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Force and kinetics of fast and slowmuscle
myosin determined with a synthetic
sarcomere–like nanomachine
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Myosin II is the muscle molecular motor that works in two bipolar arrays in each thick filament of the
striated (skeletal andcardiac)muscle, converting thechemical energy into steady force andshortening
by cyclic ATP–driven interactions with the nearby actin filaments. Different isoforms of the myosin
motor in the skeletal muscles account for the different functional requirements of the slow muscles
(primarily responsible for the posture) and fast muscles (responsible for voluntary movements). To
clarify themolecular basis of thedifferences, here the isoform–dependentmechanokinetic parameters
underpinning the force of slow and fast muscles are defined with a unidimensional synthetic
nanomachine powered by pure myosin isoforms from either slow or fast rabbit skeletal muscle. Data
fittingwith a stochasticmodel provides a self–consistent estimate of all themechanokinetic properties
of themotor ensemble including themotor force, the fraction of actin–attachedmotors and the rate of
transition through the attachment–detachment cycle. The achievements in this paper set the stage for
any future study on the emergent mechanokinetic properties of an ensemble of myosin molecules
either engineered or purified from mutant animal models or human biopsies.

Steady force and shortening in the half-sarcomere, the functional unit of the
muscle cell, are due to ATP-driven cyclic interactions of the subfragment 1
(S1, the head) of the heavy meromyosin fragment (HMM) of the myosin II
molecule extending from the thickfilamentwith the actinmonomers on the
nearby overlapping thinfilament (Fig. 1). In each interaction the free energy
of the splitting of MgATP to MgADP and inorganic phosphate (Pi) in the
head is associated to a structural working stroke consisting in a tilting
between the motor domain, firmly attached to actin (red), and the light
chain binding domain (or lever arm, light blue) connected to the myosin
filament backbone through the subfragment 2 (S2, the tail, green). In iso-
metric contraction, lever arm tilt raises the force exerted by the half-sar-
comere, increasing the strain of all the elastic elements represented for
simplicity in Fig. 1, state (b) by the bending of the lever arm.

When the load is lower than the maximum steady force exerted under
isometric conditions (T0, that is conventionally expressed as force per cross-
sectional area of the contractilematerial, kNm−2), lever arm tilting results in
relative filament sliding with a reduced strain in the elastic components
(Fig. 1, state (c)). Cyclic asynchronous interactions of myosin motors with

the actin filament account for the generation of steady force and shortening.
The shortening velocity V is inversely proportional to the force T
(force–velocity relation, T−V1). At physiological concentrations of ATP,
ADP release is the rate-limiting step formotor detachment from actin (step
(b)/(c)→ (d)). The rate of ADP release is conformation-dependent,
increasing during steady shortening whenmotors at the end of the working
strokewould become negatively strained. This explains the increased rate of
energy liberation _E (and the underlying ATP hydrolysis rate, ϕ) when the
load is reduced and the shortening speed is increased1–8. Faster detachment
of negatively strained (compressed) motors prevents the ones at the end of
their working stroke to oppose positively strainedmotors, a requirement for
themaximisation of the power and efficiency of an array ofmotors working
in parallel. The performance of different types of skeletal muscles depends
on the myosin II isoform expressed in the muscle. Slow muscles, which are
primarily involved in maintenance of posture and are characterised by the
dominant presence of the isoform 1 of Myosin Heavy Chain (MHC− 1
isoform), exhibit lower shortening speed at any given load, thus develop
lower power and consume ATP at a lower rate than fast muscles, which are
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involved in movement and are characterised by the dominant presence of
the MHC− 2A,− 2B or− 2X isoforms9. Strikingly, the functional differ-
ence between slow and fast isoforms is due to a difference of only 20% in the
amino-acid composition.

During an isometric contraction the power is zero, so that the rate of
energy consumption accounting for the steady force T0 (denoted _E0) cor-
responds to the rate of heat production ( _H0)

1. _E0 has been found ~fivefold
larger in fast muscles than in slowmuscles10–13. The underlying rate of ATP
hydrolysis at T0 can be obtained from _E0 by dividing it by the energy
liberated per molecule of ATP hydrolysed (ΔGATP = 60 kJ mol−1 in mam-
malianmuscle according to14). In thisway the energetic cost of the isometric
force in the intactmuscle can be comparedwith that in the demembranated
fibres, in which the rate of energy liberation is determined bymeasuring the
rate of ATP hydrolysis. A further normalisation for the concentration of
myosinmotors in themammalianmuscle (0.18mM11) gives the rate ofATP
hydrolysed per myosin motor (ϕ). In demembranated fibres of rat fast
muscle15,16, rabbit17,18 and human muscle19 at 12 °C, ϕ is fivefold (or more)
larger than in slow muscle, in agreement with muscle measurements
(Supplementary Table 1). In both fast muscles10–13 and fast demembranated
muscle fibres15–18 T0 is either similar or at max 1.5-fold larger than in slow
muscles and muscle fibres. Thus the tension cost of the isometric contrac-
tion _E0=T0 results to be systematically larger in fast muscles by on average
fivefold (with a minimum of threefold). The justification for the elevated
tension cost of the fastmuscle can only partly be found in the intrinsic larger
actin-activated myosin ATPase in solution, which for the fast myosin is
twice that of the slow myosin20.

The bulk of data characterising the energetics of slow and fast muscles
at cell and tissue levels, first of all the ~fivefold larger isometric tension cost,
leaves open the question of the underlyingmolecular mechanism. Inferring

the definition of the molecular mechanism from cell and tissue is compli-
cated by the scaling factors related to the structural organisation of the
molecular motors in the three-dimensional lattice, the co-presence of dif-
ferent isoforms in the same muscle and even in the same muscle fibre and
thepossible confounding contributionof theother sarcomeric (cytoskeleton
and regulatory) proteins. Even assuming that the tension cost is solely
related to intrinsic properties of the motor isoform, the question remains
about the role played by the differences in themechanokinetic properties of
themotor, as the forcedeveloped in a singlemotor interactionor the fraction
of the ATPase cycle time eachmotor spends attached (the duty ratio) while
working in situ in the half-sarcomere of the striated muscle. In vitro, the
definition of the emergent properties of the half-sarcomere, which cannot
be studied with single molecule mechanics21,22, became recently accessible
by exploiting a unidimensional synthetic nanomachine powered by
myosin motors purified from the skeletal muscle23. The nanomachine
allows the performance of the half-sarcomere, the generation of steady
force and shortening, to be reproduced by an ensemble of pure myosin
isoforms interacting with the actin filament without the confounding
effects of other sarcomeric proteins and higher hierarchical levels of
organisation of the muscle. In the nanomachine, 8 HMM fragments
extending from the functionalised surface of a micropipette carried on a
three-way nanopositioner acting as a length transducer interact with an
actin filament attached with the correct polarity to a bead trapped by a
Dual Laser Optical Tweezers (DLOT) acting as a force transducer
(Fig. 2). In solution with physiological ATP concentration, in which the
two motors of each dimer act independently23, myosin motors, after
entering in contact with the actin filament, establish continuous inter-
actions underpinning force development to a steady maximum value
(equivalent to the force generated by the muscle in isometric contrac-
tion). In the original design23 the system was operated either in position
clamp (achieved using as feedback signal the position of the nanoposi-
tioner carrying the motor array (x), red branch in Fig. 2), to reproduce
the isometric contraction, or in force clamp (achieved using as feedback

