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Mitochondria are the main suppliers of energy for cells and their bioenergetic function is regulated by
mitochondrial dynamics: the constant changes inmitochondria size, shape, andcristaemorphology to
secure cell homeostasis. Although changes inmitochondrial function are implicated in awide range of
diseases, our understanding is challenged by a lack of reliableways to extract spatial features from the
cristae, thedetailed visualization ofwhich requires electronmicroscopy (EM). Here,wepresent a semi-
automatic method for the segmentation, 3D reconstruction, and shape analysis of mitochondria,
cristae, and intracristal spaces based on 2DEM images of themurine hippocampus.We show that our
method provides amore accurate characterization ofmitochondrial ultrastructure in 3D than common
2D approaches and propose an operational index of mitochondria’s internal organization. With an
improved consistency of 3D shape analysis and a decrease in the workload needed for large-scale
analysis, we speculate that this tool will help increase our understanding of mitochondrial dynamics in
health and disease.

Mitochondria are the main producers of adenosine triphosphate (ATP) via
oxidative phosphorylation in eukaryotic cells. Consequently, the study of
their function is relevant in a plethora of diseases.While functional analysis
of mitochondria can be performed on fresh, untreated tissue1,2 it is not
applicable to preserved specimens. To this end, mitochondrial function is
thought to be closely linked to its structural characteristics. Specifically, the
electron transport chain is located in the mitochondrial crista membrane
(CM) (Fig. 1).Morphological features thatmay relate to function include (i)
CM surface area, which we speculate could scale with the capacity for
respiratory ATP production, and (ii) crista shape, as the assembly and
stability of electron transport chain complexes depend on it3. In particular,
high localCMcurvaturenear complexV (ATPsynthase)may facilitateATP
production4–6. Dimerized complex V imposes local curvature4,7,8, whereas
loss of dimerization results in wider cristae with blunt apices9. In vitro, the
degree of oligomerization was found to be higher in respiratory- than in
glycolytic cells6. Methods to reliably extract cristae properties could thus
potentially narrow the gap between structure and function.

The majority of previous and current studies demonstrating mito-
chondrial ultrastructure have used manual annotations on electron
microscopical and -tomographical sections. This approach is labor inten-
sive, typically restricting analyses to a limited number of mitochondria.
Most often subsequent evaluation of crista properties has beenperformed in
2D9–12 and the validity of generalizations to 3D is questionable. Fortunately,
studies of mitochondria and cristae in 3D based onmanual reconstructions
of individual mitochondria have also been performed for decades13–17.
Mendelsohn et al. evaluated 12mitochondria and within this small sample,
the volume estimates varied by almost an order ofmagnitude15 highlighting
the importance of analyzing a larger population to ensure a representative
sample. This becomes evenmore important for the dynamicmitochondrial
cristae18–21.

For large-scale analysis of mitochondria and cristae in 3D to be rea-
listic, an automated approach is highly desirable. Recent advances in
machine learning have made large-scale automatic segmentation of mito-
chondria feasible22,23 but until now, such automated tools have not allowed
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segmentation and analysis of the structures most intimately connected to
mitochondrial function: the cristae. There may be several reasons for this.
First, there is a scarcity of sufficiently large training datasets to train 3D
segmentation models to identify cristae. Secondly, the distinction of cristae
from other features in gray-scale images from the electron microscope is
difficult. Thirdly, well-defined distance and curvature measures in 3D, that
can be extracted automatically, are needed. In this work, we suggest solu-
tions to the challenges, enabling large-scale analysis of mitochondria and
their cristae in 3D based on the application of machine learning.

Results
Multiplanar UNet overcomes the 3D training set barrier
Supervised machine learning models require correctly labeled data points.
For 3D segmentation models, the data points are image sub-volumes that
need to be densely annotated by experts for proper model training and
validation. This is a tedious process that involves the manual annotation of
hundreds of consecutive image slices for each sub-volume, possibly intro-
ducing a directional bias since the annotator tends to label slice-wise in a
single slicing direction. In contrast, 2Dmodels work on image slices, which
are considerably less labor-intensive to annotate, and models are often
smaller and require less data to converge. However, the 3D structural
information is lost.

To get the best from both the 2D- and 3D models, we implemented a
slightly modified version of the Multiplanar UNet24. This model is a 2D
UNet25 that segments a 3D volume bymerging 2D segmentations of images
resliced in different orientations as shown in the top left of Fig. 2. At each
voxel, the model produces several label candidates as a function of reslicing
orientation, and these aremergedby averaging thepredicted softmax scores.

We incorporated theMultiplanarUNet in an active-learning approach
to manual cristae annotation to facilitate the generation of new segmenta-
tion datasets. For details, see Image Segmentation with the Multiplanar
UNet. The final segmentation workflow is illustrated in Fig. 2.

Persistent homology allows distance and curvature
measurements in 3D
Manual analyses of cristae and their organization poses several challenges.
One is the lack of well-defined ways tomeasure relevant parameters. In the

case of distance measurements, the choice of endpoints is not well-defined
(see Fig. 3) making cross-study comparisons difficult. Even if clear defini-
tions were available, minor deviations in adherence due to limitations in
manual precision could have a large effect. Manual analyses are also often
affected by 2D limitations, because while many software tools allow rota-
tions of a 3D image volume, the interactive elements are designed in 2D for
selection accuracy, whichmay introduce ameasurement bias. Furthermore,
a large number of measurements is needed for statistical validity, and this is
not always feasible in manual analysis.

