
communications biology Article

https://doi.org/10.1038/s42003-024-06029-4

Learning to stand with sensorimotor
delays generalizes across directions
and from hand to leg effectors

Check for updates

Brandon G. Rasman 1,2,3, Jean-Sébastien Blouin4,5,6, Amin M. Nasrabadi 4, Remco van Woerkom1,
Maarten A. Frens1 & Patrick A. Forbes 1

Humans receive sensory information from thepast, requiring thebrain toovercomedelays toperformdaily
motorskills suchasstandingupright.Becausedelaysvary throughout thebodyandchangeovera lifetime,
it would be advantageous to generalize learned control policies of balancing with delays across contexts.
However,notall formsof learninggeneralize.Here,weusea roboticsimulator to imposedelays intohuman
balance. When delays are imposed in one direction of standing, participants are initially unstable
but relearn to balanceby reducing the variability of theirmotor actions and transfer balance improvements
tountraineddirections.Upon returning tonormalstanding, aftereffects from learningareobservedassmall
oscillations in control, yet they do not destabilize balance. Remarkably, when participants train to balance
with delays using their hand, learning transfers to standing with the legs. Our findings establish that
humans use experience to broadly update their neural control to balance with delays.

Delays are a ubiquitous feature of movement control. Consequently, the
nervous system of all animals must learn to control movement based on
outdated sensory information and compensate for the influence delays have
on self-motion. The delays accompanying the control of different motor
effectors, however, are not constant; instead, they vary due to the length and
velocity of neural transmission1,2 and the complexity of the neural networks
involved1–6. Furthermore, delays can lengthen throughout the lifespan due
to alterations in nerve conduction, muscle force generation, and neural
processing associated with growth3, aging7, and disease8,9. Given the like-
lihood that sensorimotor delays can change3,7,10–12, it would be advantageous
if the brain could generalize learned policies for controlling self-motionwith
delays and transfer themto different contexts. Standing balance represents a
motor behavior that would largely benefit from generalizing learned control
with delays, given that the human bipedal posture is mechanically
unstable13–16 and failing to accommodate for different sensorimotor delays
in balance control increases the risk of falling17–20. However, the generation
of multidirectional balance-correcting responses relies on a diversity of
sensory signals (i.e., visual, vestibular, somatosensory, auditory) and ana-
tomically distinct muscles (i.e., ankle and hip), which may challenge and
limit generalization across directions and muscle effectors.

Imposing long delays into anteroposterior control of human standing
destabilizes balance, but through training, participants can learn to regain
their upright balance control and retain this ability after threemonths21. This
learning is accompanied bymodulations in the vestibular control of balance
and perception of self-motion, supporting the view that adaptations to
ongoing balance control are governed through sensorimotor processes that
can change our perceptual awareness of ongoing balance22–26. However,
whether the nervous system can generalize the learning to different task
contexts remains unknown. Typically, the more contextual factors that
overlap between tasks (i.e., goal, movement mechanics, sensory cues, and
motor effectors), the more likely learned control policies will generalize27–30.
Standing balance involves controlling whole-body motion in both ante-
roposterior and mediolateral space, with each direction of balance posses-
sing distinct biomechanics16,17,31,32, muscle effectors, activation patterns33–35,
and sensorimotor delays5,17,20,36,37. Therefore, these differing sensorimotor
factors may limit the ability to generalize learning across orthogonal space
(H0, see Fig. 1), as observed when standing participants adapt their balance
to externally imposed perturbations in different directions38. On the other
hand, the common task goal of balancing the upright body against gravity
may help facilitate transfer across the different directions of balance (H1).
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Here, we explored these two hypotheses to determine whether the learned
control policies of balancing with sensorimotor delays generalize across
different contexts.

An important consideration for any potential generalization is that
lower limb muscles generate joint forces and torques contributing to both
balance directions39–42. As a result, the question arises of whether any

transfer of balance improvements is due to a neural generalization of
learning or a byproduct of biomechanical interactions (i.e., adapted motor
commands of muscles contributing to multidirectional balance control).
Importantly, the possibility of neural generalization and biomechanical
interactions are not mutually exclusive – i.e., both could contribute to the
transfer of trainingbenefits. Therefore, to determinewhetherbiomechanical
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interactions are required for the transfer of training benefits, we assessed
whether transfer of learning occurred across biomechanically independent
muscles. If the brain can broadly update its control to accommodate for
imposed delays, we hypothesized that even when participants trained to
balance the whole body with their hand muscles, balance performance
would improve when controlling the upright body with postural lower limb
muscles.

We performed three experiments in which participants stood in a
robotic balance simulator (Fig. 1) that recreates the physical sensations and
neural signals for balancing upright, while delays were imposed into the
anteroposterior and/ormediolateral directions of balance. In Experiment 1,
participants practiced balancingwith an imposed delay in one direction and
were then asked to balance with delays in both the trained and untrained
directions. We found that regardless of the direction trained (ante-
roposterior or mediolateral), participants improved their balance (reduced
movement variability and increased balancing time) across orthogonal
space. InExperiment 2, participants balancedwhile delayswere imposed for
brief periods (20 s) in one or both the anteroposterior and mediolateral
directions. We found evidence of biomechanical interactions that may
contribute to the transfer observed in Experiment 1 because imposing a
delay in a single direction increased the variability of standingmovement in
both the delayed and orthogonal (non-delayed) directions. In our final
experiment (Experiment 3), we tested whether the observed transfer of
balance learning (i.e., Experiment 1) relied on the biomechanical interac-
tions identified in Experiment 2.Here, we designed a condition that allowed
whole-bodymotion to be controlled through hand-generated forces. A new
group of participants were trained to balance with a delay in this hand
control condition andwere evaluated for any transfer of learning to balance
with a delay using their leg muscles. After training, participants improved
their balance in both the trained hand-controlled and untrained leg-
controlled conditions. In all training experiments, debrief sessions indicated
that participants deliberately learned to make calmer and smaller motor
actions. Collectively, our findings demonstrate that humans can transfer the
learned ability to balance upright with imposed delays across orthogonal
space andbiomechanically independentmuscle effectors engaged inbalance
control. These results reveal that the human brain can leverage prior
experience of balancingwith sensorimotor delays to control upright posture
in distinct contexts.

Results
Experiment 1: Learning to balance with imposed sensorimotor
delays transfers across directions
Participants were instructed to stand quietly on a robotic balance simulator
while a 350ms delay was imposed between their ankle torques and con-
sequent whole-body position (see “Methods”). Whole-body (i.e., the center

of mass) angular position, angular velocity, and ankle-generated torques
were recorded to quantify standing behavior when balancing with or
without the imposed delay. The robot was programmed to simulate whole-
body balance in either (or both) the anteroposterior (AP) direction and/or
themediolateral (ML) direction.Weprogrammed angular position limits of
6° anterior and 3° posterior for AP and 3° left/right for ML balance to
represent the limits of whole-body position during standing (see
“Methods”).

Here, two different groups of participants trained to balance with
imposed delays of 350ms in either the AP (n = 12) orML (n = 12) direction
while the orthogonal direction was fixed. When imposing delays prior to
learning, whole-body oscillations in both groups were highly variable and
participants had difficulty remaining upright within the simulated limits
(see representative data in Fig. 2a, top row). As a combined group (n = 24),
participants oscillated with large angular velocity variance (17.4 ± 1.7 (°/s)2

in AP-delay trials; 12.9 ± 1.2 (°/s)2 in ML-delay trials) and spent only
~63–64% of the time within the simulated balance limits (63% ± 1% of the
time in AP-delay trials; 64% ± 1% in ML-delay trials).

Training improves balancing with delays. During training, partici-
pants in both groups progressively reduced the variability of their angular
velocity and increased the percentage of time they maintained balance
within the virtual limits (Fig. 2c). By the end of training, 10 out of 12
participants in the AP group and 9 out of 12 participants in theML group
could balance for at least 60 s without reaching the simulated limits. First-
order-exponential fits to the angular velocity variance and percent time
within the limits for both the AP andML groups indicated that there was
no difference in time constants between the two training groups for either
angular velocity variance (AP training: 14.7 ± 2.6 min vs ML training:
13.7 min ± 3.6 min, t(22) = 0.22, p = 0.83) or percent time within the
balance limits (AP training: 18.0 ± 2.7 min vs ML training: 16.8 min ±
2.2 min, t(22) = 0.33, p = 0.74). Similar outcomes were also observed in
ankle-generated torque, which progressively decreased over the course of
training (Fig. 3c). First-order-exponential fits to ankle torque SD for both
the AP and ML groups indicated that there was no difference in time
constants between the two training groups (AP training: 26.0 ± 4.9 min vs
ML training: 19.6 min ± 4.5 min, t(22) = 0.97, p = 0.34). Collectively, the
similar time constants of all metrics between groups suggest that balance
learning with the delay in AP andML directions occurred at similar rates.

To assess the control underlying the learning process, we further
examined the frequency content of angular velocity and ankle torque signals
at the start and end of training. The auto spectra of both signals showed a
general decrease in power across frequencies (Figs. 2d, 3d), aligningwith the
general reductions in variability described above. However, when we nor-
malized the auto spectra to the sum of the power from 0.2–5Hz, we

Fig. 1 | Experimental set-up and hypothesized outcomes. a Participants stood on a
force platemounted to an ankle-tilt platform andwere securely strapped to the robot
frame with torso and pelvis harnesses. In conditions where whole-body motion was
controlled by forces and torques produced at the feet, the support surface was held
horizontally (earth-fixed reference) while the robot moved the participant’s whole
body in the anteroposterior and/or mediolateral directions. In conditions where
participants controlled anteroposterior whole-body motion by modulating force at
their right index finger (see inset: hand controller), the support surface co-rotated
with the backboard (i.e., ankle sway referencing) to remove the sensory conflict that
arises from ankle somatosensory feedback not being coupled to ankle-generated
torques to control balance (see “Methods”). b Participants balanced the robotic
simulator as it operated with different delays (4–350 ms). Delays were imposed in
either a single direction or both directions of balance motion. Control signals from
the legs (ankle-produced torque) or hand (torque generated at the finger) were
buffered in the robotic simulation computer model such that angular rotation of the
whole body could be delayed. c Sample raw data of ankle torque and center of mass
(i.e., whole-body) angular position in baseline and 350 ms delayAP standing balance
trials. dAcross experiments, we presented conditions that restrained balancemotion
to a single direction while others necessitated balancing in both directions. Imposed

delays were added either to one or both directions of motion. e Hypothesized out-
comes of the separate experiments. Experiment 1: training to balancewith delays in a
single direction will result in balance improvements in only the trained direction
(H0) or in both directions (H1). Experiment 2: imposed delays targeting a single
direction of motion will destabilize standing only in that direction (H0) or in both
directions (H1). Experiment 3: training to balance with delays during the hand-
control condition will result in balance improvements only for balance control with
the hand (H0) or will transfer to balance control with the legs (H1). Yellow circles
indicate conditions where delayed balance was learned (i.e., in specific directions or
with specificmotor effectors). fExperimental design and timelines. In Experiment 1,
one group trained in the AP-delay/ML-fixed condition while another trained in the
AP-fixed/ML-delay condition (see Methods). In Experiment 2, a new group of
participants performed short (20-second) standing trials with different combina-
tions of balance direction and delays. In Experiment 3, a new group of participants
trained to balance with a 300 ms imposed delay while controlling whole-body
motion in the AP direction using a hand controller. Elements in part (a) are adapted
with permission from79, Frontiers Media SA. Elements in part (d) are adapted with
permission from69, JNeurosci.
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observed overlapping power spectra at the start and end of training (see
insets Figs. 2d, 3d). This suggests that while the power of the controlling
torque produced by participants decreased during learning, the distribution
of frequencies remained consistent throughout.

