanine, glycerol, glycerol-3-phosphate, threonine, linoleic acid,
linoleylcarnitine, cholesterol, ceramides, and the mRNA capping purine
7-methylguanine. Metabolites that were decreased at birth were decreased
by 119% more in 5-year-olds (p < 0.0001; Fig. 2d). Molecules that were
decreased in ASD were anti-inflammatory, 1-carbon, and antioxidant
molecules like glutathione, carnosine, carnitine, betaine, 5’-methyltetrahy-
drofolic acid, and CoQ10, and neurotransmitters like dopamine and
serotonin.

Metabolite changes in pre-ASD newborns. The top 4 most dysregu-
lated metabolites in the pre-ASD newborns were sphingolipids (Fig. 2e).
Sphingosine-1-phosphate (S1P), ceramides and glycosphingolipids, like
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the mono and trihexosylceramides (MHCs and THCs), were increased,
and their parent molecules, the SM lipids (sphingomyelins), were
decreased. Two conjugated bile acids, chenodeoxyglycocholic acid and
taurodeoxcycholic acid, were increased. Four of 27 purines were dysre-
gulated in newborns who later developed ASD. The mRNA capping
purine, 7-methylguanosine was increased, and guanine (Gua), dGMP,
and AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) were
each decreased compared toTDcontrols (Fig. 2e, SupplementaryData 3).
Serotonin, dopamine, and the levels of two B vitamins, niacin (niacina-
mide, vitamin B3) and FAD (from riboflavin, vitamin B2), were
decreased in pre-ASD newborns (Fig. 2e and Supplementary Data 3).

Metabolite changes in 5-year-olds with ASD. The metabolomes of 5-
year-olds with ASD contained increased levels of several phosphatidy-
lethanolamine (PE) and phosphatidylinositol (PI) lipids. Phosphor-
ylcholine, the head group of phosphatidylcholine (PC) and
sphingomyelin (SM) lipids, which is produced by the action of phos-
pholipase Cs (PLCs) and sphingomyelinases (SMSs), was increased.
Several cardiolipins needed for mitochondrial biogenesis and oxidative
phosphorylationwere decreased inASD (SupplementaryData 4). Several
PC and sphingomyelin lipids that are substrates for PLCs and SMSs, were
also decreased. A decrease in 2-hydroxy sphingomyelins like SM(d18:1/
26:0 OH) and SM(d18:1/18:2 OH) needed for myelin stabilization52 was
observed (Fig. 2f, Supplementary Data 4). The mRNA capping purine
7-methylguanine was increased in the ASD group. Serotonin, and 3
vitamins and cofactors, L-carnitine, CoQ10, and 5’-methyltetrahy-
drofolic acid, were decreased. In contrast to increased levels in pre-ASD
newborns, the bile acids glycocholic and chenodeoxyglycocholic acid,

and the microbiome product indoxyl-3-sulfate were decreased (Fig. 2f,
Supplementary Data 4). The most dysregulated metabolic pathways
found in newborns who later developed ASD and 5-year-olds with ASD
are summarized in Fig. 2g, h. Using metabolic classifiers of 6-7 bio-
markers, the use ofmetabolomics was able to discriminate pre-ASD from
TDnewborns with an accuracy of 75%, and with an accuracy of 88% in 5-
year-olds (Fig. 3a, b). A summary of the metabolic changes that were
unique and shared between the two cohorts is summarized in the Venn
diagram in Fig. 3c. Additional metabolomic results from classical
methods of area under the curve (AUC) and z-score analysis are reported
in the Supplementary Results.

Developmentally regulated metabolic changes
The z-scores of several important classes of metabolites that were sig-
nificantly changed byVIP scores≥1.5,were found to be changed in opposite
directions in the newborn pre-ASD and 5-year-old ASD groups. The top 6
classes of metabolites that were changed in newborns were either increased
or underwent a developmental reversal in 5-year-olds. These were PI, PE,
and BMP (bis(monoacylglycero)phosphate) lipids, ceramides, eicosanoids,
and products of glycolysis like lactate and glycerol-3-phosphate (Fig. 3d–i).
The top 4 classes of molecules that were decreased with age in ASD com-
pared to TD controls were bile acids, PS and PC lipids, and sphingomyelins
(Fig. 3j–m). Notably, purines and fatty acid oxidation intermediates were
not dysregulated as a group. However, individual purines like the mRNA
capping purines 7-methylguanosine (7-mGuo) and 7-methylguanine (7-
mGua, Fig. 3n), and the polyunsaturated long-chain acyl-carnitine lino-
leylcarnitine, were elevated in both groups, andL-carnitinewas decreased in
the 5-year-olds with ASD (Fig. 3o).

Fig. 1 | Study workflow.Metabolomics was used to
interrogate real-time gene-environment interac-
tions. The purine metabolic network was the most
changed of 50 biochemical pathways analyzed in
autism spectrum disorder. Developmental reversal
of the excitatory (+r) to inhibitory (−r) purine
network was a feature of neurotypical development.
This reversal did not occur in children with ASD.
ASD autism spectrum disorder, TD typically
developing.

© Naviaux Lab/UCSD
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Fig. 2 | Metabolic changes in ASD. a, bMultivariate partial least squares dis-
criminant analysis (PLS-DA). Cross-validation accuracy, r2, q2, and permutation p
values are reported for a multivariate model with three components. c, d The
magnitude of metabolic differences between ASD and TD increased with age.
****p < 0.0001. e, f Metabolite changes and pre-ASD newborns and 5-year-olds
with ASD ranked by variable importance in projection (VIP) scores. g, h Bubble

impact plot summary of biochemical pathway changes ranked by random forest
analysis andmean decrease in accuracy (MDA). n = 205 newborns (68males and 17
females in the pre-ASD group. 68 males and 52 females in the TD group), n = 53 5-
year-olds (23 males and 8 females with ASD. 16 males and 6 females in the
TD group).
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Metabolic network studies
We next explored how changes in the network of pair-wise correlations
betweenmetabolitesmight predict the chance of futureASD innewborns or
provide new insights into the biology of ASD in 5-year-old children.

CIRCOS analysis
Newborn correlation networks. CIRCOS plots were constructed to
visualize the global metabolic networks of cases and controls. Positive
(+r) and negative (−r) correlations were displayed separately. The global
metabolic network in pre-ASD newborn males had 102% fewer positive
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correlations than typically developing newborns (515 vs 1038;
p < 1 × 10−6; Fig. 4a, b). The sequence ofmetabolites around the rimof the
CIRCOS plots is shown in Supplementary Data 5 and 6. Major positive
correlation trunks connected ceramides and phosphatidylinositol (PI)
phospholipids (segment ab

 !
), and sphingomyelins and phosphati-

dylcholine (PC) phospholipids (segment cd). In contrast to the loss of
positive correlations in the pre-ASD network, there was a 97% gain of
negative correlations in the pre-ASD group (449 vs 228; p < 1 × 10−6;
Fig. 4c, d, Supplementary Data 7 and 8). Prominent among the increased
negative correlations was the appearance of two new major trunks from
sphingomyelins to eicosanoids (segment ab), and from purines to the
eicosanoids (segment bc).

5-year-old correlation networks. The ASD network in 5-year-olds had
184% fewer positive correlations than the TD network (574 vs 1070;
1 × 10−6; Fig. 4e, f). The sequence of metabolites around the rim of the
CIRCOS plots is shown in Supplementary Data 6. Normal positive
connections between ceramides and phosphatidylinositol (PI) phos-
pholipids were lost in the ASD group (segment ab). New positive con-
nections between sphingomyelins and eicosanoids (segment cd) occurred
(Fig. 4f). There was no significant difference in the number of negative
edges in the ASD and TD networks (378 vs 362 at q < 0.05; p = 0.61 (ns);
Fig. 4g, h; Supplementary Data 9 and 10). However, there were several
differences in the major trunks that connected metabolites. For example,
normal negative correlations between ceramides and purines (segment
ab, Fig. 4g), and purines to PI lipids (segment be) were lost in the ASD
group (Fig. 4h). New negative correlations between lipoic acid in the
nitric oxide/lipoic acid/ROS pathway and several eicosanoids were
gained (segment cd, Fig. 4h).