Fig. 1 | Schematic diagram of the chemo-mechanical cycle of the myosin motor
during its interaction with the actin filament. The HMM fragment of the myosin
molecule is a dimer with each monomer made by the subfragment 1 (S1 or head
containing the motor domain (red) and the light chain domain (the lever arm, light
blue) and the subfragment 2 (S2 or tail, green) extending from the myosin filament
backbone (blue). For simplicity, only one S1 and S2 are represented here. The
myosin ⋅ADP ⋅ Pi complex attaches to actin (white circles) (a), forming the cross-
bridge, which triggers tilting of the lever arm and Pi release with generation of force
and actin filament sliding. If the mechanical load is high, it opposes filament sliding,
and tilting of the lever arm causes increase in strain in the system, represented here
by the distortion of the lever arm (b). If the load is low (c) tilting of the lever arm
causes actin filaments sliding (yellow arrow), keeping the strain low. ADP release
from and ATP binding to the motor domain cause myosin detachment from actin.
ADP release is slower at high load, (b)→ (d), and becomes faster at lower load
(c)→ (d). Hydrolysis of ATP in the detached head and reversal of the lever arm
tilting (recovery stroke, (d)→ (e)) complete the cross-bridge cycle. The absence of
ATP causes the cycle to stop before detachment so that all motors stay attached to
actin (rigor).

Fig. 2 | Block diagram of the system for nanomachine mechanics. HMM frag-
ments (blue) deposited on the functionalised lateral surface of a pulled micropipette
(cyan) are brought to interact with the actin filament (red) attached with the correct
polarity (+ ) via gelsolin (yellow) to the bead trapped in the focus of the DLOT
(pink). Force generation produces the movement of the bead away from the focus of
the DLOT. The switch (AS) selects the feedback signal that, together with the
command (black), feeds the summing amplifier Σ that drives the piezo nanoposi-
tioner: in position clamp (red) the feedback signal is the position of the nanoposi-
tioner x carrying the support for the myosin array; in force clamp (green) the
feedback signal is the force (F, calculated as the product of the stiffness of the trap (e)
times the change in position of the bead xbead); in length clamp (blue) the feedback
signal is the change in the distance L between the position of the bead and themyosin
array support.

https://doi.org/10.1038/s42003-024-06033-8 Article

Communications Biology |           (2024) 7:361 2



signal the position of the bead in the laser trap (xbead), green branch in
Fig. 2), to reproduce isotonic contraction.

A major limit of the nanomachine working in position clamp was the
large trap compliance in series with the motor array, two orders of mag-
nitude larger than the native compliance in series with the half-sarcomere.
This makes each addiction–subtraction of force by individual motor
attachment–detachment to induce substantial sliding undermining the
condition of independent force generators of the motors in the native half-
sarcomere. Consequently, in position clamp, the kinetics of the attached
motors is influenced by the push–pull experienced when actin slides
away–toward the bead for the addition–subtraction of the force contribu-
tion by a single motor (Ref. 23, Supplementary Fig. 7).

In the present experiments the system has been implemented to
operate in length clamp (achieved using as feedback signal the difference
between the position of the bead and that of the nanopositioner
xbead− x = L), blue branch in Fig. 2. In length clamp the sliding between the
actin filament and themotor array caused by forcegenerating interactions is
eliminated because any movement of the bead is counteracted by the
movement of the nanopositioner. In thisway, the condition of themotors as
independent force generators in the array is recovered and the rate of
development of the steady isometric force, as well as the force fluctuations
superimposed on the steady force, are direct expression of attachment/
force-generation and detachment of the myosin motors. The data collected
from either myosin isoform are used to feed a stochastic model providing a
self-consistent estimate of all the relevantmechanokinetic parameters of the
isometric performance of the motor ensemble: the force of a motor, f0, the
fraction of actin–attached motors, r, and the rate of transition through the
attachment–detachment cycle, ϕ, without assumptions from cellmechanics
and solution kinetics as in previous studies23–25. The combined experimental
and theoretical achievements reported in this paper set the stage for any
future study on the emergent mechanokinetic properties of an ensemble of
myosin molecules, either engineered or purified from mutant animal
models or human biopsies.

Results
Estimate of the number of HMMmolecules on the support
available for the interaction with the actin filament
The number of motors on the micropipette surface able to interact with the
actin filament (N) is initially determined by measuring the number of
mechanical rupture events when themotor array is brought to interact with

the actin filament in ATP-free solution23. Following the formation of rigor
bonds between theHMM-coated support and the actin filament (panel 1 in
Fig. 3a), the HMM support is moved away from the actin filament, first by
1–2 μm in the direction orthogonal to the plane of the support, in order to
raise a force from the trapped bead to the first bound HMM at an angle
greater than 30∘ with the plane of the support, and then in the direction
parallel to theplane, at constant velocity (50 nms−1), to pull themotors away
from the actin filament diagonally. This allows the first bonded HMM to
undergo a pulling force that is higher than the axial component shared
among the othermotors. In this way themyosin–actin bonds break one at a
time and the attached motors cannot bind back once detached. Moreover,
following each detachment the force drops because the length of actin
filament segment between the bead and the next attached motor is tran-
siently increased. Thus an additional pull is necessary to get to the next
rupture event, the occurrence of which will vary in time according to the
distance between the two neighbouringmotors.WithHMMs purified from
soleusmuscle, the number of rupture events per interaction (Fig. 3b) attains
a saturating value of 7.9 ± 1.1 (n = 8), with [HMM] used to coat the pipette
of 0.2mg mL−1. A similar saturating value of rupture events, 8.1 ± 1.4
(n = 8), is obtained for theHMMpurified frompsoasmusclewith a [HMM]
of 0.1mg mL−1 (Fig. 3c). Notably, similar saturating values of [HMM] and
number of rupture events (8.1 ± 1.2) were found for the psoasmotors in the
previous study in which an optical fibre etched to the same diameter was
used as support23. In 2mM [ATP] each head of an HMM dimer works
independently and thus the number of availablemotors is twice the number
of HMM ruptures: N = 16 ± 2 and 16 ± 3 for the soleus and psoas,
respectively.

Isometric force development by the nanomachine powered by
slow and fast myosin motors
The experiment starts in position clamp, because, for the system to operate
in length clamp, it is necessary that first the feedback loop is closed by the
establishment of actin–myosin interactions.When an array of motors from
the slow soleusmuscle is brought to interactwith abead-tailed actinfilament
in solutionwith 2mMATP (Fig. 4a), the establishment of continuousATP-
driven actin–myosin interactions causes the force (F, blue trace) to rise
pulling on the actin filament, which in position clamp (HMM support
position x = 0, red trace), slides in the shortening direction (ΔL, black trace,
negative for shortening) due to the trap compliance (phase 1). A steady
maximumforce (F0) of ~12 pN is attainedwith a shorteningof ~55 nm.The

