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Pan-cancer analyses suggest kindlin-
associated global mechanochemical
alterations

Check for updates
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Simran Wadan2, Soham Chakraborty2 & Shubhasis Haldar 1,2,3

Kindlins serve as mechanosensitive adapters, transducing extracellular mechanical cues to
intracellular biochemical signals and thus, their perturbations potentially lead to cancer progressions.
Despite the kindlin involvement in tumor development, understanding their genetic and
mechanochemical characteristics across different cancers remains elusive. Here, we thoroughly
examined genetic alterations in kindlins across more than 10,000 patients with 33 cancer types. Our
findings reveal cancer-specific alterations, particularly prevalent in advanced tumor stage and during
metastatic onset. We observed a significant co-alteration between kindlins and mechanochemical
proteome in various tumors through the activation of cancer-related pathways and adverse survival
outcomes. Leveraging normal mode analysis, we predicted structural consequences of cancer-
specific kindlin mutations, highlighting potential impacts on stability and downstream signaling
pathways. Our study unraveled alterations in epithelial–mesenchymal transition markers associated
with kindlin activity. This comprehensive analysis provides a resource for guiding future mechanistic
investigations and therapeutic strategies targeting the roles of kindlins in cancer treatment.

Cancer poses an ever-increasing threat and is projected to become more
dead in the coming years1,2. The severity of this multifaceted disease arises
from its ability to enable malignant cells to migrate swiftly, protrude into
tissues, invade, metastasize, and resist chemotherapy3,4. This complex
interplay of processes is influenced by numerous factors, including
mechanical forces originating from the extracellular matrix (ECM)5. These
crucial cell-ECM interactions are majorly mediated through specialized
structures known as focal adhesions as well as hemidesmosomes, dystro-
glycan complex, and syndecans, which act as mechanosensory hubs that
translate external mechanical cues into intracellular rearrangements and
chemical signals6–8. Among the myriad of proteins participating in these
intricate processes, the kindlin family of mechanosensing adapter proteins
has emerged as a crucial player9,10. The kindlin family of FERM domain-
containing proteins comprises threemembers, kindlin 1, 2, and 3, which are
encoded by the FERMT1, FERMT2, and FERMT3 genes, respectively.
Kindlins play a pivotal role in conveying extracellular signals by physically
interacting with structural proteins, receptors, and transcription factors,
ultimately triggering a cascade of chemical responses within cells11–13.

Notably, these proteins are closely linked to virtually every facet of cancer
biology, influencing tumor-microenvironment interactions, cellular meta-
bolism, cell cycle progression, transcriptional regulation, and even the
regulation of cancer stem cells14–17.

In recent years, the role of kindlins in cancer has gained attention for
twomain reasons. First, kindlins act as adapter proteins to connectmultiple
cancer-promoting pathways, in addition to their known role in integrin
activation12,13. For example, experiments have revealed that kindlin2 can
regulate Hippo signaling by modulating the nuclear localization of YAP18.
Additionally, kindlins regulate breast cancer growth andmetastasis through
theTGFβ/EGF signaling axis19. It also influences cancer cell stemness via the
Wnt/beta-catenin andHedgehogpathways20,21. Kindlin1, on theother hand,
independently regulates IL-6 secretion and hence the immune micro-
environment in breast cancer22. Cancer-specific metabolic regulation, such
as proline biosynthesis,is also governed by Kindlin216. Furthermore, all of
these kindlins are involved in growth factor induction, tumor promotion
and angiogenesis23,24. With mounting evidence supporting the involvement
of kindlin family proteins in numerous cancer-associated pathways, further
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exploration of their roles is imperative.Structural disruptions in these pro-
teins could have a global impact on mechanochemical signaling, leading to
disruptions in mechanical homeostasis25. Second, as a mechanosensitive
adapter protein, kindlin connects extracellular mechanical cues with
intracellular chemical events26. Therefore, understanding the role of kindlins
in cancer will help us decipher the intricate interplay between tumors and
their microenvironment. This approach will be crucial for developing pre-
cision therapy for cancer treatment, especially for overcoming chemore-
sistance and cancer recurrence.Given their extensive involvement in various
cancer-associated pathways, there is a compelling need to delve deeper into
the roles of kindlin family proteins in cancer. Mutations in these proteins
can significantly impact their mechanochemical signaling capabilities,
potentially disrupting global mechanical homeostasis within cells27–29.
Understanding the consequences of such genetic alterations, especially in
mechanosensitive proteins such as kindlins, is essential for unraveling the
intricate mechanisms underpinning cancer progression.

Conducting pan-cancer analysis of gene families allows for a holistic
understanding of shared genetic alterations or discerning context-specific
variations, uncovering divergent roles across cancer types and informing
targeted therapeutic strategies tailored to the unique characteristics of indi-
vidual genes within the family30,31. We also conducted a comprehensive
pancancer analysis of kindlin genes using data from the TCGA, COSMIC,
and ICGC databases across 33 cancer types (Supplementary Note 1)32–34.We
employed structural and functional genomic tools to investigate the influence
of Kindlin family proteins onmechanochemical signaling in various cancers.
Our results highlight the role of kindlins in processes related to tumor pro-
gression, metastasis, and epithelial–mesenchymal transition, suggesting that
they participate in essential mechanosensitive pathways. Furthermore, our
study suggested a potential link between kindlin dysfunction and adverse
survival outcomes.Utilizingnormalmodeanalysis (NMA),wepredictedhow
cancer-specific mutations in kindlin proteins may impact their stability and
flexibility, potentially influencing downstream signaling pathways. This
structural genomics approach establishes associations with clinical para-
meters, providing evidence for the potentialmechanochemical importance of
kindlins across diverse cancer stages and subtypes.

Results
Kindlin alterations are found across multiple cancer types
We conducted a pancancer integrative analysis of kindlin alterations using
TCGA/ICGA/COSMICdata (Supplementary Fig. 1). Three types of kindlin
family genes were significantly altered in 32 different cancer types, with
FERMT1 being the major contributor (29%), followed by FERMT2 (the
kindlin2 gene, 26%) and FERMT3 (the kindlin3 gene, 20%), for which the z
score cutoff was ±1.96 (p < 0.05). Kindin alterations can be attributed to
either the amplification of FERMT genes or changes in their mRNA
expression (Fig. 1a). Kindlin expression levels are known to be associated
with mechanically regulated cancer invasion and metastasis35,36. It is worth
considering that kindlins are differentially expressed innormal tissue. In our
sample cohort, we found that both FERMT1 were overexpressed in 11
cancer types includingCESC, LUAD, STAD, ESCA etc. but underexpressed
in 6 cancer types (Fig. 1b). FERMT3 expression is predominantly hema-
topoietic lineage specific under normal conditions. However, in cancer, it is
found to be overexpressed in KIRP, BRCA, CHOL and HNSC (Fig. 1b).
Downregulation of FERMT3 is seen lung, pancreatic, and thyroid cancers
(Fig. 1b). Interestingly, FERMT2 expression was significantly lower in the
tumors than in correspondingnormal samples except for SKCMandHNSC
(Fig. 1b). FERMT1 expression increased with increasing stage of cancer
progression in BLCA, COAD, LUSC, and STAD (Supplementary Note 2;
Supplementary Fig. 2). A stage-specific decrease in FERMT2 mRNA
expressionwasnotpronounced except in renal cancer, LUAD,orBRCA.An
increase in FERMT3 mRNA expression was associated with a significant
stage-specific increase only in renal cancer and uveal melanoma (Supple-
mentary Fig. 2). To determine whether the mRNA expression was con-
sistent with the protein abundance, we analyzed the CPTAC pancancer
proteome data from TCGA cohort by comparing tumor and tumor-

adjacent normal tissue. Kindlin1 protein expression decreases in most
cancer samples. However, kindlin3 protein expression exhibited a combi-
nation of up-and downregulation in a cancer-specific manner (Fig. 1c). To
determine the cause of these differences, we examined the expression levels
of the kindlin-associated miRNAs in cancer samples (Supplementary
Tables 1, 2, Supplementary Data 1). These results indicate that miRNA-
mediated kindlin expression occurs in a cancer-specificmanner and suggest
feedback-like looping occurs between kindlin expression and miRNA
expression. This connection of the kindlin/miRNA axis to cancer progres-
sion and chemoresistance is consistent with experimental evidence37–39.