Complementarity of network and classical metabolomic
methods
We next calculated statistical parameters for all possible pair-wise correla-
tions betweenmetabolites in themetabolome and ranked eachmetabolite by
its ability to discriminate between the ASD and TD networks (Supple-
mentaryData 7–10). Thenetwork rankof ametabolitewas poorly correlated
with its rank determined by classical tools inmetabolomics likemultivariate
VIP score, Random Forest mean decrease in accuracy (MDA), Welch’s
adjustedpvalues, orMann-WhitneyU test.Classicalmetabolomicsmethods
explained less than 3% of the variance in the network rank (r2 ≤ 0.03; Sup-
plementary Fig. 2a–d). In contrast, the ranking of metabolites by classical
AUC-based metabolomic methods correlated with each other (Supple-
mentary Fig. 2e–h). Since 97% of the information obtained by network
analysis could not be predicted by standard univariate or multivariate ana-
lysis of themetabolomics data, these results showed that network-based and
concentration-based analyses were independent and complementary.

Metabolic network hub-and-spoke analysis. Based on network
changes that were most significant in the 5-year-olds with established
ASD, we selected the purine, ceramide, PI lipid, and eicosanoid pathways
for further analysis in both cohorts.

The purine hub. Unbiased network correlation analysis showed that the
purine hub was the most dysregulated of all 50 metabolic pathways inter-
rogated in the 5-year-olds with established ASD (p < 1.0 × 10−22; Supple-
mentary Data 11 and 13). The purine network was also highly dysregulated
in the pre-ASD newborns (p < 6.3 × 10−22; Supplementary Data 12 and 14).
The purine hub in newborns consisted of 26 measured nucleobases,
nucleosides, nucleotides, and associatedmetabolites. Comparing the purine
hubs in TD and pre-ASD newborns, the first impression obtained from
looking at the networks from a distance is that the purine hub in the TD
group is relatively polymorphic, undifferentiated, and diffusely connected
(Fig. 5a, e). The negative edges (−r) were few and sparsely connected
(Fig. 5 c).Thepurinehub in thepre-ASDgroupon theotherhand, hadmore
structured features and appeared prematurely differentiated. New positive
edges (+r) were found between xanthosine and the eicosanoids in the pre-
ASD group, labeled [1] (Fig. 5b). Several purines lost positive correlations
with the riboflavin/FAD pathway associated with mitochondrial fatty acid
oxidation [2] (Fig. 5b). New negative correlations connected purines with
several other importantmetabolic pathways like the sphingomyelins [3] and
the eicosanoids [4] (Fig. 5d). The negative correlations between XMP and
GMP and the eicosanoids were found in both the TD and pre-ASD groups
(Fig. 5c, d). However, new negative correlations between AMP and the
eicosanoids were found in the pre-ASD group [4] (Fig. 5d). Overall, the
newborn pre-ASD purine network had fewer positive and more negative
correlations than the TDnetwork (p < 0.0001; Fig. 5a–d). The rise and fall of
purines in pre-ASDnewbornmales was correlatedwith changes in over 400
metabolites from 31 different metabolic pathways (Fig. 5a–f).

The purine hub in 5-year-olds consisted of 27 measured purines and
associatedmetabolites. Comparing the purine hubs in TD andASD groups,
thefirst impression obtained from looking at the networks fromadistance is
that the purine hub in the TD group is highly structured and well-
differentiated by 5 years of age (Fig. 6a, c, e). In contrast, the purine hub in
theASD groupwas polymorphic, diffusely connected, and developmentally
underdifferentiated (Fig. 6b, d, f). The early structuring of the purine net-
work at birth (Fig. 5b, d) led to an underdifferentiated purine network in
children with ASD at age 5 (Fig. 6b, d). The ASD group lost positive cor-
relations between 7-methylguanine and the ceramides [1] (Fig. 6b). Positive
correlations were also lost between xanthine and several neurotransmitters
likeN-acetylaspartate and dopamine [2] (Fig. 6b).Newpositive correlations
occurred between xanthine and xanthosine and several phospholipids [3]
(Fig. 6b), and from deoxyguanosine to glycine and serine in the 1-carbon
pathway [4] (Fig. 6b). The negative correlations between XMP, dGMP, and
AMP, and the eicosanoids that occurred in the pre-ASD group of newborns
(Fig. 5d, f), were lost by 5-years of age (Fig. 6d, f). Negative correlations
between AMP, GMP, ADP, IMP, and the ceramides [5] (Fig. 6d, f), phos-
pholipids [6], glycosphingolipids [7], and cholesterol [8] did not develop in
5-year-olds with ASD (Fig. 6c–f). The rise and fall of purines was correlated
with changes in over 150metabolites from 33 differentmetabolic pathways.
Overall, the purine nucleobase xanthine gained the most positive correla-
tions (+r, Fig. 6b), andGMP lost themost negative correlations (−r, Fig. 6d)
of all the purines in the 5-year-old ASDmetabolic network (Supplementary
Data 11). New xanthine stimulatory (+r) correlations in ASD included

Fig. 3 |Discriminatingmetabolites. aReceiver operator characteristic (ROC) curve
analysis by random forest analysis. Newborn males. n = 136 newborn males (n = 68
ASD and 68 TD). b 5-year-old males. n = 39 5-year-old males (n = 23 ASD and 16
TD). c Blood metabolome changes found in pre-ASD newborns are on the left.
Changes found in 5-year-olds with ASD are on the right. Shared changes are shown
at the intersection. *Changes found in males only. †Glutathione (GSH/GSSG) and
Cysteine/Cystine redox ratios were not measured in this study. Developmental
regulation of discriminating metabolites, d Phosphatidylinositol (PI) lipids,
e Phosphatidyl ethanolamine (PE) lipids, f Bis(monoacylglycero)phosphate (BMP)
lipids, g Ceramides, h Eicosanoids, i Glycolysis, j Bile acids. k Phosphatidylserine
(PS) lipids, l Phosphatidylcholine (PC) lipids,m Sphingomyelins, n Purines, o Fatty
acid oxidation and synthesis intermediates. Error bars indicate the z-score medians
and interquartile ranges. Red arrows indicate metabolites that were low in pre-ASD

newborns and increased in 5-year-olds with ASD. Blue arrows indicate metabolites
that were increased in pre-ASD newborns and low in 5-year-olds with ASD.
5-mTHF 5’-methyltetrahydrofolate, 7-mGuo 7-methylguanosine, 7-mGua 7-
methylguanine, 2-KB 2-ketobutyric acid, Gua guanine, dGMP deoxyguanosine
monophosphate, AICAR 5-aminoimidazole-4-carboxamide ribonucleotide, PI
phosphatidylinositol lipids, PS phosphatidyl serine lipids, PE phosphatidyl etha-
nolamine lipids, PC phosphatidyl choline lipids, BMP bis(monoacylglycero)phos-
phate lipids, IAA imidazole acetic acid, FAs fatty acids, R5P ribose-5-phosphate,
SAM S-adenosyl methionine, SAH S-adenosylhomocysteine, 2-AG 2-arachido-
nylglycerol, N-OEA N-oleoylethanolamine, GM3(d18:1/18:1) is a monosialic, tri-
hexosyl ganglioside, PG phosphatidylglyerol lipids. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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Fig. 4 | CIRCOS diagrams of the metabolic networks in typically developing
controls and ASD. a, b Positive correlation networks (+r), TD and pre-ASD in
newborn males. q < 1 × 10-5. c, d Negative correlation networks (-r), TD and ASD
newborn males. q < 0.01. e, f Positive correlation networks (+r), TD, and ASD in

5-year-old males. q < 0.01. g, hNegative correlation networks (−r), TD and ASD in
5-year-oldmales. q < 0.05. n = 68 pre-ASDnewbornmales and 68 newborn TDmale
controls. n = 23 5-year-old ASD males and 16 TD male controls. See Results for
description of the specific metabolite-pair correlations that were gained or lost.
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Fig. 5 | Developmental regulation of the purine metabolic network in
newborn males. a, b Positively correlated (+r, red) network. c, d Negatively cor-
related (−r, blue) network. e, f Magnified purine hubs in newborn males. n = 68

pre-ASD newborn males and 68 newborn TDmale controls. TD vs pre-ASD+r/−r
edge ratio p < 0.0001; total purine network correlations p < 0.0003.
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Fig. 6 | Developmental regulation of the purine metabolic network in 5-year-
old males. a, b Positively correlated (+r, red) network. c, d. Negatively correlated
(−r, blue) network. e, f Magnified purine hubs in 5-year-old males. TD vs ASD

+r/−r edge ratio p < 0.0001; total purine network correlations p < 0.0001. n = 23 5-
year-old ASD males and 16 TD male controls.
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biomarkers of mitochondrial dysfunction like myristoylcarnitine and lactic
acid, and several phosphatidylserine (PS) lipids like PS(18:0/20:4) that are
markers of apoptosis (Supplementary Data 9).

