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Procrustes is a machine-learning
approach that removes cross-platform
batch effects from clinical RNA
sequencing data
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With the increased use of gene expression profiling for personalized oncology, optimized RNA
sequencing (RNA-seq) protocols and algorithms are necessary to provide comparable expression
measurements between exome capture (EC)-based and poly-A RNA-seq. Here, we developed and
optimized an EC-based protocol for processing formalin-fixed, paraffin-embedded samples and a
machine-learning algorithm, Procrustes, to overcome batch effects across RNA-seq data obtained
using different sample preparation protocols like EC-based or poly-A RNA-seq protocols. Applying
Procrustes to samples processed using EC and poly-A RNA-seq protocols showed the expression of
61% of genes (N = 20,062) to correlate across both protocols (concordance correlation coefficient >
0.8, versus 26% before transformation by Procrustes), including 84% of cancer-specific and cancer
microenvironment-related genes (versus 36% before applying Procrustes;N = 1,438). Benchmarking
analyses also showed Procrustes to outperform other batch correction methods. Finally, we showed
that Procrustes can project RNA-seq data for a single sample to a larger cohort of RNA-seq data.
Future application of Procrustes will enable direct gene expression analysis for single tumor samples
to support gene expression-based treatment decisions.

RNA sequencing (RNA-seq) for gene expression profiling (GExP) has been
reported as a powerful tool that is widely used in oncology research1. It is
being increasingly implemented in clinical settings for a wide variety of
applications, including for biomarker discovery, predicting prognosis, and
guiding the use of adjuvant therapy1. Until recently, implementing high-
throughput RNA-seq in the clinic, however, has been a challenge due to the
need for fresh-frozen tumor samples to obtain optimal results. In the clinical
setting, specimens are predominantly preserved as formalin-fixed, paraffin-
embedded (FFPE) tissues for long-term storage. This preservation process
leads to rapid degradation in RNA quality2. Poly-A RNA-seq, on the other
hand, is stable, reproducible, and one of the most widely used methods for
GExP. Unfortunately, it requires fresh or freshly frozen (FF) tissues and

poorly captures partially degradedmRNAs, thus rendering it unsuitable for
use in the clinical setting.

Exome capture (EC)-based RNA-seq protocols provide better-quality
data for RNA-seq of FFPE tissues and are now routinely used in the clinic2.
EC-based RNA-seq differs from poly-A RNA-seq in that it is vendor-
dependent and is highly customizable for targeting different gene sets,
resulting in cohorts sequenced using different protocols and targeted
gene panels. This situation presents several challenges, including batch
effects and the compatibility of datasets generated by different sequencing
chemistries and technologies or platforms, complicating statistical analyses.
While sample quality has been reported as a contributor to batch effects, it
alone cannot explain many other batch effects that occur when comparing
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different samples within a dataset or across different datasets3. The com-
parison and integration of data from different sequencing protocols such as
poly-A and EC further exacerbates this complication. For example, the
CancerGenomeAtlas (TCGA) has established a database of well-annotated
poly-A RNA-sequenced samples from FF tissues for more than 30 cancer
types, creating a valuable resource of sequencing data that can potentially be
utilized in comparative GExP studies as previously shown4. While we pre-
viously successfully integrated poly-A RNA-seq from different studies
without any correction, the utilization of different sequencing protocols
necessitates correction4. However, comparing or integrating such data with
FFPE-derived EC-based data can be challenging because of technical batch
effects that arise due to variation and differences across different protocols.
While differences in the overall distribution of gene expression profiles
within individual samples can be corrected by normalization, batch effects
arising fromdifferences in sequencing protocols cannot be eliminated using
conventional approaches5,6. Although several studies have demonstrated
concordance betweenFF- andFFPE-derivedpoly-ARNA-seqdata6, there is
still a need to develop sequencing protocols and data processing algorithms
that allow direct comparison of gene expression across different sequencing
protocols (EC-based and poly-A RNA-seq) and overcome any underlying
batch effects.

Several batch correction methods are available for RNA-seq data
analysis, including negative binomial regression models (ComBat-Seq),
surrogate variable analysis (SVA), dimensionality reduction techniques
(such as self-supervised contrastive learning (CLEAR)7), and
normalization-based methods (such as Z-scoring and BMC). However,
none of these can be applied to an individual sample for comparing
expressionvalues to a cohort6,8–10. Thus, there is anunmetneed todevelop an

algorithm for batch effect correction of multi-platform data and for
projecting the expression values of a single sample to a larger cohort in
order to improve gene expression-based personalized clinical decision-
making.

To address this unmet need, we developed an optimized EC-based
RNA sequencing protocol and Procrustes, a batch correction machine
learning (ML) algorithm that enables the projection of RNA-seq data from
individual samples onto a cohort of samples sequenced using different
methodologies. Specifically, we demonstrated the capability of our algo-
rithm to minimize batch effects when comparing RNA-seq data obtained
using EC-based and poly-A-based protocols. This workflow enables the
unification of datasets produced using different sequencing protocols and
fills a major gap in the field of computational biology.

Results
An improved EC-based protocol for FFPE RNA-seq
EC-based RNA-seq is increasingly being utilized for GExP in clinical set-
tings to overcome the challenges in obtaining RNA of sufficient integrity
from clinical specimens. To more closely recapitulate poly-A-based RNA-
seq protocols, we sought to optimize an EC-based RNA-seq protocol by
modifying the Agilent XTHS2 V7 probe set. Briefly, we included probes to
the 5’ and 3’UTR regions to bettermimic poly-A RNA-seq gene expression
distribution profiles with more uniform 5’ to 3’ gene body coverage (see
Methods). Using 28 biopsy specimens processed as FF and FFPE technical
replicates, we generated RNA-seq data using our modified EC (Agilent XT
HS2 V7 UTR), Agilent XT HS2 V7, and poly-A RNA-seq protocols (Sup-
plementary Data 1, Fig. 1a; see Methods). Libraries from both the modified
EC and poly-A RNA-seq protocols showed high alignment rates with a low

Fig. 1 | Optimization of exome capture-based (EC) RNA-seq protocol.
a Schematic of EC-protocol optimization. Median CCC for V7 versus V7
UTR. b Principal Component Analysis (PCA) showing batch effect between the
modified EC (V7 UTR) and poly-A RNA-seq protocols. c PCA showing the absence
of batch effect between samples stored as either FF or FFPE and sequenced with the
modified EC protocol. d Distribution of within-sample CCC between FF and FFPE
samples processed using themodified ECprotocol. ePie chart showing percentage of

genes with low (<0.5), medium (0.5-0.8), and high (>0.8) within-gene CCC between
samples stored as FF or FFPE and processed using the modified EC protocol.
fDistribution of within-sample CCC for pairwise comparison between FF (poly-A)
and FFPE (EC) samples. g Pie chart showing percentage of genes with low (<0.5),
medium (0.5–0.8), and high (>0.8) within-gene CCC between modified EC and
poly-A protocols. CCC concordance correlation coefficient, EC exome capture.
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percentage of unmapped reads (Supplementary Fig. 1a; Supplemen-
tary Data 2).