Transfer from training. When participants balanced with the delay after
the training, we saw improvements in balance in the trained direction.
Planned comparisons (paired t-tests, Bonferroni corrected) of the pre-
and post-learning trials (Figs. 2a, 3a for sample raw data, Figs. 2b, 3b for

group data) indicated that for all groups and in each direction of imposed
delay, angular velocity variance and torque SD decreased, while percent
time within the limits increased. Specifically, from pre- to post-learning
trials, the twelve participants in the AP training group reduced AP
angular velocity variance by ~78% (pre: 16.2 ± 2.2 (°/s)2 vs post: 3.5 ± 0.5
(°/s)2; p < 0.001), increased percent time within the AP limits (pre:
64% ± 2% vs. post: 95% ± 1%; p < 0.001), and reduced AP torque SD by
~55% (pre: 37.0 ± 4.0 Nm vs post: 16.6 ± 1.7 Nm; p < 0.001). Similarly,
the twelve participants in the ML training group reduced ML angular

Fig. 2 |Whole-bodymovement behavior with imposed delay from Experiment 1.
aWhole-body (i.e., center of mass) angular position (°) from representative parti-
cipants in the AP training group and ML training group. The top and bottom rows
illustrate pre- and post-learning trials, respectively. During delayed standing trials,
the robotic simulator operated with a 350 ms delay and whole-body motion was
restricted such thatmotion could only occur in theAP orML direction. Dashed lines
represent the virtual position limits for AP (6° anterior, 3° posterior) andML (3° left,
3° right) directions. Dotted lines represent the 0° position for all conditions.
b Angular velocity variance and percent time within the limits in the pre- and post-
learning trials from both groups. Small circles connected with thin lines are indi-
vidual participants and larger filled circles are group averages (n = 12 for each group)
with SEM error bars. Regardless of which direction was trained (AP-delay or ML-
delay), balance improvements were observed in both angular velocity variance and
percent time within the limits for the AP and ML conditions. ** indicates p < 0.01
and *** indicates p < 0.001. c Single participant and average angular velocity

variance and percent timewithin the limits estimated over 1-minute intervals during
the delay training trials from all participants who completed the training protocol
(AP training group: n = 12;ML training group: n = 12). The color gradient fromdark
to light indicates the progression of training. The solid lines show fitting of average
angular velocity variance and average percent time within the balance limits to a
first-order exponential function using a least-square method:
f xð Þ ¼ a � exp �x

b

� �þ c. Data for one minute standing at baseline (system delay =
4 ms) are represented by open diamonds. Error bars are SEMs. dGroupmean log10
transformed auto spectra of angular velocity signals extracted from the start and end
of learning. Insets present auto spectra normalized to the sum of the power from
0.2–5 Hz, demonstrating a similar distribution of frequencies from the start and end
of training. Shaded regions around the means represent the bootstrapped 95%
confidence interval. For all panels, data in blue represent AP-delay trials whereas
data in red represent ML-delay trials.
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Fig. 3 | Ankle-produced torque behavior with imposed delay from Experiment 1.
a Ankle-produced torque (Nm) from representative participants in the AP training
group and ML training group. The top and bottom rows illustrate pre- and post-
learning trials, respectively. During delayed standing trials, the robotic simulator
operatedwith a 350 ms delay, andwhole-bodymotionwas restricted to occur in only
the AP orML direction in response to AP orML ankle torques, respectively. bAnkle
torque standard deviation in the pre- and post-learning trials from both groups.
Small circles connected with thin lines are individual participants and larger filled
circles are group averages (n = 12 for each group) with SEM error bars. Regardless of
the direction trained (AP-delay or ML-delay), ankle torque variability decreased for
the AP andML conditions. For all panels, data in blue represent AP-delay trials (and
AP torque) whereas data in red represent ML-delay trials (and ML torque). *
indicates p < 0.05, ** indicates p < 0.01 and *** indicates p < 0.001. c Single

participant and average ankle torque standard deviations estimated over 1-minute
intervals during the delay training trials (AP training group: n = 12; ML training
group: n = 12). The color gradient from dark to light indicates the progression of
training. The solid lines show the fitting of average ankle torque standard deviation
to a first-order exponential function using a least-square method:
f xð Þ ¼ a � exp �x

b

� �þ c. Data for one minute standing at baseline (system delay =
4 ms) are represented by open diamonds. Error bars are SEMs. dGroupmean log10
transformed auto spectra of ankle torque signals extracted from the start and end of
learning. Insets present auto spectra normalized to the sum of the power from
0.2–5 Hz, demonstrating the similar distribution of frequencies from the start and
end of training. Shaded regions around the means represent the bootstrapped 95%
confidence interval. For all panels, data in blue represent AP-delay trials whereas
data in red represent ML-delay trials.
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velocity variance by ~82% (pre: 13.2 ± 1.9 (°/s)2 vs post: 2.4 ± 0.5 (°/s)2;
p < 0.001), increased percent time within theML limits (pre: 67% ± 1% vs
post: 94% ± 2%; p < 0.001) and reduced ML torque SD by ~57% (pre:
31.3 ± 3.2 Nm vs post: 13.5 ± 1.3 Nm; p < 0.001).

When participants were exposed to the delay in the untrained direc-
tion, while balance was locked in the trained direction, their balance per-
formance also improved. Pairwise comparisons revealed that participants in
the AP training group reducedML angular velocity variance by ~42% (pre:
12.7 ± 1.5 (°/s)2 vs post: 7.4 ± 1.1 (°/s)2; p = 0.004), increased percent time
withinML limits (pre: 61%± 2%vs. post: 74% ± 2%; p < 0.001) and reduced
ML torque SD by ~26% (pre: 31.4 ± 2.9 Nm vs post: 23.2 ± 1.9; p = 0.013).
Similarly, participants in ML training group reduced AP angular velocity
variance by ~49% (pre: 18.5 ± 2.8 (°/s)2 vs post: 9.5 ± 1.1 (°/s)2; p < 0.001),
increased their percent time within AP limits (pre: 63% ± 2% vs post:
73% ± 3%; p < 0.001) and reduced AP torque SD by ~26% (pre:
39.9 ± 2.8 Nm vs post: 29.4 ± 2.2; p = 0.001). Further analysis demonstrated
that while participants improved balance performance in both trained and
untrained directions, relative improvements were greater in the trained
direction (Supplementary Note 1, Supplementary Fig. 1). Importantly, a
control experiment demonstrated that simply experiencing balance control

in the robot didnot result in improvements betweenpre- andpost-trials (see
Control experiment below). Therefore, these results suggest that training to
balance with a delay in one direction transfers to the orthogonal direction.

Baseline standing before and after learning. We further assessed
whether learning to balance with the 350 ms delay resulted in any
aftereffects in normal balance by comparing baseline trials (i.e., 4 ms
delay) from pre- and post-learning sessions (Figs. 4, 5). In the post-
learning baseline trials, angular velocity variability was similar to pre-
learning trials and participants always remained within the virtual limits.
In both AP and ML training groups, there was no difference in angular
velocity variance (Fig. 4b) between the pre and post AP-baseline trials
(AP training: 0.05 ± 0.01 vs 0.04 ± 0.01 (°/s)2, p = 0.19; ML training:
0.07 ± 0.02 vs 0.06 ± 0.01 (°/s)2, p = 0.46) and no difference in angular
velocity variance between the pre and post ML-baseline trials (AP
training: 0.04 ± 0.01 vs 0.03 ± 0.01 (°/s)2, p = 0.20; ML training:
0.03 ± 0.01 vs 0.04 ± 0.01 (°/s)2, p = 0.38). Analysis of ankle torque
variability showed similar results (Fig. 5b). In both AP and ML training
groups, there was no difference inAP torque SD between the pre and post
AP-baseline trials (AP training: 2.29 ± 0.29 Nm vs 2.12 ± 0.22 Nm,

Fig. 4 | Whole-body movement behavior in baseline (4 ms delay) trials from
Experiment 1. aWhole-body angular position (°) from representative participants
in the AP training group andML training group. The top and bottom rows illustrate
pre- and post-learning baseline trials, respectively. Dotted lines represent the 0°
position for all conditions. bAngular velocity variance in the pre- and post-learning
AP-baseline and ML-baseline trials. Small circles connected with thin lines are
individual participants and larger filled circles are group averages (n = 12 for each
group) with accompanying SEM error bars. No changes were observed between pre-
and post-learning baseline trials in angular velocity variance. Every participant

balanced within the limits for 100% of the time for every baseline trial (not plotted).
Not significant is indicated by n.s. c Group mean log10 transformed auto spectra of
angular velocity signals extracted from pre- and post-baseline trials show changes in
the distribution of power as a decrease at low frequencies (0.2–1.2 Hz) and a peak
emerging at 1.4 Hz, primarily in the trained direction. Darker lines represent the
mean of pre-learning trials, while lighter lines represent the mean of post-learning
trials. Shaded regions around themeans represent the bootstrapped 95% confidence
interval. For all panels, data in blue represent AP-baseline trials whereas data in red
represent ML-baseline trials.
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p = 0.52;ML training: 2.46 ± 0.35 Nmvs 2.29 ± 0.29 Nm, p = 0.57) andno
difference in ML torque SD between the pre and post ML-baseline trials
(AP training: 1.88 ± 0.24 Nm vs 1.52 ± 0.18 Nm, p = 0.11; ML training:
1.82 ± 0.18 Nm vs 1.93 ± 0.23 Nm, p = 0.64). Similar to the single direc-
tion baseline balance trials, comparison of pre vs. post behavior in dual
axis control baseline trials (i.e., AP-baseline/ML-baseline) revealed no
differences in angular velocity variance and torque SD in both theAP and
ML directions (all p > 0.10). These results suggest that participants can
rapidly transition from sustained periods of balancingwith long-imposed
delays to baseline standing without imposed delays.