As a solution to these challenges, we used the concept of persistent
homology to provide a standardized and directionally unbiased way to
measure cristae distances and surface curvatures in 3-dimensional space.
The idea behind persistent homology26 is to use features that exist and vary
across a large parameter range to describe data that may be difficult to
describe directly since their persistence is a sign of the real signal, rather than
random effects from noise, sparseness or high dimensionality. In our case,
thepersistent features are the count curves of holes andobjects that formas a
function of the number of voxels being added to or removed from our
segmentation surface by mathematical morphology (Fig. 3). Since mor-
phology adds or removes voxels uniformly in all directions, the rate of hole
or object formation depends solely on the shape of our segmentation. This
means that it is possible to extract the features we need directly from the
count curves, which we accomplish using the location of the maximum
count (max location) and the full-width-half-maximum (FWHM). For
more details on how this is done and the reasoning, please refer to Persistent
Homology.

Gross mitochondria morphology
For the mitochondria fully contained in the dataset, we found the mean
volume to be 0.048 ± 0.059 μm3, where the uncertainty is given by the
standard deviation (std). The median mitochondrial volume is lower at
0.031 ± 0.017 μm3, where the uncertainty is given as the median absolution
deviation (mad). The mean mitochondrial surface area was found to be
0.86 ± 0.92 μm2, and themedianmitochondrial surface area is again lower at
0.61 ± 0.30 μm2. Volume and surface area distributions are shown together
with their correlation in Fig. 4. The mitochondrial volume and surface area
show a near-perfect linear relationship with a Pearson correlation value of
0.98 (p = 6.9 × 10−258).

Cristae morphology and organization
The mean and median volumes of the intracristal space in murine hippo-
campal mitochondria were found to be 3.6 × 106 ± 4.8 × 106 nm3 and
2.2 × 106 ± 1.7 × 106 nm3, respectively (Fig. 5a). The mean and median CM
surface area facing the matrix side was 1.2 × 106 ± 1.6 × 106 nm2 and
7.9 × 105 ± 5.1 × 105 nm2 (Fig. 5b).

The intracristal volume and the CM surface area (intracristal side)
show a strong Pearson correlation of 0.99 with p = 0.0 × 100 (Fig. 5g). We
measured the crista width, defined here as theminimumdistance across the
intracristal space (CM included), using persistent homology as described in
Persistent Homology. The mean and median crista widths were
33.0 ± 10.2 nmand36.0 ± 2.0 nm, respectively (Fig. 5d).Another parameter
extracted from persistent homology, the FWHM of the count curve,
indirectly measures the relative smoothness and curvature of cristae. The
mean and median FWHM are 10.5 ± 3.4 nm and 9.5 ± 1.5 nm (Fig. 5e).
Generally, the smoother and less curved the CM is, the smaller the FWHM-
value is, see Fig. 3 and Supplementary note 1.

The mean minimum distance between CM across the matrix is
32.4 ± 23.2 nm and themedian is 28 ± 10.0 nm (Fig. 5f). This represents the
average distance between individual cristae in murine hippocampal
mitochondria.

A positive linear relationship between the volume of a mitochondrion
and the volume of its intracristal space was seen in Fig. 5h (Pearson cor-
relation of 0.96 (p = 8.5 × 10−200)). The volume of the mitochondrion,
however, has no clear correlations with the width of its cristae and the
distance between its cristae across the matrix (Fig. 5i, j). The mitochondrial

Fig. 1 | Structure of mitochondria.Mitochondria are characterized by two mem-
branes that define three functional compartments. The outer mitochondrial mem-
brane (OMM) acts as a barrier between the cytosol and the intermembrane space. The
inner mitochondrial membrane (IMM), in turn, separates the intermembrane space
from themitochondrial matrix. In doing so, the IMM forms numerous invaginations
into thematrix, themitochodrial cristae. At the base of these cristae, the crista junction
separates the IMM into crista membrane (CM) and inner boundary membrane
(IBM), respectively, of which the latter runs largely parallel to theOMM, separated by
the intermembrane space. The OMM is highly permeable to small solutes and con-
tains proteins that allow larger molecules to pass. The IMM, however, acts as a tight
diffusion barrier that only allows the passage of certain molecules via specific
transport proteins. This enables the maintenance of a proton gradient between the
intermembrane space and the matrix, which is critical for adenosine triphosphate
(ATP) synthesis in the CM. While the matrix provides enzymes for citric acid cycle
activity A, enabling the production of substrates for oxidative phosphorylation, the
CM contains the respiratory chain protein complexes B that generate the ATP29,60–62.
Graphics were in part produced by Vibe Fog Sporring.
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Fig. 2 |APipeline for segmenting cristae using theMultiplanarUNet.After drift is
corrected by image registration, 2D image slices are extracted from nine different
resliced planes. Selected image slices are annotated and fed to the UNet for training
in step a. After training completes, the UNet is used in step b to segment the
mitochondria (white), crista membrane (cyan), and intracristal space (red) in all

nine planes. The resulting 2D stacks of segmentations from the different planes are
combined using averaging, and cleaned up bymathematical morphology in step c to
produce the final 3D segmentation (see Image Segmentation with the Multiplanar
UNet). The segmentations produced by this pipeline form the basis for all sub-
sequent analyses.
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matrix has a mean and median volume of 3.5 × 107 ± 4.3 × 107 nm3 and
2.3 × 107 ± 1.2 × 107 nm3 (Fig. 5c).

