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Omics-based construction of regulatory
variants can be applied to help decipher
pig liver-related traits

Check for updates

ZiqiLing 1,2 , JingLi1,2, TaoJiang1, ZhenZhang1,YalingZhu1, ZhiminZhou1, JiawenYang1,XinkaiTong1,
Bin Yang 1 & Lusheng Huang 1

Genetic variants can influence complex traits by altering gene expression through changes to
regulatory elements. However, the genetic variants that affect the activity of regulatory elements in
pigs are largely unknown, and the extent to which these variants influence gene expression and
contribute to the understanding of complex phenotypes remains unclear. Here, we annotate 90,991
high-quality regulatory elements using acetylation of histone H3 on lysine 27 (H3K27ac) ChIP-seq of
292 pig livers. Combined with genome resequencing and RNA-seq data, we identify 28,425 H3K27ac
quantitative trait loci (acQTLs) and 12,250 expression quantitative trait loci (eQTLs). Through the allelic
imbalance analysis, we validate two causative acQTL variants in independent datasets. We observe
substantial sharing of genetic controls between gene expression and H3K27ac, particularly within
promoters. We infer that 46% of H3K27ac exhibit a concomitant rather than causative relationship
with gene expression. By integrating GWAS, eQTLs, acQTLs, and transcription factor binding
prediction, we further demonstrate their application, through metabolites dulcitol,
phosphatidylcholine (PC) (16:0/16:0) and published phenotypes, in identifying likely causal variants
and genes, and discovering sub-threshold GWAS loci. We provide insight into the relationship
between regulatory elements and gene expression, and the genetic foundation for dissecting the
molecular mechanism of phenotypes.

Pigs, as long-time domesticated animals, have become one of the primary
meat sources. In 2020, pork maintained the second-highest average per
capita consumption among meat products. To address the increasing
demand for pork consumption and improve meat quality, it is crucial to
efficiently raise pig populations that exhibit desirable performance mat-
ched with the specific requirements, such as high growth rate, low fat, and
good adaptation to particular environments. The liver is a key metabolic
and heat-producing organ that participates in the processing and utili-
zation of energy sources such as glucose, fatty acids, and amino acids1. It
plays a vital role in growth, fat metabolism, cold adaptation, and other
economic traits in agricultural animals. For example, proteins related to
antioxidant enzymes and ribosomal proteins can affect the cold adapta-
tion of pigs at high altitudes2. Liver vitamin A metabolism affects feed
efficiency in pigs3. Liver glucose metabolism correlates strongly with
protein and lactose concentrations in the milk of dairy cows4,5. Therefore,

understanding the genetic basis of liver-related traits would benefit pig
production.

Genome-wide association studies (GWAS) identified thousands of
genetic variants responsible for important economic traits6. Still, the
majority of GWAS loci are located in non-coding regions of the genome7,
hampering the identification of causal variants. In humans, likely causal
variants that alter gene expression through changes to regulatory elements
were prioritized by the integration of eQTLs and H3K27ac QTLs8, yet
comparable efforts in pigs remain lacking. H3K27ac is one of the most
widely studied histone modifications due to its predominant deposition in
active promoters and enhancers9,10, and is highly correlated with gene
expression. Recent studies have employed H3K27ac to annotate many
regulatory elements inpigs, narrowingdown the genomeregions containing
candidate variants associated with complex traits identified by GWAS11–13.
However, causal variants hiding in these candidate variants and governing
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the activity of regulatory elements remain to be pinpointed. Moreover,
genetic variants can influence complex traits bymodulating gene expression
with the assistance of changes to regulatory element activity, but the extent
to which genetic effects on gene expression through changes to regulatory
element activity remain incompletely characterized genome-wide.Thus, it is
necessary to identify genetic variants affecting the activity of regulatory
elements genome-wide and elucidate their impact on gene expression,
which is valuable for exploring the molecular mechanisms underlying pig
complex traits.

In this study,we studyH3K27ac activity inup to292 liver samples from
a heterogeneous population managed under the same external environ-
ment, thus reducing the variance of environmental factors and amplifying
the genetic effect. We identify high-quality H3K27ac peaks and super-
enhancers, providing abundant regulatory elements in pig liver. Based on
the large sample size, we further characterize inter-individual variation in
regulatory element activity, facilitating subsequent acQTLs mapping.
Combined with DNA and RNA-seq data, from these individuals, we detect
expressed genes, acQTLs, and eQTLs for sharing analyses, colocalization,
and GWAS fine-mapping. We validated two putative causal variants con-
tributing to H3K27ac signals in independent datasets through allelic
imbalance analyses. Noticeably, both variance decomposition and causal
inference analyses support a pleiotropic mode, i.e., in the majority of cases,
H3K27ac exhibits a concomitant rather than causative relationship with
gene transcription. Furthermore, we demonstrate the utility of H3K27ac,
acQTLs, and eQTLs in identifying likely functional gene AKR1A1, reg-
ulatory element, and causal variant 6_165830307 responsible for liver dul-
citol levels and unveiling sub-threshold GWAS variants for liver PC(16:0/
16:0) levels. To further interpret GWAS loci for phenotypes that may act
through the liver, we intersect our datasets with published variants asso-
ciated with pig diseases and traits, prioritizing liver-related phenotypes by
gene-peak pairs. Overall, we provide a unique resource to disentangle the
genetic regulations of H3K27ac states and gene expression, which will
facilitate the applicability of GWAS in pig breeding.

Results
Data description and annotation of regulatory elements
We obtained H3K27ac profiles from 292 pig livers through chromatin
immunoprecipitation and sequencing (ChIP-seq). The Sscrofa 11.1 genome
wasused as the reference formapping, resulting in an average of 27.4million
uniquely mapped reads per sample (88.7% mapping rate, Supplementary
Fig. 1a). After peak calling and filtering procedures, we identified an average
of 77,947 H3K27ac peaks per sample, with the fraction of reads in peaks
averaging 16%(Supplementary Fig. 1b, SupplementaryData 1). The average
peak width across all samples was 691 bp, and the frequency distribution of
peaks is highly right-skewed (Fig. 1a). All peaks were further merged into
90,991 consensus peaks that occurred in at least three samples. We defined
consensus peaks within the 1 kb of transcription start site (TSS) as pro-
moters and the others as enhancers, yielding 16,544 promoters and 74,447
enhancers. In addition, 41% of the H3K27ac peaks were present in introns,
nearly one-third of which were the first introns (Fig. 1b). Twenty-three
percent and eighteen percent peaks were distributed in distal intergenic and
promoter regions, respectively. Nearly half of the peaks were within
10 ~ 100 kbof theTSSof the nearest gene (Supplementary Fig. 1c). To verify
the reality of these peaks, we overlapped H3K27ac peaks in this study with
those from a previous study13. The results showed that 30,169 H3K27ac
peaks from this study covered 98.6% (74,865 out of 75,905) of peaks in
research conducted by Kern et al.13. The remaining 60,822 peaks contained
56,408 (93%) enhancers, and 41,795 (69%) resided in regulatory regions
identified by six epigenetic marks in previous studies13,14, supporting the
reliability of the H3K27ac peaks. We then correlated the occurrence per-
centage of each consensus peak with its abundance measured by FPM
(fragments per million). The peak occurrence percentage was significantly
positively associated with its abundance (Spearman’s correlation, ρ = 0.809,
P-value < 2.2 × 10−16, Fig. 1c). The top 5000H3K27ac peaks ranked by FPM
were used to overlap with promoters and enhancers (Supplementary

Fig. 1d), showing that H3K27ac activities are generally higher in the pro-
moter (75% overlapped) than in the enhancer. Besides, promoters had a
greater likelihood of being shared across individuals than enhan-
cers (Fig. 1d).

Super-enhancers are essential in controlling genes that could deter-
mine cell and tissue identity15. Herein, we identified an average of 1090
super-enhancers per sample, covering an average of 47.2 kb in width
(Supplementary Fig. 1e). These super-enhancers are subsequently merged
into 2463 consensus super-enhancers that were found in at least three
samples (Supplementary Data 2). The biological coefficients of variation
(mean = 0.22) for the peaks within consensus super-enhancers were lower
(two-sided T-test, P-value = 1.12 × 10−102) than those of regular peaks
(mean = 0.23), indicating that the activity of super-enhancer peaks was
more stable across individuals (Supplementary Fig. 1f). Among the 2463
consensus super-enhancers, 43were active in at least 99%of individuals and
covered 237 genes. Analysis of gene enrichment revealed their involvement
in liver-related pathways, such as cellular response to lipid (LDLR,GPBAR1,
SCARB1) and folate metabolism (MAT1A, SHMT2), highlighting impor-
tant roles of these cross-individual shared super-enhancers in maintaining
the function of the liver (Fig. 1e, Supplementary Fig. 1g). Taken together, we
generated a unique H3K27ac profile of pig liver at the population scale.