Fig. 3 | Estimating the number of HMMs available for actin interaction from
rigor rupture events in ATP-free solution. a 1. Formation of the rigor bonds
between theHMMarray and the actin filament. 2. Themotor support ismoved away
first in the direction (z) perpendicular to the plane of the actin–myosin interface and
then in the direction (x) parallel to the plane, as indicated by the arrow. Panel
modified from Ref. 23. b Force (Fx, lower record) of an ensemble of soleus HMMs in

response to themovement of the nanopositioner away from the actin filament in the
x direction (upper record, velocity 50 nm s−1). The small vertical bars indicate the
rupture events (force drop completed in less than 50 ms), the last of which corre-
sponds to complete detachment of the actin filament. c Records with the same
protocol applied to an ensemble of psoas HMM.
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control is switched to length clamp in correspondence of the vertical dashed
line separating phase 1 and 2. The switch time is marked by the increase in
noise of the force trace as a consequence of the reduction of the compliance
in series with the motor system. In fact, in length clamp the force change
generated in each individual attachment and detachment is no longer dis-
sipated in filament sliding against the large in series trap compliance. A
shortening of ~500 nm completed within ~700ms is superimposed on the
steady isometric force in correspondence of the second vertical dashed line
to drop and keep the force at zero (phase 3). When actin filament sliding

stops (third vertical dashed line) force starts to redevelop towards F0
(phase 4) with just a minimum delay, indicating that the motor array was
able to cope with the imposed 500 nm shortening maintaining continuous
interactions under zero load. The extent of shortening minus the amount
taken by the trap compliance, (500− 55 = ) 445 nm, divided by the time
passed from the imposition of the shortening to the start of force redeve-
lopment (0.88 s) gives an estimate of the velocity of unloaded shortening
(V0) of 0.5 μm s−1. Force redevelopment in length clamp ismuch faster than
the original force rise in position clamp and occurs in truly isometric
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conditions, as the movement of the bead due to trap compliance is coun-
teracted by a corresponding movement of the nanopositioner in the
lengthening direction (red trace, ~ 55 nm), that keeps ΔL = 0 (black trace).
Notably, the force redevelopment following a 500 nm release attains the
same F0 value as that attained during the original rise in position clamp
thanks to the architecture of the machine, in which the dimension of the
motor array remains constant independent of the amount of reciprocal
sliding23. F0 from 33 records shows a Gaussian distribution with centre
10.5 pN (Fig. 4b). The rate of force redevelopment in length clamp only
depends on the attachment/detachment kinetics of myosin motors in iso-
metric conditions. Force redevelopment is roughly exponential, and its time
course is quantified by the rise time tr (the time from 10% to 90% of F0). tr
estimated on the record (Fig. 4c, black) obtained by averaging 6 traces from
as many experiments (grey) is 238 ± 13ms. The time constant of the
underlying exponential force rise of the soleus-powered nanomachine, τ is
(tr/2.2 = ) 108 ± 5ms, and the rate of force development, a is (1/τ = )
9.3 ± 0.5 s−1. The sequence of events accompanying the interaction of the
array of motors purified from psoas muscle with the actin filament is the
same as for the soleusmotors (Fig. 4d). The forcedevelops in position clamp
(phase 1), while the actin filament slides in the shortening direction due to
the trap compliance. A steady isometric forceF0 (15.9 pN), is attainedwith a
shortening of 70 nm. In the 47 records of the psoas HMM, F0 shows a
Gaussian distribution with centre 17 pN (Fig. 4e). Following the switch to
length clamp, a rapid shortening of ~ 500 nm is imposed so that the force
drops to zero. The shortening in this case is just sufficient todrop the force to
zero, given the much faster shortening velocity afforded by the fast motor
array, so that, as soon as the actin filament sliding stops (third vertical
dashed line), V0, calculated by the extent of shortening minus the amount
taken by the trap compliance, (500− 70 = ) 430 nm, divided by the time
passed from the impositionof shortening to the start of force redevelopment
(0.22 s), is 1.95 μm s−1 (3.9 times larger than that of slowmuscle). Itmust be
considered, however, that V0 in this case is somewhat underestimated, as
most of the shortening occurs with force greater than zero. Force redeve-
lopment in length clamp (phase 4) occurs with a rate that is not influenced
by the trap compliance and thus is the expression of the kinetics responsible
for the transition to the steady force F0 by the fast isoform array. A tr of
77 ± 4ms is estimated on the record (black in Fig. 4f) obtained by averaging
the traces from 7 experiments (grey). The corresponding τ (=tr/2.2) and a
(=1/τ) are 35.0 ± 1.8ms and 28.6 ± 1.4 s−1, respectively.

The upper - 3 dB frequency characterising the force rise fc = 0.35/tr is
4.5 ± 0.2 Hz.

Two main points emerge from these measurements on the synthetic
machine operating in length clamp conditions. The first is that the rate of
force redevelopment, which only depends on the attachment/detachment
kinetics of myosin motors in isometric conditions, is three times slower in
the soleus powered nanomachine than in the psoas powered nanomachine.
The second point is that the force fluctuations around the average value
displayed by the force record at the steady state are stemming from indi-
vidual attachment/detachment events. Both pieces of information can be
used to feed the stochastic model described in the next section.

Modelling the mechanical output of the nanomachine powered
by the slow and the fast isoform ensembles
In the stochastic model each motor exists in three possible states (or motor
configurations): one detached state and two different force-generating
attached states. Fitting the experimental records allows a self-consistent
estimate of all the relevant mechanokinetic parameters of the nanomachine
including the force exerted by a single myosin motor and the average
number of attached motors in the stationary state, without assumptions
from cell and solution kinetic studies.

As detailed in the Introduction, the implementation of the length
clampmode allowsus to recover the conditionof themotors as independent
force generators in the array. Therefore we consider an ensemble of N
independent ATP-fuelled molecular motors interacting with an actin fila-
ment in isometric conditions. Eachmotor can be found in the detached state
D, in the attached low force-generating state A1, or in the attached high
force-generating state A2. The corresponding kinetic scheme, which
exemplifies the possible transitions between distinct allowedmotor states is:

D"
k1

k�1

A1 "
k2

k�2

A2 !
k3

D ð1Þ

The rate constants kj, j∈ {1,− 1, 2,− 2, 3} represent the probability
per unit of time for the reaction j to occur, and are expressed in s−1. The state
of the system at any time t is characterised by the vector
n(t) = (nD(t), n1(t), n2(t)) whose entries specify the number of molecular
motors in each of the considered configurations. Specifically, nD stands for
the number of motors in the stateD, n1 is the number of motors in the state
A1 and n2 denotes the number of motors in the stateA2. The system admits
the obvious conservation lawN = nD+ n1+ n2 whereN stands for the total
number ofmotors in any of the considered states. Accounting for the above
relation enables one to employ just two scalar (discrete) entries to photo-
graph the state of the system, namelyn(t) = (n1(t), n2(t)). Under theMarkov
hypothesis, the stochastic dynamics of the scrutinised system is ruled by a
master equationwhich sets the evolution of the probability P(n, t) offinding
the system in the state specified by the vector n at time t. The master
equation accounts for the balanceof opposing contributions: on the one side
the transitions towards the reference state (the associated terms bearing a
plus sign).On theother, the transitions from the reference state (termswitha
minus). From the master equation one can readily derive the mean field
equations that govern the deterministic dynamics for the continuous con-
centrations y and z of themolecularmotors in statesA1 andA2, as detailed in
Methods. Further, a self-consistent elimination of the variable y can be
performed to yield a simpler description of the examinedprocess in terms of
the variable z (the derivation is given in Methods, see also Supplementary
Fig. 1):