Next, we assessed the concordance of gene expression between the
modified EC-based protocol and poly-A RNA-seq. The concordance cor-
relation coefficient (CCC) was chosen as the main parameter measured
because it can assess if the corresponding values in two vectors are equal to
each other11. Our analysis showed that the modified EC-based protocol
performed better in recapitulating poly-A RNA-seq data than the unmo-
difiedAgilent XTHS2 V7 probe set, improving themedian CCC calculated
for all 20,062 genes analyzed from 0.81 to 0.88. (Fig. 1a, Supplementary
Fig. 1a–d, Supplementary Data 2). However, despite the improved perfor-
mance, we still observed pronounced batch effects when comparing data
fromFF sample-derived poly-A libraries tomodified EC libraries fromboth
FF and FFPE samples, indicating that batch effects likely arose not from
differences in sample storage methods, but from differences in the library
preparation protocols (Fig. 1b, c). We repeated our analysis using human
cell lines and sorted cell populations to confirm that the observed batch
effects were a result of differences in library preparation methods (Supple-
mentary Data 3). Batch effects were assessed by considering each sample
type separately in order to confirm that these results were not confounded
by sample source. Consistentwith the tissue-based results, a batch effect that
separated the data by library preparation protocol used was also present in
samples of human cell lines and sorted cell populations (Fig. 1b, Supple-
mentary Fig. 1e–i; seeMethods). To further confirm that batch effectswere a
result of differences in library preparation protocols, we used the modified
EC-based protocol to process each sample as FF and FFPE replicates
(Supplementary Data 4). We observed a high median CCC of 0.950 across
the transcriptome (~20,000 genes) and minimal batch effect between both
storage methods in pairwise comparison (Fig. 1d, Supplementary Data 5).
Here, at the individual gene level, 27.6% of genes had CCC values higher
than 0.8 (Fig. 1e) compared to 14.6% for the poly-A versus EC comparison
(Fig. 1f, g), suggesting that the persistent bath effects at the individual gene
level are due to differences in library preparation protocols and not differ-
ences in sample storage protocols, thus necessitating the need for an
approach to overcome these batch effects.

Limitations of existing batch effect correction methods
To evaluate the ability of currently available tools to overcome protocol-
specific batch effects, we examined the performance of several algorithms
including DASC12, Z-scores and BMC normalization methods, Random
Forest Regression, Ridge and Lasso linear regression, ComBat-Seq6, and a
Mutual Nearest Neighbors (MNN)-based model13, as described in Table 1.
Here, we chose to correct samples from the publicly available MET500

cohort (phs000673.v2.p1)6,14–16. This comprehensive cohort encompasses
samples of diverse cancer diagnoses sequenced as replicates using bothpoly-
ARNA-seqandAgilent SureselectV4ECprotocols (Supplementary Fig. 1j),
thus allowing us to demonstrate the utility and versatility of Procrustes in
our benchmarking approach.Among the 360paired samples considered for
this analysis, 296 paired samples passed quality control measures (Supple-
mentary Fig. 2a, see Methods). Next, the chosen MET500 cohort samples
were divided into training (N = 181) and holdout (N = 115) datasets (Sup-
plementary Fig. 2b, c; Supplementary Data 6).

To effectively analyze the data, we first sought to eliminate transcripts
that would affect normalization due to inherent technical limitations or
biological stochastic noise, particularly in cases where samples were
sequenced using different protocols17. In total, 20,062 genes (AG - all genes)
were used for TPM normalization and expression quantification in FFPE
and poly-A RNA-seq data.We excluded 6,610 ( ~ 33%) genes that were not
covered by one of the protocols. These included non-polyadenylated genes,
genes not coveredbyV7UTRprobes, and genes that showed lowexpression
levels (see Methods). Of the remaining 13,452 genes (AGEP: all genes after
excluding problematic genes), 1438 ( ~ 10%) were grouped as cancer-spe-
cific, immune-related, and clinically relevant genes (BMGEP: biologically
meaningful genes after excluding problematic genes; Table 2, Supplemen-
tary Data 7). Steps for projecting single samples onto the MET500 cohort
using MNN and ComBat-Seq are described in Methods (Supplementary
Fig. 3a). PCA projection plots forMNN-transformed (median CCC= 0.62)
and ComBat-Seq-transformed (median CCC= 0.72) data showed that the
transformed dataset does not perfectly fit the original poly-A expression
profiles (Supplementary Fig. 3b, c). Particularly, the transformed data do
not occupy the same area as either the EC-based or the poly-A RNA-seq
holdout data on the PCA plots, showing the presence of pronounced batch
effects even after data transformation by MNN and ComBat-Seq. The
performance outcome for all selected batch correctionmethods are listed in
Table 1 (Supplementary Fig. 3d).

Taken together, our analysis of several existing batch effect correction
methods shows that they cannot effectively transform EC-based FFPE
RNA-seq data into poly-A-like RNA-seq gene expression profiles, as evi-
denced by the presence of pronounced batch effects even after data trans-
formation. Therefore, we set out to develop a batch correction method that
rectifies technical, protocol-specific batch effects in gene expression profiles
between EC-based and poly-A RNA-seq.

Development of Procrustes
Here, we introduce Procrustes, a machine learning-based algorithm for
batch correction (Fig. 2a). Based on the observed linear correlation between

Table 1 | List of algorithms chosen as benchmarking targets for Procrustes

Batch correction
method

Description Median CCC References

ComBat-Seq One of the most widely used batch correction algorithms that utilizes a
negative binomial regression

0.72 6

Mutual nearest neigh-
bors (MNN)

Commonly used for batch correction for single-cell (sc)RNA-seq 0.62 for MNN and 0.76 for DASC 12,13

DASC

Random forest
regression

Ensemble decision trees method, used to assess non-linearities in our
benchmarking approach

0.75 60

Z-scores Normalization batch correction techniques 0.72 for Z-scores and 0.83 for BMC 61,62

BMC

Ridge regression Evaluated separately in our benchmarking approach to compare the perfor-
mance of either l1 or l2 penalization alone (Procrustes) with the performance of
combined l1/l2 penalization utilized within ElasticNet (Ridge and Lasso)

0.83 and 0.76 for Ridge and Lasso, respectively 63

Lasso regression

mProcrustes Linear regressionmodel, which utilizes co-expressed genes as amodel feature
(for detailed explanation of co-expressedgenes, seeMultigenemodels section
under Methods)

0.85, highest among CCC values for all batch
correction methods used in benchmarking

N/A

Original batch Expression data before the application of any batch correction techniques 0.58 N/A
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the expression of individual genes18 and the co-expression of specific genes
(Supplementary Fig. 4; see Methods) in whole transcriptome data from
different protocols, we developed two regression models. The first utilizes a
single-gene regression model (sProcrustes), while the second uses a multi-
gene regression model (mProcrustes) for cross-platform-derived RNA-seq
data batch effect correction (see Methods). The sProcrustes model was
developed based on the linear relationship of gene expression profiles
between protocols, while the mProcrustes model was trained using the
expression profile of each gene together with the topmost co-expressed
genes in each protocol (seeMethods). After selection of co-expressed genes,
the final unified list contained anywhere from 1 to 56 genes, depending on

Fig. 2 | Development of Procrustes model. a Schematic showing Procrustes model
development using FF and FFPE replicates. b Pearson correlation coefficient of
BRAF expression between EC and poly-A-based RNA-seq. c Transformation of
BRAF expression from EC- to poly-A-like after applying single gene Procrustes
model and (d) multi gene Procrustes model. eWithin-gene root mean squared error

(RMSE) before and after EC RNA-seq data transformation on the MET500 dataset.
f UMAP projections for top six cancer types present in the MET500 holdout set
(Poly-A, EC, and transformed-EC). g UMAP projections for top six cancer types
present in the MET500 holdout set; cancer-specific grouping retained (Poly-A, EC,
and transformed-EC).

