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Disparity of cycad leaves dispels the living
fossil metaphor

Check for updates

Mario Coiro 1,2 & Leyla Jean Seyfullah 1

The living fossil metaphor is tightly linkedwith the cycads. This group of gymnosperms is supposed to
be characterised by long-term morphological stasis, particularly after their peak of diversity and
disparity in the Jurassic. However, no formal test of this hypothesis exists. Here, we use a recent
phylogenetic framework and an improved character matrix to reconstruct the Disparity Through Time
for cycad leaves using a Principal Coordinate Analysis and employing Pre-Ordination Ancestral State
Reconstruction to test the impact of sampling on the results. Our analysis shows that the cycad leaf
morsphospace expanded up to the present, with numerous shifts in its general positioning,
independently of sampling biases. Moreover, they also show that Zamiaceae expanded rapidly in the
Early Cretaceous and continued to expand up to the present, while now-extinct clades experienced a
slow contraction from their peak in the Triassic. We also show that rates of evolution were constantly
high up to the Early Cretaceous, and then experienced a slight decrease in the Paleogene, followed by
a Neogene acceleration. These results show a much more dynamic history for cycads, and suggest
that the ‘living fossil’ metaphor is actually a hindrance to our understanding of their macroevolution.

The idea of living fossils is as old as evolutionary thought itself, being
introduced by Darwin1 to refer to species or groups that have experienced
minimal change across time, and thus closely resembled their fossil ances-
tors. Since its inception though, various authors have employed different
criteria to classify organisms as living fossils.Whilemost scholars emphasize
morphological stasis, others stress different criteria such as lack of species
diversity, persistence of a lineage through geological time, phylogenetic
uniqueness, geographically restricted distribution, and others, leading to a
confusing and vague definition2–4. Surprisingly though, this metaphor still
holds substantial power in swaying research programmes and generating
hypotheses5.

Cycads are a charismatic groupboth for scientists and the general public.
They are a group of gymnosperm plants characterised by a palm-like habit
and large compound leaves, aswell as having plants of separate sexes (dioecy).
The order Cycadales includes around 375 species in two families6, the
Cycadaceae (including the genus Cycas L. and ~ 119 species) and the
Zamiaceae (including the other 9 genera and the majority of the species
diversity).Nowadays, they are distributed in tropical and subtropical climates,
withmajor centres of diversity inMexico and Central America, South Africa,
andAustralia7. Among the extant plants, the diversity and disparity of cycads
is dwarfed by other groups such as the angiosperms and the polypodiaceous
ferns, but it is similar to that of other groups of comparable age, such as
Araucariales (around200 species)8 orGleicheniales (alsoaround200species)9.

Even so, cycads are often considered together with Ginkgoales (including the
only extant species Ginkgo biloba L.) as examples of plant living fossils.

Indeed, cycads’ reputation as “dinosaur plants”, apparently unchanged
since their origin in thePalaeozoic anddominance during theMesozoic, still
dominates the discourse surrounding this group10–12. Although the results of
molecular and total-evidence phylogenies indicate that in terms of species
diversity, the cycads are a rather young group, diversifying in the late
Cenozoic12,13, they are still considered to be morphologically similar, if not
identical, to their fossil relatives14. Their peak of diversity andmorphological
disparity is supposed to be in the Jurassic (201.4–145Ma), followed by a
decline leading to a depauperate modern flora15.