zðtÞ ¼ b
a

1� e�at
� � ¼ k1

k1 þ G
k2

k2 þ k�2 þ k3
1� e� k�2þk3þk2 ðk1�k�2 Þ

k1þk�1þk2

� �
t

� �
ð2Þ

Fig. 4 | Active force generation by the nanomachine powered by slow (soleus) and
fast (psoas) myosin motors. a–c Slow myosin array. a Force (F, blue trace),
movement of the nanopositioner carrying the motor array (Δx, red trace) and
relative sliding between the motor array and the actin filament (ΔL, black trace)
during the actin myosin interaction. Phase 1: following the establishment of the
contact between the actin filament and myosin motors, the force rises in position
clamp to the maximum isometric value (F0≃ 12 pN), with the simultaneous sliding
of the actin filament by ~55 nm toward the shortening direction to load the trap
compliance. Phase 2: the switch to length clamp (marked by the first vertical line) is
followed by the increase in force fluctuations superimposed on F0. Phase 3: force
drops to zero in response to a rapid shortening of ~500 nm imposed in length clamp
(startmarked by the second vertical line) with actin filament sliding under zero force.
Phase 4: following the end of the imposed shortening (marked by the third vertical
line) force redevelops in length clampwith the nanopositionermoving by ~55 nm to

counteract the trap compliance and keep the filament sliding at zero. b Frequency
distribution of F0. Data are plotted in classes of 1 pN and fitted with a Gaussian
(continuous line) with centre 10.5 pN and standard deviation σ = 1.8 pN. c Time
course of force redevelopment after rapid shortening (black trace) averaged from 6
records from as many experiments (grey traces). The red line is the single expo-
nential fit to measure tr (the time elapsed from 10%, horizontal thin dashed line, to
90%, thick horizontal dashed line, of F0 recovery). d–f Fastmyosin array. d F,Δx and
ΔL, defined and colour coded as in (a). Phases 1–4 as described in (a). e Frequency
distribution of F0 plotted in classes of 2 pN and fitted with a Gaussian (continuous
line) with centre 17 pN and standard deviation σ = 3 pN. f Time course of force
redevelopment after rapid shortening (black trace) averaged from 7 records from as
many experiments (grey traces). The red line is the single exponential fit to measure
tr labelled as in (c).
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where a and b are positive quantities, self-consistently defined by the latter
equality and G = (k−1(k−2+ k3)+ k2k3)/(k2+ k−2+ k3). We define
the duty ratio r as the fraction of attached motors (or the fraction of the
ATPase cycle time amotor spends attached).Assuming that formammalian
muscle myosin at temperature T≃ 24 °C motors are prevalently found in
the state A2, a straightforward analysis outlined in the Methods yields
r ’ z� ¼ k1

k1þG. Here, z* stands for the equilibrium concentration of A2

motors. Through parameter a, we have also access to a closed estimate for
the characteristic time scale of the exponential evolution of z. Let us notice
that a is the inverse of the time constant of the development of the steady
force, τ as defined in the experiment, hence a = 2.2/tr. According to this
simplified scheme, the effective rate of ATP consumption can be estimated
as the flux of motors through the cycle per unit time. This equals to the rate
of motors in A2 detaching from the actin, in formula ϕ = z*(a− b).

Starting from these premises we can characterise the average force
exerted by a small ensemble of molecular motors in isometric conditions.
This is obtained by combining the contributions from each individual
motor of the collection:motors in the configurationA1, each exerting a force
f1 and motors in A2, each exerting a force f2. In the nanomachine, motors
have a random orientation with respect to the actin filament. As a con-
sequence, we assume that the intensity of the force exerted by a motor
depends on the binding angle θ, as measured from the correct orientation.
Depending on the specific orientation of the molecule, the force progres-
sively decreases up to aminimumvalue that is 0.1f0

22. In particular, the force
of a single motor can change within a bounded interval: the largest value of
the force f0 is exerted when the motor orientation is correct (corresponding
to the in situ orientation). Then, in accordance with24 (see Supplementary
Fig. 2) we postulate that the exerted force f1 is a random variable, uniformly
distributed within the interval I 1 ¼ ½�f 0; f 0�. Similarly, the force f2 is

randomly extracted from the interval I 2 ¼ ½f 010 ; f 0�. The mean field average
force exerted by the ensemble of myosin motors, at any time t, is
〈F(t)〉 = 〈n1(t)〉〈f1〉+ 〈n2(t)〉〈f2〉 = 〈n2(t)〉〈f2〉, given that 〈f1〉 = 0 since the
interval I 1 is symmetric with respect to zero. In the stationary state, 〈F(t)〉
converges to the asymptotic plateau F0, and thus:

rf 0 ¼
1
N
20
11

F0

where use has been made of the conditions 〈f2〉 = (11/20)f0 and z*≃ r.
The experimental value of the stationary force exerted by a pool of N

motors acting in the stateA2 solely constrains the productof f0 and r. That is,
on deterministicmeans, we cannot access a direct estimate of themaximum
force exerted by an individual motor (f0) and the associated duty ratio (r),
but just constrain this latter pair to fall on a hyperbole, set by F0. Accounting
for the fluctuations superimposed on F0, and thus by properly gauging the
stochastic component of the dynamics, enables us to resolve the above
degeneracy.

To this end we consider the dynamics of the system at finite N,
so as to account for the role played by finite size fluctuations. To
quantify the contribution as stemming from the intimate graininess
of the investigated system, we ought to solve the master equation,
focusing in particular on the stationary state probability distribution
Pst. As discussed in Methods, we are in a position to solve exactly the
stochastic model in its stationary state, and thus get a closed
expression for Pst, as function of the parameters of the model. This
knowledge can be used to compute P(F) the distribution of the
exerted force F (see Methods). We remark that P(F) is ultimately
shaped by the kinetic constants of the model (namely,
k1, k−1, k2, k−2, k3) and also reflects the maximum force f0, as applied
by individual motors. Recall that N is directly determined (Fig. 3).
We can therefore construct an inverse procedure to recover infor-
mation on the underlying parameters, by confronting the predicted
distribution of the force P(F) to the homologous curve experimen-
tally recorded. In particular we will prove that, by exploiting the
information stemming from the fluctuations, it is eventually possible

to unambiguously determine both f0 and r (see Supplementary
Table 2, Supplementary Figs. 8 and 9). The relevant steps that define
the envisaged fitting strategy are summarised in the following and
made explicit in the Methods:
1. The first step amounts to analyse the time evolution of the force in its

meanfield approximation: the asymptotic forceF0 and the time scale a,
as defined above, are extracted via a direct – two parameters – fit that
exploits expression (2).

2. We turn to study the distribution of the fluctuation of the force around
the equilibrium value. To this end we make use of Pst.

3. From Pst we extract the N+ 1 marginal probabilities ρk, namely the
probabilities tofind k≤Nmotors in the force-generating configuration
A2. This is achieved by summing over n1 = 0,…,N the stationary
probability distribution Pst.

4. We then make use of the marginal probabilities (ρ0, ρ1, ρ2,…, ρN) to
weight the probability distributionsΠk(f) of the force exerted by a set of
k motors. These latter are computed as generalised Irwing-Hall
distributions for independent and identically distributed random
variables f drawn from the considered interval I 2. The distribution of
the force is hence estimated as PðFÞ ¼ PN

k¼0 ρkΠkðf Þ.
5. Forfixed sizeN (previously estimatedby the counting of rupture events

in ATP-free solution, see also Supplementary Fig. 10 where the
possibility to modulate N is accounted for) we adjust the kinetic rate
constants k1, k−1, k2, k−2, k3, so as to minimise the root mean square
distance between the recorded distribution and its analytic estimate.
The best fit values are used to compute the parameter b and thus
determine the sought estimates for r and f0, as well as the rate ofmotors
detaching from the actin, i.e. ϕ = z*(a− b).