These alterations in kindlins are related to the overall genomic
alterations in the samples (Fig. 1d(i)–1d(iv)). With increasing mutation
frequency in cancer samples, the FERMT2 and FERMT3 expression levels
increase significantly, while the FERMT1expression level shows an inverse
trend (Fig. 1d(iii)) similar to that of the MSI MANTIS score (Fig. 1d(ii)).
Conversely, the fraction of genome alterations (Fig. 1d(i)) and aneuploidy
score (Fig. 1d(iv)) were negatively correlated with FERMT2 and FERMT3
but positively correlated with FERMT1 expression.

We investigatedcopynumbervariations (CNVs) inFERMTgenes across
33 cancer types and observed that, with a few exceptions (LAML, THCA, and
PRAD), most cancers exhibitsignificant CNVs, primarily in the form of het-
erozygous alterations (Supplementary Fig. 3). Specifically, FERMT1 and
FERMT3 exhibit heterozygous amplification, while FERMT2 tends toward
heterozygous deletion. Additionally, we explored the expression of DNA
methylation, a pivotal regulator of Kindlin gene expression, in 14 cancer types
(Supplementary Fig. 4). FERMT2is hypermethylated, which is particularly
notable in KIRP. Conversely, FERMT1 generally demonstrates hypomethy-
lation across tumor types, except for prominent hypermethylation in BRCA.
Interestingly, hypermethylation of FERMT1 and FERMT2is a survival risk
marker in various cancers, including LGG, ACC, KIRC, and SARC.

To determine the correlation between kindlinmRNAexpression and
cancer prognosis, we conducted survival analysis for each kindlin in a
pancancer cohort. Elevated FERMT1 expression was associated with
significantly lower overall survival, as indicated by a hazard ratio (HR) of
1.9 (Fig. 1e(i)). Conversely, the expression of FERMT2 and FERMT3did
not appear to have a clear connection with overall survival (Fig. 1e(ii),
1e(iii)). Notably, increased FERMT2 expressionmay be linked to reduced
disease-free survival (Fig. 1f(i)–1f(iii)), suggesting a potential role in
chemoresistance or cancer recurrence, as suggested by ref. 40 Individual
cancer analyses revealedFERMT1 as a prognostic marker in PAAD
(p = 0.03, HR = 1.6) and SKCM (p < 0.001, HR = 1.7) (Supplementary
Fig. 5).A lowerFERMT2 expressionmay correlatewith reduced survival in
BLCA (p = 0.0036, HR = 1.6) and STAD (p = 0.034, HR = 1.4) patients
(Supplementary Fig. 6). FERMT3 overexpression was found to be a
prognostic factor for LAML (p = 0.001, HR = 2.5), while FERMT3
underexpressionwas found to predict the prognosis in SKCM (p = 0.0019,
HR = 1.52) (Supplementary Fig. 7).

Kindlin mutations are linked with tumor progression and
metastasis
As depicted in Fig. 2a, mutation frequencies in Kindlins were identified
across 31 cancer classes, with 15%, 14%, and 12% for FERMT1, FERMT2,
and FERMT3, respectively. Coding somatic mutations consisted of pre-
dominantly missense mutations in various cancers, followed by silent and
frameshift mutations (Fig. 2b), distributed throughout their sequences
(Fig. 2b). Notably, the FERM domain of FERMT3exhibited a notably high
mutation frequency. Moreover, FERMT2contains a mutational hotspot,
particularly within the F1 domain. Analysis of tumor stage-specific muta-
tions revealed a similar trend for all kindlins, with concentrations of
mutations occurring at tumor stages T2 and T3 indicating their impact on
tumordevelopment rather thanonset (Fig. 2c).FERMTmutationswere also
significantly more common in the metastatic M0 stage than in the later
stage, suggesting thatFERMTwas involvedbeforemetastatic onset (Fig. 2d).
We assessed the potential impact of mutations in the regulatory region on
mRNA expression by evaluating the extent of loss of function, gain of
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Fig. 1 | A comprehensive framework of various alterations in the Kindlin family
and their impact on prognostic outcomes across different cancer types.
aFrequencyofkindlinalterations inpatientswithvariouscancer types.Thecolorcodes
used in the figure correspond to different types of alterations, as visually depicted.
bHeatmaprepresentingthecomparisonofkindlinmRNAexpressionbetweennormal
and tumor samples; the expression scale is log2 (TPM+ 1); a darker color represents a
more positive mRNA expression level (paired Student’s t test p < 0.05 indicates sig-
nificance, n = 10953). ***p < 0.0005; **p < 0.005; *p < 0.05; absence of * = no sig-
nificance; paired pvalueswere obtained by Student’s t test. cHeatmap representing the
comparison of kindlin protein expression between normal and tumor samples; purple
represents overexpression, and green represents underexpression (paired Student’s t
test p < 0.05 indicates significance; n = 1272). ***p < 0.0005; **p < 0.005; *p < 0.05;
ns = not significant; paired p valueswere obtained by Student’s t test.dCorrelations of

genomic parameters with kindlin mRNA expression z scores. The parameters used
were d(i) the fraction of the genome altered, d(ii) the MSIMANTIS score, d(iii) the
tumormutation burden (TMB), andd(iv) the aneuploidyscores. Corresponding color
shadings indicate 95%CI. eKaplan‒Mayer plot of patients in the high and lowkindlin
mRNA expression sample groups according to comparative quartile (0.75–0.25) for
OS. e(i) FERMT1 (logrank p value = 0; hazard ratio = 1.9); e(ii) FERMT2 (logrank
p = 0.81; hazard ratio = 1); e(iii) FERMT3(logrank p value, 3.336 × 10–6; hazard ratio,
1.3). fKaplan–Mayerplot of the comparative quartile (0.75–0.25)disease-free survival
inthehighandlowkindlinmRNAexpressionsamplegroupsinthecaseoff(i)FERMT1
(logrankp = 0.00011;hazard ratio = 1.2); f(ii)FERMT2(logrankpvalue,3.01 × 10–10;
hazard ratio, 1.4); f(iii). FERMT3 (logrank p = 0.032; hazard ratio = 1.1). For the high
quartile, we set the cutoff at 75%, and for the lowquartile, we set the cutoff at 25%. The
dotted lines on the survival probability curves represent the 95% confidence intervals.
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function, or alteration of function compared to wild-type functionality,
inferred from recurrence and multiplicity in tumor samples41.

