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Dietary restriction modulates ultradian
rhythms and autocorrelation properties in
mice behavior
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Animal behavior emerges from integration of many processes with different spatial and temporal
scales. Dynamical behavioral patterns, including daily and ultradian rhythms and the dynamical
microstructure of behavior (i.e., autocorrelations properties), can be differentially affected by external
cues. Identifying these patterns is important for understanding how organisms adapt to their
environment, yet unbiased methods to quantify dynamical changes over multiple temporal scales are
lacking. Herein, we combine a wavelet approach with Detrended Fluctuation Analysis to identify
behavioral patterns and evaluate changes over 42-days in mice subjected to different dietary
restriction paradigms. We show that feeding restriction alters dynamical patterns: not only are daily
rhythms modulated but also the presence, phase and/or strength of ~12h-rhythms, as well as the
nature of autocorrelation properties of feed-intake and wheel running behaviors. These results
highlight the underlying complexity of behavioral architecture and offer insights into the multi-scale
impact of feeding habits on physiology.

Animal behaviors can be conceptualized as part of a complex system. Such
systems found widely in nature from neuroscience to economics, share
simple defining features: a large number of elements that interact with each
other through non-linear relationships. These systems involve events and
information flowing across a wide range of temporal and spatial scales. The
multiple levels of organization within a complex system canmutually affect
eachother, giving rise to emergent global patterns (spatial and/or temporal).
Additionally, these systems are sensitive to different environmental cues,
displaying remarkably specific responsiveness1,2.

In living organisms, complexity is a consequence of evolutionary self-
organization, and their statistical properties can be captured by universal
physical laws3–10. In this context, oscillatory theory provides a framework for
characterizing dynamics of biological rhythms across a wide range of
organisms, including bacteria and humans, which exhibit diverse

periodicities11. Circadian rhythms are ~24 h oscillations in biological pro-
cesses found from metabolism and physiology to genetics, generated by
internal timekeeping mechanisms12. Such endogenous rhythms have
evolved in response to predictable environmental changes, such as ambient
lighting, temperature, and nutrient availability. Through the temporal
organization of metabolism, physiology, and behavior, these timekeeping
mechanisms enable organisms to synchronize their internal processes with
environmental timing cues, facilitating optimal adaptation12. In mammals,
the circadian system governs ~24h rhythms in behavior and physiology13,
and co-exists with other biological rhythms with shorter periods such as
ultradian rhythms14–17. Evolutionarily distant species exhibit a strikingly
similar pattern in the dynamic organization of rhythms in daily and ultra-
diandomains16. For example, feeding and locomotor behaviors inmammals
and birds can exhibit prominent daily and other biological rhythms (i.e.,
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ultradian)3,5,17. However, the origin and functional role of ultradian rhythms
in mammals are not fully understood.

Animal behavior, when analyzed on timescales ranging from mere
fractions of a second to hours is not random16. Rather, behavioral dynamics
exhibit a high degree of (auto) correlation between closely spaced time
points3,5,8,10,18–21. The strength of autocorrelation diminishes in a power-law
fashion as the time-lag between data points increases. These long-range
autocorrelations act as a distinctivefingerprint of long-termmemorywithin
the behavioral patterns of healthy individuals. The importance of dynamics
is evident since factors such as aging, disease, or stress, potentially can lead to
attenuation or even loss of long-range (auto) correlation.

Here, we analyzed temporal dynamics of mammalian behavior as a
complex system, by combining an advanced integrative five-step wavelet
method, GaMoSEC, for rhythm detection and characterization16 with
detrended fluctuation analysis (DFA) to assess autocorrelation properties.
This approach provides a framework for associating dynamical patterns (i.e.
daily and ultradian rhythms and autocorrelations) occurring at very diverse
spatial and temporal scales. Specifically, we focus on the multi-scale mod-
ulatory effects on behavioral dynamics of two types of dietary restriction
Caloric and Temporal Restriction, (CR or TR, respectively). Prior studies
have shown that these feedingpatterns differentially impact daily behavioral
rhythms, as well as metabolism over a 42-day period22. However, it
remained unexplored whether other dynamical patterns, present at shorter
temporal scales (i.e., ultradian rhythms and long-range correlations), are
affected by these feeding schedules.Ourhypothesis is that dietary restriction
schedules impact the diversity of dynamical patterns found in feeding and
wheel-running activities, beyond circadian behavior itself. Understanding
how different feeding patterns integrally affect mammalian behaviors is
fundamental because dietary restriction is themost robust and least invasive
intervention known to promote healthier longevity23,24.

We show that the presence of 12h-rhythms is highly dependent on the
behavior (food-intake or wheel running), with marked individual varia-
bility. In addition, temporal restriction increases, while caloric restriction
decreases, the presence of 12h- rhythms in the food-intake time series. For
wheel-running activity, the 12h-rhythms are less sensitive to the feeding
restriction protocol imposed. When present, dietary conditions can also
dynamically modulate phase and/or strength of 12h- rhythms in both
behaviors. Lastly, we show that long-range correlationswere observed in the
wheel running, but not in the food-intake, time series for scales below
100min. These correlation properties are also susceptible to caloric and
time-restricted feedingmodulation.Overall, our results highlight an integral
view of mice behavior, considering simultaneously the diversity of dyna-
mical patterns and their responses to external perturbations, contributing to
building up the behavioral architecture that composes them as complex
systems.

Results
Characterization of behavior complexity (24 h and 12 h rhythms
and autocorrelation properties) under ad libitum (AL)
We start by applying the GaMoSEC (Supplementary Note 1) to the first
week of the food-intake andwheel running time series22 (Fig. 1a, b) inwhich
mice (n = 30) were maintained under a 12 L:12D cycle and ad libitum
conditions. Representative actograms are presented in Supplementary
Fig. 8. Characterization of presence of different behavioral patterns is
summarized in Fig. 1 and Table 1. As expected, we detect entrained 24h-
rhythms in both feeding and wheel-running activity in all animals studied
(Fig. 1c–h, Table 1) with the acrophase falling within the dark period, and
wheel running leading the phase by less than an hour (~42min) (Table 1).
There is a high correlation between all pairs of animals (Table 1, see example
Supplementary Fig. 5) within each behavior studied, consistent with
entrainment of 24h-rhythms to the L/D cycle.

Ultradian rhythms, with periods near 12, 8 and 6 h (Fig. 1c–h, Table 1)
were detected depending on the behavior and the individual (see criteria for
UR period detection in Supplementary Note 2, Supplementary Figs. 2–4).
Ultradian rhythmicity is less prevalent than 24h-rhythms and are more

frequently found for wheel running than food-intake activity. Contrary to
24h-rhythms, when present, 12h-rhythms in food intake leads the phase by
1 hwhen compared towheel running activity. Althoughpositive correlation
between animals is also observed for the ultradian rhythms when present
(Table 1), the lower correlation values arise from increased variability
between mice compared with the 24h-rhythms, suggesting less influence of
the LD cycles on ultradian rhythmicity.