The above fitting strategy is successfully challenged against synthetic
data as discussed in Methods. Then we proceed by applying the validated
procedure to the experimental data collected with the nanomachine pow-
ered by either of theHMMisoforms.Asmentioned, the number of available
molecular motors (N = 16) estimated from number of ruptures in rigor for
both isoforms (Fig. 3), is assumed as the reference value in the following,
unless otherwise specified. We interpolate the distribution of the fluctua-
tions as experimentally recorded, given the analytical solution obtained
above. A representative example of the fitting outcome for the soleusHMM
ensemble is reported in Supplementary Fig. 11. The estimated values for f0, r
and ϕ, for both the psoas and the soleus HMM, are listed in Supplementary
Note 1 (Supplementary Tables 3 and 4, respectively), and their respective
average values are reported in Table 1. In Fig. 5 the results of the analysis are
plotted in the parameters plane (f0, r) (symbols and lines refer to different
isoforms according to the colour: blue for psoas, red for soleus; different
tones identify different experiments). The solid lines highlight the ensemble
of distinct – though equivalent – solutions ensuing from the average force
profile. By accounting for the fluctuations one breaks the degeneracy
inherent to the system when analysed in its mean field version, getting just
one pair (f0, r) (identified by the symbol) compatible with each individual
experimental curve.

One can relax the constraint N = 16 obtained from the rigor experi-
ments (Fig. 3) and scan the range of N that yields convergence of the

Table 1 | Average values of the relevant parameters estimated
by the stochastic model

Estimated
Parameters

fast slow ratio

f0 (pN) 6.8 ± 1.0 2.4 ± 0.4 2.8

r 0.32 ± 0.02 0.50 ± 0.03 0.64

ϕ (s−1) 6.0 ± 0.2 2.27 ± 0.04 2.6

Average values (mean ± SD obtained by averaging over 6 data records for each isoform) of the three
relevant parameters estimated by the stochastic model: the force of a motor, f0, the fraction of
actin–attached motors, r, and the rate of transition through the attachment–detachment cycle, ϕ.
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optimisation algorithm, for the imposed level of accuracy. The results of the
analysis for the soleus isoform is reported in Supplementary Note 1 (Sup-
plementary Fig. 12), where the estimated f0 is plotted against N. The his-
togram computed from the collection of fitted parameters can be
conceptualised as an indirect imprint of the degree of experimental varia-
bility as associated to f0 and N.

Discussion
We use the one-dimensional synthetic nanomachine described in Ref. 23
to define the isometric mechanical output of an array of 16 myosin
motors purified from either fast (psoas), or slow (soleus), muscle of the
rabbit. To eliminate the large trap compliance and recover the condition
for the motors to operate as independent force generators as in the native
half-sarcomere, once the interaction is established the system control is
switched from position clamp to length clamp. The array of 16 motors in
physiological ATP concentration (2mM) at 24 °C exhibits a steady
isometric force that in the fast isoform is 17 pN, and in the slow isoform
is 10.5 pN. The finding that the force exerted by the same number of
motors is 1.6-fold larger in the fast isoform disagrees with the most
common finding in muscles and muscle fibres that the isometric force
normalised for the cross sectional area of the fibre T0 is either similar or
at max 1.5-fold larger in the fast isoform10–13,15–19. Notably, in skinned
fibres from the same rabbit muscles from which the nanomachine motor
proteins are purified, T0 in psoas at 25 °C has been found 317 ± 14 kPa,
1.9-fold larger than T0 in soleus, 165 ± 12 kPa26.

Recording the development of the steady isometric force in length
clamp eliminates the contamination of the large trap compliance, showing a
roughly exponential time course characterised by the parameter tr that is
238ms for the slow isoform and 77ms for the fast isoform. Thus the rise of
the force to the maximum steady value takes a threefold longer time for the
slow isoform than for the fast isoform. How this emergent property of the
motor ensemble relates to the corresponding event in situ and how it is
affected by the different isoforms has been tested by comparing the nano-
machine output with that of Ca2+-activated skinned fibres, from the same
rabbit muscles from which the motor proteins were purified. According to

the sarcomere-level mechanics for skinned fibres developed in our labora-
tory, the compliance of the attachments of the skinned fibre segment to the
transducer levers is negligible (see Supplementary Note 2, Supplementary
Fig. 13). Under these conditions, the force redevelopment following a fast
shortening able to drop the isometric force to zero is characterised by a
tr = 265 ± 15ms in soleusfibres and 62 ± 5ms inpsoasfibres. Thus, the time
course of force development recorded by the nanomachine in length clamp
and its modulation by the two isoforms, are in quite satisfactory agreement
with those recorded at the cell level. The corresponding rates of force
development (a) by the nanomachine are 28.6 s−1 for the fast isoform and
9.3 s−1 for the slow isoform. Considering that in length clamp a is direct
expression of the sum of the effective rate constant of attachment/force-
generation and the effective rate constant of detachment of the myosin
motors, we conclude that the interaction kinetics in isometric condition is
threefold higher in the fast isoform than in the slow isoform. The attach-
ment/detachment kinetics is expected to increase if the load on the motor
ensemble is reduced, due to the strain-dependent increase in rate constant of
detachment, which underpins the maximum velocity of shortening (V0)
attained under zero load.V0 estimated by the time taken by the ensemble to
redevelop force following a release able to drop the isometric force to zero
(Fig. 4a, d) is 0.5 μm s−1 and 1.95 μm s−1 in the slow and fast HMM
respectively, showing a V0 ~ 4-fold larger in the fast isoform. Thus, the
isoform-dependent increase of V0 is 33% larger than the increase in a and
even larger if one considers thatV0 of the fast isoform is underestimated by
the proportionally larger fraction of time spent for the force to drop to zero
following the release (compare the records in Fig. 4a, d). This suggests that
the fast isoform exhibits a specifically larger strain dependence of the
detachment rate constant.

The rate of development of the isometric steady force and the force
fluctuations superimposed on the steady force in length clamp have been
exploited to implement a stochastic three-statemodel which is able to fit the
experimental responses, allowing self-consistent estimates of all the relevant
mechanokinetic parameters underlying the isometric performance of the
motor ensemble: f0, the force of a single correctly oriented motor, r, the
fraction of attached motors, and ϕ, the rate of transition through the
attachment/detachment cycle (Table 1 in the Results). f0 of the fast isoform
(6.8 ± 1.0 pN) is 2.8-fold larger than f0 of the slow isoform (2.4 ± 0.4 pN),
while the ensemble force F0 is only 1.6 times larger (Fig. 4b, e). This is in a
great part explained by the different fraction of attached motors r, which in
the fast isoform (0.32 ± 0.02) is 0.64 that of the slow isoform (0.50 ± 0.03).
The corresponding number of attached motors (Nr) is ~ 5 and ~ 8 for the
fast and the slow isoform respectively. The average force of a single ran-
domly oriented motor (0.55f0) is 3.7 pN for the fast isoform and 1.3 pN for
the slow isoform, from which the predicted ensemble force is (3.7 × 5 = )
18.5 pNand (1.3 × 8 = ) 10.4 pN, respectively. These values are inquite good
agreement with the observed values: 17 ± 3 pN (σ) for the fast isoform and
10.5 ± 1.8 pN (σ) for the slow isoform.