Purine network developmental arrest and failed reversal in ASD. The ratio
of positive to negative correlations—the +r/-r ratio—of purines in TD
children was higher in newborns and underwent a reversal during normal
development so that by 5-years of age, the +r/−r ratio was low (+r/
−r = 5.5 ± 0.27 in TD newborns to 0.31 ± 0.02 in TD 5-year-olds;
p < 0.0001; Fig. 7a, b). The magnitude of this change was 17.7-fold (5.5/
0.31 = 17.7 ± 1.1). The pattern in the pre-ASD newborns was much differ-
ent. The +r/−r ratio in pre-ASD newborns was just 36% of the TD group
(+r/−r = 2.0 ± 0.11 in pre-ASD newborns vs 5.5 ± 0.27 in the TD new-
borns; p < 0.0001; Fig. 7a, b). In addition, the normal developmental reversal
of the+r/−r ratio in the purine network did not occur in 5-year-olds with
ASD. Instead, the +r/−r ratio of purine correlations in the metabolome
remained statistically unchanged between birth and 5-year-old children
with ASD (+r/−r = 2.0 ± 0.11 in the pre-ASD newborns vs 2.3 ± 0.12 in 5-
year-olds with ASD; p = ns; Fig. 7a, b). To place this in physiologic context,
the relationship offive correlated developmental systems is shown inFig. 7c.
Mitochondrial DNA (mtDNA) copy number increases rapidly from the
2nd trimester, continues postnatally, and nears a plateau at about age 3
years. The increase inmtDNA is associatedwith increased expression of the
highly hydrophobic core subunits of the mitochondrial respiratory chain.
ThesemtDNA-encoded subunits areused tonucleateassemblyof themulti-
subunit complexes and supercomplexes of the electron transport chain.
Increased oxidative phosphorylation and increased bioenergetic capacity—
the capacity for ATP synthesis—accompany the increase in mtDNA.
Increasing metabolic and bioenergetic capacity permits increasing cellular
metabolic specialization and differentiation53,54, and myelination55–57

(Fig. 7c). Epidemiologic studies have shown that the sensitivity to ASD risk
factors like maternal infection, gestational maternal autoantibodies, pesti-
cides, perfluoroalkyl substances (PFAS), phthalates, brominated diphenyl
ether (BDE) flame retardants, and mixtures of endocrine disruptors and
other potentially hazardous prenatal and postnatal environmental expo-
sures, extends from near the beginning of the 2nd trimester, to 3 years of
age18,58,59. The sensitivity to environmental factors and the risk of ASD
decline togetheras theGABAsignalingnetwork reverses fromnet excitatory
signaling at birth, to net inhibitory signaling by 2–3 years of age60 (Fig. 7c).

Lipid network dysregulation in ASD
Lipids represented 58% (270 of 465) of the metabolites measured in this
study. Yet we found that 80% of the TD metabolic network in 5-year-old
males (4395 of 5510 edges with q < 0.05) was formed from nodes created by
lipids (p < 0.0001; SupplementaryData 11). In comparison, 60% of theASD
metabolic network (2256 of 3782 edges at a threshold of q < 0.05) was
formed from lipids (TD vs ASD p < 0.0001). The fraction of the metabolic
network formed by polar non-lipid metabolites like purines, amino acids,
and neurotransmitters doubled from 20% in TD to 40% in ASD. After the
purine hub, some of the largest changes in the ASD network were hubs
formed by ceramides, phosphatidylinositol (PI) lipids, and eicosanoids.
These are described below.

The ceramide hub. Ceramide correlations were a dominant feature in
typically developing 5-year-olds (Fig. 5e, g). These correlations are shown in
more detail in Fig. 8a, b. The ceramide hub consisted of 33 ceramides
connected by a total of 1455 edges in the TD network, but by only 322 edges
in the ASD network (p < 0.006; Fig. 8a,b). Over 90% of the ceramide cor-
relations (1350 of 1455 edges) in the TD network were positive (red) cor-
relations. 100% (105 of 105) negative (blue) correlations in the TD network
from the ceramide hub were to purines, labeled [1] (Fig. 8a). These negative
correlations between ceramides and purines were lost in the ASD network
[1] (Fig. 8b).Normalpositive correlationsbetweenbile acids [2], pantothenic
acid [CoA, 3], cholesterol [4], plasmalogens [5], glutamate in the neuro-
transmitter pathway [6], NAD+ metabolism [7], histidine, histamine, and

carnosine [8], and dimethylarginine in the nitric oxide/lipoic acid pathway
[9], were lost in the ceramide network of ASD (Fig. 8a, b). Strong positive
correlations were maintained between ceramides, sphingomyelins, and
glycosphingolipids in both TD and ASD groups (Fig. 8a, b).

ThePI lipid hub. Phospholipidswere another dominant pathway revealed
by the CIRCOS analysis. The PI lipid hub consisted of 11 phosphatidyli-
nositol lipids connected by a total of 596 edges in the TD network, but by
only 61 edges in the ASD network (total edge p value < 0.0001; Fig. 8c, d).
The PI lipid network in TD was comprised of 93% positive correlations.
Most of the negative correlations (blue edges) in the TD network were to
purines, labeled [1] (Fig. 8c). All the normal negative correlations between
PI lipids and purines were lost in the ASD network [1] (Fig. 8d). In
addition, normalpositive correlationswere lost in thePInetworkofASD to
pantothenic acid (CoA) [2], cholesterol [3] sphingomyelins [4], plasma-
logens [5], glycolysis [6], glycosphingolipids [7], glutamate in the neuro-
transmitter pathway [8], NAD+ metabolism [9] and histidine and
carnosine in the histamine pathway [10]. New positive correlations were
found between the eicosapentaenoic acid (EPA; 20:5)-containing PI lipid
PI(40:5) and several eicosanoids in the ASD network [11] (Fig. 8c, d).

The eicosanoid hub. The eicosanoid hub in ASD had nearly 4-times
more positive, and nearly 3-times more negative correlations than in the
TD control group (total edge p value < 0.0001; Fig. 8e, f). Several new
negative correlations were found in the ASD network between the eico-
sanoids and L-asparagine [1], the pentose phosphate pathway forNADPH
synthesis [2], the purine 1-methyladenosine [3], the C6-saturatedmedium
chain acyl-carnitine hexanoyl-carnitine in the fatty acid oxidationpathway
[4], 5’-methyltetrahydrofolic acid in the 1-Carbon pathway [5], cysteine-S-
sulfate in the SAM/glutathione pathway [6], lipoic acid [7], andCoQ10 [8].
New positive correlations occurred between the eicosanoids and
BMP(18:1/16:1) in the phospholipid pathway [9], 2-arachidonylglycerol in
the endocannabinoidpathway [10], desmosterol and7-dehydrocholesterol
[11], 2-hydroxy sphingomyelins [12], docosahexaenoic acid (DHA) in the
fatty acid pathway [13], and 3-methylthiopropionate from the polyamine,
methionine salvage, and the SAMe pathway [14].