To determine the effect ofH3K27ac on the transcriptome, we obtained
40 million RNA uniquely mapped reads on average from the same popu-
lation,with a98%mapping ratio to the Sscrofa11.1 genome (Supplementary
Fig. 1a). A total of 15,509 genes expressed in at least 20% of individuals were
identified, 2667 (17%) of which lacked H3K27ac signals in their promoter
regions, indicating asynchronous alteration between H3K27ac and gene
expression. Using the chromatin accessibility dataset, this analogous phe-
nomenon was also observed in human livers16. Enhancer RNAs (eRNAs),
transcribed from enhancer regions, play crucial roles in development and
disease17,18. To determine the putative polyadenylated eRNAs in livers, we
selected enhancers from distal intergenic peaks and within 300 bp down-
stream of genes to assemble new transcripts, harvesting 276 potential
eRNAs overlapping with 378 H3K27ac peaks. Notably, 187 (49%) of 378
peaks were located in super-enhancers (Hypergeometric test P-
value = 1 × 10−22), indicating that super-enhancer regions may serve as
chromatin niches that facilitate the expression of polyadenylated eRNAs.
Comparedwith ordinarymRNAs, the putative eRNAs had fewer exons and
were shorter in length (Fig. 1f and Supplementary Fig. 1h). Fifty-one percent
of eRNAswere not spliced (SupplementaryData 3), which is consistentwith
the characteristics of the eRNAs19.

Identification of genetic variants associated with liver H3K27ac
Insights into the inter-individual variation of peak activity and its herit-
ability (h2) canhelp in understanding pathways fromDNA toH3K27ac.We
estimated the heritability of peak activity of 88,926 peaks located in auto-
somes using 278 individuals. The genomes of these individuals were
sequenced to an average depth of 7.8 × 20,21. The activity of regulatory ele-
ments is controlled by both cis-QTL and trans-QTL22. Thus, we estimated
for each peak h2cis (the variance explained by genetic variants located
within ±1Mb from the peak) and h2trans (the variance explained by genetic
variants located beyond ±5Mb from the peak). Among 88,926 peaks, 10%
peaks have h2cis greater than 0.2, and 5% peaks have h2trans greater than 0.2
(Supplementary Fig. 2a, b). Mean h2cis was 0.064, which was significantly
higher than h2trans (mean = 0.029, two-sided T-test, P-value < 2.2 × 10−16).
We further group h2 into promoters-h2 and enhancers-h2. Estimates of
promoters-h2 showed significantly higher than enhancers-h2, regardless of
the cis or trans patterns (Supplementary Fig. 2c, d). Besides, estimates ofh2cis
are still >h2trans in both groups (Supplementary Fig. 2e, f).

To further understand the genetic basis underlying the H3K27ac
(Supplementary Fig. 3a), we performed H3K27ac quantitative trait loci
(acQTLs) analysis based on 30,244,904 single-nucleotide polymorphisms
(SNPs) and insertion-deletions (Indels). We represented a cis-acQTL using
the lead variant within 1Mb, and a trans-acQTL as the lead variant >5Mb
from the peak. The results showed that 27% of the 90,991 consensus peaks
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were affected by 24,836 cis-acQTLs. Bayesianfine-mapping analyses further
revealed that 6651 (27%) cis-acQTLs were narrowed to <200 kb with 95%
confidence intervals and5782 (23%)harbored<20 candidate causal variants
(Supplementary Fig. 3b, c). Additionally, we identified 3589 trans-acQTLs
responsible for 3395 (3.7%) peaks, 312 of which were associated with trans-
chromosome peaks (Supplementary Fig. 3d, Supplementary Data 4 and 5).

To search for the extent of the pleiotropic effect of acQTLs, we con-
ducted pairwise colocalized analysis among lead acQTL variants within a
500 kb distance. The result showed that the majority of acQTLs were

responsible for one peak, which was consistent with findings in humans23

(Fig. 2a). Eighty-four percent of 27,397 genetic variants included in 28,425
acQTLs were associated with one peak. Notably, we also observed both
acQTL 9_118156481 and 14_106813309 were linked to nine peaks on the
same chromosome. The nine target peaks for acQTL 14_106813309 are
located in the intron of CYP2C42, a gene involved in pig liver NADPH-
dependent electron transport. These peaks showed high cooperativity of
direction (Supplementary Data 4). The majority of acQTLs are cis-acQTLs
(87%), which is similar to the result of chromatin accessibility QTLs in

Fig. 1 | Comprehensive profiling of H3K27ac. a Distribution of H3K27ac peak
width. The red dashed line represents an average width of 691 bp. b The category of
H3K27ac consensus peak. c Correlation between the average fragments per million
(FPM, similar to TPM from RNA) of consensus peaks and percentage of its
occurrence across individuals. ‘n’ denotes the number of peaks. Each peak was
represented as a blue point. The solid red lines were fitted to the points. The graph in
the upper right corner removes outliers by mean ± 3*sd. The correlation and sig-
nificance were calculated by the Spearman’s correlation. d The proportion for
enhancer or promoter varies with the change in the percentage of consensus peak
occurrence. e A representative consensus super-enhancer covering lipid-

metabolism-related gene LDLR. The x-axis shows the genomic position. The y-axis
indicates each base’s average read depth (in millions) per 20 bp bin. The input track
is the negative control. The transparent orange rectangle highlights the range of the
consensus super-enhancer. Gene expression abundances (transcripts per million,
TPM) are shown below their symbol. The genomic annotations utilized were
sourced from the Ensembl database (version 1.98 of the pig GTF file). f The number
of exons for polyadenylated enhancer RNAs (eRNAs) and that for genes from
reference annotation. The distribution of the number of exons of genes from
reference annotation is generated by 1000 permutations. A red asterisk indicates the
average number of exons of polyadenylated eRNAs.
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mouse22. We then investigated the genomic features of these cis-acQTLs.
Among 24,836 cis-acQTLs, 5171 and 19,665were associated with promoter
and enhancer peaks, respectively. We found the cis-acQTLs have a higher
enrichment in enhancer peaks than in other genomic features, which is
comparable to the result of chromatin accessibility QTLs in human liver16.
Thedegreeof the enrichment of the cis-acQTLs in enhancer peaks increased

with their posterior probabilities (PPs) obtained from the Bayesian fine
mapping analysis (Fig. 2b). Cis-acQTLs tend to be symmetricalwithin 50 kb
of their target peaks, and the acQTL closer to the target peaks has a higher
association significance (Supplementary Fig. 3d–f), suggesting that genetic
variants within and adjacent to the H3K27ac peaks are more likely to reg-
ulate the corresponding peaks.
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Exploring the regulatory mechanism of acQTLs
The causal variants determining H3K27ac can contribute to the allelic
imbalance of histonemarks in heterozygotes24,25. To validate the causality of
these lead acQTL variants, we examined allelic imbalance of H3K27ac
activity for 21 lead acQTL variants that met the following criteria: (1) reads
covering the variants have no mapping bias26; (2) a sufficient number of
heterozygous samples for the statistical test; (3) the variants are located
inside H3K27ac peaks; (4) the PPs of variants exceeding 0.9. We observed
that 14 lead acQTL variants exhibited consistency between acQTL analysis
and allelic imbalance analysis in terms of effect allele direction, eight of
which showed significant differences between reads coverage of reference
alleles and alternative alleles (Supplementary Data 6). To confirm these 8
lead acQTLvariants further,we retrieved 24H3K27acdata of pig livers from
three independent studies11–13. Five out of 8 lead acQTL variants had suf-
ficient heterozygous individuals for the statistical test. Four lead acQTL
variants showed a consistent tendency, and 2 were successfully verified
(SupplementaryData 6, Fig. 2c, d, Supplementary Fig. 3g, h), supporting the
reliability of our identified lead acQTL variants.

Genetic variants could regulate the histone modification with the
assistance of transcription factors (TFs)24,27. We selected 3228 lead acQTL
variants inside their target peaks to examine the binding ability ofTFs. The
results showed that 1288 (39.9%) loci harboring lead acQTL variants
could bind TF, and 722 of which were inferred to gain/loss or alter the
binding of 67 TFs when alternative alleles substituted reference alleles
(Fig. 2e, Supplementary Data 7 and 8). The most frequently affected TFs
included IRF1, STAT1, ZBTB16, HMGA1, and VEZF1. For example, the
T allele at 70,309,544 on chromosome 4 (4_70309544), associated with
greater peak activity of chr4:70308066-70310904, was inferred to have
enhanced DNA binding strength with TF ZBTB16 (Fig. 2f–h). The ana-
lysis provided a list of candidate TFs regulating theH3K27ac peak activity
by binding with lead acQTL variants and partly clarified the regulatory
mechanism of H3K27ac.

A pioneering study shows that genetic variants could control distal
H3K27ac through spatial interaction in lymphoblastoid cell lines23. Herein,
we employed Hi-C data from pig liver from another independent research
to explore the mechanism of genetic variants affecting H3K27ac of pig
liver28. Combinedwith theH3K27ac data of this study,we found that 25,612
(90%) of 28,425 acQTLs contact with their target peaks inferred from the
Hi-C data (Supplementary Data 9). Compared with all interaction pairs
with matched distance, cis-acQTLs (Hypergeometric test P-
value = 1.72 × 10−40) and trans-acQTLs (Hypergeometric test P-
value = 2.43 × 10−302) were significantly enriched in the contact regions
encompassing their target peaks (Fig. 2i).Notably, 15% (48out of 312) inter-
chromosome acQTLs contacted genomic regions encompassing their target
peaks, supported by an average of 45 Hi-C reads (Supplementary Data 9).
Consequently, the Hi-C data not only strengthened the confidence of
acQTLs but also agreed with the report where inter-chromosome coordi-
nation between regulatory elements had been identified usingH3K27ac and
Hi-C data in human lymphoblastoid and fibroblast cell lines29.