The majority of high-impact noncoding mutations in FERMT1 and
FERMT2 primarily stemmed from the 5’UTR and upstream sequence

(Fig. 2e). These regulatory mutations contribute to a consistent decrease in
the expression of FERMT1 and FERMT2. Moreover, FERMT3exhibited
increased expression (Fig. 2e). Furthermore, the impact of regulatory
upstream or downstream mutations across FERMT3 remains low, in
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patient samples. c, d Tumor stage-specific and metastatic stage-specific muta-
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with an inward circle indicating the number of samples per condition and an
outward circle indicating the given condition/type. The following conditions are

represented by the numbers for each track: track 1 (kindlin name): ‘FERMT1’:
0, ‘FERMT2’: 1; ‘FERMT3’: 2; track 2 (cancer type): Bladder cancer: 0; Blood
cancer: 1; Brain cancer: 2; Breast cancer: 3; Breast cancer: 4; Cervical cancer: 5;
Colon Cancer: 6; Breast cancer: 7; Endometrial cancer: 8; Gastric cancer: 9;
Head and Neck cancer: 10; Liver cancer: 11; Lung cancer: 12; Malignant
Lymphoma: 13; Oral cancer: 14; Ovarian cancer: 15; Pancreatic cancer: 16;
Pediatric Brain Tumor: 17; Prostate cancer: 18; Rectal cancer: 19; Renal cancer:
20; Renal cancer: 21; Skin cancer: 22; track 3 (mutation type): 3UTR: 0; 5UTR:
1; Downstream: 2; Exon: 3; Intron: 4; Splice Region: 5; Start Gained: 6; Start
Lost: 7; Stop Gained: 8; Stop Lost: 9; Upstream: 10; mutation impact: High:For
ease of visualization, the expression z scores are rescaled from 0 to 1. The red
line passing through the last track indicates a z score = 0. f Comparative sur-
vival time versus survival probability curve for the kindlin-mutated and non-
mutated sample cohorts. (p = 0.0003, hazard ratio = 1.932). g Comparison of
survival versus survival probability curve for patients in the different kindlin-
mutated sample cohorts. (Kruskal‒Wallis rank sum p value:
FERMT1–FERMT2, 0.0058; FERMT2–FERMT3, 0.0002;
FERMT1–FERMT3, 0.2945).
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contrast to certain start-lost, stop-lost, stop-gained, splice-region, and
intronic mutants that maintain a high impact (Fig. 2e). The Kaplan‒Meier
curve demonstrated thatFERMTmutationwas significantly associatedwith
increased survival (p = 0.0003, HR = 1.932) (Fig. 2f). Further analysis
revealed that the FERMT1 and FERMT3mutations posed almost the same
survival risk, which was greater than the FERMT2mutation-associated risk
(Kruskal‒Wallis rank sum pvalue: FERMT1-FERMT2, 0.0058; FERMT2-
FERMT3, 0.0002; FERMT1- FERMT3, 0.2945) (Fig. 2g).

Mutations affect the structure‒function dynamics of kindlins
Kindlin isoforms exhibit ~54% sequence identity and ~70% sequence
similarity, but they are structurally similar (Supplementary Fig. 8). To
study the effects of these mutations on the structural stability of kindlins,

we calculated the ΔΔG values of all the cancer-specific mutated con-
formations of all kindlin types. Since the mechanochemical activity of
kindlins comes from their domain-specific flexibility, we calculated the
change in vibrational entropy (ΔΔS) of the mutants relative to that of the
wild-type version. Our analysis revealed four different populations of
these mutants: both high flexibility and high stability (Q1), low flexibility
and high stability (Q2), both low flexibility and high stability (Q3), and
high flexibility and low stability (Q4) (Fig. 3a). We also observed a trend
toward decreasing stability with increasing flexibility (p < 2.2e-16;
σFERMT1 =−0.7470601; σFERMT2 =−0.8190608; σFERMT3 =−0.7077385)
(Fig. 3a). Furthermore,we classified themutants intofive categories—very
high, high, moderate, low, and slight—for each stabilizing and destabi-
lizing cohort (Supplementary Fig. 9, SupplementaryData 2–4).According
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flexibility. Q4, represented in blue, suggested a decrease in stability but an increase in
flexibility. Regression lines with 95% confidence intervals are displayed in gray to

further illustrate these trends. b Pancancer Kindlin mutants were categorized based
on their potential impact on functional activity using the SIFT algorithm.Mutations
with values less than 0.05 were classified as loss-of-function mutants, while the
remaining mutations were considered neutral mutants.c.Assessment of the effect of
the pancancer monomeric structural variants of kindlins on stability compared with
that of the wild type using ΔΔG values measured in kJ/mol. d Effect of pancancer
mutations on kindlin dimerization affinity compared to that of wild-type structures;
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plotted for highly stabilizing or destabilizing mutants.
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to our computational prediction with SIFT42, up to 50% cancer-specific
mutants of all kindlins might be loss-of-function or pathogenic (Fig. 3b).
Most of the loss-of-function mutants were generated from regions with
very high stability/low flexibility or very high flexibility/very low stability,
i.e., Q2 and Q4, respectively. ΔΔG analysis of multiple mutants also
revealed a common destabilizing effect for all the kindlins (Fig. 3c).

All thekindlins showed significant oligomerizationability.However, as
the oligomerization of Kindlins has not been fully elucidated43, we analyzed
both the dimeric (Fig. 3d) and trimeric (Fig. 3e) forms of Kindlins via
homology modeling. Changes in the oligomerization properties of the
mutants are also evident from the prediction of dimerization and trimer-
ization affinities. Kindlin2 significantly gained dimerization affinity in
almost all cancer-specific mutants but lost trimerization affinity in all the
othermutants (Fig. 3d, e). In contrast, kindlin3mutants exhibit more stable
trimerization but weaker dimerization than the corresponding mutants
(Fig. 3d, e). On the other hand, kindlin1 mutation had a mixed effect on
dimerization and trimerization, suggesting altered kindlin-oligomer func-
tionalities (Fig. 3d, e).

Phosphorylation is an important aspect of kindlin functionality and
has been validated experimentally at the T8 and T30 positions for kin-
dlin1; at the Y193, S159, S181, and S666 positions for kindlin2; and at the
T482 and S484 positions for kindlin344. Computational predictions
employing a support vector machine-based machinelearning algorithm
on 3D mutated structures45 indicated complete loss of the T8 and S484
mutation sites in kindlin1 and kindlin3, respectively. For FERMT2, all the
frameshift mutants showed complete loss of the Y193 and S666 phos-
phorylation sites (Supplementary Tables 3–5). These structural effects on
phosphorylation correlate with patient-specific phosphorylation levels.
According to the phosphor-proteomic tandem mass tag (TMT) data, an
overall decrease in phosphorylation was observed for all three kindlins,
unlike in FERMT2, which suggested that the elevated phosphorylation
levels (Supplementary Fig. 10) were plausibly due to altered phosphor-
ylation sites. Overall, this dysregulated phosphorylation plausibly arises
due to perturbed kinase activity on these proteins, a signature of tumor
cells46.

Kindlins coalter with their interactome to shape the global
genomic signature in cancer
Kindlin subtypes can form massive interaction networks due to their
function as adapter proteins to connect many biological processes.
Mutations in these proteins can alter their interactions, and their
interactors might also be altered in cancer samples, triggering a
synergistic effect. Hence, we evaluated the co-alterations of associated
interactors in cancer (Fig. 4a–c). The name of the physical interactors
corresponding to each kindlin, were identified from STRING and Bio-
GRID database47,48. In the FERMT1-altered samples, SKIC3 and SKI-
C2exhibited greater coalterations than did the unaltered samples (Fig. 4a).
In the sample cohort with FERMT2alterations, we found a similar pattern
of coalterations in different partners, including CTNNB1 and PFKM
(Fig. 4b). FERMT3was mostly coaltered with EXOSC10 and ILK (Fig. 4c).
Furthermore, these coalteration behaviors revealed robust mutually
exclusive alterations in all the kindlin isoforms (p value < 0.001, q < 0.001,
log2 odds ratio: FERMT1-FERMT2 > 3, FERMT2-FERMT3 = 2.77,
FERMT1-FERMT3 = 1.93).