Bifurcationpatterns are observed in the real part of theMorlet cwtplots
(Fig. 1e, f and Supplementary Fig. 1c in SupplementaryNote 1) obtained for
both wheel running and food-intake time series. To understand these
bifurcation patterns further together with the autocorrelation structure of
the time series, we usedDFA.DFA is amethod for characterizing the scaling
behavior (i.e., the type of autocorrelation properties) present in a time series.
An overviewof theDFAalgorithm is presented in SupplementaryNote 4, as
well as an illustrative example ofDFAanalyses of two artificially constructed
activity time series (Supplementary Fig. 12). Specifically, an example of a
artificial time serieswith long-range correlations and its analysiswithDFA is
shown in Supplementary Fig. 12a, c, e. In counter position, the analysis of a
time series with random noise (non-correlated) with an amplitude that
varies periodically according to a circadian dynamics is presented in Sup-
plementary Fig. 12b, d, f. These two artificially constructed activity time
series can be a useful guide to help interpret the DFA results obtained from
experimental data analyses shown below.

The fluctuation function estimated with DFA of representative
experimental food-intake and wheel running time series are presented in
Fig. 1 panels i, j (open black circles). Two distinct linear scaling regions were
observed: one for time scales between 10 and 100min (short time scales,
region 1); the other for time scales between 5 and 36 h (long time scales,
region 2). The slope estimated in these two linear regions represents the
autosimilarity parameters, α1 and α2 (or short and long temporal scales,
respectively; see an example of selecting the optimal region for α-estimation
in Supplementary Fig. 13).

The food-intake activity presents a α1 of ~0.5 (Table 1) indicating
random fluctuation or short-range correlations in the feeding pattern;
whereas the α2-values either remains similar or decrease (Supplementary
Note 4, Table 1), indicating anti-(auto) correlation (i.e., large activity values
are more likely to be followed by low activity values, vice versa for low
activity values). In contrast, the α1 of wheel running showed strong positive
correlations, indicating that large activity counts are more likely to be fol-
lowed by large activity counts (and vice versa), with even larger α2-values
(Table 1 and Supplementary Note 3). The two scaling regions observed in
DFA, can be associated with the probability distributions of the durations of
behavioral events as well as the duration of inter-event periods (Light-
colored filled histograms in Fig. 1i, j). Note, that the majority of the food-
intake and wheel running events and inter-events presented durations
predominately lasting less than 100min (Fig. 1i, j).

In sum, beyond the 24h-rhythms, mice under 12 L:12D cycle and AL
conditions present a diversity of dynamical patterns in behavior (ultradian
rhythms and short/long-range correlations), which integrally build up the
behavioral architecture that compose these complex systems. These dyna-
mical patterns present clear differences when analyzing running or feeding
activity, whichmay reflect distinct underlying biological processes integrally
involved in each behavior and also different interaction with environmental
cues such as the LD cycle.

Modulation of 24h-rhythms under different feeding paradigms
Supplementary Notes 2 and 3 show the modulation of the 24h-rhythms
induced by 5 different feeding paradigms: 24 h ad libitum food access (AL);
temporal restriction for 12 h during either the night (TR-night) or the day
(TR-day); or 30% caloric restriction with 24 h access, starting at either the
beginning of the night (CR-night) or the day (CR-day). These feeding
paradigms imposed on mice produce dynamical perturbations of daily
rhythmicity (Supplementary Figs. 10, 11). While the observed patterns are
consistent with previous results22, the advantage of the GaMoSEc approach
is the ability to monitor daily changes in phase and strength of rhythmicity.
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Modulation of 12h-rhythms under different feeding paradigms
Since ultradian rhythm prevalence decreases with the rhythm period
(Table 1),we limitedour additional analysis of ultradian rhythms to the12h-
rhythms. Figure 2a–j show that 12h-rhythms are intermittently expressed
(i.e, there are temporal intervals where 12h-rhythms are not detected) along
the experiment and their expression pattern depends on behavior, indivi-
dual background and feeding paradigm imposed.

12h-rhythm expression is independent between behaviors
Within the same individual, the presence of 12h-rhythm in one behavior
does not ensure presence in the other behavior (Fig. 2a–j, see example:
mouse 168 in AL group; mouse 146 in TR-night group; mouse 181 in TR-
day group). Moreover, while the 12h-rhythms in food-intake are inter-
mittently expressed, inwheel running activity theyaremorepersistent along
the whole experiment, which reveals specific behavioral differences in the
underlying basis of regulation, interaction and/or production of 12h-
rhythms.Note that the variabilitybetweenanimals is lower inwheel running
than in food-intake activity (Fig. 2k, n), indicating that its expression ismore
consistent among individuals.

Mice under the same feeding paradigm present strong inter-
individual differences in the expression of 12h-rhythms
Inter-individual differences in the expression of 12h-rhythms are evident
when we analyze mice under AL paradigm (Fig. 2a, f): intermittencies in
12h-rhythm expression are strongly observed in food-intake activity
(Fig. 2a); whereas for the wheel running (Fig. 2f), half of the individuals
present 12h-rhythms continuously throughout the whole experiment
(Fig. 2f), while the other half present intermittencies. These intermittencies
are not synchronized between animals, and, importantly, they seem not
directly linked to genetic differences in timing of food consumption
intrinsically associated with this strain of mice (see Supplementary Note 5
and ref. 22).

In addition,wedetect a slight increase in the number ofmice exhibiting
12h-rhythms during the last week of the experiment as compared to thefirst
week, especially when food-intake behavior is analyzed (i.e.: for AL para-
digm,first week 0/6 individuals; last week 3/6 individuals). This effect on the
proportion of individuals is not statistically significant (p = 0.09), but it may
suggest that the length of the experimentmay be an important factor for the
consolidation of 12h-rhythms expression.

Fig. 1 | 12h-rhythms and complex fractal dynamics in the time series of mice
under the ad libitum (AL) feeding paradigm. Examples of (a) food-intake and (b)
wheel running time series. c, dContour plot of the wavelet coefficients obtained with
syncrosqueezing analysis of these time series, respectively. Positive coefficients are
shown following the corresponding color scheme. Dotted lines indicate the first two
strongest ridge detected connecting maximum coefficients, characterizing both the
circadian rhythms and 12 h UR. e, f Coefficients of the Morlet Wavelet transform.
Positive values are shown in red and negative values in blue, highlighting transitions
between behavioral states (i.e., active vs. non-active) at each temporal scale (y axis)
for the same two time series. Around the 24 h time scale (lime green line), the
circadian rhythm is apparent (compare with a, b) as equidistant spaced blue and red