To further assess the possibility of aftereffects from learning to balance
with delays, we also evaluated the frequency characteristics of angular
velocity and ankle torque signals in baseline trials before and after delay
training (Figs. 4c, 5c). Comparison of pre- and post-baseline trials
demonstrated that, unlike the equivalent responses during training, the
frequency distributions changed in the direction that was trained. Specifi-
cally, power at frequencies from~0.4–1.2 Hz decreased and a peak in power
emerged at ~1.4 Hz for both angular velocity and ankle torque signals. In
contrast, in the direction that was not trained, auto spectra were similar in
pre- andpost-baseline trials. Importantly, similar changes in the frequencies
of control were also observed when the participants balanced in both

directions during baseline post-trials (i.e., AP-baseline/ML-baseline con-
ditions), such that the ~1.4 Hz peak only emerged in the direction that was
trained (Supplementary Note 2, Supplementary Fig. 2). Taken together,
these results imply that training to balancewith an imposed delay in a single
direction result in small aftereffects that are isolated to the trained direction.

Verbal reports. In a debrief session conducted after the experiment was
finished, we examined how participants perceived their change in balance
control. All participants perceived a change in balance control during the
delayed conditions and attributed this perception to the increased postural
oscillations and the difficulty remaining within the limits (particularly before
or at early stages of training). Only 2 out of the 24 training participants
correctly guessed that the simulation was delayed when they were asked to
describe how self-balancing control changed in the experimental conditions.
Most participants (18 out of 24) instead described the simulation as being
more sensitive, exaggerated, or amplified relative to their actions (i.e.,
describing a gain increase). The remaining participants stated they felt more
unstable but were not sure how the simulation had changed. Finally, when
asked how they improved their balance performance throughout training,
participants (16 of 24) commonly responded that they learned to calm their
control and/or make smaller motor actions with their legs and feet.

Fig. 5 | Ankle-torque behavior in baseline (4 ms delay) trials from Experiment 1.
aAnkle torque (Nm) from representative participants in the AP training group and
ML training group. The top and bottom rows illustrate pre- and post-learning
baseline trials, respectively. Dotted lines represent 0 Nm for all conditions. b Ankle
torque SD in the pre- and post-learning AP-baseline and ML-baseline trials. Small
circles connected with thin lines are individual participants and larger filled circles
are group averages (n = 12 for each group) with accompanying SEM error bars. No
changes were observed between pre- and post-learning baseline trials in ankle torque

standard deviation. Not significant is indicated by n.s. c Group mean log10 trans-
formed auto spectra of ankle torque signals extracted from pre and post-baseline
trials show changes in the distribution of power as a decrease at low frequencies
(0.2–1.2 Hz) and a peak emerging at 1.4 Hz, primarily in the trained direction.
Darker lines represent the mean of pre-learning trials, while lighter lines represent
the mean of post-learning trials. Shaded regions around the means represent the
bootstrapped 95% confidence interval. For all panels, data in blue represent AP-
baseline trials whereas data in red represent ML-baseline trials.
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Interestingly, some participants (5 of 24) stated that they were not certain
what they did despite demonstrating clear improvements in balance per-
formance with the imposed delays. The remaining participants (3 of 24)
stated their improvement simply arose naturally with practice. The verbal
reports of learning to calm or reduce their motor actions suggest that parti-
cipants felt they reduced their motor gain to improve balance performance
with the imposed delay.

Control experiment. Finally, we performed a control experiment to
determine whether exposure to balancing on the robot (and not training
with delays) was responsible for differences between pre- vs post-learning.
Here, a separate group of participants (n= 10) performed a near-identical
experiment as above (pre- and post-learning delay trials with a 350ms
delay), with the training session being replaced by 60min of baseline
standing on the robot in the AP direction (i.e., 4ms delay training). Our
analyses showed no changes in balance behavior during pre- and post-
learning delay trials (Supplementary Note 3, Supplementary Fig. 3). This
excludes the possibility that the experience in pre-learning delay trials or the
extended time balancing in the robotic system was responsible for the bal-
ance improvements observed in the post-learning trials for the delay training
groups. Similar to the training groups, all participants reported that balan-
cing with delays felt different from the baseline conditions. One of the ten
participants correctly reported that the simulation was delayed in the delay
trials while all other participants described the simulation as being more
sensitive to their actions.

Experiment 2: Delays imposed in one direction reveal poten-
tial biomechanical interactions influencing multidirectional
standing behavior
The results fromExperiment 1 demonstrate that trainingwith sensorimotor
delays in one direction of standing balance transfers to both the trained and

untrained orthogonal directions. This transfer of balance improvements
could arise from the inherent biomechanical interactions between the two
directions of standing. For instance, although we restrained training to a
single direction, participants may have adjusted motor commands to
muscles that contribute to both directions of balance (e.g., triceps surae
muscles)39,41,42. In Experiment 2, we assessed whether these biomechanical
interactions influenced whole-body standing behavior between the AP and
ML directions. A new group of participants (n = 20) were instructed to
maintain standing balance on the robotic balance simulator for short per-
iods (20 s) while a 200ms delay was imposed between their self-generated
ankle torques and resulting whole-body motion. This delay was chosen to
maximize the amount of time participants balanced within the limits while
disrupting steady stance (seeMethods). Here, participants balanced in eight
separate conditions, wheremotionwas free in only one or both directions of
standing (i.e., AP and/or ML), and delays were imposed in one, both, or
neither of the directions.

First, we examined whether the destabilizing effects of an imposed
delay in one direction influenced the orthogonal direction of baseline
standing balance. When participants stood freely in both AP and ML
directions with a 200ms delay imposed in only one direction, standing
balance became more variable in both directions (see Fig. 6 for repre-
sentative and group data). Angular velocity variance in the direction
orthogonal to the imposed delay increased by ~8–11× compared to baseline
standing without delays (AP delay effect onML velocity: 0.17 vs 0.02 (°/s)2;
t(19) = 4.1, p < 0.001; ML delay effect on AP velocity: 0.46 vs 0.04 (°/s)2;
t(19) = 4.78, p < 0.001). This reveals the contribution of biomechanical
interactions between standing directions and demonstrates that an imposed
delay in one axis destabilizes both directions of motion. The influence of
these biomechanical interactions on multidirectional standing balance
suggests that they may be, at least partially, responsible for the transfer of
training benefits observed in Experiment 1.

Fig. 6 | Standing balance behavior from Experi-
ment 2. a Bird’s eye view of whole-body angular
position (°) traces of a representative participant
balancing simultaneously in both AP (vertical axis)
and ML (horizontal axis) directions for 20 s. These
traces depict AP-baseline/ML-baseline (black), AP-
delay/ML-baseline (green) and AP-baseline/ML-
delay (purple) trials. During delay trials, the robotic
simulator operated with a 200 ms delay. b Angular
velocity variance highlighting the effect of an AP-
delay on ML standing motion (left panel: AP-base-
line/ML-baseline vs AP-delay/ML-baseline) and the
effect of a ML-delay on AP standing motion (right
panel: AP-baseline/ML-baseline vs AP-baseline/
ML-delay). Small-filled circles represent single par-
ticipants and large circles with error bars represent
group averages (n = 20). When balancing freely in
both AP andML directions, an imposed delay in one
direction increased whole-body motion variability
by ~8–11× in the orthogonal (no delay) direction.
Error bars represent SEMs. *** indicates p < 0.001.
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To further assess how biomechanical interactions influenced standing
behavior between the AP and ML directions, particularly in the context of
balancing with imposed delays, we compared angular velocity variance
between conditions where motion was free in only one or both directions
(Supplementary Note 4, Supplementary Fig. 4, Supplementary Table 1). We
first established that balancing behavior in a single direction of baseline bal-
ancewas unchangedwhen the orthogonal directionwas fixed or free (e.g., AP
baseline/MLfixedvsAPbaseline/MLbaseline).Ouranalysis thenshowed that
the disruptive effect of a delay in one direction does not dependonbeingfixed
or free in the orthogonal direction (e.g., AP-delay/ML fixed vs AP-delay/ML
baseline). We also found that the destabilizing effects of a delay did not differ
when imposing delays in a single direction or simultaneously in both direc-
tions (e.g., AP-delay/ML baseline vs AP-delay/ML-delay). Collectively, these
comparisons suggest that the influence ofAP-MLbiomechanical interactions
onmultidirectional standingbehavior is only evidentwhenassessing the effect
of an imposed delay on the orthogonal (no delay) direction (Fig. 6). Finally, in
the debrief session, we observed that all participants were aware that the delay
trials were different than the baseline trials and only 1 of the 20 participants
perceived the simulation as being delayed in these trials. The remaining
participants described the simulation as being more sensitive to their
actions (n= 13) or stated they were not certain (n= 6) how it had changed.

Experiment 3: Generalization of balance learning between hand
and leg effectors
The results of Experiment 2 support the possibility that the transfer of
learning between theAP andMLdirections observed in Experiment 1 could
depend on biomechanical interactions underpinning the bipedal control of
balance. In Experiment 3, we tested whether balance improvements gained
from training generalize in the absence of biomechanical interactions by
examining the transfer of training between biomechanically independent
muscle effectors (i.e., hand and leg muscles). Here, we used the robot to
perform balance trials where only hand-generated forces could control
whole-bodymotion.Anewgroupof participants (n = 12) trained to balance
with a 300ms imposed delay over six 3-min trials (to limit fatigue, see
“Methods”) when controlling their AP whole-bodymotion with their hand
muscles (see Fig. 1 and “Methods”). This delay was chosen because it
destabilizes balance in both hand-control and leg-control conditions and
balance control can be improved through training in the hand-control
condition (see “Methods”). After a three-minute familiarization trial with-
out delays, eleven participants could perform a two-minute hand control
baseline trial without exceeding the simulated AP balance limits (one par-
ticipant briefly crossed the limits). Participants were then trained in the
hand-control conditionwith a 300ms delay and after trainingwe examined
whether any learning transferred to equivalent delay conditions while bal-
ancing with the leg muscles.

In all pre-learning delay conditions (legs and hand control, sample
participants in Fig. 7a), participants oscillated with large angular velocity
variance (legs AP-delay: 14.3 ± 1.5 (°/s)2; legs ML-delay: 10.3 ± 1.5 (°/s)2;
hand AP-delay: 16.1 ± 2.3 (°/s)2) and had difficulty remaining within the
balancing limits for the entire trial (legs AP-delay: 68 ± 2%; legs ML-delay:
72 ± 1%; hand AP-delay: 77 ± 2%). Through training in the delayed hand-
control condition, participants progressively improved their balance per-
formance (Fig. 7c), reducing the variability of their angular velocity and
increasing the percentage of time they were balancing within the virtual
limits. First-order-exponential fits to angular velocity variance and percent
time within the limits estimated mean time constants of 18.9 ± 8.7 min and
13.0 ± 2.9min, respectively. While there were evident balance improve-
ments in the Hand AP-delay condition from training, no participant could
maintain balance for a continuous 60-second period without reaching the
virtual limits.