The model predicts a rate of transition of a motor through the inter-
action cycle, and thus a frequency of ATP splitting per motor (ϕ) 2.6 times
higher for the fast isoform (6.0 s−1) than for the slow isoform (2.3 s−1)
(Table 1). The value of ϕ of the slow isoform array is in a remarkably good
agreement with that estimated on the slow muscle of mouse and rat
(2.3–2.9 s−1, Supplementary Table 1). On the other hand, ϕ for the fast
isoform array is less than half of the one estimated in the fast muscle of the
same animals (12.4–13.3 s−1, Supplementary Table 1). The same dis-
crepancy for the isoform-dependent increase in ϕ is found between the
model prediction and the skinned fibre experiments (Supplementary
Table 1,Refs. 15–19).However, itmust benoted that (i) the absolute values ofϕ
in skinned fibres is 10–fold smaller than the one in themuscle for both slow
and fast myosin isoforms15–18; (ii) the difference can only in minor part be
explained by the different temperature of the experiments (21–27 °C for the
muscle and 12 °C for the skinned fibres), taking into account that theQ10 of
ϕ is ≤2.5 in either preparation11,19,27. ϕ predicted by themodel for the output
of the fast isoformnanomachine is 2.5-fold larger than that predicted for the

Fig. 5 | Estimated motor force f0 and fraction of attached motors r from the
experimental data. Best fit parameters from the experimental data sets of rabbit
soleus HMMs (red symbols) and rabbit psoas HMMs (blue symbols). Mean values
and standard deviations are obtained by averaging over 20 independent realisations
of the stochastic fitting procedure for each data record (coloured small dots). Dif-
ferent tones refer to different experiments. Each solid line represents the hyperbola
on which each of the pair (f0, r) is constrained to be, according to the mean field
analysis.
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slow isoform, but still twofold smaller than that indicated by the energy rate
measured in the fast muscle. Thus the fivefold larger ϕ of the fast isoform
with respect to the slow isoform found inmuscle is only partly explained by
higher rate constants of transitions through the conventional attachment/
force generation and detachment cycle operating in isometric conditions
and recorded by the nanomachine force fluctuations. The actin–activated
myosin ATPase activity in solution is 2.5 times larger in fast than in slow
muscle20, which can be accounted for by a higher rate ofADP release (which
is followed by a fast ATP binding and detachment, step (c)–(d) in Fig. 128)
and/or a higher rate of the hydrolysis step (d)–(e), and/or a higher rate of
actin attachment (step (a)–(b)). In isometric contraction at physiological
ATP concentration, ADP release is the rate-limiting step for detachment
and is 10-fold slower in slow myosin than in fast myosin28 and this may
per se explain the finding that during steady isometric force generation
the duty ratio of the fast myosin nanomachine is lower than that of the
slow myosin nanomachine. However, it must be taken into account that
under isometric conditions (or high load) the transitions through the
different force-generating states of the motor (step (a)–(b)/(c) in
Fig. 129,30) slow down due to the strain dependence of the transition rate
and thus the subsequent conformation-dependent release of ADP also
gets slower (5,31). As far as the difference in ϕ between slow and fast
myosin ensembles in isometric contraction, the finding that the force of
fast myosin is 2.5-fold higher should suggest that the equilibrium dis-
tribution between different force-generating states is shifted toward the
end of the working stroke in the fast myosin, in this way explaining a
larger flux through the detachment step and thus the reduction in the
duty ratio and the increase in ϕwith respect to the slowmyosin (Table 1).
However, it must be considered that the stiffness of the myosin motor,
determined in situ with fast sarcomere-level mechanics applied to skin-
ned fibres from rabbit muscle, is larger in the fast muscle in proportion to
the motor force, so that the extent of the force-generating structural
change is the same in either fast or slow myosin motor32.

In conclusion, the 2.5-fold larger isometricϕof the fastmyosin isoform
found with the analysis of force fluctuations is accounted for by an intrinsic
faster rate of the relevant kinetic steps of the fast myosin isoform which
underpins a 2.5-fold larger ATPase rate in solution20. Instead, the fivefold
larger isometric ϕ of the fast isoform reported in the literature (Supple-
mentary Table 1), exceeds by a factor of 2 the one recorded by the nano-
machine force fluctuations at 24 °C and could be explained by a further
kinetic adaptation of fast myosin isoform hypothesising that, also in iso-
metric conditions, a futile faster actin-activated ATPase cycle is present. In
terms of the kinetic scheme in Ref. 33, this cycle implies the working stroke
transition to occur in the motor undergoing weak actin–binding interac-
tions and does not imply strong/force-generating attachment unless the
load is reduced and the muscle shortens.

A comparison of the parameters estimated in this work with those
obtained in previous nanomechanical approaches is possible for the fast
isoform purified from rabbit psoas investigated by Yanagida’s group22

through the microneedle manipulation technique. In close-to-isometric
conditions, obtained through a stiffmicroneedle, both the force of themotor
(5.9 pN) and the fraction of actin-attached motors (0.36) estimated in that
workare in exceptional goodagreementwith the valuescalculatedhere from
the output of the nanomachine. A peculiar difference that makes our
nanomachine unique is the possibility to define the performances emerging
from the array arrangement of the motors in the half-sarcomere, as the
force–velocity relation and the maximum power output. The novelty of
the present nanomachine application in relation to the previous ones23–25, is
the interpretation of the output of the motor ensemble and of the isoform-
dependent differences on the basis of the mechanokinetic molecular
properties of either isoform in a self-consistent way without any assump-
tions from cell mechanics and solution kinetics. The combined experi-
mental and theoretical achievements in this paper set the stage for any future
studies on the emergent mechanokinetic properties of the half-sarcomere-
like arrangement of any myosin motors, either engineered or purified from
mutant animal models or human biopsies.

Methods
Preparation of proteins
Adult male rabbits (New Zealand white strain), provided by Envigo, were
housed at Centro di servizi per la Stabulazione Animali da Laboratorio
(CeSAL, University of Florence), under controlled conditions of tempera-
ture (20±1) °C and humidity (55 ± 10)%, and were euthanized by injection
of an overdose of sodium pentobarbitone (150mg kg−1) in themarginal ear
vein, in accordance with the Italian regulation on animal experimentation
(Authorisation 956/2015-PR) in compliance with Decreto Legislativo 26/
2014 andEUdirective 2010/63.Three rabbitswere used for the experiments.
HMM fragments of myosin were purified from rabbit soleus and psoas
muscles as reported previously in23,24. The functionality of the purified
motors was always preliminarily checked with in vitro motility assay. Actin
was prepared from leg muscles of the rabbits according to34, and poly-
merised F-actin was fluorescently labelled by incubating it overnight at 4 °C
with an excess of phalloidin-tetramethyl rhodamine isothiocyanate35. For
the mechanical measurements in the nanomachine, the correct polarity of
the actin filament was pursued by attaching the+ end of the filament to a
polystyrene bead (3 μm diameter) (Bead-Tailed Actin, BTA,36) with either
the Ca2+-sensitive capping protein gelsolin23 or the Ca2+ insensitive gelsolin
fragment TL40 (Hypermol, Germany)24,25.