Identification and characterization of eQTLs
H3K27ac isusually linked to theupregulationof gene expression.To explore
the relationship between the genetic regulations on gene expressions and
that onH3K27ac activity, we identified liver eQTLs in 256 individuals using
the same strategies as those used for acQTLs (Supplementary Fig. 4a). The
10,078 (65%) out of 15,509 expressed genes (eGenes) were associated with
12,250 eQTLs, including 10,042 cis-eQTLs and 2208 trans-eQTLs (Sup-
plementaryData 10 and 11). Themajority of eQTLs (92%)were found to be
associatedwithone gene (Fig. 3a). Bayesianfine-mapping revealed that 2766
(27%) cis-eQTLs were narrowed to <200 kb with 95% confidence intervals
and 2659 (26%) harbored <20 candidate causal variants (Supplementary
Fig. 4b). Similar to acQTLs, the majority of eQTLs were located in intron
(53%) and distal intergenic (34%; Supplementary Fig. 4c). Moreover, the
number of eQTLs and acQTLs across chromosomes is positively correlated
(Supplementary Fig. 4d). Comparing the distribution of eQTLs and acQTLs
within 2Mb windows across the entire genome, we discovered a low
similarity (Pearson’s R2 = 0.32, P-value < 2.2 × 10−16) between eQTLs and
acQTLs at the genome distribution (Supplementary Fig. 5). We further
focused on acQTLs associated with promoter peaks (promoter-acQTLs)
and discovered a medium similarity (Pearson’s R2 = 0.61, P-
value < 2.2 × 10−16) between eQTLs and promoter-acQTLs.

Next, we investigated the genomic features of the eQTLs. Among
10,042 cis-eQTLs, 2967 (29.5%) are located within the H3K27ac peaks,
preferentially in promoter peaks (Fig. 3b), e.g., 1304 (44.0%) of the 2967 cis-
eQTLs were located in the promoter peaks, corresponding to a fold
enrichment of 4.02 (Hypergeometric test P-value = 1 × 10−388) and the fold
change value increased with PPs. In addition, higher PPs were associated
with a higher frequency of cis-eQTLs in the promoter peaks of their target
genes (Supplementary Fig. 4e and Data 12). Analogous to acQTLs, eQTLs
tend to localize within a genomic distance of 50 kb from the TSS (Supple-
mentary Fig. 4f, g), and their association significance was positively asso-
ciated with the distance from the TSS of target genes (Supplementary
Fig. 4h). The results indicated that the genomic proximity between eQTLs
and the TSS of target genes is a critical determinant for the likelihood of
variants exerting an eQTL effect.

In summary, these analyses revealed similar genomic features of the
acQTLs and eQTLs, intriguing the further exploration of the shared genetic
controls on H3K27ac activity and gene expression.

Joint analyses of H3K27ac and transcriptome
Connecting H3K27ac peaks to their target genes is challenging, but pro-
moters arehighly associatedwith gene expression.Weexamined the sharing
between the loci for H3K27ac promoter peaks and those for corresponding
gene expression using the π1 value (Methods). The majority (π1 = 0.84) of
promoter-acQTLs were preserved in eQTLs regulating gene expression,
which was in line with the result in humans30. Approximately half
(π1 = 0.54) of eQTLs were replicated in promoter-acQTLs, suggesting a
substantial sharing of the genetic controls between gene expression and
promoter H3K27ac activity (Fig. 3c). Besides, QTL significance for both

Fig. 2 | Characterization and transcription factor binding analysis of acQTLs.
a The frequency distribution of acQTLs influencing one or more peaks. b The
enrichment of cis-acQTLs varies with alterations in the Bayesian posterior prob-
abilities (PPs). The x-axis represents intervals grouped by the Bayesian PPs. The y-
axis represents the enrichment of cis-acQTLs. All variants refer to all genetic variants
used forQTLmapping. The solid linefitted the points by a simple linearmodel. cThe
genotypes of lead acQTL variant 16_2774106 influence the activity of its target
H3K27ac. ‘n’ denotes sample size. The y-axis represents the normalized activity of
the H3K27ac peak that spans the chr16:2773620-2775415 region. d The imbalance
of the H3K27ac activity at allele 16_2774106 in the F6 and the replicated datasets.
The x-axis represents alleles of variant 16_2774106. The y-axis represents read
counts covering alleles. Green lines link the same sample. The replicated dataset was
downloaded from public databases. The significance of the difference between the
two alleleswas calculated by two-sided t-test. eThe frequency distribution of binding
sites for 67 predicted transcription factors (TFs) whose binding strengthwas affected

by lead acQTL variants. f–h The acQTL chr4:70309544 enhances the binding of TF
ZBTB16 when the C allele is changed to T. f The association plot for the peak
chr4:70308066-70310904. Dots represent variants. The y-axis represents the sig-
nificance of the association. Lead acQTL 4_70309544 ismarkedwith an asterisk. The
colors of variants denote the degree linkage disequilibrium (r2) with the lead acQTL.
g The genotypes of lead acQTL 4_70309544 influence the activity of peak
chr4:70308066-70310904. hPositionweightmatrix (PWM) for the TFZBTB16. The
red dashed box indicates the lead acQTL 4_70309544. The height of bases quantifies
the probability of its occurrence. i Physical interaction between acQTLs and target
peaks. The x-axis represents the distance between bins with a width of 40 kb. The
y-axis represents the proportion of bin pairs with Hi-C contacting reads. The sig-
nificance of control and acQTL pairs was determined by the hypergeometric test.
The all pairs refer to all bin pairs with ≤1M or ≥5M distance. The boxplots display
the median, the 25th and 75th percentiles. The whiskers indicate the minimum and
maximum values, and outliers are shown as points outside the ends of the whiskers.
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H3K27ac and gene expression led to an increase in the sharing value
(Fig. 3c). To determine all shared loci, we then conducted a colocalization
analysis. The lead eQTL variants and the lead acQTL variants were con-
sidered colocalized when they were in high linkage disequilibrium (LD,
r2 > 0.8) and <500 kb apart. The results showed that 2336 acQTLs were
colocalized with 1770 eQTLs, leading to 2682 peak-gene pairs (Supple-
mentary Data 13). To reduce the false discovery rate, we kept peak-gene
pairs inwhich the peak is the promoter peak of this gene, or the peak activity

is significantly associated with gene expression by the Spearman’s correla-
tion method after multiple testing correction of Benjamini-Hochberg
(adjustedP-value < 0.05). Besides,we employed theBayesian test toperform
colocalization and intersected the above results31. In total, we identified1183
target genes for 1616 peaks, comprising 1818 unique peak-gene connec-
tions.Most (90%)of thepeakswere linked toonegene.Butwealso identified
peaks that were linked tomultiple genes. For example, theH3K27ac peak at
chr6:54331130-54345331, classified as a promoter of geneHRC, was linked

Fig. 3 | Genetic sharing and causal relationship between H3K27ac and gene
expression. a The frequency distribution of eQTLs influencing one or more genes.
b The enrichment of cis-eQTLs varies with alterations in the Bayesian posterior
probabilities (PPs). The x-axis represents intervals grouped by the Bayesian PPs. The
y-axis represents the enrichment of cis-eQTLs. All variants refer to all genetic var-
iants used for QTLmapping. The solid line fitted the points by a simple linearmodel.
c QTL sharing between promoter peaks and their corresponding genes. The y-axis
displays the sharing score indicated by π1. The x-axis represents the intervals of P-
values of acQTLs or eQTLs. The intervals were grouped based on the quartile of the
P-values. Arrows indicate the direction of the sharing. The sharing from eQTLs to
acQTLs is 0.54 for π1. The sharing from acQTLs to eQTLs is 0.84 for π1.
d Enrichment of promoter regions within the peaks that have putative target genes.
Peaks associated with acQTLs that were colocalized with eQTLs are called coloca-
lized peaks (peaks having putative target genes). Colocalized peaks out of the

flanking region refer to colocalized peaks located outside the promoter and gene
body of the putative target gene. The x-axis represents the proportion of promoters
in all peaks. The P-value was determined by the hypergeometric test. e The
decomposition of gene expression variance into genetic variants and H3K27ac
activity components. The x-axis is the proportion threshold for variance explained
by distinct components. First, the decomposition model was independently applied
to genetic variants (solid red line) and H3K27ac activity (solid blue line). To modify
genetic impacts, the decomposition model then incorporated H3K27ac activity and
genetic variants within 100 kb of H3K27ac peaks (blue dashed line). f Inference of
causation between H3K27ac and their putative target genes. Type1: QTLs impact
gene expressions through H3K27ac; Type2: QTLs influence H3K27ac via gene
expressions; Type3:QTLs controlH3K27ac and gene expression independently. The
number of events is denoted at right.
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to 4 genes (HRC, CPT1C, EMC10, FCGRT). We further checked their
physical contact usingHi-Cdata and found that theHRCpromoter contacts
with gene CPT1C, EMC10, and FCGRT, supported by 23, 4, and 24 Hi-C
reads respectively, suggesting promoters can function as enhancers for
target genes they interactedwith32 (SupplementaryData13).The1616peaks
were significantly enriched at the promoter with a fold enrichment of 1.8
(Hypergeometric test P-value = 9.71 × 10−58, Fig. 3d). We showed an
example of how an acQTL affects the promoter H3K27ac activity and the
expression of gene FLRT3 (Supplementary Fig. 6a–f). Notably, 606 peaks
outside thepromoteror genebodyof target genes appeared tobe enriched in
thepromoters of other genes (Fold enrichment = 1.2, hypergeometric testP-
value = 5.65 × 10−4, Fig. 3d).