Although participants only trained to balance their whole body with
delays using their hand muscles, balance behavior was improved in post-
learning trials for all hand and leg conditions (Fig. 7b). Pre-post pairwise
comparisons of the hand balancing conditions revealed that participants
reduced their AP angular velocity variance by ~63% (16.1 ± 2.3 (°/s)2 to

5.9 ± 0.7 (°/s)2; t(11) = 5.36, p < 0.001) and increased their percent time
within AP limits from 77%± 2% to 87% ± 2% (t(11) =−7.32, p < 0.001).
Similarly, when balancing with the legs in the AP direction, participants
reduced their AP angular velocity variance by ~36% (14.3 ± 1.5 (°/s)2 to
9.1 ± 1.2 (°/s)2; t(11) = 3.02, p < 0.05) and increased their percent time within
limits from 68 ± 2% to 81 ± 2% (t(11) =−6.13, p < 0.001). Equivalent
changes were also observed when balancing with the legs in the ML direc-
tion, as participants reduced their ML angular velocity variance by ~42%
(10.3 ± 1.5 (°/s)2 to 6.0 ± 0.9 (°/s)2; t(11) = 4.46, p < 0.01) and increased their
percent time within ML limits from 72%± 1% to 82% ± 2% (t(11) =−6.94,
p < 0.001). The post-experimental debrief session revealed that similar to
Experiments 1 and 2, participants noticed differences between delay and
baseline trials. Two of twelve participants correctly stated the manipulation
was a delay, while nine indicated a more sensitive control and one was not
sure how the simulation had changed. All participants reported they
improved control by calming or decreasing their motor actions. Overall,
these results demonstrate that learning to balance the whole body with
delays using hand muscles can be generalized to untrained control of bal-
ancewith delays using legmuscles. Importantly, this confirms that the brain
can generalize learned control policies of balancing with sensorimotor
delays across biomechanically independent muscle effectors.

Discussion
The aim of this study was to determine whether healthy adults can gen-
eralize learning to standwith imposed sensorimotor delays and establish the
mechanisms responsible for any observed transfer of learning. Our results
showed that regardless of the balance condition trained (i.e., legs ante-
roposterior, legsmediolateral, handanteroposterior), participants learned to
balance upright with long sensorimotor delays and transferred improve-
ments in balance to untrained conditions. Balance improvement was
achieved by participants learning to reduce the variability of their motor
actions. Importantly, this transfer also occurred betweenmuscle groups that
were biomechanically independent for upright balance control (i.e., hand
and leg muscles). When returning to normal standing conditions after
training, we observed small aftereffects (frequency distribution of whole-
body angular velocity and ankle torque) that were confined to the trained
direction but did not influence the overall variability of body motion or
motor actions. This suggests that the balance system can rapidly transition
between learned sensorimotor associations with limited effects on the
ongoing control of balance. Taken together, our study revealed that humans
utilize prior experience acquired from balancing with imposed sensor-
imotor delays to control upright posture across distinct balance conditions.
These findings have implications for developing robot-assisted interven-
tions that can help individuals overcome balance impairments due to sen-
sorimotor delays and improve everyday postural function.

Afterparticipantswere trained to stand in the robotic simulatorwith an
imposed delay – while constrained to move to a single direction (Experi-
ment 1) – balance behavior improved in both the trained and untrained
(orthogonal) directions. While these improvements were greatest in the
trained direction, the transfer of this motor learning to the orthogonal
direction occurred irrespective of which direction participants trained in.
Our control experiment confirmed that this improvement in balance per-
formance was due to prolonged exposure to the delay because participants
who did not train with delays, but balanced on the robot for an equivalent
duration, showed no improvement in balancing with delays. From these
data, we rationalized that the observed transfer of balance improvements
across directions could arise from biomechanical interactions across
directions, and/or a neural-based generalization of learned control policies.
Importantly, these two mechanisms are not mutually exclusive and could
both contribute to the observed transfer.

Biomechanical interactions across directions may promote transfer
because the nervous system has already adjusted the control of certain
muscles contributing to the multidirectional control of standing balance.
For instance, ankle muscles (e.g., triceps surae) contributing to an upright
stance can produce active and passive forces that influence joint torques in
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multiple directions39,41–43. Indeed, results from Experiment 2 provided evi-
dence that these biomechanical interactions may contribute to transfer of
training improvements because delays imposed in a single direction
increased standing movement variability in both the delayed and ortho-
gonal directions. Crucially, Experiment 3 showed that biomechanical
interactions were not required for the transfer of balance training
improvements: training to balancewith imposed delays in the hand-control
condition transferred to the leg-control conditions in both directions of
balance. Therefore, we conclude that the brain can generalize learned
control policies of balancing with long sensorimotor delays across ortho-
gonal space and biomechanically independent motor effectors.

How the nervous system facilitates this generalization may relate to
what contextual features overlap across tasks29,30,44,45. While the primary task

to remain balanced against gravity was shared across all conditions in our
experiments, contextual elements such as the biomechanics of balance
control, sensory feedback, andmuscles actuating bodymotionwere different.
We hypothesized that these factors may limit or prevent generalization of
learning (i.e., null hypothesis). Our results, however, show that participants
transferred learning regardless of these differences, supporting the possibility
that the common task of upright balance may have allowed the brain to
develop a general control policy that transfers between conditions (i.e.,
alternative hypothesis). These results align with and expand on our previous
observations that training to balance in the anteroposterior direction with an
imposed 400ms delay generalizes to improve balance across other delays21.
Collectively, our findings of generalized learning suggest that the human
brain estimates the source of the distorted whole-body balance relationships

Fig. 7 | Whole-body balance behavior from Experiment 3. aWhole-body angular
position (°) of a representative participant balancing in the hand AP-delay, legs AP-
delay, and legs ML-delay trials. During delayed balance trials, the robotic simulator
operated with a 300ms delay while motion was driven either by hand-generated forces
or ankle-generated torques. Whole-body motion was restricted such that motion
occurred only in the AP or ML direction. Dashed lines represent the virtual position
limits for AP (6° anterior, 3° posterior) andML (3° left, 3° right) directions. Dotted lines
represent the 0° position for all conditions.bAngular velocity variance and percent time
within the limits in the pre- and post-learning trials. Thin lines connecting small filled
circles are individual participants and larger filled circles are group averages (n = 12)
with accompanying SEM error bars. Despite only training in the hand AP-delay

condition, balance improvements were observed in both angular velocity variance and
percent timewithin the limits for the legsAP-delay and legsML-delay conditions. For all
panels, data in black represent hand AP-delay trials, data in blue represents legs AP-
delay trials, and data in red represents legs ML-delay trials. * indicates p < 0.05,
** indicatesp < 0.01 and*** indicatesp < 0.001. cAngular velocity variance andpercent
time within the limits for individual participants and the group average estimated over
1-minute intervals during the hand-delay training trials (n = 12). The solid lines show
the fitting of average angular velocity variance and average percent time within the
balance limits to a first-order exponential function using a least-square method:
f xð Þ ¼ a � exp �x

b

� �þ c. Averages for one-minute balancing at baseline (4ms delays)
are represented by open diamonds.
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and broadly updates its control to accommodate imposed delays across
directions of movement and muscles contributing to balance.

Given that sensorimotor delays vary throughout the nervous system1,3,4

and across an individual’s life3,7,46, it is vital that the brain learns to accom-
modate unexpected temporal sensorimotor relationships and generalizes
their effects to similar or other motor tasks. Many forms of sensorimotor
learning, however, have been found not to generalize well to untrained
conditions. For example, adaptation of reaching movements in force fields
or with altered visual feedback leads to limited or absent transfer in other
movement directions47–51. Similarly, adapted locomotor patterns do not
transfer between forward and backward walking52,53, and the adaptation of
balance responses to perturbations while standing is constrained only to the
direction practiced38,54. More specific to the current study, when adapting to
experimentally-imposed delays, improvements in visually-guided upper
limb movements (i.e., intercepting a moving target) are not generalized to
otherdirections or tasks (i.e.,manual tracking)29,55. This iswith the exception
of continuous visuomotor tasks, such as video game pong or driving, where
partial transfer occurs to variations of the same task56 or to discrete reaches
to targets57,58. Perhaps the demand to maintain accurate motor control
during continuous tasks, like standing balance, necessitates the rapid
learning and generalization of skills under these conditions. The question
remains what changes in sensorimotor control are learned to balance with
added delays across different contexts?

One mechanism proposed to stabilize control with long delays is to
reduce the magnitude of the motor action needed to respond to a deviation
from the desired position (i.e., the controller gain). Indeed, computational
models of human standing predict that the balance system decreases feed-
back control gains (i.e., proportional and/or derivative gains) to accom-
modate increased neural delays17,20,59. Our results showedpartial support for
this change in control. First, participants progressively reduced the varia-
bility of their ankle-produced torques. Second, in the debrief session, par-
ticipants often noted that they were able to improve their balance
performance by making calmer and smaller motor actions to control
ongoing balance oscillations, changes that should accompany reduced
control gains. Adjusting control gains for balance may also facilitate gen-
eralization, as it would be suitable for controlling balance with delays in
other contexts (e.g., hand vs. leg control). A reduction in sensorimotor gain
may further explain why transitioning from delayed-control to baseline
balance did not result in obvious destabilizing behavior because the gain
levels acquired for balancing with long delays will be suitable for balancing
without delays20,59.Wenote, however, that our analysis of torque andwhole-
body motion are not direct quantifications of feedback gains of the closed-
loop balance controller. Future studies using independent perturbations
(mechanical and/or sensory)60–62 may be able to assess the open-loop
transfer function between whole-body movement (i.e., sensory feedback)
and muscle activity (i.e., motor command) to directly assess changes in the
neural controller. Similar approaches may also be used to test alternative
hypotheses that the nervous system increases ankle joint stiffness59,63 and/or
uses intermittent control policies64–66 to accommodate increased sensor-
imotor delays in balance control.