Recent discoveries and analysis have challenged this view, indicating a
much complex pattern of morphological evolution than expected from the
living fossil metaphor. Cycad fossils with unexpected morphology, such as
thediminutivemale cone fromtheEarlyCretaceousofCalifornia, suggest the
presence ofmuch-hidden diversity of Zamiaceae during this period, possibly
indicating a radiation16. This pattern is further supported by phylogenetic
analyses including fossil cycad leaves17. This analysis found a geographical
expansion of the Zamiaceae across the Jurassic and the Cretaceous, corre-
sponding with the appearance of fossils that can be confidently assigned to
this family. Taken together, these results suggest that the dynamics of cycad
diversification anddisparificationmight be complex, and that the living fossil
metaphor might be a detrimental constraint on cycad research.
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Here, we use a recent phylogenetic hypothesis for cycad leaf fossils
(Fig. 1) to conduct the first formal analysis of the macroevolutionary
dynamics of leaf disparity in the Cycadales by reconstructing leaf dis-
parity through time. We show that cycad disparity has increased
through time, mostly due to the origin and expansion of the Zamiaceae
after the Jurassic Period, and that the rates of evolution have not
declined up to the present but instead show a recent increase. This
presents a much more dynamic history for this group of plants, and
suggests that the living fossil metaphor should be abandoned in favour
of more productive ones.

Results
Principal Coordinate Analysis of the morphological matrix resulted in a
matrix of 337 rows, corresponding to 169 tips, 168 internal nodes and 335
columns (PCoA axes). A Scree plot (Supplementary Fig. 1) shows that the
first 10 axes account for around 10% of the variation, compatible with a
similar analysis of other matrices18.

The only taxa (OT) morphospace and the Pre-Ordination Ancestral
State Reconstruction (POASR) morphospace show almost identical dis-
tributions (Fig. 2). PC1 separates Zamiaceae from the rest of the cycad
leaves, and PC3 separates the leaves of Cycadaceae from the rest, while PC2
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Fig. 1 | Trimmed time-calibrated consensus tree from Coiro et al.17 used in
this study. Leaves of Bowenia spectabilis Hook. ex Hook.f., Ceratozamia chimala-
pensis Pérez-Farr. & Vovides, Stangeria eriopus (Kunze) Baill., Zamia imperialis
A.S.Taylor, J.L.Haynes & Holzman, Zamia sp., Encephalartos lehmannii Lehm.,
Encephalartos inopinus R.A.Dyer, Macrozamia secunda C.Moore, Dioon edule
Lindl., andCycas thouarsiiR.Br. are shown as examples of extant cycad leaf diversity.

Fossils of Eobowenia incrassata (S.Archang.) M.Coiro & C.Pott (1), Almargemia
dentata Florin (2), Pseudoctenis oleosa Harris (3), Bjuvia simplex Florin (4), and
Ctenis nathorstii Möller (5) are shown as examples of cycad fossil leaf diversity.
Images are not to scale. Extant cycad images courtesy of Michael Calonje, except
Dioon edule who has been taken by the authors. Image of Almargemia dentata from
Coiro & Pott21, used under a CC BY 4.0 license.
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Fig. 2 | Scatter plots for the first eight Principal Coordinate Analysis axes (PC1-
PC8) for the Only Taxa morphospace (top) and the Pre-Ordination Ancestral
State Reconstruction morphospace (bottom). Tips and nodes for Zamiaceae are
coloured in purple, Cycadaceae in green, and extinct cycads in yellow. The figure

shows that the first PcoA axis (PC1) separates Zamiaceae from the rest of the cycads,
and that in general the three groups of cycads occupy different parts of the mor-
phospace. On the bottom graphs, the root node is coloured in red, and the phylo-
genetic relationships are indicated with grey lines.
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has a less clear phylogenetic signal. Both sums of variance and the mean
distance from the centredonot showstrong sensitivity to rarefactionneither
in the OT analysis (Supplementary Fig. 2) nor the POASR analysis (Sup-
plementary Fig. 3), with the exception of some of the bins with the smaller
sample size.

Disparity through time
In the OT analysis, the size of cycad leaf morphospace, expressed as the
sum of variance, shows an initial increase between the Triassic and the
Jurassic (Fig. 3a). Although the increase slows down, it continues up to the
present, with a small plateau between the Cretaceous and the Paleogene.
The mean distance from the centre, indicating the position of leaf mor-
phospace, shows smaller shifts between the Triassic and the Cretaceous,
followed by larger shifts towards the Paleogene and the Neogene-
Quaternary (Fig. 3b).