Alterations in all of these kindlins coexist with a global genomic shift.
Differential gene expression analysis revealed that many genes were upre-
gulated by kindlin1 and kindlin3 alterations, while fewer genes were over-
expressed in the case of kindlin2 (Fig. 4d–f). On the other hand, the number
of underexpressed genes was significantly greater in the kindlin2-altered
cohort than in the kindlin1 and kindlin3-altered cohort. Interestingly, these
kindlin alterations did not result in the expression of any commonly
overexpressed genes. In contrast, 115 genes were commonly downregulated
in all three kinds of kinase alterations (Fig. 4g). Kindlin2 alterations were
associated with the most significant number of uniquely overexpressed
genes. In comparison, kindlin1 alterations were associated with the most

significant number of uniquely downregulated genes, indicating the dif-
ferential role of kindlin1 in cancer (Fig. 4g).

Alterations in kindlin levels coincided with significant changes in
crucial cancer hallmark genes (Fig. 4h). Tomeasure synergistic effects, we
introduced the concept of coalteration dynamics, which represent the
average impact of coalterations among the interacting partners in a spe-
cific biological process. For instance, we assessed the coalterations of
cancer hallmark gene sets related to kindlins, indicating the coalteration
dynamics between cancer hallmarks and kindlins. Our analysis, encom-
passing 39 hallmark genes, revealed the most pronounced coalterations
with FERMT2 (average coalteration dynamics = 14.98), followed by
FERMT1 (average coalteration dynamics = 11.08), with FERMT3 exhi-
biting the least coalteration dynamics (average coalteration dynamics =
5.35). This highlights the notable association of kindlin alterations with
cancer hallmarks, suggesting their involvement, either directly or indir-
ectly, in promoting cancer.

Kindlin-related alterations are associated with cancer hallmark
pathways
In our study, we conducted a comprehensive network analysis of Kindlins
using CancerGeneNet to explore their impact on nine crucial cancer
hallmarks49. By analyzing Kindlin1 and Kindlin2 individually, we observed
that the alterations in both were associated with essential angiogenesis-
activating pathways, such as the TGF, TNF, and VEGF signaling pathways
(Fig. 5a, b). Alterations in the expression of these two kindlins cooccur with
the inhibition of apoptosis through distinct signaling pathways, including
the YAP1, NFkβ, and FOXO pathways. Furthermore, these genes are cor-
related with the negative regulation of differentiation—Kindlin1 via the
polycomb repressor complex/MAP kinase pathway andKindlin2 through a
MYOD1-dependent mechanism (Fig. 5a, b). Kindlin2 alterations are
associated with NOTCH1 activation, possibly through enhancing differ-
entiation and cell proliferation via SRC-dependent activation of STAT-
transcription factors and RAC1 (Fig. 5b). When DNA repair was
downregulated, alterations in the expression of both kindlin genes were
positively correlated with each other, possibly through the GSK3β pathway
or TP53-mediated mechanisms (Fig. 5a, b). Both genes demonstrated
associations with promoting immortality through MYC, AKT1, SRC-
dependent mechanisms, and telomerase activation (Fig. 5a, b). In the con-
text of metastasis, Kindlin1 was correlated with the activation of the β-
catenin andMAPKpathways, while Kindlin2was correlated with β-catenin
and Ezrin activation (Fig. 5a, b). Kindlin1 exhibited a predominant negative
correlation with glycolytic pathways in a JNK-dependent manner, whereas
Kindlin2 exhibited a positive correlation with glycolysis by influencing
hexokinase (HK) and phosphofructokinase (PFKM) (Fig. 5a, b). Although
Kindlin3 appears to take a seemingly distinct path in oncogenic signaling,
correlations indicated its association with the inhibition of glycolysis by
targeting hexokinase, similar toKindlin1 (Fig. 5a, c). Its alterations correlate
with angiogenesis through integrin and TGF signaling, simultaneously
cooccurring with cell death in a FOXO- and BCL2-dependent manner.
Inhibition of differentiation cooccurs with Kindlin3 alterations, possibly
through the DNMT3A, EP300, and CEBP transcription factors or through
integrin-PTPN signaling (Fig. 5c). Kindlin3 alterations could also govern
DNA repair by deactivating either the ubiquitin ligase complex or DNA
polymerase δ through integrin-dependent pathways (Fig. 5c). Furthermore,
these alterations might correlate with cancer cell proliferation primarily
through integrin-dependent mechanisms involving LATS, PI3K, CREB
binding protein, or STAT transcription factors (Fig. 5c).

Apart from the abovementioned genomic level analysis, we examined
how Kindlins contribute to ten major cancer-associated pathways at the
patient level (Fig. 5d). Similar to FERMT2 but to a lesser extent, FERMT1
alterations are associated with the inhibition of apoptosis, cell cycle pro-
gression, the DNA damage response, and the androgenreceptor pathway.
Moreover, theFERMT3-altered patient cohort exhibitedmajor activation of
apoptotic pathways.Kindlin-alteredpatients also exhibitedalterations in the
PI3K/AKT, mTOR, RTK, MAPK, and hormone signaling pathways.
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Notably, FERMT3 and FERMT2 alterations were significantly associated
with epithelial–mesenchymal transition (EMT) (Fig. 5e). Our analysis
revealed strong links between EMT-promoting processes, such as UV
response downregulation, TGFβ expression, angiogenesis, and hedgehog
signaling, and alterations in 33 cancer types. Conversely, EMT-inhibiting
pathways, such as DNA repair, oxidative phosphorylation, and P53 tumor
suppression pathways, negatively correlate with Kindlin-related alterations.
Kindlin alterations also align with EMT-related immune responses,
underscoring their role in protecting EMT phenotypes from immuno-
surveillance (Supplementary Fig. 11).

Kindlins cooperate with the cancer mechanome and related
biological processes
We used weighted gene coexpression network analysis (WGCNA) to
identify modules of genes that exhibited coordinated expression patterns
across kindlin-altered samples (Fig. 6a–c)50. In cancer, this approach can
reveal clusters of genes that work together in specific biological processes or
pathways, providing insights into the molecular mechanisms underlying
cancer development and progression. We found that kindlinalterations
correspond to distinct gene clusters compared to their unaltered counter-
parts. Although therewas nodifference in the number of clusters among the
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Fig. 4 | Coalteration analysis revealing global genomic and specific cancerhall-
mark differences between the kindlin-altered and unaltered cohorts. The
alteration frequencies, expressed as percentages, of direct interactors associated with
their corresponding Kindlins in both Kindlin-altered and unaltered cancer samples
within theTCGA cohort: FERMT1 (a), FERMT2 (b), and FERMT3 (c). The numbers
corresponding to each chord represent the percentage of samples inwhich respective
genes are coaltered. Different colored chords are shown for kindlin altered and
unaltered samples in each diagram. Differential gene expression analysis of samples

with altered expression compared with unaltered expression for Kindlin 1 (d),
Kindlin 2 (e), and Kindlin 3 (f). g Common and uniquely over-expressed (left) and
under-expressed (right) genes shown as Venn diagrams for all three kindlins.
hAlteration frequencies, represented as percentages, ofmajor cancer hallmark genes
from the MsigDB, considering the corresponding kindlin-altered and unaltered
cancer samples within the TCGA cohort. The connections between hallmark genes
and their status columns are indicated by colored chords, with the width of the
chords directly reflecting the number of samples that are either altered or unaltered.
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Fig. 5 | Integrative pancancer modulation of Kindlin-mediated signaling path-
ways and their role in shaping cancer hallmarks. a–cEffect of kindlin alterations on
pathways contributing to standard cancerhallmarks. The blue arrows denote
pathway activation, and the red arrows signify pathway inactivation. a Kindlin1;
b Kindlin2; c Kindlin3). d The impact of alterations in Kindlins on signature
pathways across the TCGApancancer cohort. These pathways included the cell cycle

progression (CCP), DNA damage response (DDR), epithelial–mesenchymal tran-
sition (EMT), androgen receptor (AR), estrogen receptor (ER), and receptor tyrosine
kinase pathway (RTK). e The correlation between Kindlin alterations and EMT
hallmarks according to the combination of all three Kindlins. This correlation was
measured using the Pearson correlation coefficient.
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kindlins or between the altered and unaltered cohorts (19 for each), the size
of the clusters (number of genes in each cluster) varied among the patients.
Furthermore, the association among the clustered genes was also altered in
kindlin-altered samples compared with control samples, which was also

visualized from the 1-TOM-based dendrograms. Interestingly, the clusters
of kindlin1 and kindlin2 alterations were somewhat similar, while those of
kindlin3 differed in terms of their gene composition (Fig. 6a–c). This helps
to identify hub genes within kindlin coexpression modules in cancer,
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reflecting aimportant role in mechanotransduction and mechanochemical
pathways.