Our results also revealed changes in the frequency distribution of
torque and whole-body angular velocity during baseline balance after par-
ticipants had trainedwith the delay (see Figs. 4, 5 and Supplementary Fig. 2).
Specifically, participants generated oscillatory torques at ~1.4 Hz (i.e., an
~700ms period), ensuring that the torque to whole-body acceleration
relationshipwas inverted relative to normal balancewhen in the presence of
the 350ms delay (i.e., the half period of 1.4 Hz). Similar shifts in the fre-
quency distribution also occur during arm reaching when adapting to
visually induced delays57. Notably, this frequency-specific strategy is dif-
ferent from our original expectation (seeMethods) that participants would
adjust the timing relationship between their motor commands and whole-
body motion. Using an LQR model of balance control that predicts the
disruptive effects of the delay (see Methods), we showed that the timing
between torque and acceleration signals cannot reveal adaptations to the
delaybecause the imposed robotic delay always ensuredwhole-bodymotion

occurred later than the control torque.Therefore, the production of a 1.4 Hz
torque signalmay be an adaptation by the nervous system to account for the
influence of the delay in a compensatory manner. Despite the frequency
changes, its influence on observed balance is relatively minor (i.e., small
aftereffect), remaining undetected in the auto spectra of the training trials
and causing no discernible changes in the overall variability of baseline pre-
and post-trials. Exploring the impact of training with different delays on
baseline balance may reveal delay-specific changes in control frequencies
similar to those observed here.

Aftereffects that emerge after a period of motor learning are often
explained to occur through implicit mechanisms of sensorimotor
adaptation27,30,67,68, whereby the motor output is recalibrated using errors
between expected and actual sensory feedback. For example, implicit adap-
tations are observed in the vestibular control of standing balance, where
vestibular-evoked responses are rapidly (dis)engaged and spatially trans-
formed outside of conscious awareness21,22,24,69,70. Thus, the aforementioned
changes in frequency distributions may indicate implicit alterations in the
balance controller. On the other hand, the observed aftereffects from learning
were small and did not influence overall variability in balance behavior.
Therefore, the adaptation to balancing with delays may align better with
explicit (i.e., cognitive) learning, where goal attainment (i.e., remaining
upright) is dominant and small or absent aftereffects are observed30,71–74. The
verbal reports from the debrief sessions further imply that participants were
aware of changes in their overall whole-body movements and balancing
actions, though they rarely perceived themas delayed control. In addition, the
observed generalization of learning supports the involvement of cognitive
mechanisms because the transfer of learning is more pronounced when
explicit learning mechanisms are involved30,72,75–78. Presumably, the net
changes in balance control in response to long sensorimotor delays are driven
by a combination of implicit (automatic, absent of cognitive processes) and
explicit (conscious awareness andcognitive strategies)mechanisms.Although
our study was unable to isolate these contributions, future experiments
designed for this purpose could contrast learning and generalization results in
participants who train with explicit instructions to those that train without.

Our findings have important implications for the training and reha-
bilitation of clinical populations with balance impairments. During aging
and certain diseases (e.g., diabetic neuropathy or multiple sclerosis),
increasing sensorimotor delays may compromise an individual’s balance
control and lead to falls5,6,43. We previously demonstrated that humans can
be trained to accommodate long-imposed delays (400ms) in the control of
standing balance and this ability is retained when participants are tested
again three months later21. Furthermore, we have shown that older adults
(>65 years) can also learn to maintain standing balance with long delays79.
Importantly, for rehabilitation to be effective, the evoked learning needs to
be generalizable because humans perform movements across a wide range
of circumstances80,81. Our present findings demonstrate that humans gen-
eralize learning to balance with delays across a variety of contexts (i.e.,
different directions and muscle effectors). These results make it possible to
envision future robot-assisted training therapies that go beyond current
methods of repeatedly exposing participants to physical perturbations82,83,
and instead allow the nervous system to explore distinct environments and
adjust to the related instabilities. Furthermore, our results show this
approach to be more effective than postural disturbances at transferring
learning todifferent balancedirections38.Wenote, however, that our study is
limited as it only assessed standing balance within our robotic simulator.
Future studies are needed to determine whether robot-assisted sensor-
imotor manipulations of the balance control loop, such as those imple-
mented here, translate to improved balance control in everyday activities.

Our data demonstrate that humans generalize learned control policies
of balancing with unexpected sensorimotor delays across different direc-
tions of standing and biomechanically independentmuscle effectors.While
biomechanical interactions between the lower limbs influence the multi-
directional control of standing balance, transfer of balance learning is not
contingent on these interactions. This generalizationmaybe achievedby the
brain learning an effectivemotor behavior, such as a change in control gain,
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to balance upright with long sensorimotor delays and applying this control
policy to different variations of the balance task.

Methods
Ethics statement
This study was approved by the Medical Research Ethics Committee
Erasmus MC and conformed to the Declaration of Helsinki with the
exception of registration to a database. The experimental protocol was
verbally explained to all participants and written informed consent was
obtained before commencing the experiment.

Participants
A total of 66 healthy adult participants (30 females, mean age: 25.2, SD: 3.9
years old) with no known history of neurological and/or balance deficits
participated in this study (24 in Experiment 1, 10 in Experiment 1 control
group, 20 in Experiment 2, 12 in Experiment 3).

Experimental set-up
Three experiments were conducted to study whether humans can learn and
generalize the ability to stand with imposed sensorimotor delays. For all
experiments, participants stood on a custom-designed robotic balance
simulator programmed to replicate the control of standing balance in the
anteroposterior (AP) and mediolateral directions (ML) of motion (Fig. 1).
This system is similar to the robot developed by Qiao et al. 84 to simulate
balance control in the anteroposterior and mediolateral directions84. Con-
sequently, we refer to this publicationwhen describing the robotic system in
addition to providing relevant details included in our robotic simulator.

Themechanical loadof the bodywas simulated using a real-timemotion
controller (PXI-8880; National Instruments, TX, USA) running at 500Hz.
Weprogrammed the simulationusing the anthropometryof eachparticipant,
including:mass, height, center ofmassheight, sternal notchheight, hipheight,
ankle height, and hip joint width. To measure the height of their center of
mass, participants laid supine on a rigid board thatwas balanced over a round
tube positioned transversally under the board. Participants shifted their body
longitudinally over the boarduntil the distributionof theirmasswasbalanced.
The distance between their medial malleolus and the tipping point was
determined as theheight of the center ofmass (average: 0.90, SD: 0.04m).The
robotic apparatus consists of a rigid backboard frame, an ankle-tilt platform, a
torso harness, and a pelvis harness, each controlled by a separate servomotor-
driven linear actuator84. The entire system has an ~4ms delay between a
position command and the measured position change of the motors. The
backboard frame is driven by a 2 kW servo motor (ECMA-J11020S4, Delta,
Taiwan; maximum continuous torque: ~6170Nm; angular resolution of
~0.0000054°) connected to a 665mm linear actuator (Y-H1116165P09152A;
Rollon, Italy). The ankle tilt platform is driven by a 400W servo motor
(ECMA-C10604SS, Delta, Taiwan; maximum continuous torque: ~234Nm;
angular resolution of ~0.000014°) connected to a 665mm linear actuator (Y-
H1116105P05442A; Rollon, Italy). Both the torso and pelvis harnesses are
driven by 400W servomotors (ECMA-C10604SS, Delta, Taiwan;maximum
continuous torque: ~780Nm (pelvis) and ~1170Nm (torso); angular reso-
lution of ~0.00000382° (pelvis) and ~0.00000573° (torso)) connected to
586mm linear actuators (Y-H1116105P08362A; Rollon, Italy). Participants
wore noise-cancelling headphones (WH-1000XM3 Noise Cancelling Head-
phones, Sony, Japan) with audio of garden sounds (water fountain with birds
singing) tominimize acoustic cues of motion produced by themotors as well
as other extraneous sounds.

The robotic simulator implemented the dynamics of a single-link
inverted pendulum to control whole-body motion in the AP and ML
directions. Specifically, the simulator used the following continuous transfer
function that was converted to a discrete-time equivalent state-spacemodel
for real-time implementation using a zero-order hold method:

I€θ � 0:971mgLθ ¼ T
θ
T ¼ 1

Is2�0:971mgL

ð1Þ

where θ is the angular position of the body center ofmass around the axis of
rotation from vertical. In the AP direction, θ is positive for a backward-
leaning center of mass position and in the ML direction, it is positive for a
left-leaning center of mass position. T is the ankle torque applied to the
body; it is positive in the AP direction for a plantar-flexor torque and in the
ML direction for a greater load on the right leg. m is the participant’s total
mass, L is the distance from the ankle joint to the body center of mass, g is
the gravitational acceleration (9.81m/s2) and I is massmoment of inertia of
the body measured about the ankles (0:971mL2). The body mass above the
ankles can be approximated by removing the estimated weight of the feet
from the participant’s total body weight such that the effective mass is
estimated as 0:971m. While a participant controls the robot, their body
center of mass rotates about the ankles as in normal standing. Under these
conditions, the passive stiffness and viscous damping properties of
connective tissue are provided by the rotation of the participant’s ankle.

In the ML direction, the simulator uses the same inverted pendulum
mechanics but distributes thewhole-body angular position to the pelvis and
torso harnesses to control lateral translation at the height of the pelvis and
shoulders according to mechanical models31,33,84. The equations for motion
in ML are influenced by stance width, such that when the feet are next to
each other the motion of the torso and pelvis are closer to the movement of
an inverted pendulum. Here, we were interested in having similar move-
ment kinematics for both AP andML directions and therefore participants
maintained a narrow stance width of ~8 cm between ankle joint centers in
all experiments.

When the simulation is engaged, participants control their whole-body
movements based on the torques applied to the force plate (Figs. 1, 8).
Forces and torques generated by the participant are transformed to the
midpoint of the ankle joints to provide net ankle torques in theAP (Tx) and
ML(Ty) directions. These torques are used as inputs into the inverted
pendulum state-space models of AP andML standing balance operating in
parallel84 todrive centerofmass (CoM)motion.The resolvedAPCoMangle
dictates the angle of the backboard and footplate, and theML CoM angle is
further decomposed into linearmovements of the pelvis and torso. TheML
CoM decomposition predicts the positions of the pelvis and torso for var-
ious stance widths under the assumption that the pelvis is perpendicular to
the torso (seeML decomposition in Qiao et al. 84). As these four motors can
be independently engaged/disengaged, this facilitates different motion
combinations such as normal balance, balancing only in AP or ML direc-
tions, and ankle sway referencing.

The robotic system functions through a two-layer architecture (Fig. 8)
similar to Qiao et al. 84. The higher layer involves an embedded controller
(PXI-8880;National Instruments, TX,USA)with a data acquisitionmodule
that digitizes the forces andmoments sensed by the force plate and runs the
robotic simulation at 500Hz. Target encoder counts from the higher layer
are sent to the FPGA module (NI PXI-7846R) at the lower layer and the
FPGA communicates directly with the four motors. Based on the current
and target encoder count, the FPGA sends a target torque command as an
analog signal (voltage) to eachmotor’s servo drive. Running at 40MHz, the
FPGA counts the encoder pulses of all motors (i.e., measured angular
position) and executes a four-axis torque feedback proportional-integral-
derivative controller to actuate motions at 2000 Hz.