Mechanical experiments
The mechanical apparatus, described in detail in23, is depicted in Fig. 2.
HMM fragments of myosin were deposited randomly on the lateral surface
of a glass pipette pulled to a final diameter of ~ 3–4 μm and functionalised
with nitrocellulose 1% (w/v). The glass pipette was mounted in the flow
chamber carried on a three-way piezoelectric nanopositioner (nano-
PDQ375, Mad City Lab, Madison WI, USA) that acts as a displacement
transducer, andwas brought to interact with a BTA trapped in the focus of a
Dual Laser Optical Tweezers (DLOT) that acts as a force transducer. The
DLOT system has a dynamic range for both force (0−200 pN, resolution
0.3 pN) and displacement (0−75 μm, resolution 1.1 nm) adequate for the
measuring of the output of the nanomachine. The buffer solutions used for
all the experiments are already reported in23 and contained physiological
concentrations of ATP (2mM) unless differently specified. 0.5% methyl-
cellulose was added to the running buffer in order to inhibit the lateral
diffusion of F-actin37 and minimise the probability of loss of acto–myosin
interaction. The concentration ofHMMfrom soleus and psoasmuscle used
for the experiments was defined by the concentration at which the number
of rupture events in rigor attained a saturating value.

The mechanical apparatus, as already reported in23, can be operated
either in position clamp (Fig. 2, red branch), when the feedback signal is the
position of the nanopositioner carrying the motor array (x), or in force
clamp (green branch),when the feedback signal is the force (F), calculated as
the product of the stiffness of the trap (e) times the change in position of the
bead in the laser trap (xbead). Recording of the nanomachine performance in
true isometric condition, however, cannot be achieved in position clamp,
due to the large trap compliance ( ~ 4 nmpN−1), which implies both several
tens of nanometres movement to develop the maximum steady force and
blunting of the force of individual attachment–detachment events (Sup-
plementary Fig. 7 in23). To eliminate the trap compliance the system has
been implementedwith a length clamp (blue branch in Fig. 2), which uses as
a feedback signal the change in distance (L) between the position of the actin
attached bead in the laser trap (xbead) and that of the nanopositioner (x), so
that the movement of the bead with the force change is counteracted by the
movement of thenanopositioner. In thisway the effective trap compliance is
reduced to 0.2 nm pN−1.

In length clamp the frequency response of the system is reduced by the
propagation time of the mechanical signal through the loop from the force
transducer to the nanopositioner, which also includes the array of actin
attachedmyosin motors. The power density spectrum (PDS) of the system,
measured with sinusoidal oscillations at different frequencies, changes
depending on the selected feedbackmode: in position clamp the PDS shows
an upper− 3 dB frequency (or corner frequency fc) of 59Hz (Fig. 6, red); in
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length clamp, when the feedback loop is closed with the array of
actin–attached myosin motors in rigor, fc decreases to 32Hz with HMM
from fastmuscle (violet) and to 17HzwithHMMfrom slowmuscle (cyan).
The mass of the system (m) is the same with either isoform array thus the
different corner frequency between the two nanomachines should almost in
part depend on the different stiffness of the two arrays in rigor.

The architecture of the machine (with the length of the motor array
much shorter than the lengthof the overlapping actinfilament) implies that,
for a given HMM concentration, the measured number of rupture events
does not significantly change from experiment to experiment, therefore
there is no need to normalise the mechanical response obtained in different
experiments at physiological [ATP] by the actin–filament length. All the
experiments were conducted at room temperature (24 °C).

Statistics and reproducibility
Data are expressed as mean ± standard deviation unless otherwise stated.
The number of replicates is defined in the text and in the figure legends.

Stochastic model: on the governing master equation
The master equation can be cast in the general form:

∂Pðn; tÞ
∂t

¼
X
n0≠n

Tðnjn0ÞPðn0; tÞ � Tðn0jnÞPðn; tÞ½ � ð3Þ

where Tðn0jnÞ represent the transition rates from the state n to a new state
n0, compatible with the former. In the following, to identify the arrival/
departure staten0 we solely highlight the individual component of the vector
n that changes due to the considered reaction.The explicit expression for the
transition rates that originates from the chemical equations (1) is given in
the annexed Supplementary Note 1.

In SupplementaryNote 1 are alsopresented thedetails of thenumerical
simulation of a single stochastic orbit of the considered dynamics, obtained
via the celebrated Gillespie algorithm38,39. In Supplementary Fig. 3 it is
shown the time evolution of the (discrete) concentration of molecular
motors in each configuration, while in Supplementary Fig. 4 the results of
the stochastic simulations for the probability distributions of the fractions of
motors in the force-generating configurations are compared with the the-
oretical prediction.

The deterministic limit
From the master equation one can readily derive the mean field equations
that govern thedeterministic dynamics for the continuous concentrationsof
the molecular motors in configurations A1 and A2:

dy
dt ¼ k1 � k1 þ k�1 þ k2

� �
y � k1 � k�2

� �
z

dz
dt ¼ k2 y � k�2 þ k3

� �
z

(
ð4Þ

where y and z identify the averaged fractionof themolecularmotors in states
A1 andA2, respectively. Equations (4) canbe studied at equilibrium, yielding
the fixed point solutions:

y� ¼ k1
k1 þG

� 	
k�2þk3

k2 þ k�2 þ k3

z� ¼ k1
k1 þG

� 	
k2

k2 þ k�2 þ k3

8><
>: ð5Þ

where:

G ¼ k�1ðk�2 þ k3Þ þ k2k3
k2 þ k�2 þ k3

ð6Þ

We define the duty ratio r as the fraction of attached motors (or the
fraction of the ATPase cycle time a motor spends attached). It can be
computed as:

r ¼ y� þ z� ¼ k1
k1 þ G

: ð7Þ

The temporal evolution of the mean field concentrations of motors in
different configurations, for a suitable choice of the kinetic parameters is
shown in SupplementaryFig. 2, in SupplementaryNote 1.A straightforward
calculation can be performed to show that z� ’ r ¼ k1

k1þG and y*≪ 1, when
k−2/k2, k3/k2≪ 1. In practical terms, under this operating assumption,
which for the mammalian muscle myosin under consideration is approa-
ched at temperature T≃ 24 °C, motors are solely found in state A2. As
discussed earlier, this is the relevant setting for the specific case study
at hand.

Equations (4) can be drastically simplified by performing a self-
consistent elimination of the variable y. To this end we set dy/dt = 0 in the
first of equations (4) to eventually express y as a functionof z. This procedure
is customarily invoked to carry out the so-called adiabatic elimination,
which proves correct when there is a clear separation of time scales between
co-evolving variables. Although this is not a priori the case for the system at
hand, we will postulate the validity of the aforementioned condition and
operate with the ensuing approximation that, as we shall prove, will mate-
rialise in an accurate interpretative framework. Further details can be found
in Supplementary Note 1 (see Supplementary Fig. 1). Plugging the expres-
sion for y as a function of z into the second of equations (4) and solving the
ensuing differential equation readily yields:

dz
dt

¼ k1 k2
k1 þ k�1 þ k2

� z k�2 þ k3 þ
k2 ðk1 � k�2Þ
k1 þ k�1 þ k2


 �
� b� az ð8Þ

which immediately yields solution (2), as reported in the Results. From
equation (2) we can write z* = b/a and this latter condition matches the
homologous estimate derived from theoriginal two-dimensionalmodel and
reported in equations (5).