In the analysis using data reconstructed for the nodes, the sum of
variance shows an initial expansion during the Permian and the Triassic,
with a peak around 210Ma followed by a drop (Fig. 3c). A subsequent
increase up to a peak in the Mid Jurassic (170Ma) is followed by oscilla-
tions leading to overall stasis. After a dip during the Late Cretaceous, a
slower increase leads to a further peak in the Eocene, followed by a drop in
the Oligocene and a recovery up to the highest levels of disparity in the
present.

The position of the morphospace is also quite dynamic, with major
shifts indistance from the centre in the transitionbetween theEarly andLate
Triassic, Late Triassic and Early Jurassic, Early Jurassic and Mid Jurassic,
Late Jurassic and Early Cretaceous, Late Cretaceous and the Oligocene, as

well as Oligocene to early Miocene, early to late Miocene, and late Miocene
to the present (Fig. 3d). The difference between the mean distance to the
centre in the present and at the origin shows a shift in the position of the
extant morphospace compared to the original morphospace, similar to the
tip only analysis. The results from the POASR analyses are also robust to
topological uncertainty (Supplementary Fig. 4).

Clade-specific disparity through time
Portioning the disparity according to taxonomic grouping shows that while
theMid Jurassic peak is drivenby extinct taxa, the subsequent growth of leaf
morphological space is mostly driven by the expansion of Zamiaceae
(Fig. 4a, Supplementary Fig. 5). This group shows afirst period of expansion
up to the Early Cretaceous, with a peak at 120Ma, followed by two other
major periods of expansion between the Late Cretaceous and the Eocene
and between the Miocene and the present. The space occupied by extinct
taxa shows a progressive shrinkage from a Mid Jurassic peak (Fig. 4b,
Supplementary Fig. 6). Smaller peaks are found in between the Early and
Late Cretaceous and in the late Eocene. The space reaches its smallest extent
before the complete extinction of the Ctenis clade.

Rate analysis
Point rate estimates for our selected time bins show the highest rates in the
Carboniferous, with a slowdown leading to a minimum in the Jurassic and
then a rise in the Early Cretaceous (Fig. 5). Rates decrease in the Late
Cretaceous and Paleogene, only to jump up during the Neogene-Present.
However,AICc selection favours amuch simplermodel,with a single rate of
0.07 character changes per Ma from the Carboniferous to the Early
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Fig. 3 | Disparity-Through-Time (DTT) plots of cycad leaves, showing a more
dynamic pattern than expected from stasis and/or post-Jurassic decline. a DTT
plot of the sum of the variance of the ‘OT’ analysis, i.e. including only the tips of the
cycad tree, showing an increase of themorphospace of cycad leaves up to the present.
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struction analysis. Both c and d show a similar but more complex pattern than a and
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percentiles, dark grey indicates the 2.5–97.5% percentiles.

https://doi.org/10.1038/s42003-024-06024-9 Article

Communications Biology |           (2024) 7:328 4



Cretaceous, a lower rate of 0.05 in the Late Cretaceous and Paleogene, and
the highest rate of 0.09 during the Neogene and Present.

The analysis of rates in different clades corresponding to the acquisi-
tion of nitrogen fixation favored a model with a single rate across the tree

(Fig. 6).However, amodelwith the Zamiaceae crown group having a higher
rate than the background was not significantly worse (ΔAICc = 0.67). On
the other hand, a model with the genus Cycas having a lower rate than the
background was significantly worse than the best model (ΔAICc = 2).

Time series analysis
Our time series analysis did not find a correlation between temperature or
CO2 and our disparity metrics through time. All correlations coefficients
were lower than 0.5 (Supplementary Fig. 7).