In the context of our study, mechanotransduction and mechan-
ochemical pathways were considered two connected but distinct phe-
nomena. Mechanotransduction involves specialized sensors within or on
the cell membrane that detect mechanical forces such as tension, com-
pression, shear stress, or stretching. These sensors, exemplified by integ-
rins, then relay signals to trigger various cellular responses. On the other
hand, mechanochemical pathways refer to signal modules that can be
indirectly influenced by mechanical cues, whether extracellular or intra-
cellular. This category encompasses pathways such as the p53 andmTOR
pathways. Kindlins act as interlinks of major cellular pathways, including
other mechanosensitive or mechanochemical proteins directly linked to
kindlins or through kindlin interactors. Our meta-analysis revealed 53
mechanotransducing proteins of the integrin pathway and 62 mechan-
ochemical proteins, encompassing transcription factors, receptors, ion
channels, cytoskeletal proteins, and other types. Differential gene
expression analysis revealed that the mechanotransduction protein-
encoding genes were most highly expressed when kindlin3 was altered,
followed by when kindlin2 was altered (Fig. 6d–f).

On the other hand, in terms of kindlin1 alteration, almost half of these
genes were overexpressed, and the other half were downregulated (Fig. 6d).
Most of the mechanochemical proteins were coaltered with all the Kindlins
(Fig. 6g).Kindlin alterationsmostly cooccurwithACTN1,ADGRs,DNMT1,
RAC1, TMX4, and TP53. Additionally, the mechanochemical protein-
forming genes exhibited a very high degree of coalteration with the
FERMT2gene, followed by that withFERMT1, and least common with
FERMT3 (meancoalterationdynamics = 19.3, 12.34, and9.92, respectively).
Most of these coaltered partners were cytoskeletal proteins or transcription
factors (Supplementary Data 5).

To determine how kindlin alterations might perturb signaling cas-
cades, we performed pathway enrichment analysis of all the kindlins from
the TCGA cohort (Fig. 6h). GO enrichment was found for biological pro-
cesses and Reactome pathways, as both of these involve themost significant
number of updated pathways related to kindlins.We observed that Kindlin
alterations in cancer corresponded to highly enriched positive regulation of
proteincomplex assembly, cell migration, and integrin activation (Fig. 6h).
However, the most negatively enriched pathways were involved in cell
aggregation and cell‒cell adhesion, suggesting their role in metastasis
(Fig. 6h). Pathway enrichment further revealed greater enrichment of
GTPase signaling and reorganization of cellular junctions but a decrease in
the cellular response to Ca2+ (Fig. 6h).

Discussion
Precision oncology faces two key challenges: comprehending tumor
diversity and predicting changes in intracellular complexity driven by the
evolving microenvironment51,52. Tumor heterogeneity can lead to che-
moresistance and tumor relapse. Recent research has provided a
mechanical basis for these events53,54. Mechanosensitive adapter proteins,
such as kindlins, are vital for connecting external mechanical forces with
internal cellular events, functioning like molecular clutches55. Any
alterations in these proteins can disrupt the cellular balance, potentially
fueling malignancy.

This integrative pancancer analysis of kindlin genes was motivated by
three major aspects. First, it is imperative to recognize that the Kindlin
family comprises multiple closely related proteins (structural similarity
~98%, sequence similarity ~68–73%). However, these genes exhibit a sig-
nificantly differential expression pattern in different cancers compared to
normal tissue. For example, while predominantly known as ahematopoietic
lineage-specific protein56, Kindlin3 is overexpressed in certain solid cancers,
as this finding raises questions about the underlyingmolecularmechanisms
that determine its expression (Fig. 1b). Second, by studying all Kindlin
familymembers collectively, we can gain a comprehensive understandingof
their potential complementary and synergistic roles in cancer biology. This
includes examining how different Kindlin proteins may interact with each

other or with other cellular components to influence cancer cell behavior,
tumor progression, and response to therapy. Pathway-specific alteration
analysis revealed the combined effect of all the kindlins, especially kindlin2
andkindlin3, on the activationofEMTaccompaniedby the inhibitionof the
DNAdamage response (Fig. 5d). In addition, kindlins play a role in cellcycle
arrest, a common signature of EMT associated with increased ribosome
biogenesis57. However, it is also interesting how kindlin3 affects cancer-
hallmark pathways in an integrin-dependent manner, unlike the other two
pathways (Fig. 5c). Third, previous studies have proposed a role for kindlins
in tumor heterogeneity, chemoresistance, and relapse40. These phenotypes
are associated with cancer stemness58. Our analysis revealed that kindlin
expression correlated with decreased potency and hence a plausible role in
tumor stem cell differentiation (Fig. 6i). Similarly, cancer stemness was also
negatively correlated with kindlin alterations(Fig. 6j). This in turn might
cause heterogeneity to drive chemoresistance and relapse38, which was also
anticipated because high kindlin2 expression causes poor disease-free sur-
vival, indicating tumor recurrence (Fig. 1f)59. This differentiation is related to
EMT promotion and metastasis60, both of which are increased in kindlin-
altered samples.

The mutational impacts of kindlins are also interesting. Although we
found that dimerizationmostly stabilizes kindlin2 and destabilizes kindlin3,
the opposite trend occurs during trimerization. Kindlin oligomerization is
hypothesized to inhibit integrin binding61. Considering this, a mixed
mutation-specific effect is expected in a patient-specific manner, and to be
precise, no trend can be obtained in terms of an oligomerization-dependent
effect. However, the overall mutational spectrum indicates altered flexibility
and stability and associated mechanochemical alterations. This is further
reflected in kindlin-mediated signaling pathways. Our integrative analysis
revealed a significant increase in the expression of genes associated with
mechanically modulated biological processes such as cell migration, focal
adhesion assembly, and cell-matrix interactions (Fig. 6h). The expression of
mechanochemical pathway genes was also significantly coaltered with that
of all three kindlins, revealing the effect of mechanical perturbations on
chemical signals. For example, metabolism in cancer is mechanically
regulated62,63. We found that, in one instance, kindlin2 activates glycolysis
(Fig. 5b); however, it decreases the TCA cycle in an SRC-dependentmanner
(Supplementary Fig. 12).