Exact solution of the stochastic problem
At first, we remark that the probability distribution P(n; t)≡ P(n1, n2; t) can
be written as a vector P(t) of dimension (N+ 1) × (N+ 1). This latter
returns the probability at time t, of finding the system in the state char-
acterised by n1 motors in configuration A1 and n2 motors in configuration

Fig. 6 | Power density spectrum of the system. Superimposed power density
spectrum either in position clamp (red circles interpolated by the red Lorentzian
curve), or in length clamp with the array of actin attachedmotors in rigor from both
fast muscle (violet circles and curve) and slow muscle (cyan circles and curve). The
upper− 3 dB frequency fc is: 59 ± 3 Hz (red), 31 ± 6 Hz (violet) and 17 ± 3 Hz
(cyan). The coloured area delimited by thinner lines indicates the confidence limits.
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A2. Here, n1 and n2 can in principle assume every integer values in the range
[0,N], i.e. a total ofN+ 1 values each.Observehowever that the populations
of motors in the configurations A1 and A2, must satisfy the obvious con-
straint that reflects the conservation law, i.e. n1+ n2 ≤ N. A simple way to
express the condition above is to consider that for each possible value of n1,
n2 can assume values in the range [0,N− n1]. This readily implies that the
total number of possible states for the system is identically equal to
M = (N+ 1)(N+ 2)/2. The number of allowed states are hence smaller than
what anticipated above. Indeed the non trivial entries of P(t) are
M = (N+ 1)(N+ 2)/2. We will consequently focus on the non trivial ele-
ments of vector P(t) which we shall denote as Pm(t) withm = 1,…,M. For
the relevant case of N = 16 molecular motors, instead of (N+ 1) × (N+
1) = 289 configurations we only have M = 153 possible states that can be
eventually visited by the system, and that we explicitly list in Supplementary
Note 1. As we shall also discuss in the same Supplementary Note 1, the
stationary probability distribution Pst defines the kernel of aM ×Mmatrix
Q and can be hence computed as the eigenvector ofQ relative to the null
eigenvalue.The entriesof thematrixQ canbe computed fromthe transition
rates of the underlying master equation, as highlighted in Supplemen-
tary Note 1.

Themarginal probability ρk tofind k ≤Nmotors inA2 can be extracted
from the stationary probability distributionPst, the stationary solution of the
master equation. This is done by summing the elements of Pst that refer to
the selected k, and that account for all possible partitioning of the remaining
N− k motors among configurations D and A1. The knowledge of the sta-
tionary probabilities (ρ0, ρ1, ρ2,…, ρN) opens up the perspective to calculate
the stationary state distribution of the applied force F, an important asset
when aiming at a refinedfitting schemewhichmeticulously accounts for the
role played by fluctuations.

To work along these lines we shall assume that the contribution to the
force (including fluctuations) of the motors in the state A1 is always negli-
gible. This assumption is motivated by the fact that, for the experimental
setting here explored, only a tiny fraction of motors is found to populate
stateA1, at any time t. In Supplementary Note 1, we will however relax this
working assumption so as to provide a rigorous theoretical framework that
extends to account for the relevant setting where the population of A1

motors is instead significant in size.
Let us focus on k ≤ N distinct motors in state A2. As postulated

earlier, each motor can exert a constant random force f, uniformly
spanning the assigned interval I 2. For each choice of k, we can
compute the distribution of the forces Πk(f) applied by the selected k
motors, by combining independent and identically uniformly dis-
tributed random variables drawn for the interval of pertinence I 2
(see Supplementary Note 1 for further technical information, Sup-
plementary Figs. 6 and 7). As stated in the Results, functions Πk(f)
need to be combined together with proper weighting factors that
reflect the stationary probability ρk of having exactly k motors in the
force-generating state A2, namely PðFÞ ¼ PN

k¼0 ρkΠkðf Þ.
The relevant steps of the fitting strategy are listed below. We begin by

focusingon the average forceprofile, hencedisregard the impact offinite size
fluctuations. As mentioned above, the time evolution of the recorded force
can be approximated by an effective, two-parameters model (see Supple-
mentary Fig. 5 in Supplementary Note 1). The latter parameters – respec-
tively denoted F0 and a – can be estimated via a direct fit. Having accessed to
preliminary estimated values for the average force at the stationary plateau
F0 and for the rate of isometric force developmenta, one can then set forth to
characterise the other kinetic parameters by analysing the distribution of the
fluctuations of the force around the asymptotic plateau. To this endwe note
that f0, one of the unknown of the model, can be written as:

f 0 ¼
20
11

F0

N
a
b

ð9Þ

where a is constrained to the value determined above while b = k1k2/
(k1+ k−1+ k2) as defined by equation (8).

Armed with the above knowledge, we can proceed further by
comparing the probability density function of the force fluctuations as
obtained analytically to the homologous histogram computed from the
stochastic simulations. The former is adjusted to the latter by modulating
the free parameters k1, k−1, k2, k−2 and k3, for a fixed choice of N. As
discussed in Supplementary Note 1, testing the method against synthetic
data generated in silico enables us to conclude that parameters f0 and
r = k1/(k1+G) can be correctly estimated, following the above fitting
scheme (see Supplementary Table 2). Also the estimated b and a
(recomputed from the best fitted values for the kinetic constants) are
pretty close to their nominal values as imposed in the simulations.
Remarkably ϕ, the rate of motors completing the interacting cycle with
the actin, is also correctly recovered. A graphic comparison between
estimated and exact parameters (i.e. those employed in the inspected
simulations) is also shown in Supplementary Fig. 8 of Supplementary
Note 1. Notice however that multiple combinations of the parameters k1,
k−1, k2, k−2 and k3 exists that yields the same fitted profile (with almost
identical estimates for the relevant quantities f0, r, a and b).

While the kinetics of the scrutinised model cannot be solved unequi-
vocally, we are in a position to accurately determine crucial parameters – as
e.g. the maximum force exerted by a single motor and the associated duty
ratio of the ensemble – which proved elusive under the deterministic
viewpoint, as can be appreciated in Supplementary Fig. 9 of Supplemen-
tary Note 1.

The above analysis refers to afixed value ofN, the size of the system that
we assumed (from the experiment results shown in Fig. 3)N = 16. In prin-
ciple the correct value ofN is not a priori known. To overcome this intrinsic
limitation, one could repeat the analysis by varying N and recording the
parameter estimated as follows thefitting scheme.Here,wewill consider the
simplified setting where a and b are frozen to the values determined for
N = 16 (so that z* stays unchanged). This is implemented by removing two
parameters fromthepool of quantities to befitted. Specifically k−1 andk3 are
constrained to match two constitutive relations, that involve k1, k2 and k−2,
in addition to a and b. The parameters to be fitted are hence k1, k2 and k−2,
while k−1, k3 and f0 can be self–consistently determined from the their best
fit values. Notice that f0 is expected to change as a function ofN as specified
by relation (9). The result of the analysis are reported in Supplementary
Fig. 10 in Supplementary Note 1: the fitting procedure converges (with the
requested limit of precision) only over a finite range of values of N, centred
around the value adopted when performing the simulations. This obser-
vation implies in turn that we are in a position to obtain a reasonable
estimate for the interval of pertinence of N, as follows the procedure
outlined above.

The introduced theoretical framework and the ensuing fitting strategy,
thoroughly validated against synthetic data, can be hence applied to the
analysis of the experimental data so to yield a self–consistent estimate of the
underlying mechanokinetic parameters. For a detailed validation of the
fitting scheme against synthetically generated data refer to Supplemen-
tary Note 1.

Data collection and analysis
A custom built program written in LabVIEW (National Instruments) was
used for signal recording. Data analysis was carried out using LabVIEW
(National Instruments) andMATLAB (MathWorks) dedicated scripts, and
Origin 2018 (OriginLab Corp., Northampton, MA, USA) and Igor Pro 8
(WaveMetrics, Portlan, OR, USA) software.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The source data for all figures and tables are provided as Supplementary
Data 1. All remaining data will be available from the corresponding authors
upon reasonable request.
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