Consistency between 2D and 3Dmitochondria measures
Because the ultrastructure ofmitochondria is frequently evaluated based on
2D EM images, we evaluated the correlation between 2D and 3D shape

features from mitochondria in an attempt to assess the usability of 2D
measurements. When comparing measures made on a single mitochon-
drion in 2D, the average errorwith respect to the 3Dmeasure is around 86%
for the parameters evaluated here, see Table 1. If a subset of 25, 50, or 100
mitochondria ismeasured in 2D, the average error of themean is reduced to
approximately 22%, 16 %, or 11%, respectively. Average errors for

Fig. 3 | Persistent homology standardizes shortest distance measures in mito-
chondria. a–c Some of themany possible ways tomeasure crista widths (purple) and
intercristal distances across matrix (yellow). d, e Persistent homology uses dilation
and hole counting to standardize distance measurements. As pixels are added in
dilation (red arrows), the crista membranes will move closer (dotted line) and a hole

(yellow hatching) will form and eventually disappear. In crista membranes with a
higher degree of curvature e holes will be present for more dilation rounds. This is
indicated by a larger full-width-half-maximum in count curves generated during
analysis, The max location in d and e remains the same at dilation round 2, which is
equivalent to the average half distance between crista membranes.
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individual parameters can be found in Table 1 and the results of our cor-
relation analysis are visualized in Supplementary Fig. 3. The variance of the
expected 3D value, which is equivalent to the square of the error, changes
approximately by a factor of 1

n, as should be expected by the law of large
numbers.

Discussion
We have presented a pipeline enabling semi-automatic analysis of mito-
chondrial ultrastructure in 3D from a series of electron microscopice ima-
ges. With a relatively small set of manually annotated images, automatic
segmentation of the outer mitochondrial membrane, CM, and intracristal
space from individual mitochondria was possible using the multiplanar 2D
UNet. Subsequent estimation of 3D shape parameters formitochondria and
their cristae, alongwith an assessment of the distance between cristae in 3D,
forms the basis for the evaluation of a population ofmitochondria in a tissue
of interest. The described methods are directly applicable to the study of
conditions affecting mitochondria.

Using persistent homology, it is possible to acquire estimates for crista
width (Fig. 5d) and relative curvature of the CM (Fig. 5e) in 3D. Local
curvature of the CM has been proposed to enable proton up-concentration
near complex V and to facilitate a kinetic coupling between the proton
pumps and the ATP synthase, thereby increasing the possibility for the
production of ATP4–6. In addition to the connection between complex V
dimerization and crista width9, the width might also affect the diffusion
distance for cytochrome c from the crista lumen to complex IV.Remodeling
of mitochondrial cristae occurs as part of adaptive responses to altered
energy substrate availability3,27,28 and during apoptosis3,29,30. A cell-type
independent coupling between synaptic function, CM surface area, and
crista shape has also been found16. Cristae change their configuration
dynamically through elongation or shortening and detachment from or
fusion with the inner boundary membrane13,18. They can also temporarily
fuse to form networks18–20.

Persistent homology can also provide information about inter-
cristal distance (Fig. 5f). A relatively homogenous intercristal distance
could be important for keeping the respiratory chain at a short distance
to required substrates including oxygen and adenosine diphosphate. For
the mitochondria population in a sample, the mad on the intercristal
distance indicates how well-organized the cristae are. A low mad indi-
cates that the distance between individual cristae is relatively homo-
genous across mitochondria whereas a high mad indicates
heterogeneity. Rajab et al. 2022 applied a semi-quantitative scoring
system to evaluate this31. This is time-consuming, subjective, and
requires a method for random selection of mitochondria to include in
the analysis. The ratio between the intracristal volume and the mito-
chondrion volume also provides information about the organization of

the mitochondrion. If small, it indicates that the mitochondrion has lost
its inner characteristics i.e. cristae. In Fig. 5h, a vertical line of data points
represents these mitochondria.

In addition to the evaluation of cristae, the assessment of gross mito-
chondrial morphology may give us a crude indication of tissue state.
Mitochondrial morphology is modulated by cycles of fusion and fission
events32 adapting themitochondrial network to the availability of substrates
and metabolic needs of the cell27,33. The selective fusion of mitochondria
enables transfer/sharing of organelle components32 and allows for a more
efficient energy conversion during substrate deficiency and acute oxidative
stress3,27,33. Fission is involved in the removal ofmitochondria32 and is amain
event in apoptosis34. After fission, some mitochondria daughter organelles
are depolarized targeting them for autophagy32. The shape of mitochondria
is furthermore crucial for their proper axonal transport and distribution35.
An indication of overall mitochondria shape is provided by the correlation
between volume and surface area. In the population of mitochondria
examinedhere, the relationship betweenmitochondrial volume and surface
area is linear in accordance with a previous study of mouse cerebellum15. A
curve representing the relationship between volume and surface area for a
sphere has been added to the plot (Fig. 4). In vitro, elongated mitochondria
have been shown to be spared during autophagy while more spherical
mitochondriawerenot27. If the points in the correlationplot fall on the curve
for a sphere, a plausible guess would therefore be that the mitochondria are
damaged. The curve may also help in the evaluation of data reliability. A
sphere has the smallest possible volume-to-surface area ratio so no points in
the correlation plot should fall above the curve. We have explored whether
the ratio between surface area and volume can be used as a standalone shape
descriptor to distinguish if an object (e.g. the cristamembrane) is lamellar or
cylindrical, as previously done by others15,16. We concluded mathematically
that it is not a good predictor. For more details, see Supplementary Note 2.