The ASD hypercorrelator hub. We next studied the top 15 metabolites
that were increased in the correlation network of ASD compared to TD
(Fig. 9a, b; Supplementary Data 13). The ratio of positive to negative edges
(the +r/−r ratio) was not different between ASD and TD (p = 0.14).
However, the kind and degree (number) of the correlations were distinct
(total edges p < 0.0001). A striking set of negative (blue) correlations were
found between L-asparagine (Asn) and several eicosanoids like 18-, 15-, 12-,
9-, and 8-HETE, in the ASD network [1] (Fig. 8f, and the hub of 9b).
Asparagine is known to be a mediator of mitochondrial signaling pathways
needed for cell growth61 and mitochondrial ROS-mediated activation of
hypoxia-inducible factor 1α (HIF1α)62. However, the negative correlation of
asparagine with eicosanoids was a novel finding of our study. New corre-
lations were also found between the hypercorrelators hub and pyrimidines,
themitochondrial Krebs cycle, pentose phosphate pathway, and purines [2].
Hub hypercorrelators gained new correlations with cholesterol [3], gluco-
samine in the amino sugar pathway [4], sphingomyelins [5], and between
2-hydroxy sphingomyelins like SM(d18:1/20:0 OH) and several eicosanoids
[6], ceramides [7], andphospholipids [8]. Thirty-five (35) of 423 correlations
in theASDhypercorrelator hub (8.3%)occurredwithother hypercorrelators
within the hub (Fig. 9b). Similar ASD hypercorrelator analysis in the pre-
ASD newborn males showed new correlations with eicosanoids, plasmalo-
gens, androsterone-sulfate, and hypoxanthine (Supplementary Data 14).

The TD Hypercorrelator hub. The top 15 metabolites with the most
correlations in the TD correlation network of 5-year-oldmales are shown in
Fig. 9c, d and SupplementaryData 13. The ratio of positive to negative edges
(the +r/-r ratio) was significantly different between the TD and ASD
hypercorrelator networks (p < 0.0004). Lipids, which made up 13 of the top
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15 (87%) hypercorrelated nodes in TD metabolome, lost over 90% of their
correlations in the ASD metabolome (912 edges in TD vs 69 edges in ASD
(92% loss; p < 0.0001). Phosphatidylinositol (PI) lipids make up 6 of the top
15 metabolites. Several negative correlations between lipids in the TD
hypercorrelator network to purines [1] (Fig. 9c) were lost in the ASD net-
work [1] (Fig. 9d). The purine GMP had multiple negative (blue) correla-
tions with ceramides in the TD network that were lost in the ASD network
[2] (Fig. 9c, d). Positive correlations that were lost in ASD occurred with
phospholipids [3], pantothenic acid [4], 7-dehydrocholesterol [5], sphin-
gomyelins [6], plasmalogens [7], glycolysis [8], and glycosphingolipids [9],
and carnosine in the histidine/histamine pathway [10]. Seventy of 912 total
correlations (7.7%) occurred within the hub of the TD hypercorrelator
network. Similar TD hypercorrelator analysis in the pre-ASD newborn
males showed new correlations with neurotransmitters like GABA and N-
acetylaspartate, the Krebs cycle intermediate malate, the inhibitor of nitric
oxide synthase (NOS) dimethylarginine, IMP, the gluconeogenesis meta-
bolites phosphoenolpyruvate, dihydroxyacetone phosphate, and glycerol-3-
phosphate, and the gluconeogenic amino acids proline and hydroxyproline
(Supplementary Data 14).

Metabolic network growth ( _Vnet ) analysis. Using ramped random
resampling,wedevelopedanewparameter, _Vnet, toquantify the rate atwhich
themetabolic network grows as clinical samples from the group were added
(see Supplementary Fig. 3, Supplementary Table 3, and Supplementary
Data 15 and 16). This method balanced statistical power by using equally
sized subsamples and allowed for a comparison of the correlation network
between differently sized case and control groups. Linear regression analysis
showed that rates of metabolic network growth were different in ASD and
TD. We found that the _Vnet in pre-ASD newborns was significantly lower
than _Vnet for theTDnetwork (+r _Vnet = 121 ± 2.2 in pre-ASDvs 159 ± 1.1 in
TD; p < 0.0001; ASD/TD= 0.76 ± 0.02 at birth; Fig. 10a–c; Supplementary
Data 15). The _Vnet for ASD was only 41% of the _Vnet for TD in 5-year-old
children (+r _Vnet = 112 ± 6.4 in ASD vs 275 ± 12 in TD; p < 0.0001; ASD/
TD= 0.41 ± 0.04; Fig. 10d–f; Supplementary Data 16).

Developmental arrest of _Vnet in ASD. A comparison of the ASD to TD
networks revealed that the metabolic network growth rate ( _Vnet) in
typically developing children increased by 173% between birth and
5-years of age (+r _Vnet = 159 ± 1.9 for TD newborns vs 275 ± 12 for TD

Fig. 7 | Developmental regulation of the purine network. a 2-way ANOVA of the
+r/−r ratio. +r and −r correlations at q < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001. b Timeline of purine metabolic network reversal. +r/−r ratios were
expressed as the percent of the TD ratio in newborn males. n= 68 pre-ASD newborn
males and 68 newborn TD male controls. n= 23 5-year-old ASD males and 16 TD male

controls. Means are indicated in the figure. SEMs are reported numerically in gray text
and were smaller than the outline of the points. c Correlated developmental systems.
1GABA (γ-aminobutyric acid) network reversal60. 2Sensitivity to ASD risk factors18,59.
3Brain and spinal cord myelination55–57. 4Cell and organ system differentiation54.
5Mitochondrial DNA (mtDNA) copy number and cell bioenergetic capacity53.
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5-year-olds; p < 0.0001; 5-years/newborn TD = 275/159 = 1.73 ± 0.04 =
173%; Fig. 10g–i, Supplementary Table 3; Supplementary
Data 15 and 16). In contrast, _Vnet in pre-ASDnewbornswas unchanged in
5-year-olds diagnosed with ASD, and failed to show the typical

developmental increase ( _Vnet = 121 ± 2.2 in pre-ASD newborns vs
112 ± 6.4 in 5-year-olds with ASD; p = ns; 5-years-old ASD/pre-ASD
newborns = 121/112 = 1.1 ± 0.04; Fig. 10j–l, Supplementary Table 3;
Supplementary Data 15 and 16).

Fig. 8 | Lipid correlation networks. a, b Ceramide hub analysis. c, d Phosphatidylinositol (PI) lipid hub analysis. e, f Eicosanoid hub analysis. n = 23 5-year-old ASDmales
and 16 TD male controls. All edges with q < 0.05. EPA eicosapentaenoic acid, HETE hydroxyeicosatetraenoic acid.
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Discussion
Metabolism and child development are inextricably connected. Classical
metabolomic analysis by laboratories around the world has shown that
children with ASD have distinct metabolic profiles that vary by age, sex, and
severity of symptoms3–8. The developmental neurobiology of ASD is driven
in part by the patterned changes in metabolism that occur during child
development. Using classical methods of concentration-based mass spec-
trometry and newmethods in networkmetabolomic analysis, we found that
the top discriminating changes in 5-year-olds with ASD occurred in

phospholipid, fatty acid oxidation and acyl-carnitines, cardiolipins, cer-
amides, sphingomyelin, and glycosphingolipid metabolism. Fourteen
pathways shared between pre-ASD newborns and 5-year-olds with ASD
accounted for 80% of the metabolic impact. The metabolic phenotype of
ASD was characterized by a decrease in anti-inflammatory and antioxidant
molecules like glutathione, carnosine, 5’-methyltetrahydrofolic acid, and
CoQ10, anda coordinated increase in stress responsemetabolites like lactate,
glycerol, alanine, threonine, cholesterol, and ceramides. The magnitude of
these metabolic changes increased with child age.