Throughout the experiments, all signals were recorded through a data
acquisition board (PXI-6289; National Instruments, Austin, TX, USA) and
digitized at 500Hz. While secured to the robot through the harnesses,
participants stood on a force plate (AMTI BP400 × 600; Watertown, MA,
USA) which measured and amplified (×4000) ground reaction forces and
torques. The force plate was securely mounted on top of the ankle-tilt
platform which was kept horizontal (replicating standing on level ground)
in balance trials controlled by the legmuscles.Whenparticipants controlled
the robot in the AP direction with forces generated with their intrinsic hand
muscles (see Experiment 3), they modulated force by abducting/adducting
their right index finger against a fixed load cell (BOSCHE; S-Type, Damme,
Germany). This load cell measured forces in a single axis and a strain gauge
signal conditioner was used to amplify the signal for data acquisition
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(FUTEK IAA100; Irvine, CA, USA). The load cell was fixed to the proximal
interphalangeal joint of the extended right index finger tomeasure the force
generated when isometrically contracting the intrinsic hand muscles. The
output of the load cell was scaled for eachparticipant so that generating 20%
of the maximal voluntary adduction force maintained an anterior leaning
posture of 2.0°. This was selected as pilot experiments indicated this scaling
of force allowedparticipants toperform thehand-control trials and generate
enough force to bring the whole body upright if they exceeded the virtual
limits. Maximal voluntary contraction force was computed by performing
three trials where participants attempted to generate maximal force against
the load cell for~3 s. Peak forcewas extracted fromeach trial and the average
peak force across the three trials was used as the maximal voluntary con-
traction.Duringhandcontrol balance trials, the ankle tilt platformrotated in
the same direction as a whole-body motion to maintain a constant ankle
angle throughout the trials – an approach known as ankle sway-
referencing60,85. This was implemented to remove the sensory conflict that
arose from ankle somatosensory feedback not being coupled to ankle-
generated torques to control balance. During normal anteroposterior
standing, musculoskeletal tissues around the ankle are deformed leading to
passive viscoelastic forces contributing to stabilizing upright stance14,15,86,87.
In hand control conditions, however, forces and torques generated at the
feet have no influence on whole-body motion, and normal passive con-
tributions from the deformation of ankle tissues are absent. Therefore, the
normal ankle torque contributions of passive stiffness88 and damping14

arising from the ankles were simulated for each participant using properties
derived from anteroposterior standing. Specifically, an additional damping
term was included in the inverted pendulum transfer function89, while the
effect of passive stiffness incorporatedboth short- and long-rangeproperties
of muscle stretch88.

Seatbelts placed around the shoulders/chest and the waist secured the
participant to the torso and pelvis harnesses and prevented them from
falling forward without supporting the load of the body acting through the
feet. The harnesses are linedwithmedium-density foam and a layer of foam
was placed between the seatbelts and the participant at the chest and waist.
In the AP direction, the backboard frame rotated the body about an axis

collinearwith the axes of the ankle joints. Angularmotion of the body in this
direction was restricted using software limits to a maximum angular posi-
tion of 6° anterior and 3° posterior to ensure that participants could generate
sufficient torque to balance the system across the range of motion21,69,89. In
theMLdirection, the pelvis and shoulder harnesses controlled themotionof
the body and were supported by separate gas springs to avoid imposing any
vertical load on the participant. This also allowed for the pelvis and shoulder
harnesses to be aligned at the level of the greater trochanter and sternal
notch. Angular motion of the body in this direction was restricted using
software limits on the inverted pendulummodel of 3° left and 3° right from
vertical. These limits were chosen to ensure that while participants stood at
the narrow stance width (~8 cm), they did not shift their feet or take a step
when reaching the limits of position. For both AP and ML control, when
participants exceeded the software position limits, the program gradually
increased the simulated stiffness such that participants could not rotate
further in that direction regardless of the torques they produced at the ankle.
This was performed by linearly increasing a passive supportive torque to a
threshold equivalent to the participant’s body load over a range of 1° beyond
the simulated balance limits, providing a passive support of the body at that
angle. Active torques applied by the participants in the opposite direction
enabled them to get out of the limits. An additional damping term over the
range of 1° was implemented to ensure a smooth attenuation of motion.

In the present experiments, we imposed delays between the participant-
generated ankle torque or finger force (i.e., motor command) and the
resultingwhole-bodymotion (i.e., sensory feedback).Delayswere imposedby
buffering participant-generated torque or force recordings such that the
signals driving motor position commands (thus whole-body motion) could
be delivered based on the torque or force participants generated up to 500ms
in the past. It is worth noting that the natural sensorimotor delays within
human standing balance control are ~100–160ms19,85,90. Therefore, these
natural delays need to be added to the imposed delays to estimate the overall
standing balance control delays. Throughout this study, we refer to the delays
added through robotic simulator (baseline (4ms)-350ms), but the total
sensorimotor delays for the standingbalance task are~100–160ms larger.All
participants were naïve to the delay protocols and were simply told that: in

Fig. 8 | Robotic balance simulation control diagram. Net ankle torques in the
anteroposterior (Ƭx) and mediolateral (Ƭy) directions are used as inputs for inde-
pendent state-space models of AP and ML body dynamics (see Eq. 1) that solve for
whole-bodyCoMangles related to standing. CoMposition in theAP (θx) direction is
mapped onto the linear position of the motors controlling the backboard and ankle-

tilt platform, enabling different motion combinations (i.e., normal balance and
ankle sway referenced). CoM position in the ML (θy) direction is decomposed into
linear motion of the pelvis (xp) and torso (xt) under the assumption that the torso is
perpendicular to the pelvis17. The control diagram is adapted from Qiao et al. 84,
where equations describing the ML-motor decompositions can be also found.
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some trials, the robotic control will be changed, such that your body move-
mentmay seem unexpected or abnormal, and standing balancemay become
more difficult.However, during these conditions, youwill still be in control of
your body movement. In all experiments, participants were instructed to
stand upright normally at their preferred standing angle (typically ~0–2 °
anterior and~0 ° in themediolateral direction). In trials with delays≥300ms,
participants had difficulty maintaining a stable upright posture and would
oftenexceed the simulatedbalancing limits (i.e., 6 ° anterioror3 °posterior; 3 °
left or 3 ° right). Participantswere instructed to alwaysgetout of the limits and
continue to attempt to balance upright. After a trial was completed, the robot
was returned toaneutral position (0 °AP, 0 °ML)at afixedvelocity (0.5 °/s) in
preparation for the next trial.

Familiarization
For all experiments, an introductory balance session was first completed
to familiarize participants with the control of the robot. Instructions were
given on the nature of movement control; i.e., similar to standing,
applying torque to the support surface (force plate) will control the
motion of the upright body (via backboard frame, torso, and pelvis
harnesses). Participants were familiarized with the baseline (i.e., 4 ms
delay) control of the robot in three conditions: free-standing control
(simultaneous AP- andML-control), AP-control, andML-control. In the
AP- and ML-control conditions, the motors for the orthogonal axes
remained stationary. For AP motion (free standing or AP-control), a
plantar-flexor torque is required to stabilize the body when standing in a
forward-leaning position. Increasing the plantar-flexor torque greater
than the gravitational torque will cause the body to accelerate backward.
Similarly, a dorsi-flexor torque is required when standing in a backward
leaning position and an increase in dorsi-flexor torque will accelerate the
body forward. For ML motion (free standing or ML-control), main-
taining a greater load on the left leg is required to stabilize the body when
standing in a leftward leaning position. Similarly, maintaining a greater
load on the right leg is required to stabilize the body when standing in a
rightward leaning direction. During the familiarization session, partici-
pants were instructed to move their body in all directions and allow the
robot to reach its limits (6 ° anterior, 3 ° posterior, 3 ° left, 3 ° right),
which occurs if the magnitude of the generated ankle torque is not large
enough to resist the toppling torque of gravity. Participants performed
this familiarization period until they were accustomed to standing bal-
ance on the robot and couldmaintain an upright posture at these baseline
conditions with ease. Participants were told that these familiarization
conditions were the baseline conditions of the robot, and that while it
may be more difficult to balance upright for some experimental trials,
participants would always be able to control their motion by adjusting
how they loaded and pushed their feet against the force plate (or pushed
their finger against the hand device in Experiment 3). The entire famil-
iarization session was completed within 10min.

Experimental protocol
Across the experiments, we examined several variations in balance condi-
tions. As the robotic simulation independently controlswhole-bodymotion
along the AP and ML directions, we defined each condition by parameters
set for eachbalancedirection. Eachdirection canbe: (1) baseline control (i.e.,
AP-baseline), (2) fixed, such that nomotion occurred (i.e., AP-fixed), or (3)
delayed, with imposed time delays (i.e., AP-delay). Finally, in Experiment 3
we further denoted whether the robot is controlled by the legs or the hand
(i.e., legs AP-delay; legs ML-delay; hand AP-delay).

Experiment 1: learning to stand with imposed delays and transfer
between balance directions. In our first experiment, we designed a
training protocol to determine if learning to balance with the imposed
delay in one direction benefits balance with imposed delays in the
untrained orthogonal direction (i.e., transfer of sensorimotor learning).
Participants (n = 24) were divided into one of two groups in which they
were trained with a 350 ms imposed delay in one direction of balance

while the orthogonal direction was fixed: AP-delay/ML-fixed training
(n = 12) or AP-fixed/ML-delay training (n = 12). We chose an imposed
350 ms delay (with added internal delays, net ~450–510 ms) because
participants initially cannot maintain standing balance for more than a
few seconds with these delays, and therefore, require training to regain
balance21. All participants completed the same pre-learning and post-
learning sessions, consisting of ten 30 s trials. Five conditions were each
tested twice: AP-baseline/ML-baseline, AP-baseline/ML-fixed, AP-fixed/
ML-baseline, AP-delay/ML-fixed, and AP-fixed/ML-delay (delay =
350 ms). Tominimize learningwithin and between trials (and prior to the
training session), we limited the trial duration to 30 s, providing a total of
60 s of data for each condition. Trial order was pseudorandomized such
that the first trial of each condition was completed before performing any
of the second trials (i.e., five conditions randomly ordered followed by the
same five conditions with a new random order). Participants then per-
formed a 60-minute training session, where they trained to balancewith a
350 ms delay over six 10-minute periods. Balance control was restricted
to a single direction during training such that for a given training group,
all six training periods were of the same balance condition (e.g., AP-
delay/ML-fixed). Immediately following the training session, partici-
pants then performed the post-learning session (same as pre-learning but
with a different pseudorandom trial order). Finally, we performed a
separate control experiment to determine how the pre-learning exposure
to the delays and prolonged experience of balancing on the robot influ-
enced performance in the post-learning trials. Here, a new group of
participants (n = 10) performed the same experimental protocol as
above, but the training session was replaced with a 60-minute session of
balancing in the AP-baseline/ML-fixed condition.