The frequent use of 2DEM images for evaluation ofmitochondria and
their cristae prompted us tomake a comparison of the consistency between
2D and 3D measurements. We have already mentioned the reliability of
results and analysis time as potential challenges related to 2D manual
measurements (Introduction). An additional consideration relates to the
characteristics of the tissue and region under study. If rotational invariance
is present in the tissue,meaning that the distribution of size, orientation, and
shape of objects is independent of the direction of imaging planes, thenvalid
information can be obtained from 2D if enough images are analysed. In
other words, if 2D images are acquired in a random orientation through a
tissue, the mitochondria profiles available for analysis in the images should
represent all sizes, orientations, and shapes of mitochondria in that tissue
(see alsofig. 10 in36). Formanybiological tissues, however, this is not the case
and here it becomes important to use 3D shape for analysis as opposed to
profiles from 2D slices.

Fig. 4 | Morphology of mitochondria. The distribution of volumes a and surface
areas b of mitochondria in 3D are shown for the full dataset. Please note that the
counts and bin boundaries are computed on log-transformed values. The correlation

betweenmitochondrial surface area and volume is almost perfectly linear. The curve
represents the relationship between surface area and volume for a sphere c. mad
median absolute deviation, std standard deviation.
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From (Table 1) it can be seen that the average expected error of a 3D
parameter based on a related 2D parameter depends on the number of
random 2D profiles analysed. For a subset of 100 mitochondria, the 3D
parameters evaluated in our dataset can be estimated based on 2D mea-
surementswith an average error (imprecision) of around 11%. If the average
expected error in other datasets is similar, this means that for group com-
parisons, the mean difference between groups needs to be at least 22% to be
detectable from 2Dmeasurements. On top of this technical variation comes
the biological variation.Whether a lower detection limit of 22%difference is
sufficiently precise and biologically meaningful is study dependent. Further
increasing the subset ofmitochondria analysedwill continue to decrease the
error following a power law function. Simultaneously, there is an increase in
the required workload and a need for very stringent rules to make mea-
surements on different profiles consistent. Even then, it is our opinion that
conclusions should be made carefully as minimal deviations in measure-
ment precision can have a substantial impact on results, when the objects

measured are as small as the mitochondrial cristae. Finally, if 2D mea-
surements are made, a practical assessment of whether the requirement of
rotational invariance is fulfilled is needed. From the evaluation of the dis-
tributions of shape parameters for mitochondria estimated in 3D in this
study, we saw that the majority of the parameters have a mean that is
significantly higher than the median. This suggests that a few extreme
outliers are affecting themean but due to the considerable sample sizemade
feasible with semi-automatic detection, it is possible to identify them as
outliers.A similar assessment in 2Dwould require a considerable numberof
manual annotations.

The 2D Multiplanar UNet, we have used here, has the advantage of
needing only a limited amount ofmanually annotated images to train. It has
a performance (SupplementaryNote 3) comparable to current state-of-the-
art 3D models for segmenting mitochondria37 and is less labor intensive.
Various 3D models have been tested on mitochondria from the same
dataset22, that was used here, and F1 scores between 0.901 and 0.947 were

Fig. 5 | Morphology and organization of cristae. The distribution of total volumes
of the intracristal space a and surface areas of mitochondrial cristae b in 3D are
presented. Distributions of average crista half-widths d, cristae curvature/roughness
e, and average half-distances between cristae across the matrix f in 3D are also
shown. The distribution of volumes of the mitochondrial matrix is given in c. The
correlations between cristae surface area (intracristal side) and intracristal volume
are almost perfectly linear g. A positive linear relationship between the volumes of
mitochondria and their intracristal spaces is also visible h. No clear relationship is
detected between mitochondria volume and cristae width i or intercristal distance j.

Please note that the counts and bin boundaries in histograms are computed on log-
transformed values to better visualize the data, as the untransformed data are highly
left skewed. For 32 out of 360 mitochondria, it was not possible to detect the inner
mitochondria membrane. In subfigure h this results in the vertically scattered data
points near the origin. Since the segmentation of these mitochondria does not seem
to be erroneous, the data points are included in the scatter plot. The sample sizes vary
for plots due to the differences in inclusion criteria for the parameters. CM crista
membrane, FWHM full-width-half-maximum, mad median absolute deviation, std
standard deviation.
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reported, against ours at 0.929 (supplementary table 2). For the segmenta-
tion of cristamembrane and intracristal space, since as far as we know there
is no densely annotated 3D volume available for testing, we cannot
empirically evaluate the relative performance of the models. We speculate
that theywould be at similar level,with 3Dmodels having a slight edge at the
expense of needing exponentially more dense manual annotations in 3D.
This is because 3Dmodels can learn directly using an explicit view of the 3D
structure, whereas 2D multiplanar models infer the 3D structure implicitly
from multiple views. We suspect this may have a slightly larger effect on
small structures like the crista membrane and intracristal space. Gross
mitochondrial shape parameters in rodent brain15,16,22, and crista width
based on manual reconstruction in rat- and chick nervous tissue, and Hela
cells13,14,18, have previously been estimated in 3D.Our results (Figs. 4 and 5d)
are in line with the previous findings. Our measure of intercristal distance
(Fig. 5f) deviates fromapreviousfinding inHela cells (2D)38. It is unknown if
the discrepancy stems from species- and tissue variation, methodological
differences, or 2D to 3D discrepancy.