Fig. 9 | Metabolic network hypercorrelator analysis. a, b ASD hypercorrelators, 5-year-old males. c, d TD hypercorrelators, 5-year-old males. The top 15 metabolite
hypercorrelators shown in each network. 467 metabolites measured. n = 23 ASD males and 16 TD males. All edges with q < 0.05.
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Amajor result of this research was that the developmental differences
observed in ASDwere not the result of an increase or decrease of one causal
metabolite, or an isolated change in the gut-brain axis, or neuroendocrine,
autonomic, cytokine, or immunologic circuits. Instead, it was the
interconnectedness and developmental state of the metabolic network
that underlies all these systems that was fundamentally changed.

The implication of this finding is that the metabolic changes found
in children with ASD were not the result of cell dysfunction or
damage. Instead, the measured changes were the result of normal physio-
logic and neurodevelopmental responses to metabolic signals that
cells received in ASD that were not being sent in typically developing
children.
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Newmethods for metabolic correlation network analysis were used to
reveal previously hidden phenotypes in ASD. CIRCOS and hub-and-spoke
analysis provided global, and pathway-specific views, respectively. In new-
borns, pre-ASD males had twice as many negative correlations and half as
many positive network correlations compared to the TD group. A major
trunk of positive correlations between ceramides and phosphatidylinositol
(PI) lipids in the TDnetworkwas diminished in the pre-ASDnetwork.New
negative correlations between sphingomyelin and eicosanoids, and purines
to eicosanoidswere formed in thepre-ASDgroup.Newpositive correlations
developed between the eicosanoids, cholesterol, and 2-hydroxy sphingo-
myelins used for myelin stabilization in 5-year-olds with ASD. Eicosanoid
abnormalities have been previously reported in ASD63.

Dysregulated calcium homeostasis is an established feature of
ASD64,65. In the current study, there was a loss of negative correlations
between ceramides and purines, and between purines and PI lipids that
regulate calcium homeostasis in 5-year-olds with ASD. Ceramides and PI
lipids are functionally related. These lipids co-aggregate in microdomains
of membrane lipid rafts (MLRs) and mitochondria associated mem-
branes (MAMs) in stressed cells. Cooperativity between ceramides and
PI lipids is used for activation of the phosphatidylinositol-3-dependent
kinase 1 (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin
(mTOR) pathway that is used during conditions of cell stress66. IP3-
activated release of intracellular stores of calcium in the ER is used for
stress signaling67, and the activation of the AKT/mTOR pathway, play
key roles in the neurobiology and immunobiology of ASD68. The TD
network was comprised of dozens of strong inhibitory connections
between purines like AMP, ADP, and ATP and the PI lipids, creating a
natural dampening effect that prevents runaway cell activation by IP3-
mediated calcium signaling. The ASD network lacked these natural
dampeners to cell activation. The loss of inhibitory correlations between
purines and PI lipids has implications for poorly regulated IP3-
stimulated calcium release, persistent cell activation, and hypersensitive
sensory responses in ASD. Ceramides are inhibitors of mitochondrial
complex III that can trigger apoptosis and inhibit PTEN-induced kinase
1 (PINK1)-dependent mitochondrial quality control by mitophagy69. The
loss of negative correlations between purines and ceramides in ASD can
result in accumulation of dysfunctional mitochondria and excessive
apoptotic cell death in response to non-injurious environmental stimuli.

Of all 50 metabolic pathways interrogated, the purine correlation
network was the most changed in ASD. Purine network hub analyses
revealed a 17-fold reversal from excess positive (+r) correlations in
typically developing newborns, to excess negative (−r) correlations in TD
5-year-olds. This reversal failed in newborns who later developed ASD.
The developmental reversal of positive (+r, stimulatory) and negative
(−r, inhibitory) correlations in the purine network was similar to the
reversal of the effects of GABA (γ-aminobutyric acid) signaling in nor-
mal child development70. The GABA-A receptor is a chloride channel71.
GABA is an excitatory and stimulatory (depolarizing) neurotransmitter
at birth and early development, then becomes inhibitory (relaxing,
hyperpolarizing) during postnatal development as nicotinic cholinergic
safety signaling drives mitochondrial biogenesis72, and facilitates the shift
to the mature pattern of inhibitory GABA signaling73. This change is
mediated in part by decreased intracellular chloride (Cl-) concentrations
that occur with normal brain development74. Early excitatory GABAergic

activity in striatal cholinergic-GABA-ergic interneurons is required to
facilitate later developmental reversal to inhibitory GABA function. If
early excitation is blocked prematurely with bumetanide to inhibit the
chloride importer NKCC1, then the later reversal to inhibitory GABA
signaling is incomplete75. Interestingly, our data showed a similar pattern
during maturation of the ATP-related purine network. In contrast to the
TD network, infants at risk for future ASD had a decreased ratio of
excitatory to inhibitory (+r/−r) correlations in the ATP network at birth,
and this ratio did not decrease during ASD development.

ATP, chloride, GABA signaling, and mitochondria are fundamen-
tally interrelated. Increasing mitochondrial bioenergetic (ATP-produ-
cing) capacity is made possible by a phase of rapid increase in
mitochondrial DNA (mtDNA) copy number that occurs in cells as they
develop from the 2nd trimester to 3 years of age53,54. As mitochondrial
biogenesis and oxidative phosphorylation increase, cellular ATP reserves
increase. The increased ATP reserve creates increased capacity of the
sodium-potassium ATPase (Na+/K+ ATPase) pump and permits more
rapid reestablishment of ion gradients and membrane potential after
depolarization. Intracellular chloride concentration is decreased as
mitochondrial biogenesis continues and neurons mature. This occurs in
part because of decreased expression of the bumetanide-sensitive,
sodium, potassium, and chloride co-importer NKCC1 and increased
expression of the chloride-extruding potassium-chloride cotransporter
KCC276. Combined with higher intracellular potassium produced by a
more active Na+/K+ ATPase, the increase in KCC2 expression enables
the developmental reduction in intracellular chloride. These data support
the hypothesis that failure of the normal reversal of the purine network
underlies the failed reversal of the GABA signaling network, and
underlies the imbalance between excitatory-inhibitory circuits in ASD
that was first described by Rubenstein and Merzenich77. The discovery of
developmental arrest of the purine network creates a strong biological
foundation for the increasing number of pre-clinical studies34,36,78–80 and
randomized clinical trials81,82 that have shown safety and efficacy of low-
dose suramin, a non-selective purinergic antagonist that treats the core
symptoms and metabolic abnormalities in ASD. If confirmed in larger
clinical trials, entirely new antipurinergic drugs that have a range of
receptor subtype selectivities, and pannexin channel blockers that
decrease the loss of eATP during chronic stress27, might create new
options for treatment that have not existed before.

Metabolome correlation analysis led to the characterization of a new
parameter, _Vnet, to quantify the rate ofmetabolic network growth.We found
that _Vnet in pre-ASDnewborns was low compared to age-matched controls.
_Vnet remained low in 5-year-oldswithASD. In contrast, typically developing
newborns had a higher _Vnet than pre-ASD infants. By 5-years of age, the _Vnet
increased by 173% in theTDgroup.Although themathematicalmeaning of
metabolic network growth rate _Vnet is clear—fewer connections were cre-
ated in ASD as each new sample was added to the network—the deeper
biological meaning in other disorders and across other states of health and
disease, and the broader implications for child development in ASD, will
require further study. One hypothesis that fits the facts is that metabolic
network hypoconnectivity in children with ASD is produced by persistence
of local cell danger signaling that blocks or inhibits receptivity to long-
distance coordinating signals from the brain, vagal autonomic, neu-
roendocrine, endocrine, and immune systems. Receptivity to long-distance,