The computational data related to kindlin family alterations
and mutational and stability analyses presented in our work strongly
coincide with those of previous experimental studies. We found that
kindlin2 expression is increased in breast cancer and activates
epithelial–mesenchymal transition, which was also found by Sossey-Alaoui
et al. and Xue et al.39,64. It has also been reported that lossoffunction of
kindlin2 and kindlin3 leads to cell adhesion deficiency, suggesting the
importance of kindlin lossoffunction in their interactions and
pathophysiology65. Previously, in the case of PAAD, kindlindownregulation
was shown to contribute to intratumoral heterogeneity44. Based on the
nature of the kindlin distribution in normal tissues, we observed genomic
alterations in cancers originating from different tissues. These findings led
us to propose a plausible role for changes in kindlin family genes in reg-
ulating tumor heterogeneity. This heterogeneity corresponds to the acti-
vation of different cellular properties within tumor cells. We have shown
that kindlin-mediated biochemical alterations arise from combined altera-
tions in kindlins and their networks. Kindlin-mediated cancer-specific
upregulation or downregulation of miRNAs can also be important for
inducing malignancy and metastasis37,38. Our analysis suggested an inter-
esting feedbackloop mechanism involving kindlin and miRNA expression,
which has also been shown in breast cancer malignancies45. We observed
that miRNAs regulated by kindlin2 also target kindlin1 or kindlin3 (Sup-
plementary Table 4). Another interesting observation was the correlation
between total mutations and kindlin-1 and kindlin-3 expression levels, as
well as the lack of correlation between increases in genomic mutations and
kindlin-2 expression. This finding supports the kin-mediated regulation of
genomic instability, as was found experimentally by Zhao et al. for breast
cancer46.
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In summary, our analysis unveils the crucial role of mechanosensitive
adapter proteins such as kindlins in orchestrating the intricate interplay
between external mechanical cues and internal chemical events that drive
cancer progression. These alterations likely stemmed from (1) over-
expression and heterogeneous amplification; (2) fundamental changes in
the structural properties of kindlins, encompassing their stability, flexibility,
and force transmission capabilities; and (3) functional characteristics,
includingphosphorylation events and loss of functional domains.While our
findings strongly imply a potential role of kindlins in cancer, it’s vital to
stress the need for extensive experimental validation. Most analyses here
directly involve patient samples, indicating kindlin involvement in cancer.
However, predictive studies, such asmutational effects and identifying loss-
or gain-of-function, require validation. Thorough investigations, encom-
passing structural analyses, biochemical assays, and cellular studies, are
essential to validate and contextualize observed associations. Additionally,
the novel cancer-specific pathways of kindlins identified in this article
warrant further experimental validation. This comprehensive approachwill
bolster the reliability and depth of our understanding, closing the gap
between correlation and causation in the intricate relationship between
kindlins and cancer progression. Nonetheless, kindlins are indispensable
mechanochemical adaptersthat have substantial influence on a spectrum of
cancer signaling pathways. This underscores their potential as promising
targets for innovative mechano-modulatory cancer therapeutics, offering
context-dependent avenues for intervention and treatment strategies.

Methods
Dataset curation and analysis
Preliminary patient RNAseq, CNV, and DNA methylation data were
acquired from The Cancer Genome Atlas32 (n = 10597). Cancer-associated
somaticmutations were obtained from theCatalog of SomaticMutations in
Cancer (COSMIC)34 (n = 24712), and a dataset of multiple mutations per
donor was curated from the International Cancer Genome Consortium
(ICGC)33 database. Along with the kindlin isoform donors (n = 1045),
mutation-specific expression data (n = 268) from 18 cancer cohorts were
also found in the ICGC dataset. For the latter, initial data were filtered for
donors who possessed high and low functional impact mutations only,
leaving out donors with mutations of unknown impact. Comparative
Kindlin gene expression analysis of tumor and normal samples was per-
formed using the TCGA cancer cohort and corresponding GTEx normal
tissue data, leading to a comparative analysis of 17 cancer types. Finally,
kindlin mRNA expression was studied as a function of tumor stage (AJCC)
and metastasis stage code (AJCC), which are two clinical attributes for
cancer patients. Pancancer protein expression (massspectrometry) data
were obtained from theCPTACdataset for 12 types of cancer.Wewere able
to obtain 1272 and 808 tumor and tumor-adjacent tissue samples, respec-
tively. To analyze the protein expressiondata,we studied the relative protein
abundance as determined by the TMTlog2 ratio. Similarly, for phosphor-
ylation analysis,weobtained tumor and tumor-adjacent data from1272 and
782 samples, respectively. We estimated the phosphorylation alteration as
follows (Eq. 1):

Log2Fold change ¼ phosphorylation level ðtumorÞ
phosphorylation level ðtumor adjacent tissueÞ ð1Þ

Consequently, relevant microRNAs and their expression were ana-
lyzed in the context of cancer via systematic analysis of primary literature
and textmining of high-throughput experimental data frommiRDB (http://
www.mirdb.org/)66 and miRCancer (http://mircancer.ecu.edu/)67 to deter-
mine the differences between mRNA expression and protein expression
patterns.

Survival analysis
We used Kaplan‒Meier (KM) plots to analyze overall and disease-free
survival based on gene expression. The data were originally sourced from
the TCGA/ICGC cohort (n = 9498) and utilized in the KM plotter OF

GEPIA survival analysis tool68. To ensure accuracy, we excluded samples
(n = 193) that overlapped. For mutation status-specific overall survival
plots, we employed data from the TCGA study (n = 2583), for which
mutation profiles were available.

Mutated variant analysis
COSMIC data were separately fetched for all the kindlin isoforms, and their
pointmutationdatawere obtained fromTheCancerGenomeAtlas (TCGA)
and International Cancer Genome Consortium (ICGC) databases. Over-
lapping sampleswere excluded, for a total of 981 sampleswere estimated for
the analysis.From the consensus transcript sequences of all kindlin isoforms,
multiple mutations per transcript of all these isoforms were also docu-
mented, with n = 38. These multiple-nucleotide variants (MNVs) were
further analyzed andfilteredmanually exhaustively looking for variants that
appear- a. in the same individual, b. in the same haplotype, c. in cis position,
d. within the window size of 2 basepairs69. The functional impact of the
single-nucleotide mutations was assessed by the Sorting Intolerant from
Tolerant (SIFT) algorithm42.

Cancer-specific mutational stability characterization
The monomeric structures ofkindlin1 (Q9BQL6), kindlin2 (Q96AC1), and
kindlin3 (Q86UX7) were derived from AlphaFold70. Dimers and trimers
were prepared for each of the probes by performing homologymodeling on
trRosetta71. Structural homology was further checked using POSA72. Sub-
stitution and frameshiftmutations were incorporated using v. 2.5.2 PyMOL
and the transformed-restrained Rosetta (trRosetta), respectively.

Perturbations in the dynamics and stability of all the kindlinproteins as
a function of mutations were categorized by the Elastic Network Contact
Model–based NMA (ENCoM–based NMA)73 to estimate the change in
stability (ΔΔG) and entropy (ΔΔS). The ENCOM-based NMA approach
takes into consideration thedistinctnature andconsequent effects of specific
amino acids on the dynamics of the structure59. Moreover, the involvement
of vibrational normalmodes and entropic analysiswithin theNMAmethod
represents an approach to characterizing protein structure dynamics and
the effect of mutations74.

Classification of stabilizing and destabilizing mutants
The mutants’ stability, compared to their respective wild-type structures,
was determined by calculating changes in free energy (ΔΔG values). We
compiledΔΔGvalues for all mutants and repeated the data according to the
mutation frequency across all cancer types. We created distinct subsets for
mutants that stabilized (ΔΔG (+ve)) and destabilized (ΔΔG (−ve)). The
entire dataset was classified by ranking mutations based on their ΔΔG
values, arranging them in percentiles (Eq. 2).

P ¼ n=N
� � � 100 ð2Þ

n = number of samples below a particular value; N = total number of
samples; P = percentile of that particular value.