The internal organization of mitochondria is increasingly being eval-
uated, and focus onmitochondrial cristae changes in the study of disease has
been seen in different research fields10,31,39. Cristae have been shown to
increase in width and have more rounded apices under hypoxic conditions
in vitro40 and in patients with the oxidative phosphorylation disease Leigh
syndrome9.

Gomes et al. observed a connection between the elongation of mito-
chondria and increased cristae density during starvation (2D, in vitro and
in vivo)27, altered organization of cristae have been shown in ovarian cancer
(2D, in vitro)41, non-small cell lung cancer (2D, in vitro)42, and after cerebral
ischemia (2D, in vitro)10, and ischemic stroke resulted in a loose, hetero-
geneous organization of cristae (2D, in vivo)10. The changes are most likely
related to the pathological conditions as combining results about gross
mitochondrial volume with information about internal distances in our
sample suggests that the organizationof the innermitochondrialmembrane
is independent ofmitochondria size (Fig. 5i, j), which suggest that pattern of
cristae of comparable width is merely repeated more times in large mito-
chondria. Additional experiments are needed to determine if this is general
for normal tissue. Even though there may be challenges with the inter-
pretation of 2D analyses, the results by others presented here indicate the
relevance of examining a spectrum of mitochondria of different sizes in
disease and this is feasible with the methods described here.

A limitation to our analyses is that only mitochondria, where it is
possible to segment cristae, canbe included.The subpopulationwhere this is
not possiblemay be of poorer quality due to organelle degradation, itmay be
an issue related to tissueprocessing, or a combinationof the two.To evaluate
the potential impact of this undesired selection, we suggest always assessing

the fraction of the whole which thesemitochondria constitute. In our study,
9% of the evaluatedmitochondria were of this type. An additional challenge
is that mitochondria gross shape parameters are affected by cellular
location13,23,43. Separating mitochondria into subpopulations depending on
location for example in the cell soma or in processes requires larger 3D
volumes with concomitant increased imaging times and data amounts.
Thirdly, individual mitochondria with touching membranes may be seg-
mented as one. This potentially complicates the distinction between indi-
vidual mitochondria and an interconnected network. However, with
increasing sample size the impact of this error decreases. Moreover, it is
always possible to go back and evaluate the raw images. Lastly, cristae shape
is dependent on phylogenetic group17,44–46, species46, and tissue type46.
Within the same tissue, the crista shape can vary with age46 and metabolic
demand. In addition to natural shape variations, disease mediated changes
in morphology occur. Our model was trained on mitochondria from the
normal murine hippocampus. We expect the model to perform well on
mitochondria with similar topology independent of origin. With markedly
altered crista morphology, the requirement for ground truth data (i.e.
manual annotations) and necessity of model retraining will increase.

For the future, we would like to find ways to reduce the workload for
the end user even further, e.g., by exploring studies on uncertainty and
diversity for annotation efficiency37,47,48. Another matter worth looking into
is the segmentation performance when the mitochondria are more densely
packed and touching. In our image volume, irrelevantly few mitochondria
were inseparable, but the instantiation task may be more challenging for
other datasets. In this case, modeling the outer and inner mitochondrial
membranes separately may help. In addition, we are investigating whether
themethodcanbe successfully usedonEMvolumeswith anisotropic voxels,
i.e., differences in axial resolution, making the method compatible with a
variety of imaging modalities. It is of great interest to apply our model to
samples from different tissues, metabolic environments, and disease states
to deepen our knowledge about the correlation between shape variations in
cristae and mitochondria function. To strengthen the results from the
ultrastructural analyses, they can be combined with an evaluation of
mitochondrial function, e.g., via an analysis of glycolytic and aerobic
metabolism1. Changes in ultrastructure may also be evaluated further using
molecular biological analyses of important components in cristae assembly.

In conclusion, we provide a method for detailed analysis of mito-
chondrial ultrastructure in 3D based on a deep learning algorithm. From a
limited amount of images with manually annotated ground truth data, we
were able to reliably segment themitochondria and their cristae. From these
segmentations, we extracted information about crista surface area, volume,
and shape. Furthermore, with the persistent homologymethod, introduced
in this article,we derived statistical summary information about the internal
organization of the cristae. Our new method is not restricted to cristae
structures but can be applied to any other tubular shape.

Methods
In this work, we have employed a standard deep-neural network for seg-
menting the images, estimated standard geometric object features, used a
topology measure to characterize long-range object relations, and investi-
gated the relationship between parameters estimated from 2D slices and
measured in 3D, respectively. All of this will be detailed in the following.