Fig. 10 | Metabolic network growth rate (
.
Vnet) analysis. Newborn males, a–c _Vnet

for the positive (+r) network was decreased in newborns who later developed ASD
compared to age-matched typically developing controls. a All +r and -r out-of-
pathway correlations. b Positive (+r) out-of-pathway correlations. c _Vnet for the
negative (−r) network was increased in pre-ASD newborns. n = 68 pre-ASD males
and 68 TD control males. _Vnet for both the positive (+r) and negative (−r) networks
was decreased in 5-year-olds with ASD compared to age-matched typically devel-
oping controls, d All +r and -r out-of-pathway correlations e Positive (+r) out-of-
pathway correlations. f Negative (−r) out-of-pathway correlations. Green squares:
TD. Tan circles: ASD. Numbers indicated are for edges with q < 0.05 at each

indicated subsample size. n = 23 ASD males and 16 TD males. _Vnet in typically
developing 5-year-old males was increased compared to typically developing new-
born males, g All +r and -r out-of-pathway correlations h Positive (+r) out-of-
pathway correlations. i Negative (-r) out-of-pathway correlations. Dark green
squares: 5-year-old TD. Light green circles: newborn TD.N = 68 newbornmales TD
and 16 5-year-old males TD. _Vnet in 5-year-old males with ASD was unchanged
compared to pre-ASD newborns, j All +r and −r out-of-pathway correlations
k Positive (+r) out-of-pathway correlations. l Negative (−r) out-of-pathway cor-
relations. Dark tan squares: n = 23 5-year-old males with ASD. Light tan circles:
n = 68 pre-ASD newborn males.
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coordinating signals from the brain is needed to produce phase synchro-
nization of chemical changes across organs and subsystems. The loss of
long-distance phase synchronization will have the effect of decreasing the
total numberof edgesand the rate atwhichnewcorrelations are added to the
network in ASD.

The cell danger response model provides a conceptual framework
for understanding the genetics, epidemiology, neurobiology, and com-
plex multisystem developmental biology of ASD. Acute activation of the
CDR triggers a cascade of responses that starts with mitochondria and
the cell, then expands to coordinate every system needed to respond to
the triggering stress. Acute activation of the CDR is universal and
required to heal from any injury23. The root regulator of the CDR is eATP
signaling. Once an infection is cleared, or other triggering stress has
passed, normal mitochondrial oxygen consumption is restored, reactive
oxygen species (ROS) and reactive nitrogen species are reduced, intra-
cellular redox is restored, eATP release is decreased, and the CDR
becomes self-limited. However, when exposure to a stress or stressors is
severe or chronic, excessive eATP release can persist. The associated
drain on energy and metabolic resources places the eATP-releasing cell
in peril. Only cells that can decrease their metabolic losses during chronic
stress can survive. We hypothesize that the observed changes in pur-
inergic receptor expression in the brains of children with ASD35 and in
animal models of ASD-like behavior80 sensitize the cell to purinergic
signaling. This adaptation permits cells to survive chronic stress by
lowering the amount of eATP release needed to manage the stress. The
increased bioenergetic efficiency conserves precious intracellular
resources and protects the cell from death. However, the cost of sensi-
tized purinergic signaling is a decreased threshold for activating of the
CDR. When the threshold for the CDR is set too low, cells become
hypersensitive and react inappropriately to non-injurious stimuli.
Repeated or chronic activation of the CDR by eATP suppresses mito-
chondrial oxygen consumption33. The resulting excess in dissolved oxy-
gen concentration within the cell causes mitochondrial and cellular redox
changes that remodel the lipid composition of cellular membranes.
Cellular cholesterol is biophysically concentrated in phospholipid
membranes that are chronically exposed to high concentrations of dis-
solved oxygen. This enables mitochondrial and cell membranes to buffer
excess intracellular oxygen by absorbing it from the aqueous environ-
ment of the cytosol and sequestering it in the cholesterol-enriched lipid
environment of cellular and organellar phospholipid membranes83. The
degree of cholesterol and ceramide accumulation in cell surface mem-
branes and inMAMs, acts as a rheostat that regulates future eATP release
and the production of ROS in response to stress during development84,85.
Cholesterol and ceramide accumulation also leads to stiffened cell
membranes, impaired mitochondrial fusion-fission dynamics, oxidative
stress86, altered synaptogenesis87,88, and delayed and amplified responses
to environmental stimuli in ASD89,90.

During neurotypical development, inhibitory correlations between
purines and lipids develop that prevent excessive calcium activation and
prevent overexcitation in response to environmental change. These self-
calming connections in metabolism failed to develop in ASD. The natural
consequence of the loss of thesemetabolic safeguards to overexcitation is for
children with ASD to seek sameness to avoid the anxiety produced by
change91, and to be more sensitive to environmental changes across many
sensory domains. These include increased sensitivity to both exteroceptive
and interoceptive stimuli. From an exteroceptive perspective, children with
ASD have heightened sensitivity to subtle somatosensory changes to touch,
new tastes, textures, colors, and new patterns in a changing environment92.
From an interoceptive perspective, children with ASD have heightened
sensitivity to adverse childhood experiences (ACEs)93, environmental
pollutants94, triggers of innate immunity95, and to gastrointestinal96,
microbiome4, and vagal autonomic14 changes.

In the current study, xanthine was the purine that gained the most
stimulatory (+r) correlations in 5-year-olds with ASD. Xanthine is one of
the end-products of eATP metabolism97. Xanthine is known to trigger a

cascade of events that leads to mitochondrial network fragmentation,
reactive oxygen species and reactive nitrogen species (ROS and RNS),
eicosanoid (e.g., leukotriene, HETE, and prostaglandin) signaling, immune
activation, anxiety-associated behaviors, and consolidates long-term aver-
sivememories thatmake the animal hypersensitive to future environmental
changes that warn of environmental danger, cause fear, and trigger anxiety
in mice, and is elevated in the blood of adults with anxiety disorders98.
Anxiety is a common but under-recognized problem in autism99. Purine
nucleobases like xanthine and its derivatives are metabokines and ancient
CDR signaling molecules that are conserved across species and were called
Schreckstoff—alarmsubstances—by theNobelPrizewinning ethologistKarl
vonFrisch100.Our results support thefinding fromother studies that sensory
over-responsivity (SOR) and anxiety in ASD are related but separable
biological phenomena101. Our results suggest: 1) that SOR is the result of
chronic hypersensitivity of the eATP signaling network that leads to brittle
calcium release in response to sensory stimuli, and 2) anxiety is the result of
acute effects of the metabolic byproduct of eATP, xanthine, acting as an
interoceptivemediator, producingROS102, fragmentingmitochondria98, and
acutely perturbing the metabolic network in ASD.

New methods of pre-symptomatic risk stratification for ASD during
newborn screening and early well-baby checks create the opportunity to
identify infants at increased risk even before the first behavioral symptoms
occur. Several new methods might be combined to increase the accuracy of
screening for the risk of developmental delays. For example, maternal blood
metabolomics103, maternal chemokines and cytokines104,105, maternal
autoantibodies106, newborn dried blood spot metabolomics, cytokine
analysis13, infant hair analysis107, and others108, have each shown efficacy. And
because the complex chemistry ofmother’smilk for nursing infants in thefirst
fewmonths of life integrates a number of environmental stresses, physiologic
factors, andbiological needsof the child,metabolomic andexposomic analysis
ofmilk has been shown to have about an 80%accuracy in identifying children
at risk for neurodevelopmental delay, including childrenwho later develop the
ASD phenotype109. If these combinedmethods are successful, then early ASD
diagnosis and intervention can be used not only to improve outcomes110, but
also to document the decrease in the incidence of ASD made possible by
multimodal infant screening and intervention programs.