Discussion
Our analysis does not support the hypothesis of stasis and reduction in
cycad leaf disparity through time15. The size of the leaf morphospace does
instead increase up to the present, with major periods of expansion corre-
sponding to the transition between theMid and Late Triassic, the Early and
Mid-Jurassic, and the Oligocene to the Miocene and present. While the
expansion in the Triassic correspondswith an early burst of disparity within
the crown-group Cycadales, a common pattern inmany clades19, the one in
the Jurassic and the later increases are driven by the origin and expansion of
the Zamiaceae. Indeed, during the Early Cretaceous we see the appearance
of fossil leaves in the stemgroups ofDioon andBowenia20,21, as well as forms
with less clear affinities22. This strengthens the hypothesis that Zamiaceae
underwent an evolutionary radiation during the Jurassic-Cretaceous16, a
pattern suggested by the point estimates of the evolutionary rates in the
Early Cretaceous. This radiation would be quasi-contemporaneous to those
of other plant groups such as Gnetales23,24, Podocarpaceae25, and
angiosperms26,27, suggesting the possibility of a global turnover event across
seed plants. Even though our analyses do not seem to indicate that tem-
perature or CO2 were directly driving cycad disparity, it cannot exclude the
impact of more complex factors such as aridity. Moreover, some important
traits such as the size of the leaves, vein density, or stomatal size and density
were not included in our dataset, opening the possibility of amore thorough
analysis of the physiological variation of cycads through time. Further
investigation on cycads and on the other groups seemingly radiating during
the same period should help to test the generalities of this phenomenon and
help to disentangle its causes.

Contrary to expectations of a demise of cycads caused by the com-
petition of more efficient and fast-growing flowering plants15,28, leaf dis-
parity does not seem to decrease in response to the rise and expansion of
the angiosperms during the Cretaceous29. Recent work has suggested that
some Cycadales, namely Zamiaceae and some crown group Cycadaceae,
avoided competitionwith angiospermsby evolvingnitrogenfixation,while
the non-fixing cycads declined30. Our data could seem to partially support
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struction analysis. The graph shows that in the Zamiaceae there is a fast increase
during the early phase of the evolution of the group, followed by a slower increase up
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extinct cycads, i.e. excluding the crown groups of Zamiaceae and Cycadaceae. In the
extinct taxa, it shows a gradual decrease with a low valley in the Late Cretaceous, with
the lowest disparity reached before their extinction in the Neogene. The black line
indicates the bootstrappedmedian, light grey indicates the 25–75% percentiles, dark
grey indicates the 2.5–97.5% percentiles.
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this since Zamiaceae show both an increase starting from the Early Cre-
taceous onwards while the morphospace of other cycads slowly declined
(Fig. 4).Moreover, there is an indication (albeit weak) that Zamiaceae have
higher rates of morphological evolution compared to the rest of the
Cycadales. On the other hand, competition can generate complex
dynamics31, and thus the expectation of a simple decrease in disparity
indicating dismissal by competition might be naive. Further investigation
on the ecology and ecophysiology of the cycads from the Ctenis clade and
other extinct groups might help to truly understand the causes of their
decline and extinction32.

The Neogene burst in cycad disparity and evolutionary rates corre-
sponds broadly with the origin of extant species diversity within the extant
10 genera12,13,17, suggesting that the increase in species diversity correlated

with an increased variation in leaf morphology. This is in agreement with
the observation of the variability ofmorphology and anatomy in someof the
extant genera includingCycas33,Zamia34,Dioon35,36, andCeratozamia11. The
generationof this level of variation in a relatively short time span seems to be
at odds with the widespread assumptions on the biology of cycads: these
plants have exceedingly long lifespans, small population sizes, and rather
slow rates ofmolecular evolution28,37. The availability of genomicdata for the
cycads38 and the comparison between genomes of closely related species
might help to find the causes of this apparent conundrum, making cycads a
potentially fundamental system for understanding the genetic basis for
morphological differentiation and adaptive evolution.

