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Histopathologic diagnosis and classification of cancer plays a critical role in guiding treatment.
Advances in next-generation sequencinghaveushered innewcomplementarymolecular frameworks.
However, existing approaches do not independently assess both site-of-origin (e.g. prostate) and
lineage (e.g. adenocarcinoma) and haveminimal validation inmetastatic disease, where classification
ismore difficult. Utilizing gradient-boostedmachine learning, we developed ATLAS, a pair of separate
AI Tumor Lineage and Site-of-origin models from RNA expression data on 8249 tumor samples. We
assessed performance independently in 10,376 total tumor samples, including 1490 metastatic
samples, achieving an accuracy of 91.4% for cancer site-of-origin and 97.1% for cancer lineage. High
confidence predictions (encompassing the majority of cases) were accurate 98–99% of the time in
both localized and remarkably even in metastatic samples. We also identified emergent properties of
our lineage scores for tumor types on which the model was never trained (zero-shot learning).
Adenocarcinoma/sarcoma lineage scores differentiated epithelioid from biphasic/sarcomatoid
mesothelioma. Also, predicted lineage de-differentiation identified neuroendocrine/small cell tumors
and was associated with poor outcomes across tumor types. Our platform-independent single-
sample approach canbeeasily translated to existingRNA-seqplatforms. ATLAScancomplement and
guide traditional histopathologic assessment in challenging situations and tumors of unknown
primary.

Histopathologic assessment has been the primary modality for the
diagnosis of human cancers since the 19th century, and to this day
remains the mainstay of diagnosis, risk stratification and staging. While
the field has made countless advances, the art of pathology relies heavily
on subjective visual inspection, with considerable levels of inter-observer
variability in diagnosis1–3, which can impact treatment decisions. Tumors
are molecularly complex and even pathologic specimens that appear
visually similar may have widely different clinical behaviors. Further-
more, the origin of metastatic tumors is sometimes difficult to ascertain
using traditional histopathologic approaches due to heterogenous

features or tumor de-differentiation. Immunohistochemistry, in situ
hybridization, as well as other techniques have emerged to augment
morphology alone, and are routinely used clinically in identification of
both the site of origin (e.g. prostate, breast, lung) and cancer lineage (e.g.
adenocarcinoma, squamous cell cancer (SCC), etc.). However, there is a
limit on how many stains can be applied, requiring a priori selection.
Furthermore, the number of pathologists in the US has decreased by 18%
between 2007 and 2017, while cancer cases have increased by 17%, which
has yielded a 41% increase in workload for pathologists4. This shortage
can greatly impact cancer care unless new methodologies to assist
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pathologists can be implemented. In recent decades, next generation
sequencing (NGS) of DNA, RNA, and the epigenome have transformed
our understanding of the alterations that define and drive carcinogenesis.
NGS represents an extension of the histologic techniques described above
and can be thought of as an indirect microscopy at the molecular scale.
Rather than relying on fluorescence and visual assessment to identify and
quantify macromolecules, quantitative NGS approaches can capture
molecular features that are undetectable visually.

NGS and other -omics techniques have exponentially increased the
amount of data collected on cancer patients over the past decade, and
numerous commercial assays are now used in the clinic. Interpretation of
this quantity of dataposes its ownchallenges, and computational techniques
suchasmachine learning (ML)have emerged to turndata intouseful clinical
tools. However, the utility of these clinical tools depends strongly on the
datasets onwhich the classifier is validated, andwhich clinical features of the
tumors can be identified. While there are published tissue of origin pre-
diction tools available, they lack sufficient validation on metastatic samples
and neglect the critical diagnostic component of independent assessment of
site of origin and cancer lineage. These models rely on a diverse range of
data on which to train a classifier, such as DNA alterations5–8, DNA
methylation9–13, and mRNA14–23 or microRNA24 expression. DNA altera-
tions (mutation status, copy number alteration (CNA)) are widely assessed,
but unfortunately, many oncogenes and tumor suppressors are altered
across multiple cancer types, which can be a limiting factor of mutation-
based cancer of origin ML models5–7. Despite these limitations, ML models
usingDNA alterations have achieved accuracies up to 88% across 24 cancer
types on independent validation6. DNA methylation is an epigenomic
alteration that regulates gene expression, with certain alterations being
highly cancer type specific. Most DNA methylation ML models have only
been validated in small institutional cohorts or in hold-out test sets, not true
independent validation cohorts, limiting our ability to assess their gen-
eralizability. Expression of certain mRNAs and microRNAs have also been
found to be tumor type specific, and ML models built on the expression of
each have been shown to be highly accurate. One large study (TOD-CUP)23