Experiment 2: multidirectional control of balance with imposed delays.
In Experiment 2, we characterized the effects of biomechanical interactions
on themultidirectional control of standingbalancewithdelays.Becauseof the
architecture of lower limb muscles (i.e., attachment points and fiber angles)
and because both feet generate ground reaction forces and torques to control
upright balance, active or passivemuscle tensions can influence joint torques
in multiple directions of standing39–43. Therefore, we hypothesized that an
induced delay in one direction of balance would affect whole-body oscilla-
tions in both directions. To test this, we examined participants’ standing
balance in both AP andML directions when a 200ms delay was imposed in
one or both directions. We chose a 200ms imposed delay for all conditions
because it increases standing balance variability while limiting the number of
times participants exceed the balance limits21, thus ensuring participantswere
actively balancing for the majority of the trial (which was needed for our
analysis, see Data reduction and signal analysis). Participants (n= 20)
balanced the robotic simulator with body movements fixed in one direction
or free inbothdirections.Eachparticipantfirst completed three120 sbaseline
trials with control in either one or both directions (AP-baseline/ML-baseline,
AP-baseline/ML-fixed, AP-fixed/ML-baseline) presented in a randomorder.
Participants then completed ten20 s trialswith imposeddelays in one or both
directions of balance.Delay trialswere limited to 20 s in duration tominimize
any learning within and between trials. Five conditions (each performed
twice) were tested: AP-delay/ML-fixed, AP-delay/ML-baseline, AP-fixed/
ML-delay, AP-baseline/ML-delay andAP-delay/ML-delay. The primary aim
of these conditionswas todeterminewhether imposeddelays inonedirection
affected standing behavior in the orthogonal direction. To control for
ordering and cross-over effects between trials, we used a balanced Latin
square design.

Experiment 3: transfer of learning across independent muscle
effectors. Experiment 1 demonstrated that training in one direction of
standing balance benefited both the trained and untrained orthogonal
directions (see “Results”). The transfer of training benefitsmay arise from
biomechanical factors such as the interactions between directions of
standing balance. In Experiment 3, we examined whether these bio-
mechanical interactions are required for transfer of balance learning by
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testing whether learning transfers between muscle effectors that are
mechanically independent (i.e., hand and leg muscles). Participants
(n = 12) completed balance trials where they controlled the robot either
with their legs (i.e., traditional standing balance control) or with their
hands. In hand control trials, the robot was programmed such that
whole-body motion could only be controlled using hand-generated
forces through the contraction of hand muscles. Here, participants
balanced the robotic system by modulating abduction/adduction iso-
metric force generated at the second metacarpophalangeal joint of the
right hand (i.e., the right index finger; see Fig. 1).

Participants performed balance trials under baseline conditions and
with a 300ms delay. Here, we chose a 300ms delay to minimize hand
muscle fatigue throughout the experiment and ensure that participants
could learn to balance their upright body after an initial period of instability.
Participantsfirst completed three 120 s baseline trials balancingwith the legs
in AP and ML directions and the hand in the AP direction under baseline
conditions (one trial per condition, order randomized across participants).
Participants then performed a pre-learning testing session consisting of six
30 s trials. Three conditions (each performed twice) were tested: (1) bal-
ancing in AP (with ML fixed) using the legs and an imposed 300ms delay,
(2) balancing in ML (with AP fixed) using the legs and an imposed 300ms
delay, and (3) balancing in AP (with ML fixed) with the hand and an
imposed 300msdelay. Tominimize learningwithin andbetween trials (and
prior to the training session), we limited the trial duration to 30 s. Trial order
was pseudorandomized such that the first trial of each condition was
completed before performing any of the second trials (i.e., three conditions
randomly ordered followed by the same three conditions with a new ran-
dom order). This provided a total of 60 s of data for each condition. Parti-
cipants thenperformed an18-minute training session,where they trained to
balance their whole body in the AP direction with their hand and the
imposed 300ms delay. The training was completed over six 3-minute trials.
We limited the total length of training to 18min and limited each trial to
3min in duration because pilot experiments demonstrated that the hand
muscles fatigued after training for longer periods. Furthermore, pilot
experiments demonstrated that participants showed clear balance
improvement after 18min of training. Between each training trial, partici-
pants rested their hand by removing it from the hand device. Participants
were also given a 5-minute break after the 2nd and 4th training trial where
they came off the robot and sat in a chair. After the training session was
complete, participants performed the post-learning session, which was
identical to pre-learning with a new trial order.

All experiments: debrief session. At the end of each experiment, we
conducted a short debrief interview with the participants to obtain
qualitative information about their experience balancing with the
imposed delays. During set-up and testing, participants were not expli-
citly told that delays were imposed on the robotic simulation, and
therefore, we were interested in documenting their perception of the
delay when balancing and training in the imposed delay trials. First, we
asked participants if they noticed a difference in control between the
experimental conditions (i.e., imposed delay trials) and baseline condi-
tions (i.e., 4 ms delay). We then asked them to describe the differences
they noticed between experimental and baseline control trials (i.e., how
did whole-body movement control change between conditions). Finally,
we asked them to describe how they changed their behavior to improve
their balance in the experimental conditions. This final question was of
particular interest to participants who trained with the delays (Experi-
ments 1 and 3) to determine whether they were consciously aware of
strategies they used to improve their balance performance.

Data processing and analysis
Measuresof balancedbehavior. All non-statistical data processing and
analyses were performed using custom-designed routines written with
Matlab software (2022a version, Mathworks, Natick, MA, USA). Across
experiments, we extracted whole-body angular velocity variance and

ankle torque standard deviations as measures of balance behavior. Both
measures were only estimated from data in which whole-body angular
position was within the virtual position limits (AP: 6 ° anterior and 3 °
posterior;ML: 3 ° left and 3 ° right) because standingwith delays≥ 200 ms
can result in participants crossing the balance limits21. When first
standing with large delays (i.e., first exposure to delays ≥300 ms), parti-
cipants often only balanced within the limits for short periods (~2–5 s).
Therefore, in order to extract meaningful angular velocity and ankle
torque information throughout the entire trial, we extracted data in non-
overlapping 2 s windows when participants remained within the simu-
lated balance limits. Data extracted were limited to multiples of 2 s, such
that if there was a 5-s segment of continuous balance, only the first two 2 s
windows (i.e., first 4 s) were extracted. On a participant-by-participant
basis, we then averaged angular velocity variance and torque standard
deviation estimated from these 2 s windows for each participant in each
experimental condition21. In the training trials, angular and torque
measures were estimated from non-overlapping 2 s windows taken
across 1-minute intervals throughout the training. They were then fur-
ther averaged across all participants, providing a minute-by-minute
representation of balance behavior throughout training. After demon-
strating that changes in ankle torque standard deviations aligned with
changes in angular velocity variance in Experiment 1 (see “Results”), we
only presented angular velocity variance in Experiments 2 and 3. In
Experiments 1 and 3, we also computed the percentage of time that the
whole-body angular position remained within the simulated balance
limits21. This was computed over 60-second intervals for training trials as
well as the pre-learning and post-learning conditions (by combining the
two 30 s trials). Across all experiments, baseline (no delay) trials were
analyzed in the samemanner as trials with imposed delays.Whenever we
compared baseline trials to delay trials, we cut the baseline data to be of
equivalent length as the delay data if the delay trials were shorter (i.e.,
Experiment 2: 40 s used for both baseline and delay trials).

Statistics and reproducibility. For all three experiments, statistical
analyses were performed using SPSS software (version 23.0, IBM), and
the significance level was set at 0.05. All data were checked for normality
using Shapiro-Wilk tests. Group data in text, tables, and figures are
presented asmeans with accompanying SEMs unless otherwise specified.
Below we present the relevant statistical analysis for each experiment.

Experiment 1. For Experiment 1, all analyses were performed using
measures of whole-body angular velocity and position (i.e., angular
velocity variance and percentage of time within the limits) and balancing
motor actions (i.e., ankle-generated torques). To determine learning rates
on a participant-by-participant basis, we fitted first-order exponential
functions to the velocity variance, percentage of time within the limits,
and torque standard deviation obtained over the 60 minutes of training.
To compare learning rates between AP and ML training groups, we
performed independent sample t-tests on the time constants (time of a
63.2% improvement) extracted from the exponential function fits. We
expected that trainingwould improve balance behavior, thereby reducing
angular velocity variance, increasing the percent time within the balance
limits, and decreasing ankle torque variability. To test if balance
improvements gained from training in AP transferred to ML and those
gained from training with ML transferred to AP, we used one-tailed
paired t-tests to compare balance behavior in pre- vs. post-learning for
both the AP-delay andML-delay conditions. For the control experiment,
we tested whether exposure to balancing on the robot (and not training
with delays) led to balance improvements (i.e., changes in angular
velocity variance or ankle torque SD) in the post-learning compared to
pre-learning trials by using one-tailed paired t-tests. To determine
whether training performance transferred to the untrained directions, we
assessed the relative improvements in balance performance between the
trained and untrained balance directions. On a participant-by-
participant basis, we calculated the percent improvement from pre- to
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post-learning delay trials for both the trained and untrained conditions
using angular velocity variance, percent time within the limits, and ankle
torque SD metrics. Comparisons were made between training groups
within each delay trial (i.e., AP-delay/ML-fixed; AP-fixed/ML-delay)
using two-tailed paired t-tests (Bonferroni corrected).