Interestingly, no reduction of disparity can be observed in response to
major extinction events such as the Permian-Triassic and the Cretaceous-
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Fig. 6 | Model for rates of morphological evolution across the tree, testing
whether lineages inferred to have acquired nitrogen fixation have different rates
than the other cycads. Though the best model has a single rate across the tree, the

second model shows an increased rate in crown group Zamiaceae. A model with
Cycadaceae having lower rates is significantly worse than the best model
(ΔAICc =2).
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Palaeogene extinctions. This agrees with other lines of evidence showing a
less severe effect of mass extinction on plant groups39–41. However, the
patterns associated with random or trait-selective extinction events are
rather varied and context-dependent42, and a reduction in disparity might
not be observed even after amass extinction event.Moreover, our sampling
strategy may be too coarse to detect the actual response of cycads to these
mass extinctions. Further analyses are needed to more confidently test this.

It has to be kept in mind that trends in leaf disparity might not fully
capture changes in disparity at the whole-plant level. It has been argued that
whole-plant morphology is necessary to investigate the trajectories of dis-
parity through time43. However, the fossil record of plants is by its nature
fragmentary, and the process of reconstructing whole plants is extremely
complex44. In the cycads, the issue is complicated by their dioecious nature,
with the onlywhole-plant reconstructionknown in somedetail only bearing
male strobili45–47. On the other hand, leaf fossils are relatively well preserved,
and thus allow us to sample morphology over time in a more continuous
way. Moreover, leaf morphology has important consequences for plant
ecology and adaptation48,49, and thus represents a worthy line of investiga-
tion by itself. Based on these considerations, as well as more recent studies
approaching single organ disparity50,51, we think that focusing on single
organs can still bring fundamental insights in the macroevolutionary
dynamics of plants50–52.

In conclusion, phylogeny, biogeography, and disparity all agree in
showing that the “living fossil” metaphor is inappropriate for the cycads.
While metaphors can be powerful tools that drive entire research pro-
grammes forward (i.e. the ‘adaptive radiation’ metaphor53–55), they can
become deleterious by highlighting some aspects of a group’s biology while
hiding others thatmight be as, if notmore, important5. This seems to be the
case with the ‘living fossil’ metaphor and the cycads: this metaphor has
highlighted the case of apparent ‘stasis’while hiding the dynamic history of
diversification and disparification of this group through time12,13,17. We
suggest that stasis in cycads should be considered at the level of the single
traits3,56, instead of assuming it based on vague whole-plant morphological
similarity, while the dynamic history of this group of “slow-growing”,
dioecious plants should be the focus ofmore research at the organismic and
molecular level. This new pluralistic view will bring better insights into this
charismatic and endangered lineage.

Material and Methods
Analysis environment
All analyses were conducted in R ver. 4.2.1.

Morphological matrix and tree
To analyse cycad leaf disparity through time, we used the matrix and trees
from ref. 17. This tree was generated using a combination of molecular data
(15 nuclear loci, one mitochondrial locus, and two plastidial loci) from 321
extant species and morphological data (31 characters) from the extant
species and 60 leaf fossil taxa spanning from the Permian to the Miocene.
These data were analysed in a Bayesian dated framework using the Fossi-
lized Birth-Death prior57,58.

The matrix of 31 morphological traits, scored from both direct
observation and a review of the large literature on the morphology and
anatomyof cycad leaves20–22,59–91 was expanded to include 14newcharacters,

for a total of 45 (Supplementary Methods S1). To avoid issues with high
levels ofmissing data, we reduced the taxon sampling to include only extant
taxa that were scored for cuticular characters in the original matrix, leading
to 109 extant taxa (from the original 3216) and 60 fossil taxa. The extant taxa
included all extant genera, with 2 out of 2 species of Bowenia Hook. ex
Hook.f., 11out of 40 species ofCeratozamiaBrongn., 15 outof 119 species of
Cycas, 13 out of 18 species of Dioon Lindl., 33 out of 65 species of Ence-
phalartos Lehm., 2 out of 2 species of LepidozamiaRegel, 8 out of 41 species
ofMacrozamiaMiq., and 23 out of 86 species of Zamia L.