The images used in this study were acquired by Graham Knott and
Marco Cantoni from École Polytechnique Fédérale de Lausanne and are
available from49: A 5-micrometer-cubed volume from cornu ammonis 1 in
hippocampus from a mouse brain was imaged using Focused Ion Beam
Scanning Electron Microscopy, and the mitochondria in two sub-volumes
were annotated by experts. The image volume is 1065 × 2048 × 1536 voxel3,
and the sub-volumes are 165 × 1024 × 768 voxel3. Voxel size is approxi-
mately 5 × 5 × 5 nanometer3. The original images show a small drift, hence,
we performed image registration using vesicle-based drift correction50.
Examples of the data togetherwith the initial segmentation ofmitochondria
are shown in Fig. 2. To access the registered images and the annotated sub-
volumes, please refer to Data availability.

Table 1 | The average expected error of a 3Dparameter given a
related 2Dparameter estimated froma randomly chosen slice
of a randomly chosen mitochondrion

Parameter n = 1 n = 25 n = 50 n = 100

Mitochondrial Volume 85.01% 22.15% 15.71% 11.27%

Mitochondrial Sur-
face Area

83.28% 19.49% 13.82% 9.97%

Intracristal Volume 86.10% 23.20% 17.13% 12.06%

Cristae Surface Area 88.12% 23.01% 15.92% 11.49%

Rows give the Mitochondrial and Intracristal Volume in 3D as compared to corresponding 2D
sectional areas, andMitochondrial andCristal SurfaceArea in 3Das compared to corresponding 2D
sectional circumference. Columns give the number of randomly selected mitochondria used for
each estimate. E.g., when estimating the functional relation between the trueMitochondrial Volume
V and the corresponding 2D area A from 25 randomly chosen mitochondria, we assume a condi-
tional normal distribution P(V∣A) =N(μV (A), σV (A)) and estimate σV ðAÞ

μV ðAÞ ¼ 22:15%. This means that an
estimation of the averagemitochondrial volume based onmeasurement of 2D cross-sectional area
on a single random slice through each of 25 random mitochondria can be expected to be 22.15%
erroneous. Please refer to 2D to 3D relationships for details and in particular Supplementary Fig. 3
which shows the corresponding μ and σ curves.
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Image segmentation with the multiplanar UNet
All segmentations in this study were done using a modified version of the
Multiplanar UNet24. The idea is that by merging 2D segmentation results
from multiple planes at different angles, we can compensate for the loss of
3D information in 2D because structures not seen in one plane will most
likely be visible in another plane. Further, since the core segmentationmodel
is 2D, we can avoid having to annotate the ground truthmasks in 3D,which
is a labor-intensive task. To maximize the field of view for better 3D cov-
erage, while minimizing the number of planes for computational efficiency,
we used nine planes angled at 45 degrees to each other (Fig. 2).

We extended the original annotation of mitochondria in the 2 sub-
volumes supplied by49 with our annotation of the CMand intracristal space.
We used an active learning approach, iterating the following steps to build
up a dataset of 150 image slices: Step 1 - Select a few 256 × 256 pixel image
slices from the image volume. In the first iteration, this would be random
slices from random planes. In all subsequent iterations, the slices can either
be random(like thefirst iteration) or be chosen fromplaceswhere themodel
didn’t work very well; Step 2 -Manually label or correct the CM in the cyan
channel and the intracristal space enclosed by them in the red channel; Step
3 - Train a multi-class multiplanar 2D UNet, initialized with weights from
themitochondria segmentation task for transfer learning; Step 4 -Apply the
multi-class multiplanar 2D UNet in a multi-planar fashion to acquire 3D
results. Themergingof results fromdifferent planes is achievedby averaging
the predicted softmax scores; Step 5 - Repeat all steps until segmentation
quality is sufficiently good.

The final model for CM and intracristal space was trained on the
150 selected slices chosen using the multiplanar active learning approach
described above, where 80% was used for training and 20% for validation.
Image augmentation consisting of translation, rotation, shearing, intensity
adjustment, and noise introduction was actively applied to the training set.
The augmentation parameters were chosen after extensive visual inspection
of examples to make sure they are realistic and possible. The validation set
was also augmented but only once to ensure each epoch is validated on the
same data. The validation set also excluded intensity and noise augmenta-
tions to ensure we only validate on variations of real images without syn-
thetic intensity values. Model optimization was done using the ADAM
optimizer on Intersection overUnion (IOU) loss. This is important because
of the extremely unbalanced class ratio in favor of the background. To
achieve efficient training speed and optimize performance, an adaptive
learning rate was used, where we reduced the learning rate by a factor of 3 if
the validation loss did not improve for 5 epochs, starting with learning rate
0.0001. The trainingwas stopped early if the validation loss did not decrease
for 25 epochs.

The segmentation results were binarized and cleaned up before per-
forming any analysis. This included filling in the holes between the intra-
cristal space and crista membrane by amaximum size threshold and binary
openings to remove segmentation noise for the mitochondria. Mitochon-
dria touching the boundary of the image volume, and mitochondria with a
volume smaller than 253 voxel3, were excluded from the analysis. The per-
formance of our segmentation model was evaluated using 5-fold cross-
validation (see Supplementary Note 3 and Supplementary Fig. 2).

The segmentation model can be extended to other datasets by
repeating the active learning procedure described above either by fine-
tuning or re-training from scratch as the user sees fit.

Computation of basic shape measures
All shape measures were computed on a mitochondrion bymitochondrion
basis and the results were collected as distributions of values. To link indi-
vidual mitochondria with their respective CM and intracristal spaces, the
mask from connected-component analysis on the mitochondria segmen-
tation was multiplied with the segmentation of CM and intracristal space,
respectively.