In the stabilizing dataset, we categorized the 0–25 percentile region
(P1) as low, the 25–75 percentile (P2) as moderate, and the 75–100 per-
centile (P3) as high. Conversely, in the destabilizing dataset, we classified the
0–25 percentile region (P1) as high, the 25–75 percentile (P2) as moderate,
and the 75–100 percentile (P3) as low. As statistics commonly use the
median as the dividing point between the higher and lower halves of a
dataset, we calculated the median for the P1 region in the stabilizing group
and the P3 region in the destabilizing group, averaging their magnitudes
(Eqs. 3 and 4). Similarly, we computed the median for the P3 region in the
stabilizing group and the P1 region in the destabilizing group, averaging
their magnitudes as well.

AverageðlowÞ ¼ median P1ð Þstabilizing
��� ���þ median P3ð Þdestabilizing

��� ���� �
=2

ð3Þ
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AverageðhighÞ ¼ median P3ð Þstabilizing
��� ���þ median P1ð Þdestabilizing

��� ���� �
=2

ð4Þ
Mutants with ΔΔG values below the average for the low category were

labeled as slightly stabilizing, while those with ΔΔG values exceeding the
negative of the average for the low category were considered slightly
destabilizing, as depicted inSupplementary Fig. 9.Consequently, both single
nucleotide mutants that stabilize and destabilize were sorted into five
categories: very high, high, moderate, low, and very low. For further
downstream analysis, we only considered mutations that were highly sta-
bilizing and highly destabilizing.

Structural analysis of cancer-specific variants
The characteristic deviation of the stability and flexibility of the mutant
(mut) variants against the wild-type (WT) counterparts was determined
using the ENCoM-based NMA method74. In our analysis, ΔΔG and ΔΔS
were calculated as follows (Eq. 5):

ΔΔG ¼ ΔGWT�ΔGmutand ΔΔS ¼ ΔSWT�ΔSmut ð5Þ

where a positive value of ΔΔG indicates stabilization and a negative
value indicates destabilization. Similarly, for ΔΔS, a positive value indi-
cates increased flexibility, while a negative value indicates decreased
flexibility.

Preliminary data collected from all cancer-associated somatic muta-
tions via thismethodwere subsequently filtered to screen formutations that
corresponded to a ΔΔGENCoM value of ≥+1.24 and ≤−1.24 for further
analysis (as highly stabilizing anddestabilizingmutants).WeusedPhoS3D45

to examine the effects of the experimental validatedkindlinphosphorylation
sites on phosphorylated proteins via 3D pdb coordinates.

The effects of cancer-associated substitutionmutations on the ability of
monomeric Kindlin to form dimeric and trimeric structures were also
predicted via symmetric C2 docking75 and C3 docking of the monomer,
respectively, employing a hybrid algorithm of template-based and ab initio
free modeling and docking75.The binding affinity (BA, kcal/mol) of
dimerization or trimerization was calculated as follows (Eq. 6):

4BA ¼ 4BAMut �4BAWT ð6Þ

(+) vs. ΔBAsuggest destabilization and unfavorable, whereas a (−) vs.
value indicates stabilization and is favorable for dimerization and
trimerization.

Copy number variation analysis
We gathered copy number variation (CNV) data for FERMT1, FERMT2,
and FERMT3 from both the TCGA and ICGC cohorts. In the CNV
analysis module, we computed the percentages of various CNV types and
assessed their correlation with mRNA expression for each gene within
each cancer type. The raw data were processed with GISTICS2.076 to
obtain cancer-specific CNV statistics. However, we determined the cor-
relation betweenCNVandmRNA expression by analyzing rawCNVdata
alongside gene-specific mRNA expression from individual samples. We
categorized the CNV variations into two subtypes: homozygous, which
indicates CNV occurring in both chromosomes, and heterozygous,
representing CNV occurring on only one chromosome. We obtained
percentage statistics based on these CNV subtypes using GISTIC-
processeddata. The correlation calculationswere performedusing the raw
CNV and mRNA RSEM data.

Methylation data analysis
Cancer-specificmethylationdatawere obtained from theNCIGenomicData
Commons for 33 cancer types. Among them, only 14 cancer types contained
paired tumor vs. normal data for FERMT1, FERMT2, and FERMT3.

A differential methylation analysis was conducted, considering cancers with
at least 10 tumor-normal pairs, using Student’s t test. The resulting p values
were adjusted using FDR, with significance considered at FDR≤ 0.05.

For methylation-specific survival analysis, patient methylation data
were combined with overall survival data. Methylation levels were cate-
gorized into high and low groups based on themedianmethylation. Hazard
ratios were estimated throughCox regression analysis. If the Cox coefficient
>0, high methylation was indicative of worse survival; conversely, low
methylation indicated better survivability. The association between mRNA
expression and methylation data was assessed by merging the data using
TCGA barcodes for each sample. Pearson’s correlation coefficient was
employed to test the relationship between paired mRNA expression and
methylation. P values were adjusted for FDR, with significance defined as
FDR ≤ 0.05.

DEseq and GSEA
We conducted genomic characterization by performing differential
gene expression analysis and gene set enrichment analysis utilizing the
Python package pyDESEQ277. Our primary aimwas to identify sets of genes
that exhibited either high or low expression levels under specific experi-
mental conditions.We used TheCancer GenomeAtlas (TCGA) data for 33
cancer types. Our experimental conditions involved comparing altered vs.
unaltered states for each kindlin gene. This analysis yielded a list of genes
that displayed significant differential expression, accompanied by their log2
(fold change) and p value in the altered cohort compared to the unaltered
cohort. In cases where not otherwise specified, the cutoff for log2-fold
changewas set at 1.5. Subsequently, following the generation of a ranked list
of differentially expressed genes for each specific comparison of interest, we
conducted gene set enrichment analysis (GSEA).

Additionally, we utilized the samedataset and experimental conditions
to perform pathway enrichment analysis, leveraging the Python package
GSEApy78.We employed the GOBiological Process 2023 pathway set, with
the permutation type set to ‘phenotype’ and the method set to’signal_to_-
noise’. The output of this analysis provided us with a list of biological
processes, accompanied by their normalized enrichment scores (NES) and
adjusted p values. The enriched pathways were ranked based on their NES
values, considering the processes with a p-value less than 0.05 as statistically
significant.

Coalteration analysis
We conducted a coalteration analysis of TCGA patientsample data for all
genes within the direct and indirect physical interactomes of FERMT1,
FERMT2, andFERMT3, sourced fromBioGRID4.4 (https://thebiogrid.org/).
Additionally, we identified Kindlin-associated mechanochemical proteins
through a meta-analysis of text-mined articles (Supplementary Data 5), and
hallmark genes were sourced from the MsigDB79. The coalteration analysis
assessed the extent of the coalterations of these mechanosensitive proteins
and hallmark genes in the kindlin-altered and unaltered TCGA
cohorts, quantified using the term mean coalteration dynamics defined as
follows (Eq. 7):

X ¼
P

A%�ΣU%

N
ð7Þ

Here, X =mean coalteration dynamics of a gene set; A% = percentage
of samples altered; U%= percentage of samples unaltered; N = number of
genes in the set.

Pathway alterations were applied for both functional mutations in
kindlin-associated genes. The global percentage of pathway activity for a
particular pathway and for a particular kindlin was calculated as follows
(Eq. 8):

Global percentage ¼ No: of cancer activationinhibition

No: of types of cancer

� �
� 100% ð8Þ
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Cancer-specific pathway alteration analysis
Weused reversed-phase protein array (RPPA) data from the TCPA cohort,
which consists of samples included in the TCGA cohort. We utilized these
data to calculate scores for cancer samples across 32 different cancer types.
Our analysis focused on ten key cancer-related pathways, including apop-
tosis, cell cycle progression, DNA damage response, EMT, hormone ER,
hormone AR, TSC/mTOR, RTK, RAS/MAPK, and PI3K/AKT pathways.