The tree was trimmed to only include the 169 species from the mor-
phological matrix using the function drop.tip from the R package ape92. A
random sample of 100 trees from the posterior distribution from ref. 17 were
also used to test the sensitivity of our results to topological uncertainty. All
zero-length branches were transformed to 0.001-length branches.

Morphospace
The function ordinate_cladistic_matrix from the package Claddis93,94 was
used to generate twomorphospaces: one was built using only data from the
scored taxa, using the prior estimates from17 as first and last occurrence of
the fossil tips, with extant species set to 0-0 (Only Taxa, OT); the other used
the tree to conduct ancestral state reconstruction, to increase sample size for
the past time bins, thus combating sampling bias (Pre-OrdinationAncestral
State Reconstruction, POASR). For both datasets, the distance calculations
used theMaximumObservableRescaledDistance (MORD)94. Thismetric is
basedon theGowerCoefficient (GC)95, ameasure of distance rescaledby the
number of characters that can be scored in both taxa compared. TheMORD
further rescales theGC to themaximumpossible distance, leading to a value
between 0 and 1.

The MORD has been shown to perform better than the GC and the
General EuclideanDistance (GED) for analyses of disparity. The calculation
of the distances was followed by a Principal Coordinate Analysis (PCoA),
both operations included in the ordinate_cladistic_matrix function. To test
robustness to topological uncertainty, we analysed morphospaces across
100 trees taken from the posterior of ref. 17. For this analysis, a combination
of the function multi.tree and char.diff from the package dispRity96 and the
function pcoa from the package ape92 was used to replicate the same process
followed by the function ordinate_cladistic matrix from the package
Claddis93,94 while optimizing the speed of the analysis.

Disparity through time
For the Disparity Through Time (DTT) analysis (i.e., the amount of mor-
phological variation across time bins), the OT morphospace was split into
time bins equivalent to Periods, given the paucity of data, starting from the
Triassic and ending in a combinedMiocene-Pliocene-Quaternary bin (from
23 to 0Ma) (Table 1). This was done using the function chrono.subset from
the package dispRity96. For the analysis including reconstructed data, the
morphospacewas split into10Ma timebins from300Ma to0 (Table 2).The
binning was conducted using the continuous method96, and assuming both
a gradual split model and a punctuated model. Matrices were then boot-
strapped for 500 replicates using the function boot_matrix. We also tested
the impact of sampling by rarefying the data to 6 and 3 samples.

Following the recommendations presented in ref. 96, we tested the
appropriateness of the metrics representing the expansion of cycad leaf
morphospace using the web-based shiny app “moms”. After this analysis,
we selected the sumof variance as an estimate of the size of themorphospace
and themeandistance from the centre of themorphospace (the 0,0 point) as
ameasure of position. Thesemetricswere then calculated using the function
dispRity.

Clade-specific disparity through time
To test the contribution of the different clades to the disparity dynamics of
the cycads, we generatedDTT curves for the Zamiaceae and for the taxa that
are not strongly supported as close relatives of the extant clades. These were
defined as taxa or clades that did not result in a clade with Zamiaceae or
Cycadaceae with pp=1 in the consensus tree from ref. 17. DTT for the

Table 1 | Number of data points (tips) per time bin in the Only
Taxa analysis

Time bin n

252-201.4 6

201.4-145 18

145-66 19

66-23 20

23-0 116
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Cycadaceae could not be reconstructed due to the lack of data caused by the
sparse fossil record of the Cycadaceae, including only 5 species over the
whole timespanof the crowngroup leading toonly 1or2pointsper timebin.

The morphospace from the pre-ordination ancestral reconstruction
analysis and the tree were trimmed to only include members of either
Zamiaceae or completely extinct clades. For theZamiaceae analysis, we used
timebins of 10Ma from180 to 0,while for the extinct clade analysis the time
bins extended to the age of the tree root.