To explore the causal hierarchies between H3K27ac and gene
expression, we first applied a variance decompositionmodel to estimate the
contribution of genetic and H3K27ac factors to transcriptional variance.
The H3K27ac explained a lower proportion of transcriptome variance in
modelswhere epigenetic elementswere adjusted for proximal genetic effects
compared to the corresponding unadjusted models, indicating the corre-
lations between theH3K27ac activity and gene expression for themost part
can be attributed to genetic variation (Fig. 3e). Secondly, using QTLs as
instructors, we inferred the causal relationships between the H3K27ac and
target gene expression with the Intersection-Union Test33. It discriminated
four causal scenarios: (1) type0, the causal relationship could not be dis-
solved; (2) type1, QTLs act on gene expression throughH3K27ac; (3) type2,
QTLs act on H3K27ac through gene expression; (4) type3, QTLs act on
H3K27ac and gene expression, respectively. Among 1900 QTL-peak-target
gene trios, we identified 791 type0, 78 type1, 147 type2, and 884 type3
scenarios (Fig. 3f), suggesting that a large proportion of H3K27ac accom-
pany rather than determine the gene expression34,35.

Identification of functional regulatory elements, genes, and
putative causal variants for metabolism-related molecular phe-
notype and published GWAS loci
Integrating the significant GWAS signals with H3K27ac, gene expression,
acQTLs, and eQTLs could aid in identifying functional genes, regulatory
elements, and causal variants responsible for interesting traits ordiseases16,36.
Dulcitol is a type of sugar alcohol producedby the reductionof galactose, the
excessive accumulation of which could lead to the development of galac-
tosemic cataracts, neurological impairment, and renal dysfunction37–39. We
first performedGWASfor the liver dulcitol levelsusing321 individuals from
the same population used for the H3K27ac ChIP-seq, which revealed a
notable signal on chromosome 6 with the top SNP 6_165846829 located
within an intronic region (Fig. 4a). To identify the regulatory elements
regulating dulcitol, we found 19 H3K27ac peaks associated with acQTLs
within flanking 500 kb centered at SNP 6_165846829. Moreover, peak
chr6:165828531-165836912, which was associated with the acQTL
6_165829987, is the nearest peak to the SNP among the peak-SNP pairs in
which the acQTL was colocalized (r2 = 0.93, PP4 = 0.935) with the SNP
6_165846829.We then colocalized acQTL 6_165829987with eQTLs to link
functional genes. The result showed that acQTL 6_165829987 was coloca-
lized with eQTL 6_166100952 (r2 = 0.96, PP4 = 0.99) responsible for gene
AKR1A1 (Aldo-Keto Reductase Family 1 Member A1) and PRDX1 (Per-
oxiredoxin 1). Besides, the eQTL 6_166100952 was colocalized (r2 = 0.91,
PP4 = 0.96) with the top SNP 6_165846829 fromGWAS (Fig. 4b). Notably,
AKR1A1 encodes anAldo-Keto reductase that is involved in themetabolism
of dulcitol40. Both the activity of peak chr6:165828531-165836912 and the
expression of AKR1A1 were significantly associated with dulcitol levels
(Fig. 4c). Thus, we considered AKR1A1 and chr6:165828531-165836912 to
be a strong candidate gene and regulatory elements, respectively, in con-
trolling dulcitol. To identify likely causal variants, candidate variants were
defined within the 95% confidence intervals of the GWAS, the acQTL for
peak chr6:165828531-165836912, and the eQTL for geneAKR1A1 (Fig. 4d).
Six variants were collected, among which Indel 6_165830307 not only
showed high LD with lead variants for the above three molecular traits but
also was located within the peak chr6:165828531-165836912 (Fig. 4d, e).

Furthermore, we predicted the alteration of TF bindingwhen the alternative
allele at Indel 6_165830307 substituted the reference allele. Consequently,
the binding ability of TFs TP73, TP63, and TP53 were inferred to change
significantly (Fig. 4f). We herein highlighted Indel 6_165830307 as a likely
causal variant for dulcitol.

Utilizing epigenomic data allows for sub-threshold loci detection in
GWAS41,42. We first performed GWAS for PC(16:0/16:0) using 321 indi-
viduals from the same population used for the H3K27ac ChIP-seq and
identified two variants (13_160375595, 13_160375587) exceeding the
empirical threshold (P-value < 5 × 10−8; Supplementary Fig. 7a). To dis-
covermore loci, we harvested4065 nominal variants by employing aweaker
threshold with a P-value of 1 × 10−4. These variants were significantly
enriched within the H3K27ac peak region (Hypergeometric test P-
value = 8.7 × 10−4), implying their potential function and stimulating fur-
ther investigation. We grouped these 4065 nominal variants using LD
(minimum r2 = 0.2) to identify 602 independent sub-threshold loci. Among
602 loci, 194 overlappedwithH3K27ac peaks, and variants within these loci
exhibited significantly stronger P-values than the remaining 408 loci (two-
sided T-test, P-value = 3.0 × 10−8; Supplementary Fig. 7b). We linked
H3K27ac peaks with these 194 loci by colocalizing them with acQTLs
through high LD (r2 > 0.8), resulting in 13 loci associated with 13 peaks.
Particularly, a locus located at 79.5Mb on chromosome 13 (locus A) was
associated with peak chr13:110306820-110312485 and chr13:110312491-
110318835 (Supplementary Fig. 7c–e). Unexpectedly, another independent
locus located at 110.2Mb on chromosome 13 (locus B) was also linked to
these two peaks (Supplementary Fig. 7c, e). To identify putative target genes
for these two peaks, we searched the previously generated list of peak-gene
pairs. The two peaks were discovered to be associated with the gene PLD1
(Phospholipase D1), which encodes a PC-specific phospholipase involved
in PC metabolism43, and were located within the first intron of this gene
(Supplementary Fig. 7c,e). On locus B, the colocalization results between
signals of PC(16:0/16:0) and QTLs of three molecular phenotypes were
further assessed, i.e. chr13:110306820-110312485 (PP4 = 0.84),
chr13:110312491-110318835 (PP4 = 0.84) and PLD1 (PP4 = 0.84). On
locus A, only chr13:110306820-110312485 (PP4 = 0.86) and PLD1 (PP4 =
0.84) were confirmed. In addition, PC(16:0/16:0) was significantly asso-
ciated with peak chr13:110306820-110312485 and PLD1 expression (Sup-
plementary Fig. 7f). Therefore, we proposed PLD1 as the functional gene
and peak chr13:110306820-110312485 as a regulatory element in mod-
ulating PC(16:0/16:0).

To further interpret GWAS loci for phenotypes that may act through
the liver,we obtainedGWASvariants pertaining to11 categories of pig traits
fromthe ISwine database44.We linked 55phenotypes to111 gene-peakpairs
via LD score (r2 > 0.8), resulting in 167 candidate variants (Fig. 5a, Sup-
plementary Data 14 and 15). The liver is the primary organ responsible for
promoting rapid erythrocyte elimination and iron recycling45,46. Corre-
spondingly, we found that the variant 7_32054693 for mean corpuscular
hemoglobin concentration (MCHC)was linkedwith the geneBNIP5 (BCL2
Interacting Protein 5) and its promoter peak chr7:32045442-32062909,
which overlapped with the super-enhancer chr7: 32045738-32067174 and
was positively associated with the expression of BNIP5 (Fig. 5b, c). Notably,
the gene BNIP5was documented in theMGI (Mouse Genome Informatics)
dataset as influencing the hematopoietic system. Thus, we proposed that the
gene BNIP5 and the peak chr7:32045442-32062909 may have a functional
role in the modulation of MCHC. Besides, variant 7_32054693 was prior-
itized as a candidate functional variant due to its location within the peak
region and inclusion in the 95% credible sets of both the acQTL and the
eQTL (Fig. 5d). Similarly, another prioritized candidate functional variant
14_107869191 for hematocrit and red blood cell count resided within the
peak chr14:107868236-107869603 and was the lead acQTL variant for this
peak as well as the lead eQTL variant for the gene TLL2 (Supplementary
Fig. 8a–c). In addition, we also prioritized genes involved in the growth of
pigs, such as average daily gain, for which 5 genes were collected. One of
these (ENSSSCG00000022032) was documented in the MGI dataset as
mouse growth-related genes (Supplementary Data 14).
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Overall, our analyses thereby demonstrated that acQTLs and eQTLs
generated in this study are valuable instruments for dissecting themolecular
mechanism of phenotypic GWAS loci.