We initially hypothesized that as participants learned to control their
balance with the imposed delays, they would internally predict the delay.
Consequently, we expected participants would learn to adjust the temporal
relationship between their motor commands and resulting whole-body
acceleration in order to maintain a near zero delay between these variables.
To explore this possibility, wefirst used a LinearQuadratic Regulator (LQR)

to control standing balance in the presence of a predictor that is able to
account for the effects of the delay (see Fig. 9a).Wemodeled body dynamics
as an inverted pendulum (m= 63.11 kg, I = 62.91 kg·m2) with the passive
stiffness set as 70% of the load stiffness88 while the damping ratio was set at
5.73 Nm·s/rad14. To replicate the physiological control of standing balance,
we added noise on the angular position, angular velocity and torque of the
simulation. We modeled angular position and angular velocity noises as
pink noise based on the perceptual thresholds for balance perturbations
(RMS values of 0.001 rad and 0.003 rad/s for angle and angular velocity
noises, respectively)26,91. A signal-dependent noise was added to the torque
output from the controller (see available code92) based on the amplitude of

Fig. 9 | Simulation of controlling balance with imposed delays using an LQR
controller and Smith predictor. a Control system architecture with LQR feedback
loop using a Smith predictor. This control diagram illustrates the closed-loop control
system architecture integrating a Linear Quadratic Regulator (LQR) for optimal
state feedback. The system dynamics are captured by the plant model, with the
inclusion of delay elements and noise to simulate real-world conditions. The delay
for the motor system, robotic system, and sensory system are labeled ΔtM, ΔtR, and
ΔtS respectively. The torque generated by the controller is delayed and amotor noise
proportional to the torque is added. Sensory noise is also introduced to the state
observed from the plant. The Smith predictor is comprised of a plant model, delay
model and state predictor model. Feedback from the state predictor model is

compared to the set-point (comparison 1) to provide an error in the desired state. An
additional error term is estimated by comparing the controller delayed state (the
expected consequence of an action generated at t = t*+ ΔtR+ ΔtM and observed at
t = t*− ΔtS) to the noisy state (comparison 2). This error is also multiplied by a gain
term (k), with a value less than 1, that is used to ensure that the set-point error is
dominant. The two errors are summed as input to the LQR controller, which in turn
drives the inverted pendulum motion. b Cross-correlation estimates between
the torque applied to the inverted pendulum and resulting center of mass accel-
eration. Different imposed delays (0 ms to 350 ms) were entered into the simulation.
Peaks in the cross-correlations emerged at the imposed delay.
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the exerted torque93. We further implemented physiological delays by
including a sensory delay (ΔtS = 60ms), a motor delay (ΔtM = 60ms), and
an artificial robotic delay (up to ΔtR = 350ms; see below). To solve the
control problem, we obtained the optimal solution that minimized the
following cost function

J ¼
Z 1

0
½xT ðtÞQxðtÞ þ uT ðtÞRuðtÞ�dt ð2Þ

Where Q is a positive semi-definite matrix that weighs the states, R is a
positive definite matrix that weighs the control efforts (i.e., torque), x is the
vector of states of the invertedpendulum(position andvelocity), andu is the
control effort applied to thependulum.Using the continuous-time algebraic
Riccati equation, we solved the control problem under the cost function J
and obtained the gains to control the pendulum given the uncertainties in
controlling the system caused by noise and delays.We obtained the gains of
the controller by representing imposed and learned delays (see below) as
Padé approximations. To test our hypothesis that the timing betweenmotor
actions and resulting whole-body acceleration would be adjusted to
maintain standingbalancewith imposeddelays up to350ms (i.e. replicating
experimental conditions),we incorporated aSmithpredictor94 in the control
to anticipate the consequences ofmotor actions in thepresenceofdelays and
subsequently regulate the system. Our Smith predictor was comprised of a
plantmodel, a delaymodel, and a state predictormodel. The plant anddelay
models are exact representations of the plant and all delays. The state
predictor model simulated the dynamics of the inverted pendulum (i.e.,
plant model) and LQR controller using the state after the sensory delay as
input, and recursively estimated the torque and states of the system attained
forward in time by a period equal to a learned delay orΔtL.ΔtL represents a
periodof time equal to thedelays that the simulationhad toaccommodate in
order to maintain an upright posture. Under normal circumstances, ΔtL is
the sumof themotor and sensory delays (ΔtS+ΔtM).When a robotic delay
was imposed,ΔtL was the sum of all delays (ΔtS+ΔtM+ΔtR), whereby the
simulation control scheme had fully compensated for the imposed delay.
We then compared the predicted state with the set point to provide an error
with respect to the desired state forward in time at t = t*+ΔtL (see
comparison 1).Note that t* is defined as the timewhen the torque enters the
plant, resulting in both an angle and angular velocity of the pendulum. We
also compared the noisy state with the controller-predicted delayed states in
order to estimate the error that was synchronouswith the actual feedback at
time t = t*−ΔtS (see comparison 2). An additional gain term (k; value < 1,
specific for eachdelay)was placedon this second error to ensure that the set-
point error was dominant95. These two errors were then added and fed as
input to the LQR controller (Fig. 9a), which in turn formulated an action for
the present state, optimized for time t = t*+ΔtM+ΔtR.

We then simulated the inverted pendulum’s control of balance using
the LQRcontroller with our Smith predictor (n = 6 repetitions) for imposed
delays (ΔtR) ranging from 0ms to 350ms (0, 100, 200, 250, 300, 350ms).
These simulations replicated conditions with a natural delay (i.e.,
ΔtS+ΔtM) and increased up to the delays imposed in the current experi-
ments. The results from the simulations showed that the controller with
Smith predictor couldmaintain the pendulumupright for learneddelays up
to 470ms (i.e., ΔtR = 350ms; see Fig. 9b insets). We then examined the
temporal relationship between the torque applied to the pendulum and
whole-body acceleration by estimating the cross-correlation between these
two signals.We expected that the cross-correlationwould reveal an internal
prediction of the delays, such that the peak correlation would occur at time
zero once the model had accommodated the delay. Instead, the cross-
correlation analyses revealed that the peak positive correlation shifted from
2 ± 0ms for the 0ms delay, to −346 ± 4ms for the 350ms delay (see
Fig. 9b). Hence, contrary to our hypothesis, the controller with a predictor
did not adjust the timing of the motor commands with respect to whole-
body acceleration in order to balance the inverted pendulum. This was
because the imposed robotic delay ensured that thewhole-body acceleration
was always behind in time relative to the generated torque (see Fig. 9a). The

experimental data yielded similar observations and are not presented in the
manuscript because the simulation results demonstrate that relative shifts in
torque-acceleration timing are not a main feature of delay prediction in the
controller.

As an alternative approach to assessing changes in balance control
behavior due to delayed training, we analyzed the spectral properties of
participant-generated ankle torque and CoM angular velocity. Here, we
expected that as participants trained with the imposed delay, they would
reduce the power in their ankle torques and angular velocity. Furthermore,
this analysis allowed us to assess whether the frequency content of ankle
torque and sway velocity changed throughout training. To explore these
questions, we estimated the auto spectra of ankle torque and sway velocity
signals from the training trials. For each participant, we extracted data in
non-overlapping 5 s windows (providing a frequency resolution of 0.2 Hz)
when participants remained within the simulated balance limits. Data
extracted were limited to multiples of 5 s, such that if there was a 11-second
segment of continuous balance, only thefirst two5 swindows (i.e.,first 10 s)
were extracted. We defined the first 10 extracted segments of 5-second
windows (i.e., 50 s of data) as the start of training, and the last 10 extracted
segments as the end of training. For each participant, we then calculated the
average auto spectra across these segments in the frequency domain (see
Figs. 2d, 3d). To assess any changes in the frequency distribution of the
signals, we also normalized the auto spectra by their sum over a frequency
bandof 0.2–5Hz (see Figs. 2d, 3d insets). Comparison between the start and
end of training was made by plotting the group averages together with
bootstrapped 95% confidence intervals. The 95% confidence intervals for
the start and end of training were estimated separately by resampling the
data, drawing12 randomsubject responseswith replication fromthe sample
10,000 times. Finally, to assess whether training with delays resulted in any
aftereffects in normal balance, we then examined the frequency content of
ankle torque and sway velocity in the pre- and post-training baseline trials
(i.e., AP-baseline/ML-fixed, AP-fixed/ML-baseline, and AP-baseline/ML-
baseline).Non-normalized autospectraof ankle torques and swayvelocity in
these trials were estimated with the same approach as above using both
repetitions of the baseline trials (i.e., 60 seconds of data). Similar to the
training trials, group means and bootstrapped 95% confidence intervals of
pre- and post-learning baseline trials were plotted together to identify any
changes in the frequency distribution.

Experiment 2. For Experiment 2, we used pairwise comparisons (two-
tailed paired t-tests) to determine whether biomechanical interactions
influenced whole-body standing behavior between the AP and ML
directions. First, we tested whether imposing a delay in one direction of
standing balance control would influence whole-body motion in the
orthogonal axis. To test if an ML-delay increased the variability of AP
standing, we compared AP angular velocity variance between the AP-
baseline/ML-baseline vs AP-baseline/ML-delay conditions. Conversely,
to test whether an AP delay increased the variability of ML standing, we
compared ML angular velocity variance between the AP-baseline/ML-
baseline vs AP-delay/ML-baseline conditions. We further performed
additional pairwise comparisons between different conditions to estab-
lish whether these biomechanical interactions influenced whole-body
standing behavior. To assess whether angular behavior in baseline con-
ditions differed between trials with motion restrained to one direction or
free in both directions, we compared AP angular velocity variance in the
AP-baseline/ML-fixed vs AP-baseline/ML-baseline conditions and ML
angular velocity variance in the AP-fixed/ML-baseline vs AP-baseline/
ML-baseline conditions. Additionally, we examined whether angular
behavior in the imposed delay direction differed when standing freely in
both directions or with motion restrained to a single direction. This was
tested by comparing AP angular velocity variance in the AP-delay/ML-
fixed vs AP-delay/ML-baseline conditions and ML angular velocity
variance in the AP-fixed/ML-delay vs AP-baseline/ML-delay conditions.
Finally, we examined whether the destabilizing effects of a delay differed
when imposing delays simultaneously in both directions of standing.
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This was tested by comparing AP angular velocity variance from AP-
delay/ML-baseline vs AP-delay/ML-delay conditions and ML angular
velocity variance from AP-baseline/ML-delay vs AP-delay/ML-delay
conditions. All comparisons were performed using paired t-tests and the
p-value threshold was corrected using a Bonferonni correction for mul-
tiple comparisons.

Experiment 3. For Experiment 3, all analyses were run on features of
whole-body balance movement (angular velocity variance and the per-
centage of time within the limits) to ensure that comparisons were
equivalent across both hand and leg balance conditions. To quantify the
learning rate during hand control training trials on a participant-by-
participant basis, we fitted first-order exponential functions to the velo-
city variance and the percentage of time within the limits data obtained
over the 18 min of training. We expected that training with the imposed
AP-delay during hand control would reduce angular velocity variance
and increase the percent time within the balance limits.We used pairwise
comparisons with one-tailed paired t-tests to compare balance behavior
in the pre- vs post-learning hand control trials. To test our hypothesis that
balance improvements gained from hand AP training would transfer to
leg AP and leg ML control, we used one-tailed t-tests to compare balance
behavior in pre- vs. post-learning for the leg AP-delay and leg ML-delay
conditions.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The sourceMatlab data that support the findings of this study and generate
themainfigure results are available in “Data and code for “Learning to stand
with sensorimotor delays generalizes across directions and fromhand to leg
effectors”” https://doi.org/10.34894/AT8YSZ, DataverseNL92. Datasets
generated and analyzed during the study are available from the corre-
sponding author upon reasonable request.

Code availability
The source Matlab code used to generate the main results are available in
“Data and code for “Learning to stand with sensorimotor delays generalizes
across directions and from hand to leg effectors”” https://doi.org/10.34894/
AT8YSZ, DataverseNL92.
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