The volume is a measure of object size. Since our segmentation results
are binary images, where the foreground is 1 and the background is 0, the

volume is a summation of every voxel value (assuming the object has been
isolated).

The volume unit can be converted to real-world measurement by
multiplying with the image resolution (here 125 nm3). In this study, we
measured themitochondrion volume, the intracristal space volume, and the
matrix volume, the latter of which is defined as:

matrix volume ¼ mitochondrion volume� cristae membrane volume

�intracristal space volume

ð1Þ

for each object.
To calculate the surface area of an object, the segmentation volumewas

initially converted to a triangularmesh usingmarching cubes. The output of
the algorithm contains a list of all vertices (with coordinate values) and all
the triangular faces (made up of the vertex indices). The total surface area of
the object is then the sum of the surface areas of the faces:

surface area ¼ sum of face areasðmarching cubesðobject ÞÞ ð2Þ

In this study, we measured the surface areas of the mitochondria, the
intracristal space, and the CM (facing the matrix).

Persistent homology
In this paper, we combined persistent homology and image analysis. By
applying mathematical morphology to our segmentation masks and
counting the number of holes or objects that appear and disappear, we
indirectly measured object distances and relative curvatures in
3-dimensional space.

Existing implementations of mathematical-morphology-based per-
sistent homology are primarily designed to describe the distribution of
multi-dimensional point clouds. One study51 did implement a method for
calculating persistent homology of 3D image volumes at subpixel accuracy.
Here, we extend their analysis with the notion of full-width half-maximum
as an estimate of fine-scale curvature and present an alternative way of
computing persistent homology, which produces a more suitable result
structure for extracting novel and more complex features.

The twomain types ofmorphological operations used in our persistent
homology analysis were dilation and erosion which respectively enlarge or
shrink an object uniformly in all directions by adding or removing a layer of
voxels from the object’s surface. To enable measurements at subpixel
accuracy, we took a PDE approach to mathematical morphology. Starting
with the 2Dfirst-orderOsher-Sethianupwind scheme52–55, we adapt them to
3D by introducing new terms into the square root and subsequently
enforcing a value constraint between 0 and 1:

Dilation

Unþ1
i;j;k ¼Un

i;j;k þ λ max 0;Un
iþ1;j;k � Un

i;j;k

� �� �2
þ max 0;Un

i�1;j;k � Un
i;j;k

� �� �2
�

þ max 0;Un
i;jþ1;k � Un

i;j;k

� �� �2
þ max 0;Un

i;j�1;k � Un
i;j;k

� �� �2

þ max 0;Un
i;j;kþ1 � Un

i;j;k

� �� �2
þ max 0;Un

i;j;k�1 � Un
i;j;k

� �� �2
�1

2

ð3Þ

Unþ1
i;j;k ¼

0; if Unþ1
i;j;k < 0

1; if Unþ1
i;j;k > 1

Unþ1
i;j;k ; else

8>><
>>:

ð4Þ
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Erosion

Unþ1
i;j;k ¼Un

i;j;k � λ max 0;Un
i;j;k � Un

iþ1;j;k

� �� �2
þ max 0;Un

i;j;k � Un
i�1;j;k

� �� �2
�

þ max 0;Un
i;j;k � Un

i;jþ1;k

� �� �2
þ max 0;Un

i;j;k � Un
i;j�1;k

� �� �2

þ max 0;Un
i;j;k � Un

i;j;kþ1

� �� �2
þ max 0;Un

i;j;k � Un
i;j;k�1

� �� �2
�1

2

ð5Þ

Unþ1
i;j;k ¼

0; if Unþ1
i;j;k < 0

1; if Unþ1
i;j;k > 1

Unþ1
i;j;k ; else

8>><
>>:

ð6Þ

WhereUn represents the segmentationvolumeat the current timestep,Un+1

represents the segmentation volume after a single round of subpixel mor-
phology is applied toUn, and λ represents the timestep. In our case, λ = 0.1
were used. This means that 10 rounds of subpixel morphology was be
equivalent to one full round of standard mathematical morphology, and it
represents the pointwhere a single layerof voxels is either addedor removed
from the segmentation surfaces (depending on whether it is dilation or
erosion). We applied persistent homology on a mitochondrion-by-
mitochondrion basis.

Conceptually, in the case of dilation: As segmented objects are
enlarged, previously non-touching points on different objects or
different branches of the same object will eventually make contact
with each other. When this happens, holes will begin to form in the
background region and the hole count increases, see Fig. 3. As the
dilation continues, different objects or different branches of the same
object will fully merge and the holes that formed earlier will dis-
appear. The resulting count curve, therefore, acts as an indirect shape
descriptor from which information can be extracted. The equivalent
curve can be obtained by erosion and object counting.

To measure the average minimum distance between cristae across the
matrix, we performed dilation and hole counting on the sum of intracristal
space- and CM segmentations (e.g. red objects+ cyan objects in Fig. 2). For
crista width, we also used the sum of intracristal space- and CM segmen-
tation but performed erosion and object counting instead.

In all cases, each roundof subpixelmorphologyproduced anon-binary
grayscale mask valued between 0 and 1. Although this raw mask is always
the one to be used for the next round of subpixel morphology, a binarized
version with a threshold of 0.5 was needed for the counting step. For hole
counting after dilation, we first multiplied the binarized dilation mask with
the mitochondrion segmentation to ensure the dilation did not go out of
bounds. The dilation mask was then inverted before a 26-connected 3D-
connected component algorithmwas used to calculate the number of holes.
Since an extra holewill always exist in the background,we subtracted 1 from
the resulting count. Object counting after erosion works the same way,
except counted withoutmultiplying and inverting themask, andwe did not
subtract anything from the object count.