To prepare the data, we employed replicate-based normalized (RBN)
RPPA data, which were median-centered and further normalized by stan-
dard deviation across all samples for each component. This normalization
allowed us to obtain relative protein levels, facilitating pathway alteration
comparisons. The pathway score is then the sumof the relative protein level
of all positive regulatory components minus that of negative regulatory
components in a particular pathway80.

We followed the same protocol followed by ref. 81.We categorized gene
expression into twogroupsbasedonmedian expression levels: high and low.
To measure the difference in pathway activity scores (PAS) between these
groups,weusedStudent’s t test. The resultingp valueswere adjusted for false
discovery rate (FDR)with a cutoff of FDR < = 0.05. For a specific gene,Gene
X, if PAS X (high) > PAS X (low), it suggests that Gene X activates the
pathway. Conversely, PAS X (high) <= PAS X (low) indicates that Gene X
inhibits the pathway.

Weighted gene coexpression network analysis
We utilized the Python package pyWGCNA to perform a weighted gene
correlation network analysis82. We began by assessing the degree of gene
coexpression similarity between two genes, represented as a and b within a
given sample i. This similarity was quantified as Tab, which corresponds to
the absolute value of their correlation coefficient. To further gauge the
strength of the correlation between these genes, we applied a power func-
tion, resulting in a correlation measure known as Mab, whereMab = |Tab|

β.
A gradient approach was used to ensure that our analysis remained

scale-independent and to assess the average connectivity. This approach
involved systematically adjusting the power value (β) across a range from 1
to 20 to identify the optimal β value that would yield a network displaying a
high degree of scale independence, exceeding the threshold of 0.80. The
optimal β value was used to construct a scale-free network. Next, we
transformed the adjacency matrix into a topological overlapmatrix (TOM)
and computed the corresponding dissimilarity values (1-TOM).Weutilized
hierarchical average linkage clustering analysis to identify distinct modules
within the network, applying dynamic tree cut to the gene dendrogramwith
specific criteria, including a cutoff height of 0.975 and a minimummodule
size of 30 genes.

Meta-analysis of Kindlin-associated Mechanochemical
signaling
Weconducteda thorough electronic searchof researchpapers using specific
terms such as mechanochemical signaling, mechanosensitive transcription
factors,mechanosensitive receptors, andmechanochemical ion channels. In
Google Scholar, we found 17,800 articles for mechanochemical signaling,
31,400 for mechanosensitive transcription factors, 60,700 for mechan-
osensitive receptors, and 49,500 for mechanochemical ion channels. In
PubMed, we found 417, 325, 1443, and 2241 articles for these terms,
respectively. We eliminated duplicate articles and focused on those speci-
fically related to proteins associated with mechanochemical or mechan-
osensitive signals (Supplementary Fig. 13).

To further refine our analysis, we cross-referenced the included study
references and consideredproteinsmentionedmultiple timesonlyonce.We
shortlisted relevant abstracts and then investigated the association of these
proteins with Kindlins using the extended interactome network of
FERMT1, FERMT2, and FERMT3 obtained from BioGRID.

We categorized themechanochemical proteins into two groups: Level-
1,which is directly associatedwithKindlins, andLevel-2,which is associated
with Kindlin interactors. This final list includes 20 mechanochemical
transcription factors, 4mechanochemical ion channels, 6mechanosensitive

receptor proteins, 13 mechanosensitive cytoskeletal proteins, and 14 pro-
teins with other functions.

We obtained information about the major cellular processes involving
these genes from GeneCards and individually extracted and recorded these
data in a predefined form. These data also specify the type of protein, its
primary cellular function, and its association with Kindlin (Supplemen-
tary Data 5).

Cancer stemness and potency measurements
Weused themachine learning-based protocol ofMalta et al. to quantify the
stemness of each cancer patient sample83. In brief, the mRNAsi algorithm
measures the stemness of samples according to the mRNA expression sig-
nature, whereas the mDNAsi algorithmmeasures stemness from the DNA
methylation pattern. Stemness-associated tissue potency was measured
using the SCENT algorithm84. These values were correlated with kindlin
expression (z score) using a linear regression method.

Statistics and reproducibility
All the analyses were performed on TCGA pan-cancer dataset (n = 10,953)
unless mentioned otherwise. For all differential analyses, altered samples
(n = 3161 (FERMT1); 2910 (FERMT2); 2168 (FERMT3)) were investigated
with respect to corresponding kindlin-unaltered samples (n = 7792
(FERMT1); 8043 (FERMT2); 8785 (FERMT3)). Number of overexpressed
(n = 2405 (FERMT1); 2375 (FERMT2); 2376 (FERMT3)) and under-
expressed (n = 2380 (FERMT1); 2376 (FERMT2); 2376 (FERMT3)) sam-
pleswere constant for all expression-based analyses.Mutation analyseswere
performedon all three kindlinmutated samples (n = 627) unlessmentioned
otherwise. Protein expressionandphosphorylationanalysiswereperformed
n = 1272 CPTAC tumor samples and n = 808 tumor adjacent normal
samples.Statistical analyses were performed using R version4.2.1, R ver-
sion4.0.3 (http://cran.r-project.org/) andOriginPro (https://www.originlab.
com/). Routine statistical tests were employed to validate the statistical
significance of the differences. These methods included the log-rank p test
and Cox proportionalhazards model for generating Kaplan‒Meier plots
with 95%confidence intervals. TheKruskal‒Wallis testwasused to compare
survival probabilities based on mutations across all Kindlin isoforms.
Unpaired two-tailed t tests were used for comparing different population
groups, while one-way ANOVA and Bonferroni posthoc correction were
applied to evaluate statistical significance among various cancer types at a
significance level of p ≤ 0.05. Furthermore,Z scoreswere calculated to assess
gene expression changes, with a cutoff value of ±1.96.Weused -log10 (FDR)
fold enrichment with an FDR cutoff of ≤0.05. To verify correlations for
nonparametric and parametric variables, we employed Spearman’s and
Pearson’s correlation coefficients, where values ranged from +1 (highest
correlation) to −1 (lowest correlation), with 0 indicating no correlation.
Linear regression was used to analyze the relationship between two vari-
ables. In cases involving different populations, we determined significant
sample numbers using a power test, considering a power level greater than
0.8 tobe adequate.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Pancancer patient-specific omics data files are available from the respective
websites of the International Cancer Genome Consortium (ICGC) (https://
dcc.icgc.org/) and The Cancer Genome Atlas (TCGA) (https://portal.gdc.
cancer.gov/). Normal tissue gene expression data are available at GTEx
(https://gtexportal.org/home/). The corresponding TCGA proteomics data
can be accessed from CPTAC (https://proteomics.cancer.gov/data-portal,
https://proteomic.datacommons.cancer.gov/pdc/). Pancancer kindlin
mutationdata canbe found in theCOSMICdatabase (https://cancer.sanger.
ac.uk/cosmic). The miRNA and TCGA alteration data were obtained from
themiRDB (http://www.mirdb.org/) andmiRCancer (http://mircancer.ecu.
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edu/), respectively. Secondary data such as those generated during our
analysis are available from https://github.com/SML-CompBio/KINDLIN-
PANCAN. The source data are also available with this article as Supple-
mentary Data files and from https://github.com/SML-CompBio/
KINDLIN-PANCAN.

Code availability
The respective software and packages used in this study are described with
the corresponding methods and their links. The analysis codes utilized in
this research are accessible from https://doi.org/10.5281/zenodo.1077563185

and https://github.com/SML-CompBio/KINDLIN-PANCAN/tree/publish.
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