bands. At smaller time scales, ultradian rhythms (around 12 h, yellow line) and
complex fluctuations are visualized. g, h Examples of the circadian and 12 h ultra-
dian rhythms found in time series (lime green and yellow lines, respectively)
superimposed with the behavioral activity (underlying gray bars, same as a, b).
i, j Detrended fluctuation analysis of time series on food intake (i) and wheel-
running activity (j). Data correspond to animal F14722 and code86 are publicly
available. The two α-values (see Table 1) of each individual were estimated as the
slope of these curves in the two linear regions indicated with purple for α1 or green
for α2. The observed α-values indicate long-range (fractal) correlations in wheel
running but not in food-intake. Dual y axis, left represents fluctuations and right axis
events (activity) and inter-events (rest between consecutive activities).
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12h-rhythms are sensitive to the feeding paradigm imposed
Despite the high inter-individual variability, the feeding paradigm imposed
on mice significantly affects the 12h-rhythm expression, especially in food-
intake behavior (Fig. 2a–j). Qualitative analysis of food-intake behavior
indicates that TR paradigms tend to increase (Fig. 2b, c), while CR para-
digms tend to decrease or abolish (Fig. 2d, e) the 12h-rhythm expression, as
compared to AL (Fig. 2a). We further quantify, for each testing group, after
feeding schedule change, the median number of days with detected 12h-
rhythms (Fig. 2k) and confirmed a significatively increase under the TR-day
treatment. In addition, we detected phase advance (Fig. 2l, see also Sup-
plementary Fig. 15) and a slight tendency to increase the strength of 12h-
rhythmicity in the TR-day as compared to the control AL group (Fig. 2m,
see also Supplementary Fig. 16). For both CR paradigms, the median
number of days with 12h-rhythm does not decrease significantly (Fig. 2k).
However, note that by the end of the experiment bothCR conditions do not
exhibit 12h-rhythms in feeding behavior (Fig. 2d, e, see Supplementary
Figs. 17 and 18 in Supplementary Note 6 for details in time evolution of
phase and strength of 12h-rhythms along the experiment).

Contrary to that seen with food-intake behavior, wheel running in the
CR-night group is the only group in which we detect changes in the
expression of 12h-rhythms due to feeding paradigm changes. Note that
intermittences were observed in every individual after feeding change
introduction (Fig. 2o, Supplementary Note 6), resulting in a significantly
lower median number of days with 12h-rhythm (Fig. 2n). Although the
number of days did not significantly change under the TR paradigms, it is
worth noting that group variability decreased, suggesting consolidation of
this rhythm (Fig. 2o). Acrophases of 12h-rhythms in running were not
affected by the new feeding paradigm introduced (Fig. 2o, see also

SupplementaryFig. 15), but theCR-day treatment significantly increases the
strength of 12h-rhythms, as compared with AL condition (Fig. 2p, see also
Supplementary Fig. 16).

Figure 2, panels q and r explore whether the 12h-rhythms could be
related to themisalignment between feeding and running 24h-rhythms.We
found that misalignment between feeding and running 24h-rhythms does
not completely explain the differences found in the expression of 12h-
rhythms between groups. This is clearer for the running time series: most of
the groups (except CR-night), present a similar number of days with 12h-
rhythms, irrespective of the feeding treatment (Fig. 2n, r). For the feeding
time series, the expression of 12h-rhythms seems most related to the food
consumption pattern (see Discussion), although a slight effect of the mis-
alignment between24 hbehavioral rhythmscannot completely be ruledout,
especially for the CR paradigm (Fig. 2q).

Taken together, these results support the hypothesis that the food
restriction paradigmmodulates the presence, phase and/or strength of 12h-
rhythms. Misalignment between 24 h behavioral rhythms has little or no
significant effect on their expression and modulation.

Modulation of autocorrelation properties induced by the feeding
paradigm
We further explore with DFA whether the autocorrelation properties are
affected by the feeding paradigms imposed on mice (see Supplementary
Fig. 14). Supplementary Note 7 shows the temporal evolution of auto-
correlation parameters during the entire experiment. Figure 3a, b display
representative examples of DFA performed on the behavioral time series
from the last 5-days of testing for each feeding paradigm.

As shown previously, for the first week of testing (Fig. 1i, j), at least two
scaling regions are apparent; hence, the self-similarity parameters,α1 andα2,
can be used for group comparisons. For feeding time series, as in the first
week (Table 1),ALpresentedα1-values near 0.5 indicating randomor short-
range correlations. However, TR-day, CR-night and CR-day present a
decrease inα1-value in comparison to theALgroup (P < 0.05, Fig. 3c). These
lower α1-values between 0 and 0.5 indicate a change in the properties of the
dynamics towards anti-correlation. Anti-correlation in this context can be
associated with events of feeding being followed by prolonged non-feeding
episodes. For TR-day, α2-values increased as compared to AL group
remaining close to 0.5 (Fig. 3c). For CR, the α2-values increased above 1,
reflecting the fact that under these conditions, long periods without any
feeding activity (i.e., smoother time series25.

For the wheel running time series, α1-values presented long-range
correlations in all animals, while showing a tendency (P < 0.1, Fig. 3d) to be
lower in TR-day and CR-night and were significantly lower in CR-day
(P < 0.05, Fig. 3d) in comparison toALmice. These lowerα1-values indicate
modulation of the structure of long-range correlations within theminute to
several hour range. In regard to the larger time scales, no significant dif-
ferences were detected between treatment groups, with α2-values pre-
dominantly between 1 and 1.5 (Fig. 3d).

Thus, feeding protocols differentially modulate the correlation prop-
erties of bothbehaviors dependingon the time scale. For food-intake activity
this modulation occurs for the two α-values, in opposite ways, whereas for
wheel running activity only α1-values were affected. Importantly, the α1
-value reflects the fluctuations in activity dynamics at time scales shorter
than the observed 12h-rhythms. Hence, the feeding paradigm not only
changes rhythmic behavior but also modulates non-oscillatory fluctuations
at these smaller time scales, affecting the scaling properties of behaviors.

PCA highlights the role of dynamical patterns beyond 24h-
rhythms for complete characterization of the feeding
paradigms groups
Figure 4 shows a set of different multivariate principal component analysis
(PCA) combining variables estimated for 24h-rhythms (acrophases), 12h-
rhythms (number of days with 12h-rhythms) and autosimilarity parameter
(α1-values) with other physiological variables previously reported for each
mice group22. For comparison, pair-wise scatterplots (Supplementary

Table 1 | Characterization of behavioral patterns in mice feed
ad libitum under 12 L:12D cycle, during the first week of
experimentation

Pattern type Feature Food-intake
(n = 30)

Wheel running
(n = 30)

̴24 h rhythms Animals with
rhythm (%)a

100 100

Acrophase ZTb 17.4 (16.8; 17.8) 16.5 (16.1; 17.0)

Correlation between
animalsc

0.91 (0.87: 0.97) 0.96 (0.94; 0.97)

̴12 h rhythms Animals with
rhythm (%)a

17 93

First peak ZTb 2.0 (1.7; 2.5) 3.4 (3.0; 4.1)

Second peak ZTb 14.2 (13.9; 14.4) 15.3 (15.1; 16.0)

Correlation between
animalsc

0.77 (0.70; 0.86) 0.82 (0.73; 0.88)