achieved an accuracy in independent validation of 91% across 4 cancer
types in 1029 TCGAmicroarray samples, 94% across 4 cancer types in 2277
non-TCGA primary tumor samples, and 94% accuracy across 5 cancer
types in 141metastatic samples. Amore recent deep learning-basedmodel15

achieved an accuracy in independent validation of 91.4% across 18 cancer
types in 2085 samples from the ICGC dataset, including an accuracy of
88.1% in 395 metastatic samples. While these results represent an
improvement over DNA alteration-based strategies, the vast majority are
validated in primary tumor samples, with limited data on performance in
metastatic samples, where site of origin is likelymore difficult to predict due
to tumor evolution and de-differentiation. In addition, cancer lineage (e.g.
adenocarcinoma vs SCC) is a critical component of diagnosis and treatment
planning but is often left out or paired with the site of origin, rather than
being assessed as an independent axis.

In this study, we created AI Tumor Lineage and Site (ATLAS) classi-
fiers, trained on NGS from 8249 samples, that predict cancer site of origin
(22 classes) as well as cancer lineage (8 classes). This independent classifi-
cation is distinct from prior studies and improves clinical utility. This bi-
modular framework allows for separate evaluation of both important axes,
for a total of 176 different possible combinations, and allows evaluation of
lineage de-differentiation into more anaplastic or neuroendocrine forms.
We then independently assessed the performance of our models on 10,376
tumor samples, including 1490 metastatic samples, the largest such vali-
dation of an expression-based classifier to date, especially in metastatic
disease. In addition, our single-sample approach is platform-independent
and agnostic to how the sample was collected and processed, producing
accurate and interpretable predictions that can be applied to any existing
RNA-seq platform. As tumor RNA-seq becomes routine, this tool can be
readily integrated into pathologic clinical decision-making and provide
objective and quantitative orthogonal information to help guide pathologic
diagnosis.

Results
Modeling workflow and data overview
To build the most comprehensive genomic classifier of cancer site of origin
and lineage to date (Fig. 1a) we utilized 8249 samples from the Cancer
Genome Atlas Program (TCGA, N = 7196) and the Cancer Cell Line
Encyclopedia (CCLE,N = 1053) for ATLASmodel training. The validation
cohort consisted of 10,376 total samples, including 58 TCGA datasets
(N = 3556, none overlapping with the training data) and 41 additional non-
TCGA datasets (N = 6820). This included validation in primary tumors
(N = 8886 from 97 datasets) and in metastatic tumors (N = 1490 from 17
datasets). Thefinal training and validation cohorts included 22 cancer site of
origin classes and 8 cancer lineage classes (Fig. 1b, c). Since many different
RNA-seq platforms were used across datasets, each sample was indepen-
dently normalized25 with no required batch correction, allowing for a more
clinically useful per patient normalization strategy. All training samples had
gene expression data, mutation calls, and copy number alteration calls,
which allowed for a comparison of each molecular feature in model
building.

Accurate predictions of cancer site of origin and lineage
The first step of our workflow was to train separate models to predict for
cancer site of origin and cancer lineage. We first evaluated the impor-
tance of different molecular features (i.e. gene expression, mutation, and
copy number) and impact of the total number of molecular features in
model performance (Fig. 2a). We assessed these two questions in our
training data by using a 5-fold cross validation (CV) re-sampling schema
(detailed in the methods). With regards to molecular feature type, we
found that mutation status alone, copy number alone, or the combina-
tion of the two performed worse in CV than any combination that
included gene expression. Since gene expression seemed to perform just
as well alone as adding DNA alterations, we moved forward with a model
using only gene expression. With regards to the number of features, CV
performance increased initially as the number of features was increased,
but plateaued for site of origin at around 500 features (including a binary
sex variable) and lineage at around 200 features (only genes), which were
used for the final models (detailed in methods). There was some overlap
of genes between the two models (68 genes), but overall, the majority of
genes in both models were unique and contributed to a final model
framework that required only 632 features.