Discussion
Epigenetics, as an important regulatory layer, with the assistance of gene
expression, has become a powerful tool to dissectmolecularmechanisms

underlying phenotypic variation. Although many regulatory elements
have been annotated by epigenetic marks in pigs11–13, the effects of
genetic variants on epigenetics have yet to be comprehensively char-
acterized. This study identified an extensive set of H3K27ac peaks cor-
responding to active promoters, enhancers, and super-enhancers.
Genetic variants associated with H3K27ac and gene expression were
mapped to investigate their relationships and successfully utilized for

Fig. 4 | Identification of candidate causal variants,
regulatory elements, and target genes for dulcitol.
aManhattan plot of GWAS for dulcitol. The x-axis
represents chromosomes. The y-axis represents the
significance of association measured by -log10(P-
value). The empirical genome-wide significance
threshold is set to 5 × 10−8. b Regional plots for
GWAS (dulcitol), peak activity (chr6:165828531-
165836912), and gene expression (AKR1A1). The x-
axis represents the genome position. The likely causal
variant 6_165830307 is denoted as an asterisk. The
colors of points denote the degree of linkage dis-
equilibrium (r2) with the lead variant. c The pairwise
correlation plot of the three molecular phenotypes.
The x-axis and the y-axis represent the normalized
molecular phenotypes. The black lines fit these points.
The correlation coefficient and P-value are calculated
by Spearman’s correlation. The sample sizes utilized
for the correlation analysis were 250, 252, and 203,
respectively. dGenome browser views of the genomic
region harboring candidate causal variants respon-
sible for dulcitol. The x-axis displays the genomic
position. The y-axis indicates each base’s average read
depth (in millions) per 20 bp bin. The input track is
the negative control. The normalized read depths for
input, H3K27ac, and mRNA are denoted in brackets.
The GWAS track displays candidate variants within
95% confidence interval. The acQTL track shows
candidate variants within 95% confidence interval for
peak chr6:165828531-165836912. The consensus
peak with a width of 8.381 kb is highlighted by a
transparent orange rectangle. The eQTL track depicts
candidate variants within 95% confidence interval for
the AKR1A1 gene. Gene expression abundances
(TPM) are shown below their symbol. The genomic
annotations utilized were sourced from the Ensembl
database (version 1.98 of the pigGTF file). eThe effect
of the genotype of Indel 6_165830307 on three
molecular phenotypes. The y-axis represents the
normalized phenotypes. ‘n’ denotes sample size. The
boxplots display the median, the 25th and 75th per-
centiles. The whiskers indicate the minimum and
maximum values, and outliers are shown as points
outside the ends of the whiskers. f Position weight
matrix (PWM) for TFs TP53, TP63, TP73. The red
dashed box highlights the matching sequence for the
likely causal variant 6_165830307 (C >
CTGTTTGAACA). The last four bases (AACA)
induce the binding of TFs TP53, TP63, and TP73.
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Fig. 5 | Prioritizing functional variants, genes, and regulatory elements for
published GWAS of MCHC. a Schematic illustrating the workflow for linking
GWAS variants to putative functional genes and regulatory elements. bAssociation
plot for the peak activity (chr7:32045442-32062909) and gene expression (BNIP5).
The x-axis of the association plot shows the genomic range and the y-axis shows the
-log10(P-value) for the association analysis. The candidate functional variant
7_32054693 is denoted by an asterisk and the peak chr7:32045442-32062909 is
highlighted by a transparent orange rectangle. Dots represent all variants within the
genomic range. The pairwise linkage disequilibrium (r2) between the lead variant for
the corresponding molecular phenotype and all genomic variants is indicated by
distinct colors. c The correlation plot between the gene expression of BNIP5 and the
peak activity of chr7:32045442-32062909. The x-axis and the y-axis represent the
normalized signals for the peak and the gene, respectively. The solid black line

represents thefitted curve, and the corresponding correlation coefficient andP-value
are denoted (Spearman’s correlation). The sample sizes utilized for the correlation
analysis were 203. dGenome browser views of the comprehensive molecular profile
of the region harboring candidate functional variants forMCHC. The x-axis displays
the genomic range, and the y-axis contains several tracks of data. The GWAS track
displays the published variant from MCHC GWAS analysis, and the acQTL track
shows candidate variants within 95% confidence interval for the consensus peak
chr7: 32045738-32067174 based on fine-mapping analysis. The consensus peak is
highlighted by a transparent orange rectangle. The eQTL track depicts candidate
variants within 95% confidence interval for the BNIP5 gene. The TPM values for
each gene are displayed in the gene track, with the BNIP5 gene highlighted in red.
The genomic annotations utilized were sourced from the Ensembl database (version
1.98 of the pig GTF file).
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aiding in identifying the likely causal genetic variant of liver-related
phenotype.

The high overlap of other epigenetic marks from previous studies with
H3K27ac peaks in this work shows the credibility of our data. The dis-
tribution of liver H3K27ac with respect to genomic features exhibits a
similar pattern across pigs, humans, and mouse8,47. Previous studies
demonstrated that enhancers are less conserved across species and tissues
compared to promoters13,14,48–50. Our result further showed that enhancers
have a lower likelihood of being shared across individuals than promoters.
Comparative regulatory genomic analysis in 20 mammalian species has
revealed the rapid evolution of enhancers, and the rate of divergence for
enhancers is estimated to be 3 times faster than for promoters48. Newly
evolved enhancers showedhigh inter-individual variability and tended tobe
less integrated in transcriptional networks51. Indeed, abundant enhancers
without contacting promoters do not regulate gene expression49. Besides,
many enhancers are functionally redundant or havemodest effects on target
gene expression52,53. Consequently, the high variation of enhancers across
species, tissues, and individuals might be better tolerated.

Our results indicated a strong peak signal tends to have a high peak
occurrenceacross individuals. There are two reasons for this: (1) strongpeak
signal is easy to detect, in turn, leading to their high occurrence; (2) reg-
ulatory elements with strong peak signals exert an essential function in pig
liver, reflected by frequent occurrence. Comparably, promoters and
enhancers that are active in both humans andmice have stronger H3K27ac
signals than species-specific regulatory elements54. We further obtained
chromatin states conducted by Pan et al.14, and found that all-tissue shared
promoters/enhancers have higher activity than liver-specific promoters/
enhancers (Supplementary Fig. 9). These findings suggested that regulatory
elements with high H3K27ac signals tend to be stable across individuals,
tissues, and species.

Highly shared super-enhancers cover these genes involved in liver-
related pathways, implying their importance in the maintenance of liver
function55. Combined with RNA-seq data, a significant enrichment of
polyadenylated eRNAs within super-enhancer regions corroborates that
super-enhancers induce higher levels of eRNAs than typical enhancers17.
For the 15,509 expressed genes, H3K27ac signals cannot be observed in
promoter regions for 17% of genes. This phenomenon has been observed in
several studies of accessible chromatin16,56. This is possibly a consequence of
the limitations of H3K27ac as a mark for completely capturing the acces-
sibility of regulatory elements57,58. A previous study also showed that an
average of 4.79% accessible pig genome was not marked by any four epi-
genetic marks including H3K27ac14. Another explanation is the potential
asynchrony that H3K27ac disappears before mRNA degradation35.

Using Bayesian fine-mapping analyses, more than 5000 cis-acQTLs
with small confidence intervals (<200 kb) and few candidate causal variants
(<20) were identified, which could greatly assist in identifying causal var-
iants responsible for interesting traits. The estimates of heritability showed
genetic variants located within cis windows are more likely to affect peak
activities than trans variants, supporting the result that most acQTLs were
cis-acQTLs.Nonetheless, we found 3589 trans-acQTLs, which involved 312
trans-chromosome peaks. Enriching trans-acQTLs and peaks in the Hi-C
contact region supports their 3D genomic interactions, consistent with
previous studies23,29. Besides, acQTLs could be associated with multiple
peaks, indicating its pleiotropic effect on H3K27ac. Higher cis-acQTL
enrichment in enhancer peaks than promoter could also reflect the rapid
evolution of enhancers, possibly due to it harboring more genetic variants.
Whether acQTLs are causalmutations or not can be effectively examined by
analyzing allelic imbalance of H3K27ac peaks within individuals, due to
paternal and maternal alleles functioning as within-sample controls59. To
explore the regulatory mechanism of acQTLs affecting H3K27ac, the allelic
imbalance of H3K27ac activity was successfully validated in several lead
acQTLvariants, implying the strong reliability of other lead acQTLvariants.
Furthermore, 1288 lead acQTLvariants have binding sites for TF,which not
only strengthens the credibility of acQTLs but also implicates its regulatory
mechanism.

Our results show that gene expression (or H3K27ac abundance) is
more likely to be affected by genetic variants closer to the TSS (or peak
midpoint), which also prompts that the causal variants located at the TSS or
H3K27ac peak midpoint have a high probability of being causal. High
sharing (π1) from promoter-acQTLs to eQTLs indicates that gene expres-
sion and promoter activity are under the same genetic regulation. The lower
π1 value in the direction from eQTLs to promoter-acQTLs suggests that
RNA regulation may originate from multiple mechanisms, such as RNA
processing. The sharing pattern is conserved in different species30.