̴8 h rhythms Animals with
rhythm (%)a

20 20

First peak ZTb 5.7 (5.6; 6.5) 6.3 (6.2; 6.7)

Second peak ZTb 13.8 (13.7; 14.2) 14.5 (14.3; ‘4.7)

Third peak ZTb 21.6 (21.5; 22.6) 22.4 (22.2; 22.7)

Correlation between
animalsc

0.70 (0.41; 0.76) 0.76 (0.68; 0.85)

̴6 h rhythms Animals with
rhythm (%)a

0 20

DFA α1-value (first slope)d 0.51 (0.50; 0.52) 0.95 (0.90; 1.00)

α2-value (second
slope)d

0.36 (0.28; 0.49) 1.15 (1.02; 1.22)

aPercent of animals where the rhythms were detected using the 5-step GaMoSEC procedure.
bTime of daily peak in the real Morlet cwt coefficients at the given time scale.
cAll pair-wise comparisons in real Morlet cwt coefficients between the 30 animals, total 870 com-
parisons at the given time scale.
dDetrended Fluctuation Analysis was used to estimate the self-similarity parameter, α, using a
detrending order of 3. Time scales used for α1 and α2, are shown in Fig. 1 panels i and j.
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Fig. 20) and correlation estimation (Supplementary Fig. 21) between vari-
ables are shown in Supplementary Note 8.

PCA that included 24h-rhythm acrophases and number of days with
presence of 12h-rhythms revealed that these variables were sufficient to
separate CR-night from the rest of the groups. Nevertheless, they are
insufficient to separate TR-day from CR-day (Fig. 4a). When α1-values are

included (Fig. 4b), these groups were distinguishable among them. Further
inspection denotes that the PC1, principally associated with α1-values and
wheel running acrophase, dividesCR to the left fromTRandAL to the right.
In addition, PC2 associated principally with circadian feeding acrophase
(Supplementary Tables 1–4), allows separation of day and night groups
(TR-day and CR-day versus TR-night and CR-night). Note that the
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persistence of 12h-rhythms in both feeding and wheel running is also
affecting the vertical separation between groups in an opposite way than
24h-rhythm feeding acrophase (Fig. 4b).

The addition of physiological variables (Fig. 4c, Supplementary
Tables 5 and 6) only changes the intra-group variability; however, groups
remain separate. PCA of the physiological variables by themselves (Fig. 4d),
shows the largest intra-group variability, resulting in less capacity to dis-
criminate between groups. Only PC1, principally associated with the vari-
ables body and stomach weight (Supplementary Tables 7 and 8), allows
separation of the AL and TR-night groups from CR-day groups.

Combined, these results highlight the importance of considering
dynamical patterns coexisting overall time scales (24h-rhythms + 12h-
rhythms + autocorrelation properties) for the understanding of animal
behaviors as an integral complex system, sensitive to modulation by
external cues.

Discussion
Wecharacterize behavioral time seriesofmiceby combiningGaMoSECand
DFA. Our study reveals the concurrent impact of the imposed feeding
paradigm on different types of behavioral patterns, encompassing rhythms
andautocorrelations spanning across awide-rangeof temporal scales.These
results shed light on the underlying complex architecture of mice behavior.
Complexity in this context refers to the presence of multi-scale dynamical
patterns in time series of mice behaviors. Although these patterns are
detectable, we still lack specific information about whether and how these
temporal domains exchange information and mutually influence each
other. Each dynamical domain (circadian, ultradian, and autocorrelations)
could present specific susceptibility to perturbations by certain environ-
mental signals (e.g., feeding protocols imposed on mice), which in turn
could impact other scales. Keeping in mind complexity and the associated
multi-scale dynamical patterns aids in constructing an integral, and thus
realistic, understanding of animal behavior.

As previously reported5, behavioral complexity is evident under con-
trol (ad libitum,AL) conditions (Table 1, Fig. 1).Micenotonly exhibit~24h-
rhythmswithin the circadiandomainbut also~12, ~8, and~6-hourperiods
rhythms within the ultradian domain, along with short- or long-range
autocorrelations. Particularly, the autocorrelation properties present in time
series unveil the dynamical microstructure of behaviors and provide
information on behavioral memory. Behavioral memory refers to the
probability that a behavioral action at a given time point (i.e., running or
eating events) strongly depends on previous events of the same behavior.
Behavioral dynamical processes, described through time series, can exhibit
positive (auto) correlations, anti-correlations or no correlations between
behavioral time points. These reflect different types of behavioral depen-
dencies over time, and, therefore, behavioral memory. Positive correlations
indicate that an event in the presentmakes itmore likely that the same event
will occur in the future. Anti-correlations indicate that an event in the
present makes it more unlikely that the same event will occur in the future.
Correlations can also be characterized by the duration of these dependen-
cies. Long-range (auto) correlations indicate that these temporal depen-
dencies persist over several orders of temporal magnitude in time series.
Thus, they can bemathematically associatedwith a power-law function (i.e.,
linear regions in Fig. 1i, j, characterized by a slope, α), which presents poor

decay over time and is thus associatedwith long-termmemory. Short-range
(auto) correlations, on the contrary, imply fast temporal decay of temporal
dependencies; therefore, the process can be considered as a short-term and
mathematically associated with the quick exponential decay of correlations
over time25,26. In this context, the difference between the short-range cor-
relations (α = 0.5) found in feeding and long-range correlations (0.5 > ɑ > 1)
seen in wheel running resides in how correlations persist. ɑ-values above 1
and below 0.5 are indicative of persistent strong correlations (see example
Supplementary Fig. 12a, c, e) or anti-correlations, respectively18. Since ɑ-
values represents the microstructure of behavioral dynamics and are
unaffected by differences in the mean level of activity10 they are often more
sensitive to stress, aging and illnesses than traditional summary statistic
measures (i.e., counts, means, etc).

Beginning in the circadian domain, our characterization of the ~24h-
rhythms aligns with previous analysis of the same dataset22. Likewise, the
detected periods are consistent with a prior study on locomotor behavior in
mice and rats fed ad libitum16.However, hereinwe gobeyond these previous
findings:we quantified daily changes in phase and strength of 24h- and12h-
rhythms evolving throughout the whole experiment (Supplementary
Figs. 10, 11, and the specific discussion in Supplementary Note 3).