Rate analysis
To test the variation in evolutionary rates through geological time, we used
the time binmethod test_rates in the libraryCladdis92. Time bins were set to
be equal to Periods (Carboniferous 330.36-299, Permian 299-252, Triassic
252-201, Jurassic 201-145, Paleogene 66-23) except for the Cretaceous,
where we considered the Series level (Early Cretaceous 145-100, Late Cre-
taceous 100-66), and the combinedNeogene-Pliocene-Holocene (23-0). All
combinations of rate models between the 8 time bins were tested, for a total
of 128 comparisons. The best model was selected using AICc to avoid
overparameterization.

We further tested whether the acquisition of nitrogen fixation had an
effect on the rates of character evolution in cycads. We used the clade

method in the test_rates function to test whether the two clades that are
inferred by30 to have acquired nitrogen fixation (namely the crown group
Zamiaceae and the clade including the Late CretaceousCycas fromSakhalin
(Cycas sp. Sakhalin) and extant Cycas) had different rates of morphological
evolution comparedwith amodelwith a single rate across the tree.AICcwas
used to select the best model.

Time series analysis
To test the correlation between the disparity of cycad leaves and mac-
roclimatic factors, we downloaded CO2 and temperature data through
geological time from ref. 97. We selected this dataset since it spans the
same time span of our analyses, and includes temperature and CO2

estimates in 10 Ma intervals, allowing a direct comparison. To deal with
spurious correlation due to strong autocorrelation in time series data,
the CO2 and temperature data were analyzed using an Autoregressive
Integrated Moving Average (ARIMA) model, implemented in the
function auto.arima from the package forecast98. The same ARIMA
model was then used to analyze the bootstrapped median values for the
sum of variance and the centroid distance disparity metrics obtained
from the gradual and punctuated models of the POASR analysis using
the function Arima from the package forecast. The residuals of the

Table 2 | Number of data points (tips plus nodes) per time bin in the Pre-Ordination Ancestral State Reconstruction analysis
according to the type of model used to integrate node data (gradual vs punctuated) in the different sampling strategies

Time bin n total (gradual) n total (puncutated) n Zamiaceae (gradual) n Zamiaceae
(puncutated)

n Extinct cycads
(gradual)

n Extinct cycads
(puncutated)

300 3 2 NA NA 3 2

290 5 3 NA NA 5 3

280 6 4 NA NA 6 4

270 6 5 NA NA 6 5

260 7 6 NA NA 6 5

250 7 6 NA NA 5 5

240 9 6 NA NA 7 5

230 8 8 NA NA 6 6

220 9 8 NA NA 7 6

210 12 11 NA NA 10 9

200 8 7 NA NA 6 5

190 10 9 NA NA 8 7

180 13 11 2 1 9 7

170 19 17 3 3 13 12

160 14 13 5 4 8 8

150 13 11 5 4 7 6

140 17 15 6 5 9 9

130 12 11 7 6 4 4

120 17 12 9 7 7 4

110 14 12 7 6 6 5

100 14 14 7 6 6 6

90 12 10 6 6 3 3

80 16 11 10 7 4 3

70 17 14 10 8 5 4

60 18 16 12 10 5 5

50 20 18 12 12 6 5

40 17 17 11 11 5 5

30 17 14 15 11 2 2

20 22 19 16 12 3 3

10 53 42 35 32 NA NA

0 109 109 94 90 NA NA
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ARIMA model for temperature or CO2 were then correlated with the
residuals of the same ARIMAmodel applied to the different dependent
variables using cross-correlation as implemented in the function ccf
from the package stats.

Reporting summary
Further information on experimental design is available in the Nature
Portfolio Reporting Summary linked to this Article.

Data availability
Data used in thismanuscript are available on Figshare: https://figshare.com/
s/c0d9432df52860775c77, https://doi.org/10.6084/m9.figshare.23736381.

Code availability
Scripts used in this manuscript are available on Figshare: https://figshare.
com/s/c0d9432df52860775c77, https://doi.org/10.6084/m9.figshare.
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