Table 2 | Gene groups selected for further analysis

Group name Descriptiona Number of genes

AGs All Genes 20,062

AGEP All Genes, Excluding 6,610 Proble-
matic Genes

13,452

BMG Biologically Meaningful Genes 1,899

BMGEP Biologically Meaningful Genes, Excluding
Problematic Genes

1,438

aSee Gene Filtering section in Methods for the definition of each group.
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the cancer type (see Methods, Supplementary Data 8). ElasticNetCV
regression model18 was utilized to automatically adjust parameters with a
three-fold cross validation. Further, to develop robust models for training,
testing, and validation, we used the TCGA (phs000178)19 pan-cancer and
GTEx normal tissue datasets to assess if cancer type diversity would affect
model performance.As shown in Supplementary Fig. 5,we identified tissue-
specific gene sets withinGTEx andTCGAdata and used this information to
select the cancer types to be used for developing Procrustes (Supplementary
Data 9, 10; see Methods). This information was also used to divide samples
in the MET500 cohort into training and holdout sets, stratified by cancer
type, to ensure similar proportions of different cancer types in each subset
(Supplementary Fig. 6a–c). This same strategy was used in the evaluation of
existing batch correction methods described in the preceding section.

Next, we trained and validated sProcrustes andmProcrustes using the
same training and holdout subsets of the MET500 cohort14 that were pre-
viously used to assess other batch effect correction algorithms (seeMethods
and Limitations of existing batch effect correction methods). Following
training, we applied sProcrustes to transform the expression values fromEC
to poly-A-like in the holdout set. As before, we used CCC11 to measure
whether the algorithm accurately overcame the batch effects between poly-
A and EC sequencing methodologies. The CCC values for more than 1,500
genes from the BMG group were above 0.75, demonstrating robust per-
formance of sProcrustes and its ability to combine data from different
sequencing protocols. By comparison, mProcrustes showed better perfor-
mance, with higher CCC values within individual genes analyzed and a
slightly improved gene-wise CCC across the BMG (Supplementary
Data 11). For example, as shown in Fig. 2b, the correlation of BRAF
expression between the modified EC and poly-A protocol was not high
(r = 0.74) and had a low CCC of 0.25. Applying sProcrustes and mPro-
crustes yielded r and CCC values of 0.74 and 0.66, and 0.84 and 0.80,
respectively, for BRAF expression (Fig. 2c, d). Further, transformation of EC
data using mProcrustes also reduced the median within-gene root mean
squared error (RMSE) from0.83 to 0.40 (Fig. 2e). UMAPprojections for the
top six cancer types in the MET500 holdout set showed transformation of
EC data to a poly-A-like dataset, with samples clustered by cancer type and
not by protocol (Fig. 2f, g).

Benchmarking Procrustes against existing batch correction
methods
We compared Procrustes to several existing batch correction algorithms, as
listed and described in Table 1. Here, we also chose to use the MET500
dataset in our benchmarking approach because it is a comprehensive cancer
cohort that encompasses samples of diverse diagnoses sequenced as repli-
cates using poly-ARNA-seq andEC-basedAgilent SureSelect V4 protocols.
Thus, the use of theMET500 dataset enabled us to compare data generated
by two different RNA-seq technologies within the same dataset (Fig. 3a).

Our analysis showedmProcrustes to consistently outperform all other
batch effect correction algorithms selected for benchmarking, with higher
CCC values across all four groups of gene sets described in Supplementary
Data 6 (Fig. 3b, Supplementary Fig. 3d, Supplementary Data 12). Over 61%
of genes (totalN = 20,062) had a CCChigher than 0.8 across the two RNA-
seq methodologies for each sample after correction. Moreover, approxi-
mately 84% of cancer-specific and microenvironment-related genes had a
ССС higher than 0.8. Only the performance of Ridge regression, BMC, and
sProcrustes came close to the performanceofmProcrustes, with at least 75%
of cancer-specific genes having a CCC higher than 0.8.

In addition, we assessed if transformation of EC data by mProcrustes
affects gene signature analysis, a widely used application of GExP. Func-
tional gene expression signature values (Fges) for previously reported gene
signatures were calculated as described by Bagaev et al.4 using single sample
gene set enrichment analysis (ssGSEA)20. As before, CCC was used to
compare Poly-A and EC samples before and after correction. Our analysis
showed the CCC values for most gene signatures (24 out of 29) before
correction to be above 0.9. While these CCC values either increased or
decreased slightly after correction (SupplementaryFig. 6a, b, Supplementary

Data 13), the application of Procrustes did not alter the conclusion based on
gene signature analysis. Taken together, these findings demonstrate the
ability of mProcrustes to effectively analyze gene expression data obtained
using different library preparation protocols.

Evaluating the performance of Procrustes using sample set
processed in-house
To assess Procrustes’s clinical utility, we generated poly-A libraries from FF
samples and XTHS2 V7 UTR libraries from FF or FFPE blocks for
129 sample pairs (Supplementary Fig. 6c, Supplementary Data 14). Sample
pairs were split into training (N = 85 pairs) and test (N = 44 pairs) datasets
(Supplementary Fig. 7a–d; see Methods). We tested the ability of mPro-
crustes to convert EC expression profiles into poly-A expression profiles.
Median RMSE values decreased from 0.96 to 0.51 after transformation,
which is comparable to variations typically associated with RNA-seq17

(Fig. 4a). The median CCC after transformation increased from 0.5 to 0.72
on a gene level (N of genes = 20,062; Fig. 4b). We also tested model per-
formance characteristics in the 4 gene groups (Supplementary Data 7). In
the AG group, for a pairwise comparison between EC and poly-A samples,
medianCCCafter transformation increased from0.87 to 0.97 (Fig. 4c)while
the percentage of genes with a high CCC (>0.8) increased from 20% to 36%
(Fig. 4d). The same comparison in the BMG group showed median CCC
values to increase from0.87 to 0.96 (Fig. 4e) and thepercentage of geneswith
a highCCC (>0.8) to increase from39% to 65% (Fig. 4f). A similar trendwas
observed for the other two groups of genes (Supplementary Fig. 7e–h).