Although ultradian rhythms have been previously reported in various
animal species3,27–32 at the organismal/physiological17,33–41, tissue42,43, and
cellular levels15,44–50, in mammals, their origin, functionality, modulation by
external cues and interaction with other temporal domains are not yet fully
understood34,51–56. Two different hypotheses have been proposed to explain
the generation of ultradian rhythmicity. According to one hypothesis,
ultradian rhythms arise from an internally dedicated ultradian clock,
independent of both the circadian system and the photoperiod33,41,52,57–59.
Supporting this view, a highly tunable dopaminergic ultradian oscillator
(DUO), independent of the SCNwas detected to drive ultradian locomotor
rhythms in mice, with period lengths from a few hours to multiple days.
Interestingly, DUO has also been associated with the ability for mice to
entrain food-based zeitgebers60. Additionally, a cell-autonomous 12h
pacemaker, independent from the circadian clock, was recently described in
mouse liver,which regulates 12h rhythmsof gene expression59.According to
the other hypothesis, ultradian rhythms may be biological harmonics of
circadian rhythms, emerging from superimposed circadian rhythms out of
phase.This hypothesis has beenused to explain ultradian gene expression in
liver and other tissues61–63. Although the mechanism at a behavioral level is
unclear, it possibly could involve neuronal network dissociation by con-
flicting external signals influencing the SCN neuronal coupling. This
mechanism is consistent with the model postulating the existence of the E
(evening) andM (morning) oscillators in the SCN of nocturnal rodents64. It
also corresponds to the observed splitting phenomena in hamsters’ loco-
motor activity, where the left and right sides of the SCN express TTFL genes
in antiphase65,66. However, this last hypothesis implies that the generation of
ultradian rhythms is necessarily dependent on the circadian system.
Recently, ultradian rhythmicity was found to persist in the absence of
functional molecular circadian clocks at both behavioral and cellular
levels15,17. Of interest are the four types of ultradian oscillations detected in
wheel running time series of Per1/2/3 KO mice17, since two of them, with
periods in the range of 14–20 h and between 5 and 8 h, agree with the
rhythmswedetected and characterize here (Table 1, Fig. 2).Moreover, these

Fig. 2 | Intermittent expression of food-intake and wheel running 12 h rhythms.
a–j Colored vertical bars indicate each five day period in which 12 h ultradian
rhythms were detected in each animal studied in regards to a–e food-intake and
f–j wheel running using the 5-step GaMoSEC wavelet approach (Supplementary
Notes 1 and 2). Black arrow shows the moment of transition to the novel feeding
paradigm. a, f AL: ad libitum paradigm. b, g TR-night (TR-n): 12 h food access
during the night. c, h TR-day (TR-d): 12 h food access during the day. d, i CR-night
(CR-n): 30% caloric restriction with 24 h food access starting at the beginning of the
night. e, jCR-day (CR-d): 30% caloric restrictionwith 24 h food access starting at the
beginning of the day. Statistical comparison of paradigms using a Kruskal–Wallis
test of the values of the k, n number of days with ultradian rhythms (UR) (H = 19.85,

p = 0.0004 and H = 13.6, p = 0.003), as well as quantification of (l, o) first peak
(H = 9.42, p = 0.0007 and H = 6.36 y p = 0.17) and (m, p) power in the 12-rhythms
(H = 4.83, p = 0.07, and H = 13.59, p = 0.009) during the last 5-days of experi-
mentation in (k–m) food-intake and (n–p) wheel running. Box plots in k–p show the
quartiles 1,b2 and 3. Whisker depict the 5 and 95 percentiles. *Treatment group
significantly differs from AL (P < 0.05). Power values were transformed using
logarithm and then standardized to the baseline value (i.e., mean values obtained
between days 2–5 of experimentation). Relationship between the phase difference
between circadian food intake and wheel running behaviors and the number of days
in which 12h-rhythms in q food-intake and r wheel running was detected. Circles
indicate the confidence ellipse of 95% for each treatment group.

https://doi.org/10.1038/s42003-024-05991-3 Article

Communications Biology |           (2024) 7:303 6



Fig. 3 | The feeding paradigmmodulates differentially autocorrelation properties
of behavioral dynamics depending on the temporal scale. Representative
detrended fluctuation analysis of a food-intake and bwheel running behavioral time
series (days 36–40) for each feeding paradigm. Gray background highlights the first
scaling region, α1. Boxplot of α-values estimated for c food-intake and d wheel
running behavioral time series for each treatment group. Box plots in c, d show the
quartiles 1, 2, and 3 and whisker depict the 5 and 95 percentiles. A Kruskal–Wallis
test showed significant effects of feeding paradigm in α1 and α2 (see scaling regions

marked in Fig. 1i, j) for food-intake (H = 26.45; P < 0.0001 and H = 26.81, P = 0.03,
respectively) and in Fig. 1l in α1 for wheel running (H = 10.69; P = 0.03) *Treatment
group is significantly different from the control AL group (P < 0.05). #Represents a
tendency to differ from control P = 0.09. AL: ad libitum paradigm. TR-n: 12 h food
access during the night. TR-d: 12 h food access during the day. CR-n: 30% caloric
restriction with 24 h food access starting at the beginning of the night. CR-d: 30%
caloric restriction with 24 h food access starting at the beginning of the day.
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two ultradian components detected in the Per1/2/3 KO mice present
intermittently high and low amplitudes, resembling the intermittences we
characterize here for the ~12h-rhythms. It should be kept inmind that these
two coexisting hypotheses are not totally mutually exclusive, highlighting
the need to continue research in this field.

We have previously modeled and contrasted these two hypotheses
regarding the origin of ultradian rhythms from a wavelet analysis
perspective16 but have found limitations to distinguish between them.
Therefore, we cannot definitively exclude either of these possibilities.
Moreover, it is tempting to speculate that the rhythmic patterns detected in
the ultradian domain may be a collection of rhythms/events produced by
combination of these mechanisms. Since wavelet approaches such as
GaMoSEC can simultaneously detect and characterize diversity of ultradian
patterns, they promote insights for quantitative analysis in the field. This, in
turn, sets the stages for future advancements toward the precise

identification of the mechanisms underlying ultradian rhythmicity.
Another advantage of our wavelet approach is that the first of the five steps
of GaMoSEC uses a Gaussian cwt, does not involve a prior assumption of a
sinusoidal periodic pattern (Supplementary Figs. 1, 2 and 9). This is
important since ultradian rhythms potentially can present a stochastic,
jagged appearance37,67; even a non-sinusoidal, square, waveforms15,17.
Detectability is not independent of the characteristics of ultradian rhythms
(i.e., relative amplitude and shape)37,67, thus appropriate methodological
approaches must consider waveform68. In this regard, when periodicity is
evident at the 12 h scale, changes in activity throughout the day occur
smoothly with two peaks apparent during a 24h time span (Supplementary
Fig. 10). Thus, the following four steps of GaMoSEC use sinusoidal-like
functions for characterization. Note that the timeseries analyzed here are
derived frommicewith an intact circadian system, and thereforeourwavelet
analysis allows the contribution of sinusoidal signals to be considered.