We summarized our curves using the max location and FWHM, as
measuredby the iterationnumber.Given that thedatawasdiscrete andhas a
degree of randomness, the raw count curves will be slightly jagged and
should be filtered using a Gaussian kernel. Due to noise susceptibility, the
initial five rounds of subpixel morphology, corresponding to half of a full
round of dilation/erosion, were not included when finding the max loca-
tions and their FWHM.

The max location can be interpreted as half of the average
minimum distance across the region being dilated or eroded because
an iteration having the most holes/objects implies that it is also the
iteration where most surface points make contact. The FWHM
measures the surface smoothness and curvature of the same region.
In this case, smoothness and curvature, respectively, refer to the
degree of roughness and the extent to which the surface bends, but

despite their slightly different definitions, surface smoothness, and
surface curvature are the same shape parameter but on different
scales. With rougher and more curved surfaces, the existence of more
convexities and concavities will make holes and objects appear earlier
and prolong the number of iterations it takes for them to disappear
(as a result of a full merge). See Fig. 3 for an example. See also
supplementary note 1 for a synthetic experiment illustrating the
relation between our suggested measures and shapes. The result of
this experiment is summarized in Supplementary Fig. 1 and Sup-
plementary Table 1.

To ensure numeric validity, the following filtering criteria were applied
when performing statistics on the calculated max locations and FWHMs.
For the average minimum distance between cristae across the matrix, we
required the presence of cristae membrane and that there must exist dif-
ferent branches, folds, or instances of cristae membrane to measure
against. In technical terms, we only included results computed from count
curves with a maximum hole count ≥1. For crista width, we required that
both the intracristal space volume and the cristae membrane volume be
larger than 0.

Alternatives to persistent homology include methods that seek the
largest contained sphere inside objects56–58 and where a larger sphere
dominates neighboring and overlapping smaller spheres, and thus, statistics
on object widths and internal distances will be biased towards larger values.
TheM-repmethodology represents 3-dimensional objects as 2-dimensional
sheets defined by the collection of centers of spheres and their radii which
hasfirst or higher-order contactwith the boundary in at least twoplaces59. A
calculation of the average widths can be done using Riemannian geometry
on the 2-dimensional sheets. M-reps do not have the larger sphere bias but
are considerably more complex to use than ourmethod based on persistent
homology.

2D to 3D relationships
Initially, the connected components of our mitochondria segmentation
were used to extract the 3D sub-volume for each mitochondrion. Random
image slices were then sampled from the nine predefined planes orientated
at 45 degrees fromeachother tomaximize data variability, see Fig. 2. The 2D
perimeters and 2D cross-sectional areas ofmitochondria were subsequently
computed from the image slices and paired against their corresponding 3D
surface areas and 3D volumes for further analysis. The comparison was
made for varying sample sizes ranging from n = 1, which is equivalent to a
direct single-data point comparison, to n = 100, where a comparison is
made between the 2D and 3D averages of 100 data points. To ensure
statistical reliability, 10,000 subsets of matching data points were randomly
generated for each sample size tested.

Given a series of 2D parametric values and their 3D equivalents,
we estimated the mapping function from 2D to 3D by first plotting
the 2D values against the 3D values on a scatter plot, and then slided
a window of size ω over the 2D value range on the x-axis. For each
step of the moving window, we calculated the mean and std using the
3D values contained within the window. The mean is the expected
3D value for a given 2D value range and the std is the corresponding
upper and lower bound: mean ± std. Since the parameters cannot be
negative, all negative lower bounds were set to 0. To eliminate noise
caused by data sparsity at the higher end of 2D values, we terminated
the sliding window when it contained less than 10 data points. The
size ω should be adjusted based on the scale of the 2D values, and we
found empirically that ω ¼ 0:025 �maxð 2D values Þ works well.

The degree of correlation between 2D and 3D shape parameters can be
summarized by computing the average error for approximated mapping
functions:

average error ¼ 1
T
�
XT
t¼1

upper boundt þ lower boundt
2 �meant

� �
ð7Þ

where T is the total number of windows and t is the window index.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The dataset is available from the website of École polytechnique fédérale de
Lausanne (EPFL): https://www.epfl.ch/labs/cvlab/data/data-em/. A zip
folder containing our cristae annotations can be found at: https://erda.ku.
dk/workgroup/dikuUltrastructures/UCPH_IMAGE_cristae_dataset.zip.
The source data behind Figs. 4 and 5 in the paper can be found in Sup-
plementary Data 1. All other data are available from the corresponding
author (or other applicable sources) on reasonable request.

Code availability
The code for this paper can be found at:

•https://qim.dk/portfolio-items/3d-shape-analysis-using-persistent-
homology/

•https://erda.ku.dk/workgroup/dikuUltrastructures/UCPH_IMAGE_
persistent_homology.zip63 (alternative link)

The implementation is done in Python 3with the help of the following
major packages: TensorFlow 2/Keras, SciPy, NumPy, CC3D, OpenCV,
Matplotlib, scikit-image and scikit-learn.
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