This study has some limitations. In the newborn cohort, we were
unable to recruit sufficient females with ASD to perform an analysis of the
metabolic network in females at birth. Thenumber of femaleswithASDand
TD controls in the 5-year-old cohort was also small and insufficient for
analysis. Cross validation of the partial least squares discriminant analysis
results showed that the separation between ASD and TD groups was
incomplete. The negative q2 values showed that the global metabolome was
not the only predictor of the developmental outcome. Random forest
methods were used to select themost discriminatingmetabolites, minimize
the risk of overfitting, and to aggregate metabolites into pathways to gain
biological insight. Classical z-score analysis was used for metabolite quan-
titation. Z-score results are quantitative but relative and based on a com-
parison of mass spectral areas under the curve (AUCs) in case and control
groups. The absolute concentrations of metabolites in micromoles per liter
in the two cohorts and two sample types—dried blood spots and plasma—
were not measured. Another limitation is that in contrast to concentration-
based metabolic phenotypes, which can be used to identify individualswho
later develop ASD, metabolic network parameters calculated from a group
of samples measured a single time point, identify a group phenotype. The
group correlation phenotype illuminates the shared biology but does not
yet allow the identification of individuals at risk. Longitudinal data from
samples collected over time from the same subject are needed to calculate
the metabolic network parameters for an individual. This was a single-
sample-per-patient, non-prospective study, so time-series data were not
available. This was also a non-interventional study, so data in response to
treatment were not available. Future prospective studies will allow the
developmental transitions in metabolism and the metabolic network to be
studied in real time. Interventional studies, with accompanying metabo-
lomic, neurophysiologic, electrophysiologic, behavioral, and pharmacologic

https://doi.org/10.1038/s42003-024-06102-y Article

Communications Biology |           (2024) 7:536 16



analyses will help to confirm the practical importance of purinergic sig-
naling, and its normalization, in ASD. The proposed mechanistic studies
have been hampered by the lack of FDA-approved, antipurinergic drugs
available for human use.

By studying both newborns and 5-year-olds, the developmental pat-
terns of metabolism and metabolic network formation were highlighted in
this report. Classical concentration-basedmetabolomics and newmetabolic
correlation network analyses provided complementary insights into the
biology of autism spectrum disorder. The classical methods showed that
metabolites and pathways associatedwith decreased anti-inflammatory and
antioxidant defenses, and increased bioenergetic stress response molecules
were markers of the pre-ASD phenotype at birth and of ASD in 5-year-old
children. The new correlation network methods showed that of the 50
biochemical pathways interrogated, the purine network was the most
changed. In typically developing children, the purine network underwent a
17-fold reversal betweenbirth and5-years of age.This reversal didnot occur
in ASD. In typically developing children, negative correlations between
purines and phosphatidylinositol (PI) lipids developed that were hypothe-
sized to prevent or dampen spikes in intracellular calcium release in
response to commonly encountered, non-injurious environmental stimuli.
In addition, negative correlations betweenpurines and ceramidesdeveloped
in typically developing children that were hypothesized to prevent excessive
apoptotic cell death in response to non-injurious environmental stimuli,
and to support mitochondrial quality control through PINK1-dependent
mitophagy. Thesemetabolic safeguards to overexcitation did not develop in
children with ASD. The failed reversal of purine correlation network was
reminiscent of, and may underlie, the failed excitatory-to-inhibitory
GABAergic signaling reversal and the excitatory-to-inhibitory imbalance
model of ASD by Rubenstein and Merzenich77.

These findings support the hypothesis that the absence of the devel-
opmental reversal of the eATP signaling and purine networks in ASD leads
to dysregulated calciumhomeostasis and brittle regulation of the cell danger
response. If thesemetabolic changes drive differences in child development,
then further research and development of new antipurinergic medications
and devices designed to normalize the hypersensitive cell danger response
may one day help to improve developmental outcomes and create new
options for treatment and services for children and adults with ASD.

Methods
Study design
Children in the newborn cohort were enrolled when they were between the
ages of 3 and 10 years and their newborn and demographic data studied
retrospectively. After determining if the child had ASD or was typically
developing at the time of enrollment, we received permission from the par-
ents or guardians to go back in time to analyze their dried blood spots that
were collected at birth and archived as part of the California newborn
screeningprogram111. Both conventionalmetabolomics andnewmethods for
metabolic network analysis were used. The cohorts were analyzed first by
combining data that included samples from both males and females. Next,
males were analyzed separately. Fewer females with ASD were enrolled (17
females in the newborn cohort, and 8 in the 5-year-old cohort). Detailed
analysis of females with ASD, separate from males, was underpowered sta-
tistically, and was not performed. All network studies were performed using
data frommales only. Future studies will be needed to enroll a larger number
of females with ASD for sex-specific metabolomic and network analysis.

Participant inclusion and exclusion criteria
Cohort 1 consisted of participants in a newborn screening study designed to
test if a latent signature of the pre-ASD phenotype can be detected at birth.
This studyutilizeddriedblood spots collected at birth as part of theuniversal
newborn screening program in California111. Secure responses to the study
questionnaire were collected online using REDCap (https://projectredcap.
org/about/). Signed informed consent was obtained from the parents or
guardians of all participants. Inclusion criteria were a DSM-IV diagnosis of
autism spectrum disorder in children between the ages of 3 and 10 years, or

typically developing controls 3-10 years old. Exclusion criteria were: 1) not
born in California, 2) sibling already enrolled in the study, 3) non-term
pregnancy duration of either <37 weeks or >42 weeks, 4) complicated labor
and delivery requiring perinatal resuscitation or hospital stay over 7 days, 5)
readmission to the hospital for any reason in the first month of life, 6) any
chronic disease diagnosis in a typically developing control subject. Dried
blood spot samples were collected at birth from 11/23/2007 to 1/29/2018.
Therewere 68maleswithASDand 68TDmale controls (n = 136males), 17
females with ASD, and 52 TD female controls (n = 69 females). Themale to
female ratio in the ASD group was 3.9 to 1. The total number of samples
analyzed in this study was n = 205.

Cohort 2 consisted of a study of 5-year-old children with ASD or TD
controls. The children were originally recruited as part of the CHARGE
(CHildhood Autism Risks from Genetics and Environment) Study. The
CHARGE Study is an ongoing population-based case-control study that
evaluates a broad range of risk factors, including environmental chemicals,
in relation to neurodevelopmental outcomes. Consenting families were
enrolled in CHARGE, which is associated with the Center for Children’s
Environmental Health (CCEH) and the MIND (Medical Investigation of
Neurodevelopmental Disorders) Institute at the University of California at
Davis as described previously112. The CHARGE Study protocol was
approved by the institutional review board of the University of California,
Davis, and the State of California Committee for the Protection of Human
Subjects. Families provided written informed consent before participating.
Inclusion criteria included children between 24 to 60 months old upon
initial enrollment, born in California, living with at least one biological
parent who spoke English or Spanish, and residing in one of the selected
regional center catchment areas. No exclusions were made on the basis of
genetics. An autism diagnosis was identified from records provided by the
California Department of Developmental Services (DDS), which is an
agency responsible for providing services to individuals with developmental
disabilities via a network of regional centers throughout California. TD
controls were randomly selected from the general population using birth
records obtained from the California Department of Public Health Vital
Statistics112. Children from the CHARGE study were enrolled prior to
receiving their planned pre-kindergarten immunizations as part of a study
of the immunologic features of ASD and TD controls. Samples were col-
lected 8/25/2010 to 1/9/2013. In this study, the results of the baseline blood
samples were analyzed. There were 23 males with ASD and 16 typically
developingmale controls (n = 39males).Therewere eight femaleswithASD
and six typically developing female controls (n = 14 females). The male to
female ratio in this cohort was 2.9 to 1. The total number of samples
analyzed in this study was n = 53. All ethical regulations relevant to human
research participants were followed.