Inmouse neurons,massively parallel reporter assays demonstrated the
sufficiency of promoters to independently initiate transcription while
enhancers stimulate transcriptional initiation in a promoter-dependent
manner60. Analogously, our study also revealed that putative regulatory
elements controlling gene expression prefer to be promoters by high
enrichment of eQTLs inpromoters, similar distributionbetweeneQTLs and
promoter-acQTLs, and significant colocalization between promoter-
acQTLs and eQTLs.

The variance decomposition showed that genetic factors are the pri-
mary determinants of gene expression, in contrast to the view that histone
marks play a causal role in transcription. In mouse embryonic stem cells,
mutations in genes encodingH3.3 transfer lysine 27 to arginine, preventing
H3.3K27 from being acetylated34. Despite the dramatically reduced
H3K27ac signals in enhancers, enhancer activity remains unchanged and
gene expression is barely affected. In another study on K562 cells, rapid loss
of H3K27ac was observed after blocking transcription initiation, indicating
that H3K27ac serves as a supportive mark in transcription35. In the causal
inference between H3K27ac and gene expression, 46% of H3K27ac peak-
gene pairs that share commonQTLswere inferred to be independent, while
only 4% supported a causal role of H3K27ac on gene expression. This result
supported that a large proportion of H3K27ac is the proxy for regulatory
elements rather than the driver.

We identified a likely causal variant 6_165830307 for dulcitol with the
help of the resources of this study. The variant 6_165830307 inside peak
chr6:165828531-165836912 is significantly associatedwithdulcitol level and
colocalizes with the acQTL for peak chr6:165828531-165836912 and the
eQTL for geneAKR1A1.When the allele of variant 6_165830307was altered
from the reference allele to the alternative allele, three TFs (TP73, TP63, and
TP53) were predicted to bind to the GWAS locus for initial transcription.
However, the lack of a sufficient number of heterozygous individuals for
variant 6_165830307 hampers further validation through the allelic
imbalance of H3K27ac. Taken together, the alternative allele of variant
6_165830307 may increase the activity of regulatory element
chr6:165828531-165836912 by enhancing the binding ability of TFs,
resulting in the elevated expression of geneAKR1A1 and high dulcitol level.
Our dataset can favor identifying extra GWAS loci withmodest effect sizes.
InGWAS forPC(16:0/16:0), two independentGWAS lociwere linked to the
same peaks by acQTLs. PLD1 harboring the peaks was highlighted as a
strong causal gene affecting PC(16:0/16:0). PLD1 encodes a PC-specific
phospholipase involved in PC metabolism43, indicating its direct relation-
ship with PC(16:0/16:0) phenotype in biological process. Our dataset can
also aid in the prioritization of variants and genes for published GWAS
signals, such as hematological and growth-related traits, which reinforces
the utility of our resource. For example, our result suggests variant
7_32054693 to be a promising candidate for MCHC, likely functioning
through the gene BNIP5 and its promoter peak chr7:32045442-32062909.

Collectively, this study expands the H3K27ac atlas, acQTLs, and
eQTLs dataset in pig liver, shedding light on the impact of genetic variants
on both H3K27ac and gene expression. This resource will aid in dissecting
molecular mechanisms underlying liver-related traits, thus facilitating
GWAS fine-mapping.

Methods
Ethics statement
All procedures involving animals followed the guidelines for the care and
use of experimental animals established by the Ministry of Agriculture of
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China. The ethics committee of Jiangxi Agricultural University specifically
approved this study.

Samples
All the liver sampleswere derived from the sixth (F6) generation pigs froma
heterogeneous population generated by crossing eight founder breeds
including four aboriginal Chinese breeds (Erhualian, Laiwu, Bama Xiang,
and Tibetan) and four highly selected international commercial breeds
(Duroc, Large White, Landrace, and Pietrain). The population was kept
through a rotation mating scheme to acquire an equal mixture of genetic
material fromeight founderbreeds. Feeding conditionswere the same for all
F6 pigs. Castration was performed on male individuals on day 90. All pigs
were slaughtered at 240 ± 10 days of age. Samples were immediately col-
lected and transformed to liquid nitrogen, and then stored at−80 °C until
use. Liver samples were obtained from the left lobe of the liver.

DNA extraction and genotyping
Genomic DNA was obtained from frozen muscle tissue using a phenol-
chloroform-based DNA extraction protocol. DNA quality control was
performed according to DNA concentrations and length by Nanodrop-
1000 and agarose (0.8%) gel electrophoresis. Next, DNA was fragmented
into 300-400 bp pieces. After adenylation and indexed ligation, the cDNA
library was amplified by PCR using Phusion High-Fidelity DNA poly-
merase (NEB, USA). The sequencing was completed on Illumina X-10
instruments (Illumina Inc., San Diego, CA) with a 2 × 150 bp paired-end
strategy. The low-quality raw reads were removed according to the fol-
lowing criteria: (1) the percentage of N base contents >10%; (2) the per-
centage of quality score ≤20 bases >50%. After removing low-quality and
short reads from raw DNA fastq files, clean fastq files were aligned to the
Sscrofa11.1 reference genome using BWA (v0.7.17)61. Subsequently, sort
and index bam files using Samtools (v1.9)62. Individual genotypes were
acquired using Platypus (v0.8.1)63. VCF files from each sampleweremerged
into a single VCF file using PLINK (v1.9)64. Next, imputed the missing
genotypes with Beagle (v0.40)65.

mRNA extraction and sequencing
Total RNA was isolated using TRIzol™ (Invitrogen, USA) from 256 pig
livers, including 146 females and 110 males. The integrity and purity of
RNA were tested by an eNanoPhotometer® spectrophotometer
(IMPLEN, USA) and a Bioanalyzer 2100 system (Agilent Technologies,
USA). Next, mRNA was enriched by poly-T oligo-attached magnetic
beads in NEBNext® UltraTMR NA Library Prep Kit for Illumina (NEB,
USA). Poly(A)+mRNA was then fragmented and used for strand-
specific cDNA library construction. The cDNAwas purified, end-repair,
A-tailing, adapter ligation, and size selection using AMPure XP beads.
The sequencing was performed on the Illumina Novaseq 6000 platform
using a 150-bp paired-end strategy. The low-quality raw reads were
removed if the percentage ofN base contentswas >10%or the percentage
of Q ≤ 5 bases was >50%.

ChIP-Seq experiments
Chromatin immunoprecipitation followed by sequencing was performed
using the SimpleChIP Plus Enzymatic Chromatin IP Kit (Magnetic Beads)
(CST, USA). Pig liver tissue from 172 females and 120males were collected.
In brief, ~200mg of liver tissuewasminced in 1mLof PBS and cross-linked
with 1% formaldehyde for 10min, followed by quenching with glycine and
lysis in the buffer. The cross-linked chromatin was sonicated to produce
fragments of 100-300 bp, with 10 μL of the solution reserved as input. The
remaining chromatin was then immunoprecipitated with an H3K27ac
antibody (activemotif, 39133), purified usingmagnetic beads and a column,
and subjected to DNA sequencing with corresponding input samples using
an IlluminaHiSeq 2500 in a single-endmodel. The raw readswerefiltered to
remove reads containing the following: (i) contaminated adapter sequences;
(ii) more than half the bases with Phred quality scores below 19; and (iii)
>5% ambiguous or undetermined (N) bases.

RNA-seq data processing
Clean reads were aligned to the Sscrofa11.1 reference genome using STAR
(v2.7.1a)66. We kept reads with MAPQ value 255 using Samtools Samtools
(v1.9). Stringtie (v1.3.6)67 was used to assemble transcripts with the version
1.98 pigGTFfile fromEnsembl database using the -e parameter andmerged
GTF files from each sample into a non-redundant set of transcripts.
Quantification of genes was performed using FeatureCounts (v1.5.3)68.

ChIP-seq data processing
Clean reads were mapped to the Sscrofa11.1 reference genome using BWA
(v0.7.17)69. Uniquely mapped reads were obtained using Sambamba
(v0.8.1)70, and duplicates were removed using Picard (v1.119, https://
broadinstitute.github.io/picard). To assess library complexity based on
ENCODE ChIP-seq Standards, PCR Bottlenecking Coefficient 1 (PBC1),
PCR Bottlenecking Coefficient 2 (PBC2), and Non-Redundant Fraction
(NRF) were calculated and summarized in Supplementary Data 1. Samples
meeting the criteria were used to call peaks with MACS2 (v2.1.1)71, using
input data as the control. The fraction of reads in peaks was calculated for
each sample, and a threshold of 1% was utilized to refine the sample set.
DiffBindpackage implemented inR softwarewas used to identify consensus
peaks with peaks presenting in at least 3 samples. The reads coverage was
calculated using Bedtools (v2.27.0)72, and peaks were retained if the log2
reads per million (log2RPM) was >0 in at least 3 samples, yielding 91,011
raw peaks. To ensure consistency between acQTL and eQTL mapping
analyses, FPM (fragments permillion, similar to transcript permillion from
RNA) was used to represent the activity of H3K27ac peaks, and 90,991
consensus peaks satisfied the furtherfiltering criteria fromtheGTExproject.
The 90,991 peak list was supplied with Supplementary Data 16.