Next, we assessed if the transformed EC samples were biologically
comparable to poly-A sequenced cohorts. To do this, we used a separate
batch of 159 clinical samples processed using our improved EC-based
protocol (Supplementary Fig. 8a). As shown in Fig. 4g, h, PCA projection
and tSNEplots of samples sequencedwith themodifiedECprotocol formed
a separate batch from all poly-A sequenced cohorts before transformation.
This batch effect was removed upon applying mProcrustes (Fig. 4g–i).
Finally, we mapped each of these 159 clinical samples onto their corre-
sponding TCGA cohorts (Supplementary Data 15) and assessed batch
effects before and after transformation. Our analysis showed high con-
cordance between these 159 clinical lab samples and TCGA data after
transformation (Supplementary Fig. 8b, c), as evidenced by a decreased
median Euclidean distance to PCA centroid of the corresponding TCGA
cohort (p < 1 ×10−6, Wilcoxon test; Fig. 4g–l).

To demonstrate the utility of Procrustes even without the wet lab
improvement, we compared data from samples prepared with the unmo-
dified EC-based (Agilent XT HS2 V7), the modified EC-based (Agilent XT
HS2 V7 UTR), and the poly-A RNA-seq protocols, before and after
transformation by mProcrustes. While the samples used here are from the
same batch used for Supplementary Fig. 1a–c, only samples that had not
been used previously for training Procrustes were used for this comparison.

As shown in Supplementary Fig. 8d–f, wet lab improvements on the
existing Agilent XT HS2 V7 protocol alone were not sufficient in rectifying
the batch effects. These batch effects wereminimized after the application of
Procrustes. Moreover, the Procrustes-transformed V7 data, while con-
forming better to the poly-A data (median CCC between non-modified V7
and poly-A data is 0.83 and 0.94 before and after transformation with
mProcrustes, respectively, p < 2 ×10−6, Wilcoxon test), still fell short com-
pared to the Procrustes-transformed V7 UTR data (median CCC between
V7 UTR and poly-A data is 0.88 and 0.96 before and after transformation
with mProcrustes, respectively, p < 2 ×10−6, Wilcoxon test; Supplementary
Fig. 8f). As such, our analysis revealed a performance gradient, where
Procrustes-transformed V7 UTR data aligned best with poly-A data, fol-
lowed by Procrustes-transformed V7 data. Non-transformed data per-
formed the worst. These observations indicate that Procrustes is needed to
transform gene expression data to correct and subsequentlyminimize batch
effects when comparing data obtained from different library preparation
protocols. This is especially important in the analysis of clinical samples in
reference to public databases, where the analysis outcomes are often used to
guide treatment decisions.

https://doi.org/10.1038/s42003-024-06020-z Article

Communications Biology |           (2024) 7:392 5



Fig. 3 | Benchmarking Procrustes’s performance. a Schematic showing our
workflow for benchmarking Procrustes against other existing batch correction
methods, as listed in Table 1. Batch correction was performed as described in
Methods, and the outcome was measured based on CCC values. b Barplot com-
paring the performance of sProcrustes and mProcrustes against other batch cor-
rection methods in 4 predefined groups of genes (AG, AGEP, BMG, BMGEP) as

measured by within-gene CCC values defined over 3 intervals (low [<0.5], medium
[0.5–0.8], and high [>0.8]), as reflected by the color key included. All benchmarking
was performed using the MET500 dataset (both EC-based and poly-A RNA-seq
data). AG all genes, AGEP all genes excluding problematic genes, BMG biologically
meaningful genes, BMGEP biologically meaningful genes excluding proble-
matic genes.
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Clinical utility and limitations
Our testing of Procrustes also revealed some of its limitations. Specifically,
we show some examples of genes that may be challenging for Procrustes to
transform and compare with poly-A RNA-seq data (Supplementary
Fig. 4e). These examples areGNRHR, FGF4, and FGF6, which have all been

shown to play important roles in cancer biology21–23. As shown in Supple-
mentary Fig. 4f, poly-ARNA-seq data for the TCGA cohorts showGNRHR
expression to be undetectable. The same is true for poly-A samples from the
MET500 cohort (Supplementary Fig. 4e). Therefore, we conclude that it is
not a database-specific artifact. Importantly, this limitation is unlikely to be
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overcome by any batch correctionmethod at this time. For FGF4 and FGF6,
there are limited data points for their expression beyond zero at this time,
thus limiting their use for training and testing Procrustes (Supplementary
Fig. 6e). These limitations and how we propose to overcome them are
discussed in detail in the Discussion section.

While evaluating other existing batch correction methods and
benchmarking Procrustes against thesemethods using theMET500 dataset,
we showed that Procrustes can transform gene expression data obtained
using the Agilent SureSelect V4 protocol and improve their alignment with
the poly-ARNA-seq data for the same samples (Fig. 2e–g). Here, we further
demonstrate that Procrustes can even transform data obtained using the
Agilent XT HS2 V7 protocol as-is without any protocol modification, to
achieve some improvement in alignment with poly-A data. This is an
important advantage of Procrustes, particularly in clinical settings where
protocol modification is not always feasible.

Moreover, unlike the existing batch correction methods included in
our benchmarking target list (Table 1), Procrustes can be used directly
without any modification to compare a single, separate sample (or a small
number of samples) to samples in a large poly-A cohort. As a simple linear
regressionmodel, Procrustes can be easily and efficiently applied to a single
sample or a small number of samples. Figure 4j, k demonstrate the pro-
jection of a single clinical sample onto a specific TCGA cohort after data
transformation by Procrustes. In these plots, a single sample, each from a
library of advanced lung adenocarcinoma (LUAD) clinical samples and skin
cutaneous melanoma (SKCM) clinical samples, respectively, were simply
projected onto their respective TCGA cohorts. More importantly, Pro-
crustes could do this without the need for the complicated steps described
for MNN and ComBat-Seq (see Methods). This is another valuable
advantage that Procrustes has over other batch correctionmethods, and one
that raises its clinical applicability.

Taken together, our analysis demonstrates the ability ofmProcrustes to
transform data from clinical FFPE samples processed using an EC-based
RNA-seq protocol, thus enabling integration with RNA-seq data generated
fromFF samples within the TCGAdataset or other gene expression cohorts
processed with a poly-A-based library preparation technique. In this study,
we further demonstrated the ability of Procrustes to transform EC-based
data obtained using the preexisting Agilent Sureselect V4 and Agilent XT
HS2 V7 protocols, a feature that underscores its utility in the clinics.

Discussion
In the last decade, RNA-seq has played a crucial role in shaping our
understanding of the functional genome24. Poly-A RNA-seq has seen
widespread adoption in research as it provides a comprehensive overview of
the transcriptomic landscape.However, this protocol has seen limiteduse in
the clinical setting where samples are routinely stored as FFPE specimens,
causing the input RNA to be highly degraded with partial 3’ ends. EC-based

methods overcome this limitation, but still fail to recapitulate poly-A RNA-
seq data. In this study, we optimized an EC-based RNA-seq protocol2,24 to
recapitulate poly-A RNA-seq data starting from FFPE samples, allowing a
wealth of transcriptomic data to be collected from clinical samples and
compared to data obtained using themore conventional poly-A sequencing
protocol. This optimizedprotocol includedprobes to target theuntranslated
regions of all protein-coding mRNAs. In doing so however, we observed
marked batch effects when comparing FF sample-derived poly-A RNA-seq
data to both FF and FFPE sample-derived data that likely arose due to
differences in protocols used to generate the data.