Fig. 4 | Principal component analyses ofmice under different feeding paradigms.
PCA that include behavior dynamics are included in the analysis (a, b) without and/
or (c, d) with inclusion of physiological variables reported in Acosta-Rodríguez
et al.22 from the final stages of the experiment. Each circle represents an individual,

with the color denoting the treatment as indicated in the legend key. Food-intake and
Wheel running acrophase associated with the circadian rhythm is the same as data
shown in Fig. 2. The number of days in which 12h-rhythms were observed in each
behavior is the same as shown in Fig. 2q and l, as with α-values in Fig. 3c, d.
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Regarding ultradian rhythm, our observations also reveal inter-
mittency in 12h-rhythmicity as well as strong inter-individual variability in
persistence throughout the experiment (Fig. 2). This intermittency and
variability observed at an individual level could help explain the previously
reported lowprevalence of these rhythms at the population level18–20,52,54,56–58.
Notably, neither the presence of intact SCN,nor a consistent 12 L:12Dcycle,
guarantee 12h-rhythmcity over time (Fig. 2). To our knowledge there is no
periodic external cue associated with the periodicities of ~8, and ~6 h
ultradian rhythmsdetected in these experiments. Therefore, it is improbable
that these ultradian rhythms are simply passive responses to external cues.

Even under control (AL) conditions, significant differences were
observed between behaviors, particularly concerning both ~12-hour ultra-
dian rhythms and autocorrelation properties. Specifically, ~12h-rhythms in
wheel running aremore prevalent and persistent compared to than those in
food-intake time series. Furthermore, the ~12h-rhythms identified in both
behaviors appear to be uncoupled: at a given time point, food-intake ~12h-
rhythms may not be evident in some mice, while wheel running ~12h-
rhythms persist (Fig. 2). Similarly, contrasting dynamics between behaviors
are also observed in autocorrelation properties of mice feed ad libitum.
Food-intake presents short-range correlations with a single ɑ-value char-
acterizing its dynamicalmicrostructure (ɑ ̴ 0.5, Table 1, Fig. 3c). Contrarily,
for wheel running two different ɑ-values are observed: long-range correla-
tions are observed for time scales up to ~100 s (Region1 1; ɑ1 ≈ 0.95;
Table 1), while a stronger correlation structure is observed for larger time
scales (Region 2; ɑ2 ≈ 1.15; Table 1). This phenomena ofmultifractality have
been previously observed in other complex behaviors69–72. These dynamical
differences between behaviors could be associated with the divergent
underlying processes of each one as will be discussed below.

Behavior dynamics under ad libitum conditions should be understood
contextualized within the protocol used for measurement. This can be
highlighted by comparing our results with two prior similar studies. In the
first place, the short-range correlations found in mice feed-intake observed
in our study contrast with the long-range correlation in feeding behavior
found previously in quail16. However, these studies are profoundly different,
not only in regard to biological differences between species but also in the
type of food (pellet vs finely grained fed) and the method of recording
(number of pellets taken vs. time spent at feeding trough). Also, for mice, a
lag of at least 10min between pellets was used22 which imposes a detection
limit of dynamical microstructures of food-intake time series for timescales
lower than 10min. In second place, the muti-fractal wheel running
dynamics observed herein contrasts with prior studies of locomotor activity
of healthy rodents fed ad libutum which showed monofractal long-range
correlation dynamics (i.e. characterized by a single scaling exponent,
ɑ)5,18,73,74. The differences between these two behaviors can be attributed to
wheel running being a putative, incentive-induced motivated behavior in
itself 75, and may interact with different motivational systems than general
locomotor behavior76. Because access to a running wheel impacts both total
food consumption and circadian rhythmicity77. Therefore, caution must be
maintained when comparing the dynamical microestructure of different
behaviors, remembering that time series are deeply influenced by the
technique chosen to describe behavior. This caveat is generalizable to
ultradian rhythms aswell. Therefore, it will be interesting in the future to test
the effect of different types of feeder settings and evaluate how the presence
of a wheel impacts on the dynamical patterns of behaviors under ad libitum
conditions.

A central finding in this work is that feeding schedules modulate both
behavioral ultradian rhythms and dynamicalmicrostructure. Regarding the
ultradian domain, the decoupling of ~12 h rhythms between running and
feeding within the same mouse, already observed under ad libitum condi-
tions, can be further induced by changing the dietary schedule (Fig. 2). Note
that daytime restriction (TR-day) paradigms tend to induce, while the
caloric restriction (CR) paradigms tend to abolish the ~12h-rhythms in
food-intake time series, while the ~12h-rhythms of wheel running persist
under TR or diminish (under CR-night) the ~12h-rhythms. Differences in
persistence of ~12h-rhythms between feeding protocols cannot be

attributed to phase differences of 24h-rhythms (Fig. 2q, r) or to the total
amount of food ingested (Supplementary Fig. 16 and see22). At the same
time, the relative robustness of wheel running ~12h-rhythms to the feeding
paradigm imposed resembles the resilience of the SCN against food
restrictionprotocols78,79. This robustness is also in linewith the subtle impact
of these type of dietary conditions over circadian wheel running activity78,79,
and Supplementary Note 3. Nevertheless, GaMoSEC is sensitive enough to
detect significant changes in the persistence (under CR-night paradigm,
Fig. 2n), phase inter-individual variability (denoted as higher level of cor-
relation between individuals, under TR-day paradigm, Supplementary
Figs. 9i, 15h) and strength (under CR-day paradigm, Fig. 2p) of the ~12h-
rhythms in wheel running time series. Together these results suggest a
straightforward link in the modulatory pathway of feeding restriction
protocols on 12h- food-intake rhythms.

Over time, feeding behavior under caloric restriction (CR) resulted in
diminishing behavior complexity. This is evident not only in the loss of 12-
hour rhythms but also as strong anti-correlations at short time scales
(ɑ1 < 0.5) and as a dramatic increase in autocorrelations (ɑ2 > 1) for larger
time scale in food-intake time series. We postulate that this loss of com-
plexity is related to the food consumption pattern developed by the mice,
which self-impose a 2h-temporal restriction (i.e., food is quickly consumed
within2hours22).Note that the consolidationof feedingoccursmore rapidly
under CR-night than under CR-day, which is evident from the first days
after feeding paradigm change (Supplementary Figs. 10 and see22), coin-
ciding with the complete disappearance of 12h-rhythms (Supplementary
Fig. 17) and a sharp decrease in ɑ1-values under CR-night (Supplementary
Fig. 19). The slower consolidation of CR-day is also reflected in all domains
(Supplementary Figs. 10, 17, 19 and see33), as a more gradual phase shift in
~24h-rythms, rate of disappearance ~12h-rhythms of food-intake and
changes in ɑ-values. These observations regarding the speed of consolida-
tion in food-intake behavior indicate a dynamical link between all the
temporal domains.

The phase shift in the 12h-rhythms of food-intake under TR-day
and in CR-day (before they completely disappear (Supplementary
Fig. 17), was significant when compared with their night counterparts
(Supplementary Fig. 15b–e). Also, under TR-day the feeding behavior
presents a decrease in phase dispersion between animals as compared
with TR-night (Supplementary Fig. 15b–e). When 24h-rhythms in
feeding and wheel running occur in opposite phases of the day (i.e., TR-
day and CR-day), the blood glucose increases when the mice are eating22.
Interestingly, metabolic stressors, specifically the excess or deprivation of
glucose, synchronize 12h rhythms in vitro53. Together these observations
suggest that the glucose profile, mainly driven by the feeding/fasting
cycles, could be a potential zeitgeber of 12h-rhythms of feeding behavior
in vivo.