Quality control for samples
Weused verifyBamID (v2.0.1)73 withBamfiles and corresponding genotype
files as input to verify sample ID and removed samples when they were
predicted to be swapped or contaminated. To eliminate the impact of RNA
degradation, RSeQC (v2.6.4)74 was used to show the coverage profile along
the gene body fromBam files, we removed samples that displayed large bias
to the 3’ end, and left 256 RNA samples manually for subsequent analysis.

Regulatory elements identified byH3K27ac used for overlapping
with that of this study
The predefined regulatory elements using pig liver H3K27ac ChIP-seq data
were conducted by Kern et al.13. Samples were obtained from two castrated,
sexuallymature, adultmale Yorkshire littermate pigs. The data are available
at http://farm.cse.ucdavis.edu/~ckern/Nature_Communications_2020/.

Chromatin states used for overlapping with regulatory elements
of this study
The predefined chromatin states of pigs were obtained from two published
independent studies. One was conducted by Kern et al.13, and they defined
14 distinct chromatin states by utilizing five epigenetic marks (H3K4me3,
H3K27ac, H3K4me1, CTCF, H3K27me3) in pig livers. The data are avail-
able at http://farm.cse.ucdavis.edu/~ckern/Nature_Communications_
2020/. Another was conducted by Pan et al.14, and they employed five
epigenetic marks (H3K4me3, H3K27ac, H3K4me1, ATAC, H3K27me3) to
characterize 15 distinct chromatin states in pig livers. The data was available
at https://figshare.com/articles/dataset/6_type_of_regulator_hg19_zip/
13480425?file=2587527075.

Rawsequencing reads forH3K27acChIP-seqused for validating
the allelic imbalance of H3K27ac
Raw sequencing data forH3K27ac ChIP-seq from 24 pig liver samples were
obtained from three independent studies. Two raw data were from Kern
et al.13 and deposited in the Gene Expression Omnibus (GEO) under
accession GSE158430. Eight raw data were fromZhao et al.12 and deposited
in theNCBIdatabaseunderaccessionnumberPRJNA597497.Fourteenraw
data were from our previous study11.
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Hi-C matrix
Pig liver Hi-C contact matrix data with 40 kb resolution were generated by
Foissac et al.28, using samples from two male and two female Large White
pigs. The data is accessible at the Functional Annotation of Animal Gen-
omes (FAANG) data portal (https://www.fragencode.org/results.html).

Transcription factors motifs
Position weight matrices of transcription factor binding motifs were col-
lected fromtheMEMESuitemotif database76, includinghuman,mouse, and
mammalian from various sources. The motif matrix data are available at
https://meme-suite.org/meme/db/motifs.

Characterizing H3K27ac peaks
Toclassify the typeof peaks,ChIPseeker (v1.12.1)77 package implemented in
R software was utilized with the version 1.98 pig GTF file from Ensembl
database. Specifically, peaks locatedwithin the 1kilobase (kb) rangedistance
from the transcription start site (TSS) were identified as promoters, while
those located outside of this range were defined as enhancers. The identi-
fication of super-enhancers was performed using ROSE (v1.3.1)78, and
consensus super-enhancers were generated if they present in at least
3 samples using DiffBind (v2.10.0)79 package implemented in R software.
The biological coefficient of variation (BCV) calculated by edgeR (v2.2.6)80

package implemented in R software was employed to determine the var-
iation of the peaks across the samples. The tagwise dispersion for each peak
was calculated.

Identifying polyadenylated eRNA
Stringtie (v1.3.6)67 was employed to identify genes without the -e parameter
to produce a GTF file without annotated transcripts. Subsequently, genes
identified overlapping with distal intergenic and downstream peaks were
regarded as candidate enhancer RNAs (eRNAs). To confirm the identity of
eRNAs, we performed permutation tests on the annotated genes, based on
the number of eRNAs, generating 1000 permutations. Our analysis revealed
a P-value of 9.99 × 10−4 for both the exon number and length of the eRNAs.

Heritability estimates for H3K27ac peaks
We employed the GREML-LDMS-I method81,82 for heritability estimation.
For each peak, we estimated cis-heritability using variants within ±1Mb,
while trans-heritabilitywas computedusing variants located beyond±5Mb.
To summarize,wefirst calculated the segment-basedLDscorewith a 200Kb
window size. SNPs were then stratified into four groups according to LD
score quartiles. Following this, GRMs were generated for each SNP group
and utilized to estimate heritability.

Expression QTL (eQTL) mapping
The cis-eQTL analysis was conducted following the Genotype-Tissue
Expression (GTEx) project version 8 protocol83 using the wrapper script.
Raw countsmatrix and transcripts permillion (TPM) valueswere prepared,
and genes with low expression were filtered using the default parameters
“--tpm_threshold 0.1 --count_threshold 6 --sample_frac_threshold 0.2”.
After filtering, 15,509 genes were subjected to the trimmed mean of
M-values (TMM) normalization and inverse normal transformation. PEER
(probabilistic estimation of expression residuals) factors represent unmea-
sured andunknownconfounders in eQTLmapping,which canbe predicted
by PEER software (v1.3)84. The number of PEER factors was set to 45 as
recommended (as detailed at https://github.com/broadinstitute/gtex-
pipeline/tree/master/qtl). Covariates such as slaughterAge, transport-
Batch, RIN_value, gender, uniquely mapped reads, three principal com-
ponents from genotypes, and 45 PPER factors were adjusted using the
limma removeBatch-Effects function (v3.38.3)85. The modified FastQTL
(v6p)83 provided by the GTEx project was used with the parameters
“--window 1e6 --permute 1000 --maf_threshold 0.01 --ma_sample_thres-
hold 10” to scan the variants within 1Mb range from TSS and generate a
genome-wide empirical P-value threshold for each gene. The empirical P-
values were adjusted for multiple testing, and a false discovery rate (FDR)

threshold of 0.05 was used to produce a nominal threshold for each gene.
The cis-eQTL was determined by following a fine-mapping analysis for
each gene.

Trans-eQTL analysis was performed using QTLtools (v1.3.1)86 for
variants located >5Mb apart. Permutation was applied with the parameters
“--sample 1000” and the false discovery rate (FDR) was set to 0.05 to adjust
for multiple testing. The trans-eQTL with the highest level of significance
was selected for each gene in each chromosome. To determine the reliability
of the trans-eQTL mapping results, we employed a mixed linear model to
identify trans-eQTLs with the fastGWA tool87 in GCTA (v1.9.0) software.
The results showed that 99% of trans-eQTLs reach the empirical sig-
nificance threshold of 5 × 10−8, indicating the robustness of trans-eQTLs
identification. To eliminate the potential impact of the sex chromosomes,
only eQTLs from autosomes were retained.

H3K27ac quantitative trait loci (acQTLs) mapping
The main analysis was similar to that of eQTLs mapping, and the 90,991
consensus peaks were further utilized asmolecular phenotypes. Raw counts
matrix and fragment per million (FPM, similar to TPM from RNA) values
were prepared, and 90,991 peaks were retained with parameters
“--tpm_threshold 0.1 --count_threshold 6 --sample_frac_threshold 0.2”.
Similar to eQTLmapping, PEER factors were predicted based on H3K27ac
signals and thenumber of factorswas also set to 45. Subsequently, covariates
such as slaughterAge, transportBatch, gender, uniquelymapped reads, three
principal components from genotypes, and 45 PPER factors were adjusted.
Cis-acQTL analysis was performed using FastQTL and all variants within a
1Mb distance from the first base of peaks were utilized. For trans-acQTL
analysis, QTLtools were used and all variants outside of the 5Mb distance
were included. Also, only autosomal acQTLs were kept. FastGWA tool
further confirmed 99% of trans-acQTLs.

Fine-mapping analysis
The CAVIAR (v2.2)88 software was employed for the fine-mapping of
variation signals. CAVIAR utilized both the correlation statistical results
and the LD information tomodel and infer the posterior probabilities (PPs)
that a variant was causal. The variants were ranked based on their PPs given
by CAVIAR in descending order, and the variant sets with cumulative PPs
no larger than 0.95 were considered credible variants. To represent a cis-
QTL, the variant with the highest PPs was chosen.

Allelic imbalance analysis of acQTLs
Only acQTLs that were located within the target peaks and had PPs
exceeding 0.9 were included. For raw sequencing data for H3K27ac ChIP-
seq from other studies, Platypus software was utilized to genotype variants.
To mitigate the effects of mapping bias of reads, we employed the WASP
(v0.3.4) software developed by van de Geijn et al.26 to remove reads exhi-
biting allele-biased mapping. Briefly, WASP was used to flag reads that
should be remapped due to overlapping with genetic variants. The alleles of
variants were then computationally swapped, and the reads were remapped
to determine if they would still be aligned to the original location. After
alleles swap, reads with unchanged mapping genome positions were
retained. Heterozygous individuals were selected for each acQTL, and the
ASEReadCounter89 function from the Genome Analysis Toolkit (GATK,
v.4.2) was employed to quantify allele coverage. Further comparison ana-
lysis between the reference and alternative alleles was conducted only on
acQTLs that had aminimum of 8 supporting reads and were observed in at
least 3 heterozygous individuals.