To overcome this remaining limitation computationally, we developed
Procrustes, a linear regression-based model to transform EC-based data to
poly-A RNA-seq data, that can rectify batch effects stemming from differ-
ences in library preparationprotocols.Wedevelopedandbenchmarked two
different models (sProcrustes and mProcrustes) to demonstrate the ability
of our algorithm to integrate and compare datasets from large cohorts
sequenced using different methods. We believe that Procrustes is a revo-
lutionary method for projecting gene expression data from a single sample
onto a larger cohort of RNA-seq data, thus allowing analysis and compar-
ison of RNA-seq data across different sample preparation protocols in
clinical settings. In this regard, we also showed that Procrustes can trans-
form gene expression data obtained using the Agilent SureSelect V4 and
Agilent XT HS2 V7 protocols without the need for complicated data-
processing steps and protocol modification. This is an important and
invaluable advantage of Procrustes over other existing batch correction
methods, especially in the clinical setting.

Moreover, utilization of linear regression ensures high interpret-
ability for transformed gene expression values, which makes it valuable
in the clinical context. For instance, upon receiving EC-based gene
expression values for a sample from a lung cancer patient, a user can
simply apply Procrustes to project this particular lung cancer sample
onto the appropriate publicly available poly-A cohort (e.g., TCGA-
LUSC or TCGA-LUAD). Thus, we envision Procrustes as a batch cor-
rection tool for EC-processed samples for comparison with publicly
available poly-A cohorts.

Nonetheless, linear regressionmodels suffer from limited sample sizes
wherein the estimated coefficients of the model can become large, making
the model sensitive to inputs and possibly unstable. Our study utilized a
limited sample set (n) that exceeded the number of input predictors (p) or
variables (gene features in this study), giving rise to the so-called p » n
problem, which can result in a model that will fit to noise instead of gen-
eralization. One approach to addressing this issue is to use a regularization
method andmodify the loss function to include additional penalty costs for
a model that has large coefficients. In this study, we used ElasticNet
regression models that penalize noisy features (genes) to minimize the size
of all coefficients, resulting in better model performance.

Fig. 4 | Assessing Procrustes’s performance on clinical samples. aWithin-gene
RMSE in clinical samples before and after correction by mProcrustes. b Violin plot
showing within-gene ССС before and after correction by mProcrustes. The trans-
formation method is depicted on the x-axis. The y-axis shows CCC values. For the
nested box plots, whiskers indicate 25th percentile (bottom) and 75th percentile
(top) +/− 1.5 IQR. c Violin plot showing ССС values for each EC/poly-A pair
measured for all genes. The transformation method is depicted on the x-axis. The
y-axis shows CCC values. For the nested box plots, whiskers indicate 25th percentile
(bottom) and 75th percentile (top) +/− 1.5 IQR. d Performance of mProcrustes as
measured by CCC for all genes (AG) present. Each color in the color key represents
one CCC interval: 0<x < 0.5, 0.5<x < 0.8, and 0.8<x < 1.0. eViolin plot showingССС
values for each EC/poly-A pair using only the biologically meaningful gene (BMG)
set. The transformation method is depicted on the x-axis. The y-axis shows CCC
values. For the nested box plots, whiskers indicate 25th percentile (bottom) and 75th
percentile (top) +/− 1.5 IQR. f Barplot showing performance of mProcrustes as
assessed by CCC values for each EC/poly-A pair using only the biologically mean-
ingful genes (BMG). The color key in (d) is used to reflect the same CCC intervals in
(f). g PCA plot depicting batch effect between EC and TCGA cohort gene expression

profiles. The transformed values (black) are projected onto their respective TCGA
poly-A cohorts (colored). h t-SNE plots showing transformed values (black) and
TCGA poly-A cohorts (colored). EC data form a separate batch. i PCA plot after
applying mProcrustes showing the transformed values (black) for the six most
prevalent cancer types included in the mapping and their corresponding TCGA
cohorts (colored). jPCAplot depicting the projection of one clinical sample onto the
TCGA-LUADcohort. A set of 159 unpaired samples (pink) were processed in-house
with XT HS2 V7 UTR. Transformation with Procrustes projected a single clinical
sample from the EC library onto the TCGA-LUAD cohort, allowing comparison of
gene expression between this clinical sample and a sample from the TCGA-LUAD
cohort. k PCA plot depicting the projection of one clinical sample onto the TCGA-
SKCM cohort. Transformation with Procrustes projected a single clinical sample
from the EC library onto the TCGA-SKCM cohort, allowing comparison of gene
expression between this clinical sample and a sample from theTCGA-SKCMcohort.
Both (j) and (k) use the same color/pattern key included. l Violin plot showing
Euclidean distances to PCA-centroids of nearest TCGA-cohorts. For the nested box
plots, whiskers indicate 25th percentile (bottom) and 75th percentile (top)
+/− 1.5 IQR.
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By defining and identifying co-expressed genes to be used for the
mProcrustesmodel,wedemonstrated thatmProcrustes can robustly correct
for differences between poly-A and EC-based data. Validation of mPro-
crustes on multiple datasets revealed high concordance between the gene
expression profiles produced by the poly-A RNA-seq and EC-based pro-
tocols after application of mProcrustes. We also demonstrated that mPro-
crustes can handle complex batch effects without negatively impacting
GExP studies such as developing predictive gene expression signatures from
transcriptomic data. We also showed in simulations that mProcrustes
generally not only outperforms other methods in removing technical
batch effects, but also preserves the ability to predict functional gene sig-
natures (Supplementary Fig. 7a, b), showing its potential to compare bio-
logical signals regardless of the sequencing technology used for data
generation.

It is important to note that Procrustes was created specifically to
address batch effects associated with EC-based protocols when applied to
FFPEsamples. Inparticular, Procrustes performs bestwhen comparingdata
from EC-based V4, V7, and V7 UTR protocols to poly-A RNA-seq data, as
described in this study. Since Procrustes was trained to compare RNA-seq
data acrossEC-based andpoly-ARNA-seqprotocols,wedonot anticipate it
to perform well in comparing data generated by other RNA-seq protocols
(such as total RNA-seq or other EC-protocols not included in this study)
with data from poly-A RNA-seq. This is because the relationship between
other types of RNA-seq protocols and the poly-A RNA-seq protocol likely
differs from the relationship between EC-based and poly-A RNA-seq
protocols. Moreover, the expression pattern for the same gene may differ
depending on the protocol used to obtain the data. For instance, while V4
could detect GNRHR expression in the MET500 cohort, poly-A RNA-seq
data for both the MET500 and TCGA cohorts showGNRHR expression to
be undetectable. Addressing these different relationships and discrepancies
will most likely require: 1) users to train their own model using either the
training and test paired poly-A-EC data reported in this study, or different
datasets that correspond to different protocol pairs of their interest; or 2)
the use of different methodologies and modeling approaches than
the ones described in this study, thus necessitating the creation of an
algorithm that is, at least in part, different from Procrustes. The latter is an
avenue we plan to explore in future iterations of Procrustes or other new
algorithms.