Metabolomics
Dried blood spots were obtained from the California State Universal
Newborn Screening and biobank program111 and analyzed as previously
described113 with minor modifications. Briefly, Dried blood spots were
received onWhatman 903 protein saver cards. A single 3.0mm (~1/8th in.)
punch was made using a Harris Uni-core device and transferred to a 1.7 ml
Eppendorf tube. 36 µl ofwater and 4 µl of internal standardmixwere added,
mixed, and the samples stored overnight at 4 °C. Then 160 µl chilled
methanol/acetonitrile (50:50) was added to bring the total volume to 200 µl
and vortexed. Samples were incubated on ice for 15min, then centrifuged at
16,000 g for 10min. at 4 °C. The supernatant was transferred to a fresh vial
and stored at−80 °C for future analysis. For the 5-year-old cohort, venous
bloodwas collected in acid citrate dextrose solutionAvacutainer tubes (BD#
364606), mixed by gentle inversion, then centrifuged at 2100 rpm (810 × g)
for 10min at room temperature. Citrate-anticoagulated plasma was then
removed from the top layer, aliquoted into cryotubes and stored at−80 °C
until analysis. Targeted, broad-spectrum, metabolomic analysis of 690
metabolites was performed by high performance liquid chromatography
using a Shimadzu LC-20AD UHPLC system coupled by electrospray
ionization to a SCIEXQtrap5500 triple quadrupolemass spectrometer (LC-
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ESI-MS/MS) as described114 with minor modifications to accommodate an
expanded list of targeted chemicals. MS/MS detection was performed using
scheduled multiple reaction monitoring (MRM) of precursor and product
ions. Compound-specific source and fragmentation parameters for 2–6
MRMs for each targeted compound, along with MS/MS spectral data, and
retention times by hydrophilic interaction liquid chromatography (HILIC)
and reverse phase (RP) chromatography, were optimized using purified
standards114. A total of 431 (dried blood spot study) or 467 (plasma study) of
the 687 targeted metabolites were measurable in both males and females.
These metabolites, their associated retention times, and MRM data are
reported in Supplementary Data 19. 100% of samples provided AUC data
on these chemicals. There were no missing values, and no data were
imputed. This targeted metabolomics platform interrogated 46 (newborn
screening) and 53 (5-year-olds) different biochemical pathways and per-
mitted analysis of many of the metabolites known to be core features of the
CDR and integrated stress response (ISR)21,115,116.

Metabolic network and hub-and-spoke analysis
Metabolic network results were for the males only. Insufficient females were
enrolled for correlation analysis.Metabolite AUCswere log-transformed and
converted to z-scores. Pair-wise Pearson correlations between the z-scores
were then calculated. The sign (+ or −) and strength (r value) of the cor-
relation coefficient, q-values, false discovery rates (FDR), and p values were
calculated for all the possible pair-wise metabolite correlations. To minimize
overfitting, only correlations with q values < 0.05 were tallied. Correlations
among themetabolites belonging to the samepathwaywere designated as in-
pathway, or “in” for short. Correlations between metabolites belonging the
different pathway were designated out-of-pathway, or “out” for short. About
5% of the correlations were in-pathway, and the other 95% were out-of-
pathway. Metabolites were the nodes, and the pair-wise correlation was
displayedasanedge in thenetwork.Eachmetabolitewas assigned tooneof50
biochemical pathways. The number of positive correlations, negative corre-
lations, in- and out-of-pathway correlations, mean and median correlation
strengths, and corresponding statistical parameters were calculated.
CIRCOS117 was used to visualize the globalmetabolic connectome.MetScape
3.0, a plug-in for Cytoscape 3.8.2 was used to visualize themetabolic hub and
metabolite connections for the most dysregulated pathways118.

Network growth (
.
Vnet) analysis

A ramped random resampling method was developed to study the prop-
erties of themetabolic network. This method permitted control for changes
in statistical power produced by unequal case and control sample sizes.
Pearson’s r, p, FDR, and q values were calculated for all possible pair-wise
correlations betweenmeasuredmetabolites using the python package scipy
v1.9.1. All correlations with q value ≤ 0.05 were considered significant and
counted. A subset size starting at four samples, ramping to n−1 samples,
was incremented by 2 (e.g., 4, 6, 8… to 21 for 22 controls and 4, 6, 8… to 30
for 31 cases). Subsamples from cases and controls were randomly selected
using the random.sample function in python. Results obtained by ramped
random resampling with and without replacement were compared and
reported in the Supplementary Figs. 4–6 and Supplementary Data 15–18.
Fifty (50) random samples at each subsample sizewere taken to estimate the
population statistics based on the central limit theorem. In some cohorts,
fewer than 51 samples were available and themaximum subsample size was
limited to n−1 samples as described above. Mean, median, standard
deviation, standard error of themean (SEM), and standard error coefficients
of variation defined as the SEM/mean for the significant correlations were
calculated at each subsample size across all iterations. The number of sig-
nificant metabolite pairs (edges) was plotted on the y-axis as a function of
the subsample size on the x-axis. Least mean squares linear regression was
used to identify the best fit equation for the line, y =mx+ b, and to test the
differences between the slopes for cases and controls. The slope (m) of the
metabolic network growth curve was used as a new parameter, _Vnet. The
computer code for executing this analysis is available on the GitHub site for
this paper. See Supplementary Methods for additional details.

Hypercorrelator analysis. The top 15 ASD hypercorrelators were
identified by ranking all 467measured metabolites by the total difference
in out-of-pathway correlations (edges) meeting a q value of <0.05 and
calculating the difference of ASD-TD. The top 15 had the most positive
(+) differences between ASD and TD. Reciprocally, the top 15 TD
hypercorrelators had themost negative (−) differences betweenASD and
TD. This ranking is reported in Supplementary Data 13 and 14.

Statistics and reproducibility. Demographic data were analyzed by
t-tests or non-parametric Mann-Whitney U tests in GraphPad Prism
(https://www.graphpad.com). Categorical data and 2 × 2 tables were
analyzed by Fisher’s exact test. AUC data from metabolomics were log2
transformed, scaled by control standard deviations, and the resulting z
scores were analyzed by VIP scores calculated bymultivariate PLS-DA in
MetaboAnalyst 5.0119. Cross-validation was used to calculate accuracy, r2,
and q2 statistics120. Permutation analysis (×1000) was used to calculate the
p value for the model. Mean decrease in accuracy (MDA) scores were
calculated by random forest analysis from 5000 trees in R121. FDRs were
calculated by the method of Benjamini and Hochberg122 and Bayesian
false discovery rates by Storey q value123. Metabolites with VIP ≥ 1.5 and
MDA > 0 were considered significant and were used for pathway
enrichment analysis121. Bubble impact plots were visualized in Python.
Significance was quantified as the hypergeometric p value and plotted on
the y-axis. The k-nearest neighbor algorithm124, a non-parametric clas-
sificationmethod used to clustermetabolites and pathways that behave in
similar ways, was used to identify the metabolite clusters. Classifiers of
4–7 metabolites were selected and tested for diagnostic accuracy using
area under the receiver operator characteristic curve and random forest
analysis. Five hundred bootstrappings were used to calculate the 95%
confidence intervals of the ROC curve. The 2 × 2 confusion matrix
generated in MetaboAnalyst was used to calculate the sensitivity, speci-
ficity, and the accuracy of the diagnostic classifier. Diagnostic accuracy
was calculated using the 1000 permutations120. Classifiers were validated
within sample using repeated double cross-validation with bootstrapping
100 times to test random subsamples of 2/3 in and 1/3 out, and by
permutation analysis125. See Supplementary Information for additional
methods.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

A special note from the authors
Although the words “normal” and “abnormal”, “regulated” and “dysregu-
lated”, and “functional” and “dysfunctional” are used in this paper, a major
result of this researchwas thefinding that theASDphenotype is the result of
developmental changes caused by a normal physiologic response to the
signals that cells are receiving in autistic children. The cells of neurotypical
children do not receive the same cell danger signals, and therefore do not
show the same set of mitochondrial, metabolic, immunologic, microbiome,
autonomic, neuroendocrine, neurodevelopmental, and behavioral changes.
We are sensitive to the negative impact that poorly chosen words can
have126–129 and have endeavored to use neutral, specific, and descriptive
language whenever possible.

Study approvals
This study was approved by the University of California, San Diego
(#140072, #171940, #190972), California state (#1162, #2018-020), and
University of California, Davis (#226004-4) institutional review boards
(IRBs). Informed signed consent was obtained prior to participation.

Data availability
Metabolomics data are available in Supplementary Data 1 and 2. All
numerical source data for the figures are available as a single Excel file
containing tabs labeled Supplementary Data 1–19.
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Code availability
Software for metabolic network growth ( _Vnet) analysis is publicly available
at: https://github.com/BDNav/metabotools
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