Acosta-Rodríguez et al.22, had previously shown that both CR groups
exhibited an increase in daytimewheel running activity (but not%of overall
24 h activity) by the end of the study, which reflects the food anticipatory
activity (FAA) of mice. In CR-night the nocturnal activity transiently
advanced (days 14–19) into themiddle of the rest phase22.We show that this
altered dynamical pattern was evident on all domains (see Supplementary
Figs. 10, 17 and 19), decreasing the persistence of the 12h rhythm (Fig. 2i, n)
and increasing the randomness of the autocorrelations, evidenced as a
decrease of the ɑ1-values (Fig. 3d). In contrast, CR-day showed a fast
transition towards heightened behavioral complexity. In comparison to ad
libitum controls, the strength of 12h-ultradian rhythms increased (Fig. 2p),
but ɑ1-values also became less correlated (Fig. 3d, i.e. more random),
although remaining in the realmof long-range correlations. Therefore, FAA
is not sufficient to explain observed effects of CR on the ultradian domain of
running dynamics, given the described contrast between CR-night and CR-
day. Thus, the link between the FAA and the ultradian domain requires
further exploration. However, or results supports previous evidence
showing that food restriction protocols (i.e., 2-h food availability during the
daytime) increase randomness of the autocorrelations properties in loco-
motor activity of rats in comparison to ad libitum controls19.
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It is currently unknown whether signals from peripheral clocks spe-
cifically related to themetabolic status ofmice (i.e. brown andwhite adipose
tissues, skeletalmuscle and liver) are involved in the generation/modulation
of the observed dynamics. These tissues express high levels of 12 h cycling
transcripts80,81 and as previouslymentioned, a cell-autonomousmammalian
12h pacemaker has been described in mouse liver62. Recently, ultradian
rhythms from locomotor activity in voles were related to their energy bal-
ance and metabolic status35. Similarly, ultradian rhythms in cell cultures
were only observed when cultures were at confluence, which seems to be a
key condition to achieve energy balance through gap junction-mediated
coupling15. In depth studies are required for elucidating how food restriction
protocols relate to energy balance and the expression of ultradian rhythms
in both running and feeding mice behaviors. In addition, the link between
circadian dynamics and autocorrelation properties has been thoroughly
documented in rat locomotor activity82,83, although not in food-intake nor
wheel running. The SCNhas been proposed to act as amajor neural control
node that is central for the generation of long-range correlation of loco-
motor activity at multiple time scales18,78,82, particularly relevant for time
scalesbetween4and24 h18. This is also consistentwithour results in animals
with an intact SCNwhere no significant effects of the feeding paradigmwere
observed in ɑ2-values. However, we also observed significantly affect ɑ1
supporting the hypothesis of Lo et al.19, that a neural network of coupled
multiple control nodes is responsible for scale-invariance. This includes
another neuro-anatomical source(s) (other than the SCN) that are funda-
mental for shorter time range. More recent studies include as a node of this
network the dorso-medial hypothalamic nucleus involved in the food
anticipatory activity. Other nodes could be dopaminergic ultradian oscil-
lator (DUO), as well as the liver and/or other peripherical tissues. Envir-
onmental contexts, such as the feeding paradigm would have modulatory
effect on this network leading to profound physiological changes. This
contention is consistent withmultivariate analysis that combines behavioral
dynamics and physiology variables (Fig. 4c). Four clusters are evident,
roughly distributed in each corner of the PCA plots. While ad libitum and
TR-night groups overlap in the top-right corner the other groups are
completely separated into the other three corners. Interestingly, CR-day is
found in the opposite, bottom-left, corner of the PCA plot representing the
profound contrast both at a behavioral as well as physiological level to ad
libitum and TR-night. Although no strong level of correlations can be
observedbetween individual variables (R2 < 0.58; Supplementary Fig. 21),ɑ1
shows a significant correlation with each physiological variables high-
lighting the importance of loss of behavioral complexity in feed-intake in
this complex system. Additionally, the power to separate groups introduced
by including ɑ-values (compare Fig. 4 panels a and 4b) in the PCA analysis
can be associated with its sensitivity to defect profound dynamical changes
in time series. A recent study that followedmice under CR feeding protocols
throughout their life has shown that, both CR-day and CR-night, are
effective at increasing lifespan as compared to ad libitum84. Similarly, CR
protocols tend to decrease ɑ1 values in wheel running time series as com-
pared to ad libitum. Thus, our results not only support amultimode control
network but also raise questions regarding the relationship between beha-
vioral complexity and aging.

Inall, ourworkcontributes tohighlighting the complexnatureofmouse
behavior. Here, we take a step forward to provide amore specific sense of the
sometimes fuzzy word complex. We offer quantitative tools that allow us to
precisely define what we mean when we think about complexity in the
temporal domains of mouse behavior. Moreover, the way in which each
behavior integrally responds to a given perturbation (in this case, feeding
restriction protocols), is not commonly studied.Ourwork addresses this gap
bydemonstratinghow food restriction (bothTRandCR) involves adynamic
reconfiguration of the underlying physiological networks associated with
each behavior (feeding and running), altering their temporal complexity,
likely through different internalmechanisms. This, in turn, sets the stages for
future advancements toward the precise identification of the mechanisms
underlying the dynamical patterns (rhythms and autocorrelation structure)
and the links that build the architecture of these complex behaviors.

Methods
General procedure
A detailed description of experimental protocol is provided in Acosta-
Rodríguez et al.22. Briefly, C57BL/6 J male mice (8 weeks old, n = 30) were
individually housed in standard cages equipped with a customized auto-
matic feeder.Water was provided ad libitum and a 12:12 LD cycle was used
throughout the study. Mice were fed with round pellets of 315 ± 4mg each
containing 3.35 Kcal/g. ClockLab Chamber Control Software was used to
program feeding schedules and record food-intake events. A 10min delay
was programmed after each pellet was taken before the next pellet was
dropped to prevent hoarding behavior. After one week of recording under
ad libitum food access, mice were randomly assigned to one of 5 feeding
conditions (n = 6 per condition): 24 h access ad libitum (AL); unlimited
amount but temporally restricted to 12 h during the dark (TR-night), or
light (TR-day) phase; and 24 h access but calorically restricted (11 pellets
corresponding to 70% of baseline ad libitum levels) fed at the start of the
dark (CR-night) or light (CR-day) phase. Animals were maintained under
these conditions for the following35days; thus the total experimental period
was 42 days. The cages were changed on day 21. Number of pellets (i.e.,
food-intake) and number of revolutions of the activity wheel (i.e., wheel
running) were recorded throughout the study using a 1min sampling
interval. Given that the feed pellet dispenser recorded feeding as discrete
events, prior to analysis, time series were smoothed using a moving average
function with a 1 hmoving window5. Data analysis was performed between
day 1 and 42, thus providing a 12 h habituation period to the novel envir-
onment. The source of data22 stated that all animal protocols were approved
by the Institutional Animal Care and Use Committee (IACUC) of the
University of Texas Southwestern Medical Center (APN 2015-100925).