Current limitations of this study include a limited sample size. Small
sample sizes can lead to a narrow distribution of gene expression values for
particular genes, exacerbating the issue with the number of model features
(p) being greater than the number of samples (N) (p»n issue), especially for
mProcrustes. Future iterations of Procrustes will consider incorporation of
data fromadditional cancer typeswith larger sampling to createmore robust
gene sets for analysis. Another limitation in this study is the choice of
filtering criteria to define and remove noisy transcriptswhereinwe excluded
all non-expressing poly-A genes from gene sets to trainmProcrustes. These
limitations may pose some challenges for Procrustes to transform the
expression data for some genes, as shown in Supplementary Fig. 4e, f.
Improvements will require better definitions of features for model training
and validation. Possible strategies to address these limitations include
expanding the sample size to include more samples with expression values
greater than zero, or expanding the EC-based cohorts in order to obtain a
more accurate picture of the expression levels of genes of interest. Future
work is also needed to better define co-expressed cancer-specific gene sets
for model development. While we filter noisy transcripts before applying
Procrustes, the current iteration of Procrustes cannot correct the data for
every gene that remains. Our future work will involve employing more
sophisticated approaches to increase model performance. Some examples
include better definition of gene relationships between protocols, additional
feature preprocessing, and improved model hyperparameter tuning as
described by Sabourin et al.25 and by Feng and Yu26.

In genomic sequencing, the utility of batch correction tools extends
beyond the method employed in this study, potentially benefiting other
methods as well. For example, approaches like ATAC-seq, ChIP-seq, and

DNase-seqmight also leverage such tools, given their susceptibility to batch
effects27,28. However, when compared to bulk RNA-Seq where we found
library preparation to be the predominant sourceof batch variability thatwe
could effectively address with Procrustes, these techniques present addi-
tional complexities. For different sequencing approaches, some confound-
ing factors28–31 may contribute more to batch effect than library preparation
methods. The multifactorial nature of batch effects makes the straightfor-
ward application of Procrustes to these techniques less certain. Instead, it
necessitates a more in-depth investigation and possibly the development of
tailored correction strategies. Such an approach is crucial for accurately
understanding andmitigating the unique sources of variability, ensuring the
reliability and reproducibility of results despite the diversity and variation in
genomic sequencing technologies.

We believe the development of our optimized EC-based RNA-seq
protocol and Procrustes will provide a workflow that will enable cross-
platform analysis of heterogeneous transcriptome databases between dif-
ferent protocols. Further, our approach now allows for the accurate pro-
jection of a single patient’s transcriptomic data to larger, diagnosis-matched
cohorts andwill accelerate the adoption of whole transcriptome sequencing
in the clinic for diagnosis and therapeutic intervention.

Methods
Specimen procurement
All research specimens in this study were obtained from commercially
available sources. Fresh frozen (FF) and formalin-fixed paraffin-embedded
(FFPE) samples were purchased from commercial sources, including
Cureline Tissue Bank (Brisbane, CA), Accio Biobank Online (Newmarket,
Suffolk, United Kingdom), UMass Medical Memorial Biospecimen and
Tissue Bank (North Worcester, MA), and OriGene (Rockville, MD). Cell
Lines listed in Supplementary Data 3 were purchased fromAmerican Type
Culture Collection (ATCC, Manassass, VA) except GM12877 and
GM12878, which were purchased from Coriell Institute for Medical
Research (Camden, NJ) (Supplementary Data 3). According to ATCC,
mycoplasma is not detected in the cell lines we procured. For cell lines
procured from Coriell Institute for Medical Research, information con-
cerning mycoplasma contamination is not available, and no further testing
was performed in our laboratory. All cell lines were used to compare gene
expression levels as obtained by different RNA-seq protocols (technical
comparison). No biological conclusions were derived from these findings.
Sorted cell populationswere derived fromhealthy donors fromwhole blood
from Research Blood Components17 (Watertown, MA). Clinical samples
(N = 74) were also included in this study (Supplementary Data 14). Each
patient provided informed consent. The use of clinical samples was con-
ducted in accordancewith theDeclaration ofHelsinki and has been granted
exemption from ethics approval by the Biomedical Research Alliance of
NewYork (BRANY) Institutional Review Board (IRB) (BRANY study #22-
12-938-853).

FFPE sample processing
FF tissues were stored at−80 °C until they were processed. Tissue samples
were transported to a cryostat pre-chilled to −20 °C and divided in half
using a razor blade,maintaining representative andmorphologically similar
parts of the tissue for both halves. Half of each FF specimenwas prepared as
an FFPE block, and the other half was used directly for downstream RNA
extraction. Prior to FFPE processing, tissue specimens were cut into
5-micron sections. For FFPE processing, samples were placed into
embedding cassettes, which were directly immersed into 10% neutral buf-
fered formalin and incubated on an orbital shaker for 24 h at room tem-
perature. Cell lines were grown in appropriatemedia and density according
toATCCorCorielle guidelines. Agarose cushionsweremade from0.2ml of
2% agarose in PBS in 1.5-mL centrifuge tubes. Fresh cells were placed onto
solidified agarose cushions and spun down in a centrifuge at 2,000 g for
8min. The supernatant was removed and replaced with 10% neutral buf-
fered formalin for 24 hat roomtemperature. Tissueswere thenprocessedon
a tissue processor machine (Leica TP1020) undergoing two 30-min
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cycles each of 70%, 95%, and 100% ethanol, two 30-min cycles of
xylene, and two 1-h cycles of paraffin. Post-processing, the tissues were
embedded into paraffin blocks using the HistoCore Arcadia Embedding
Center (Leica).

FF sample processing
FF tissue specimens were stored at −80 °C until RNA extraction was
performed. For sorted cell populations fromblood, cells were placed into a
homogenization buffer (Promega, Maxwell SimplyCells RNA) and stored
at−80 °C until RNA extraction. Sorted cell populations fromwhole blood
were obtained from the peripheral blood of healthy donors procured
from Research Blood Components (Watertown, MA)17. Briefly, periph-
eral blood mononuclear cells were prepared, labeled with monoclonal
antibodies, and sorted with a BD FACSAria III through a 100 mm
nozzle17.

RNA extraction
RNA was extracted from FF tissue specimens using the Qiagen AllPrep
DNA/RNAKit (catalog#80284).RNAfromFFcell line pelletswas extracted
using the Maxwell RSC simplyRNA Cells kit (catalog# AS1390). FFPE
specimens were cut into 10-µm thick sections and RNAwas extracted using
either theQiagenAllPrepDNA/RNAFFPEkit (catalog# 80234) orMaxwell
RSC FFPE RNA (catalog# AS1440) extraction kit. All extractions were
performed as per the manufacturer’s instructions.

Library preparation and sequencing
Poly-A libraries were generated using the Illumina Truseq StrandedmRNA
kit following the manufacturer’s recommended protocols (catalog#
20040532). Exome capture sequencing libraries were generated using the
Agilent SureSelect XT HS2 RNA kit (catalog# G9993B) according to the
manufacturer’s recommended protocol. In this study, two different probe
sets were utilized for the hybridization procedures: SureSelect Human All
Exon V7 (Agilent, catalog# 5191-4029) and a custom probe set, V7 UTR,
designed to cover all the coding exons and 5‘ and 3‘ UTR regions (Sup-
plementary File 1). All RNA libraries were sequenced on an Illumina
NovaSeq 6000 sequencer. Samples were sequenced to a median target
coverage of ~54M reads, with 151 bp paired-end sequencing. V7 UTR
probe coveragewas assessedusingGitHub - openvax/gtfparse: Parsing tools
for GTF (gene transfer format) files32 and BEDTools33 (Supplemen-
tary Fig. 1b).