Distribution of QTLs
The genomic distribution of all genome variants was analyzed using
ChIPseeker package. The variants were classified into seven types based on
their location, including 3’UTR, 5’UTR, distal intergenic, exon, intron,
promoter peak, and enhancer peak. Cis-QTLs were grouped according to
different posterior probability intervals. Cis-acQTLs were further sub-
divided into two groups, based on their associationwith either the promoter
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or enhancer H3K27ac signals, referred to as promoter-acQTLs and
enhancer-acQTLs. The ratio of the seven variant types was calculated for
each group, and the fold change values were calculated as the ratio of cis-
QTLs divided by the ratio of all variants.

Physical contact region enrichment analysis
We obtained an interaction matrix from Hi-C with a 40 Kb window size
from the pig liver28 and filtered the interaction bins to include only those
with at least 3 supporting contact reads.To avoid confounding effects arising
from lowcontact betweendifferent chromosomes,we restricted our analysis
to include only acQTLs and target peaks residing on the same chromosome.
We calculated the number of contacted bins encompassing acQTLs and
target peaks.We then separated all the contact bins into twogroupsbasedon
distance, i.e., ≤1Mb and ≥5Mb, and treated them as control pairs. Finally,
we performed a hypergeometric test for both groups.

Transcription factor prediction
Only acQTLs that were located within target peaks were considered. The
primary methodology was derived from a prior study90. The process
involved extraction of the acQTLs with surrounding 25 bp sequences and
utilizing FIMO (v4.11.2)91 with parameter “—bfile --uniform-- --norc
--max-strand” to predict TFBS (transcription factor binding site) on both
the reference and alternative sequences. Motif PWMs of TFs from human
andmouseweredownloaded from theMEMEsuitewebsite92. The impact of
acQTLs on TF binding was categorized as either perturbation in binding
affinity or loss/gain of binding.

Estimating sharing of QTLs
To estimate how QTLs are shared between the H3K27ac levels at the pro-
moter and corresponding gene expression, we utilized the π1 statistic
(qvalue)93. In essence, we selected genes with H3K27ac signals in the pro-
moter region that had corresponding acQTLs, calculated the association P-
value between the promoter-acQTL and gene expression, and estimated the
enrichment of low P-value via π1 estimation. We repeated the same pro-
cedure in reverse.

Variance decomposition of gene expression
We employed a linear mixed model from LIMIX (v2.0.4) to investigate the
contributions of genome variation and H3K27ac to gene expression
variability94,95. The model is as follows:

y ¼ Nð1μ; σ2l Kl þ σ2gKg þ σ2hKh þ σ2e IÞ

Where y represents the gene expression levels across all samples, 1μ
represents anoffset term,Kl is relatednessmatrixbuilt by cis genetic variants
or H3K27ac signals, Kg represents a relationship matrix considering all
variants and σ2e I is the noise term. Kh represents expression heterogeneity
and was calculated using the equation Kh = (1/G)ZZT , in which Z is the
N ×Ggene expressionmatrix forN samples andGgenes. Subsequently, the
proportion of gene expression variability explained by genetic variants or
H3K27ac signals was calculated as follows:

h ¼ σ2l
σ2l þ σ2g þ σ2h þ σ2e

In brief, themain variance component considered genetic variants and
H3K27ac in our study. Firstly, only the genome variants orH3K27acwithin
1Mb from the gene body were considered independently in the model and
the proportion of expression variance explained by them was computed.
Next, a jointmodel across genome variantswithin 100 kb ofH3K27ac peaks
and H3K27ac was performed to account for the impact of variants, and the
variance explained by H3K27ac alone was calculated.

Causal inference for H3K27ac and gene expression
We employed the Intersection-Union Test33 to infer the causal relationship
between H3K27ac and gene expression, taking into account genetic infor-
mation. The causal inference test (CIT) is a mediation-based method
introduced by Millstein et al.33, which examines the hypothesis that a
potential causal mediator (G, such as H3K27ac signal) mediates a causal
association between a genetic locus (L) and a quantitative trait (T, such as
gene expression). Causality (from genetic variants to the mediator to the
trait) can be inferred if four conditions are met:
(1) L and G are associated
(2) L and T are associated
(3) L is associated with G, given T
(4) L is independent of T, given G

A total of 1900 candidate L/G/T trios meeting the first two condi-
tions, obtained from peak-gene colocalization analysis, were used for CIT,
which can test the strength of a chain ofmathematical conditions that as a
set are consistent with causal mediation. The Intersection-Union Test
framework33 is used to compute an omnibus P-value for the suite of
conditions that would function as CIT. For each particular trio with
genotype and gene/H3K27ac levels, CIT outputs omnibus P-values of a
causal model (genetic variants → H3K27ac signals → gene expression;
pCausalCIT) and a reactivemodel (genetic variants→ gene expression→
H3K27ac signals; pReactiveCIT), which represent thehighestP-value (i.e.,
minimal significance) among the four component tests. The CIT pre-
dicted casual direction when pCausalCIT <0.05 and pReactiveCIT >0.05
(Type1), and reactive direction when pCausalCIT >0.05 and pRe-
activeCIT <0.05 (Type2). Trios with pCausalCIT >0.05 and pReactiveCIT
>0.05 were considered independent (Type3). The CIT makes no call if
pCausalCIT <0.05 and pReactiveCIT <0.05 (Type0).

Genome-wide association study
The metabolites of pig liver were derived from existing databases of our
laboratory. In general, metabolite levels were determined with Ultra-
performance liquid chromatography (UPLC) and analyzed with Analyst
1.6.3 software. Covariates for metabolites, such as slaughterAge, trans-
portBatch, and gender, were adjusted using the lm() function implemented
R program. The simple linear mixed model from Genome-wide Efficient
Mixed-Model Association (GEMMA, v.0.97)96 was employed for further
genetic association analyses.

Colocalization analyses
To search for pleiotropic effects of acQTLs, we calculated the pairwise
linkage disequilibrium (LD) score (r2) between lead variants within 500 kb
using PLINK (v1.9)64. An acQTL is considered to regulate multiple peaks if
its LD score with another acQTL is >0.8. The eQTLs were examined
identically.

To identify the peak-gene pairs, we calculated the pairwise LD score
between acQTLs and eQTLs within a 500 kb range.We obtained peak-gene
pairs if the LD score was >0.8.We employed the Bayesian test implemented
in COLOC software (v5) to assess colocalization31. All variants within
a ± 1Mb from the lead variants of eQTLs and acQTLs were intersected and
used for colocalization. The threshold of posterior probabilities of H4
(Association with H3K27ac peaks and gene expression, one shared genetic
variant) (PP4) was set to 0.8.

Integration analysis utilizing published GWAS variants from the
ISwine dataset
All GWAS variants for pig phenotypes were obtained from the ISwine
dataset44 (http://iswine.iomics.pro/). The eleven categories of phenotypes
were as follows: behavioral, blood, disease, exterior, fat, growth, meat,
muscle, physiochemical, reproduction, and slaughter.We removed variants
located on sex chromosomes, resulting in 15,622 GWAS variants for 498
phenotypes. In addition, LD scoreswere calculatedbetweenGWASvariants
and eQTLs/acQTLs of peak-gene pairs derived from colocalization analysis.
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Phenotypes were linked to genes or peaks with an LD score threshold of 0.8,
resulting in 297 GWAS variants for 64 phenotypes.

Statistics and reproducibility
Thorough descriptions of the statistical analyses applied in this study are
provided in the respective sections ofMethods.We utilized 292 samples for
peak calling, 256 samples for gene identification, and 321 samples for
GWAS. To determine the statistical significance of QTLs associated with
peak activity or gene expression, we performed linear regression tests fol-
lowed by permutation testing using the QTLtools/FastQTLs software suite.
H3K27acChIP-seqdata from24pig liver sampleswere obtained from three
independent studies to perform allelic imbalance analysis. To validate
acQTLs, t-tests comparing read coverage between alternative and reference
alleles were performed, with the resulting P-values used to assess statistical
significance. The colocalization among different molecular phenotypes was
determinedby linkagedisequilibriumscore, aswell as posteriorprobabilities
of H4 from Coloc software. Spearman’s correlation was utilized for testing
the correlation among different molecular phenotypes.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All RNA-seq data and ChIP-seq data were publicly available in the GSA
database under accession numbers CRA014924, CRA014923 and
CRA014930.All genotype datawere publicly available at theGVM20. Source
data for graphs and charts were available at Figshare (https://doi.org/10.
6084/m9.figshare.25239307.v1)97. GWAS results for the metabolism of
phosphatidylcholine (PC) (16:0/16:0) anddulcitolwere available at Figshare
(https://doi.org/10.6084/m9.figshare.25264963.v1)98.

Code availability
The codes for ChIP-seq analysis, RNA-seq analysis, Peak calling, QTL
mapping, WASP mapping, Variance decomposition and Casual inference
are available from the GitHub repository (https://github.com/lingziqi8278/
pig-omics-project/)99.
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