Five-stepwavelet approachGaMoSEC for behavioral timeseries
analysis
The GaMoSEC, 5-step wavelet approach was implemented for analysis of
behavioral time series (see details in Supplementary Note 1 and 2 and
refs. 5,16).

Detection and characterization of circadian and ultradian rhythms
were performed using a combination of different wavelet decomposition
techniques that simultaneously detrend and denoise the signal. Wavelets
have the potential to describe the data without making any parametric
assumptions about trends (i.e., changes in mean value of the signal over
time) in the frequency or amplitude of the components signals and are
resilient tonoise (see review in ref. 5).Also, information regarding changes in
temporal dynamics over the length of the experiment at different time scales
is quantifiable. Hence it is possible to detect the consolidation or dis-
appearance of a given ultradian rhythm. It is noteworthy that wavelet
analysis is not a single analysis but rather a family of analyses defined by the
characteristics of the wavelet used in the transformation (i.e., Gaussian, or
Morlet continuous wavelet transform). Herein, the time series data were
consecutively analyzed step-by-step with the transformations described
below, each highlighting different aspects of data.

First step: visual inspection byContinuous wavelet transformbased on
a real Gaussian mother wavelet in the Cartesian time scale plane. This
wavelet transform highlights changes in the signal and singularities (i.e.,
spike-like or step-like changes) in the dynamics of the time series5.

Second step: visual inspection by Continuous wavelet transform based
on complex Morlet mother wavelet in the polar time scale plane. This is a
complex wavelet of periodic nature, thus its transformation is also complex,
providing 4 different plots corresponding to the real, imaginary, modulus,
and phase angle of the wavelet coefficients. This complex wavelet provides
information regarding the presence of oscillatory behavior, and herein the
real part is also used to estimate the acrophase5.

Third step: modal frequency identification by Empirical wavelet
transform, which is a wavelet analysis in the Fourier domain followed by
frequency segmentation to extract the modal components. This is an
independent analysis that can also detect rhythms in time series, as well as
changes in periodicity.
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Fourth step: modal frequency identification by Synchrosqueezed
wavelet transform, a linear timescale analysis followedbya synchrosqueezing
technique. This analysis provides highly localized frequency information,
important for precise estimation of period and power of rhythms5.

The two behavioral time series (food-intake and wheel running) of
eachanimalwere analyzedusing these four types of transformations.Results
were then divided into 5-day segments for graphical representation and
statistical analysis. Initially, for characterization of normal ad libiitum
conditions we focused on only the first week of testing (day 1–6). After-
wards, the modulation of behavior due to changes in the feeding paradigm
was assessed, and focus was placed on the last week of testing (days 36–40)
given that the period was observed to be stable over time. At each of these
two time periods evidence of sustained rhythms were evaluated. For each
animal, if evidence of periodicity was observed in all 4 analyses at a specific
time scale (i.e. 24 or 12 h) and during a specific time period, then the given
rhythm was considered to be detected under the specified experimental
condition (see details of criteria in Supplementary Note 2). Percent of ani-
mals with the given rhythm was estimated.

Fifth step: quantification of coherence and phase difference between
different series, providing important information regarding phase rela-
tionships between signals.

Quantification of rhythmic behavior
From the quantification of the first 4-steps of GaMoSECs described in the
previous section, the following variables were obtained (code used in ana-
lyses is publicly available85, see also Supplementary Note 3 for details):
period of detected rhythms was estimated from the localization of the ridge
of the synchrosqueezing algorithm (black dotted lines inFig. 1c, d); power of
the detected rhythm was estimated as the squared modulus of the complex
syncrosqueezing wavelet coefficients along the ridge (Fig. 1c, d); Acrophase
was estimated as the hour of the day in which the maximum values of the
real part of the complex Morlet continuous wavelet transform were
observed (Fig. 1g, h,maximumsmarkedwith red stars); correlation between
animals for both behaviors (i.e. food-intake or wheel running) a correlation
coefficient was estimated between the real Morlet wavelet coefficients of
each pair of animals for the 24 h and 12 h time scale (see schematic repre-
sentation in Supplementary Fig. 6 and details in ref. 16); phase shift between
behavioral time series was estimated using the wavelet coherence algorithm
(Supplementary Figs. 7–9).

Quantification of autocorrelations in behavioral time series
using DFA
The method25 utilized herein to determine scale-invariance and to evaluate
the presence and extent of long-range autocorrelations in food-intake and
wheel-running activity, was described in Supplementary Note 4. Briefly,
DFA estimates the self-similarity parameter, α, that measures the auto-
correlation structure of the time series. If α = 0.5, the series is uncorrelated
(random) or has short-range correlations (i.e. the correlations decay
exponentially), whereas 0.5 < α < 1 indicates that long-range autocorrela-
tion exists (correlation decays as a power-law), meaning that present
depends on past behavior25. Also, α is inversely related to a typical fractal
dimension, so in this case, theα-value increases with increasing regularity in
the time series. This software is also available in the public domain (http://
www.physionet.org/physiotools/dfa/). Herein, DFA calculations were per-
formed with a customized script ran on MATLAB R2018a.

Trends within the behavioral time series were also systematically
studied26. A DFA of third order was the lowest detrending order that elimi-
nated trends in all series, and therefore it was applied to all series for esti-
mating α-values. In addition, the appropriate scaling range was determined
using the following criteria: stable values of local slopes,maximumcoefficient
of variation, andminimum sumof squared residuals (Supplementary Fig. 13
for details73). This analysis showed a stable scaling region for all food-intake
and wheel running for time series between 10–100min, range used for α1. A
second scaling region, α2, was established between 285–1176min.

Statistics and reproducibility
The dataset analyzed herein has been previously published22, thus a sample
size of 6 was determined previously for the original study. The effects of the
feeding paradigm on variables associated with behavioral dynamics were
evaluated using a Kruskal–Wallis nonparametric test since overall data did
not complywith the assumptions of normality andhomogeneity of variance
(checked by Shapiro–Wilk test and Fisher’s F test, respectively) using
InfoStat; levelof significance for the rejectionof thenull hypothesiswas set at
p < 0.05. Statistical data is presented as box plots.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The dataset analyzed herein has been previously published22 and is publicly
available onMendely (https://doi.org/10.17632/hxwwyycjy7.1). The source
data behind graphs in Figs. 1–3 can be found in Supplementary Data 1.

Code availability
Customized script in MATLAB is publicly available on FigShare for
GAMoSEC85 (figshare https://doi.org/10.6084/m9.figshare.21545385), and
for DFA86 (https://doi.org/10.6084/m9.figshare.1514975.v1). The Empirical
Wavelet Transform Matlab toolbox is freely distributed on MATLAB
Central File Exchange (https://www.mathworks.com/matlabcentral/
fileexchange/42141-empirical-wavelet-transforms).
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