NGS data preprocessing and quality control
FastQC v0.11.534, FastQ Screen v0.11.135, RSeQC v3.0.035,36, and MultiQC
v1.637were used toperformquality control (QC)of allNGS samples. Sample
correspondence was confirmed by HLA comparison using OptiType38 for
RNA-Seq. RNA-seq reads were aligned to GRCh38.d1.vd1 using Kallisto
v0.42.439 and normalized into transcripts per million (TPM). TPM values
were log2-transformedwith an addition of 1 beforemodel development and
data analysis.

Data visualization
Data visualization was performed using matplotlib (v1.5.1)40 and seaborn
(v0.7.1) for Python41. UMAP42 and tSNE43 were used to visualize cancer
types clusters.

Statistics and reproducibility
Wilcoxon signed-rank test was used to assess the difference between sam-
ples (pairwise) before and after transformation by the Procrustes models.
Pearson and Spearman correlations were calculated to define co-expressed
genes. All statistical tests were performed using the SciPy Python library44.
Post hoc statistical power analysis was performed using the “FTestAnova-
Power” function from the statsmodels Python library. A standardizedmean
difference approachwas used for effect size calculation, which resulted in an
effect size value of 0.56 for concordance correlation coefficient before and
after applicationof Procrustes. For alpha=0.0001 andpower=0.95, a value of

108 for optimal sample size was obtained. Our final sample size of
129 samples processed in-house exceeds this value. Arithmetic mean,
median, and standard deviation (STD) were calculated using NumPy. Root
mean squared error (RMSE) was calculated for data before and after
transformation (within gene) using the scikit-learn Python library45. Con-
cordance correlation coefficients (CCCs) were calculated according to
Lawrence I-Kuei Lin11.

To explore batch effects, we utilized technical replicates prepared with
either EC-based or poly-A-based library preparation methods from either
FFPE or FF tissues.

Data decomposition
Principal component analysis (PCA) was performed with randomized
singular value decomposition (SVD)46 using PCA decomposition from
scikit-learn18. For decomposition, the mutual nearest neighbors (MNN)
method (GitHub - chriscainx/mnnpy: An implementation of MNN
(Mutual Nearest Neighbors) correct in python)47 was used13.

Comparison of batch correction methods: MNN-based batch
correction, ComBat-Seq, DASC, Z-score normalization, and
batch mean centering
Each paragraph below describes the procedure used to compare one batch
correction method to Procrustes. The performance of each method was
evaluated by calculating CCC for the expression values before and after
correction (Table 1).

MNN: Because mutual nearest neighbors (MNN)13 cannot be used to
project a single, separate sample from one batch to another, each sample
from the holdout-EC set was progressively added to the training EC set
(Supplementary Fig. 3a). The MNN batch correction algorithm was then
applied to the resulting EC set and the Train-poly-A set. These steps were
performed with each of the samples from holdout-EC set separately. Next,
we compared the full MNN-transformed set of samples with the holdout
poly-A cohort.

ComBat-Seq:Given thatComBat-Seq48 cannot be applied to individual
samples without additional steps, we used the same approach previously
utilized with the MNN-algorithm. As it is required by the ComBat-Seq
manual, we applied it to raw gene expression counts from the poly-A-
holdout and EC-holdout MET500 subsets without prior TPM normal-
ization.Next, values acquired after ComBat-Seq transformationwere TPM-
normalized. CCC was calculated between resulting values and original
values of the poly-A-holdout MET500 subset.

DASC: To test whetherDASC49 (SupplementaryNote 2) could be used
to correct batch effects between poly-A and EC-based RNA-seq data, we
applied it tobothpoly-AandECtrainingMET500 subsets,which resulted in
matrix of coefficients with a shape (n, 2), where n is a number of genes
(N = 20,062).

m1 d1
m2 d2
� � � � � �
mn dn

2
6664

3
7775

Next, using thismatrix of coefficients, we transformed gene expression
values for each gene in the EC-holdout MET500 subset using the following
formula:

Transformed Expg ¼ Expg ×mg � dg , where Expg is the expression
of gene g in the EC-holdout subset from theMET500 cohort, andmg and dg
are coefficients from the matrix resulting from applying DASC to the EC
and poly-A MET500 training subset. After that, for Transformed Exp, all
values below zero were equalized to zero, whereas gene values higher than 3
σ from mean were clipped to mean plus 3 σ. Finally, the resulting
Transformed Expwas used to calculate CCC for the poly-A holdout subset
of the MET500 cohort.
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Z-score: Usually, Z-score values are used by themselves to nullify batch
effect in downstream analysis, and calculated using this formula:

Z ¼ χ�μ
σ , where χ corresponds to gene expression in current sample, μ

corresponds to gene expression mean, and σ corresponds to gene expres-
sion STD.

Since our main purpose of applying batch correction methods was to
transform original EC values into poly-A-like values for a single sample, we
transformed data from the EC-holdout subset using the following steps.
First, we calculated gene expression mean and STD for both the EC and
poly-A training MET500 subsets. Next, we calculated Z-scores for the EC-
holdout subset based on the mean and STD from the previous step:

ZEC�holdout ¼
χEC�holdout�μEC�training

σEC�training
, where χEC�holdout is gene expression of

EC-holdout MET500 subset, and μEC�training and σEC�training are gene
expressionmean and STD ofMET500 training subset, respectively. Finally,
we acquired transformed expression for the EC-holdout MET500 subset
using this formula:

XEC�transformed ¼ ZEC�holdout × σpolyA�training þ μpolyA�training , where
σpolyA�training and μpolyA�training are STD and mean values for the poly-A-
training MET500 subset, respectively.

Batch mean centering (BMC) normalization: To perform batch cor-
rection with BMC normalization, we calculated the mean gene expression
value for each gene for both EC and poly-A RNA-seq data in the training
subset of theMET500 cohort. Following the same logic as for Z-score batch
correction, we performed BMC normalization by subtracting EC-based
means and adding poly-A-based means to samples from the EC-holdout
subset of the MET500 cohort:

XEC�transformed ¼ XEC�holdout � μEC�training þ μpolyA�training , where
XEC�holdout corresponds to gene expression in EC-holdout MET500 subset,
and μEC�training and μpolyA�training are mean gene expression values for
training EC and poly-A MET500 subsets, respectively. The resulting poly-
A-like values were used to assess CCC in comparison to the original data of
the poly-A-holdout subset of the MET500 cohort.

Gene filtering
In order to ensure that data from different sequencing protocols were more
comparable, all transcripts of non-coding biological types were excluded
before TPM normalization as previously performed in the TCGA mRNA
analysis pipeline for FPKM50. Histone-coding and mitochondrial gene
transcripts were also excluded due to uneven enrichment with different
RNA extraction methods, e.g., poly-A vs total RNA51. The resulting set of
genes was retained for TPM normalization and expression quantification
and contained20,062genes, including cancer-specific, immune-related, and
clinically relevant genes (N = 1899). For each transcript remaining after this
pre-filtering step, the effective length was found as the sum of exon lengths
intersected with the Covered.bed (Supplementary File 1) file with merged
probes and sequences with a minimum of 95% homology. Then, effective
lengths of transcripts were summed up within each gene, and the same was
done for actual transcript lengths. Sums of effective transcript lengths were
divided over sums of actual transcript lengths within each gene.
The resulting fraction is depicted on the x-axis of a histogram (Supple-
mentary Fig. 1b). Genes with a fraction less than 0.5 were considered
problematic.

Tissue-specific expression
Tissue-specific expression values were analyzed on GTEX and TCGA
cohorts (Supplementary Data 15). We selected cohorts that had more than
50 cancer and 20 normal samples. Gene expression was TPM-normalized,
log2-transformed, and scaled from 0 to 1 for GTEX and TCGA separately.
The tissue-specific expressed genes were collected for each of the selected
GTEX, TCGA-tumor, and TCGA-normal cohorts. Genes were considered
tissue-specific when the median of scaled expression was at least 0.5 in the
selected cohorts and less than 0.2 in the remaining cohorts. All genes from
GTEX,TCGA-tumor, andTCGA-normalwere combined to formafinal list
of 4,960 genes.

TCGAmapping
A total of 159 non-paired XTHS2V7UTR samples were selected byQC for
further transformation by modeling and mapping onto poly-A cohorts
(SupplementaryData 15). Twopublic cohorts (AML [phs001657.v1.p1]52,53,
PNET [GSE98894]54,55), one internal cohort (CTCL; restricted use), and 19
TCGA cohorts were utilized to create a single poly-A RNA-seq cohort
(Supplementary Data 16). SVD was performed using randomized SVD on
the unified poly-A cohort46 to obtain 4,000 principal components (PCs)
(Supplementary Fig. 9a, b). For each of the 22 poly-A subset cohorts, cen-
troidswere identifiedusing theNearestCentroidmethod18.Next, eachof 159
EC sampleswasmapped to thenearest centroid of the corresponding cohort
before and after transformation by Procrustes. Additionally, the closest
cohort to each sample was defined by lowest Euclidean distance. The
resulting cohort was considered as a predicted cohort and compared to the
cohort class, reflecting sample diagnosis. The intersection of expected and
resulting cohorts was calculated as a percentage of the overlap.

Development of linear models for Procrustes
Given p predictors, the common linear regression model predicts the
response (y) using the following formula:

y ¼ w0 þ w1x1 þ :::þ wpxp

A model fitting procedure produces a vector of w coefficients. For
example, the ordinary least squares (OLS) estimates are obtained by mini-
mizing the residual sumof squares.However,OLSoftenperformspoorly for
prediction and interpretation. Penalization techniques are utilized to
improve OLS estimations. The Lasso and Ridge regressions are penalized
least squares methods imposing l1- and l2-penalties on the regression
coefficients, respectively56. For expression data projection from one
sequencing protocol to another, y is the projected expression, and x is a
vector of predictors. When comparing cross-platform gene expression
levels, where most gene expression profiles show a linear dependence
between platforms, we used a simple linear regression model with the
equation:

y ¼ w0 þ w1x1

where x1 is the target gene expression in EC and y is its projection to poly-A.
Weused thewidely acceptedmachine learning toolElasticNet, which is

based on regularization of linear regression coefficients by adjusting both l1-
and l2-penalties56 by minimizing the following equation:

1
2nsamples

kXω� yk22 þ αρkωk1 þ
α 1� ρ
� �

2
kωk22

where α is a constant which multiplies l1- and l2-penalties; p is an l1-ratio
ranging from 0 to 1, where a value equal to 1 indicates the use of the lasso
penalty alone. Further, we used the ElasticNetCV (scikit-learn, Python)
version18, which provides an internal cross-validation estimator. The cross-
validation estimator is capable of specified model parameter searches (i.e. α
and l1-ratio) withmore computing power efficiency compared to canonical
estimators42.

Multigene models
Correlations between genes are utilized in algorithms of recovering missed
values of gene expression57. Methods such as the Weighted Gene Co-
Expression Network Analysis (WGCNA) calculate a connectivity score/
measure between genes to external gene information58. This supports the
possibility of using the expression of several genes in our linear projection of
a target gene betweenECandpoly-A.Wedeveloped themProcrustesmodel
to utilize co-expressed genes wherein for each predictor x1,x2,...xp, there
exists a corresponding vector of coefficients w for each target gene, where
predictors (or genes) for such a model can be selected based on Pearson
correlation coefficients.
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First, we selected 13 TCGA cancer-specific cohorts, each containing at
least 50 samples. Then, the Pearson correlation coefficientwas calculated for
each gene in each cohort. For every gene in each of the chosen cohorts, we
selectedfive geneswith thehighest correlationvalues (Pearsoncorrelationof
at least 0.7) to generate a summarized list of coexpressed genes for eachgene.
Next, these same steps were used to select the ten most correlated genes for
each gene in the MET500-poly-A cohort to generate a similar summarized
list. Finally, we merged those summarized lists into a finalized list of co-
expressed genes for use withmProcrustes. The end result was a list of 19431
genes that had at least one co-expressed gene, up to a maximum of 56 co-
expressed genes (Supplementary Fig. 9c).

Ridge and Lasso regression
To test whether it is necessary to use a combination of l1-/l2-penalties or
they can be used separately, we performedmodel training and validation in
the samewayas for sProcrustes. ForbothRidge andLasso,wemade separate
linear regressionmodels for eachgeneusingGridSearchCVcross-validation
(see grid for hyperparameter tuning in Supplementary Note 1) on the
training samples from the MET500 dataset. Next, we assessed CCC on the
MET500 holdout subset.

Random Forest regression
Weused RandomForest Regression (RFR; RandomForestRegressor, scikit-
learn18) to testwhethernon-linearmethodsmightperformbetter than linear
regression. We applied RFR to each gene separately on the MET500-
training subset as was done for sProcrustes, Ridge regression, and Lasso
regression. We used GridSearchCV to tune hyperparameters with cross-
validation (see grid for hyperparameter tuning in Supplementary Note 1).
Next, we assessed CCC on the MET500 validation subset.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Sequencing rawdataused formodel training andvalidation in this study can
be accessed at the NCBI Short Read Archive (SRA) with accession number
PRJNA1073545. Accessions for the datasets used in this study include the
following: phs000178 (TCGA)19, phs000673.v2.p1 (MET50014),
phs001657.v1.p1 (AML52,53), GSE98894 (PNET54). Source data are provided
for thismanuscript (https://zenodo.org/records/10552676). Somedata from
this study are not publicly available because it contains information that
could compromise research participant privacy/consent.

Code availability
All code is deposited online (https://github.com/BostonGene /Procrustes)59

and will be publicly available at the time of publication. Model weights for
gene expression transformation and the calculated gene expressions for all
samples included in the analysis for thismanuscript are also available at this
repository. The deposited code can be used to transform expression values
from EC (Agilent V4, V7, and V7 UTR) into poly-A-like values in order to
reproduce the CCC values derived from this study.
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