The performance of these twomodels (comprising ATLAS) were then
assessed in the independent validation cohort (Fig. 2b). Overall accuracy
was 91.4% for cancer site of origin and 97.1% for cancer lineage
(N = 10,376). However, there was a large difference in accuracy for site of
origin between primary tumors (92.1%, comparable to prior studies;
N = 8886) vs.metastatic tumors (86.8%; Fig. 2c;N = 1490). This difference is
unsurprising given that the models were trained on primary tumors, in
addition to tumor evolution and de-differentiation that occurs with pro-
gression to metastatic disease. Interestingly, the difference in performance
for cancer lineagewas less (97.4% in primary tumors vs. 95.7% inmetastatic
samples). While overall accuracy was high, gastro-intestinal (GI) and
gynecologic (GYN) tumors tended to have worse classification accuracy
(Fig. 2d). GI tumorswere commonlymis-classified as otherGI tumors, with
hepato-pancreato-biliary (HPB) tumors (N = 1128) mis-classified as gas-
troesophageal in 15% of cases, and colorectal tumors (N = 337) mis-
classified as gastroesophageal tumors in 13% of cases (Fig. 2e). For GYN
tumors, 10% of ovarian tumors (N = 498) were mis-classified as uterine
tumors (Fig. 2f). To understand the impact of the binary sex variable on
accuracy for the cancer site of originmodel, all validation samples were run
through the model with sex imputed as missing, resulting in a drop of
accuracy from 91.4% to 90.7%. The benefit of including sex was primarily
driven by improved accuracy in a subset of breast cancer (N = 45), ovarian
cancer (N = 19), and cervical cancer (N = 7) samples. Median Shapley
values26 for each class prediction were obtained from the training data to
identify the features that had the largest influence determining the site of
origin and lineage classes, providing the top 10 features for each class in
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Supplementary Data 1. To confirm that features were specific to the tumor
and not just normal tissue, we also report the top 10 features for each class
among correctly predictedmetastatic samples. This analysis confirmed that
the sex variable was only a top feature in breast, ovarian and cervical cancer,
and further identified many well-validated and novel markers that can be
used to differentiate tumor types.

Overall, the strength of the model prediction correlated well with the
accuracy (Fig. 2g). For both site of origin and lineage, if the classifier pre-
dictionwas≥0.99 (encompassing 58.5%of the validation samples for cancer
site, 75.1% of the validation samples for cancer lineage), this correlatedwith
a 98–99% accuracy, even in metastatic samples. The correlation between
model confidence and accuracy is important in interpreting the predictions
and differentiating between high-confidence cases versus more equivocal
ones. Finally, samples with low tumor purity (<50%, calculated by
ESTIMATE27) have worse accuracy compared to those with high purity
(Fig. 2h) for both primary samples (N = 931 low purity samples; 10.5% of

primary samples) andmetastatic samples (N = 75 low purity samples; 5.0%
of metastatic samples).

Accurate distinction between adenocarcinoma versus SCC
lineage across cancer sites
Cancer site of origin and lineage are often intertwined. For example,
tumors of the breast are predominantly adenocarcinomas, whereas
tumors of the head & neck are predominantly SCC. For some sites,
tumors can arise from either an adenocarcinoma or SCC lineage, a dif-
ference that is important to identify as it can impact treatment decisions.
In order to ensure that our lineage classifier was accurately distinguishing
lineage (as opposed to indirectly measuring it by predicting site), we
further examined the accuracy at predicting cancer lineage stratified by
cancer site of origin, specifically focusing on adenocarcinoma vs. SCC. In
our validation dataset, three tumor sites (gastroesophageal, lung, cervix)
had relatively large numbers (≥10) of both adenocarcinoma and SCC
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Fig. 1 | Modeling workflow and data overview. Modeling workflow a depicts the
primary workflow for model building—data partitioning (training versus valida-
tion), training data feature selection (determine best sequencing data and model
features to build an effective model), data pre-processing (such as normalizing
expression data and imputingmissing values), andmodel selection.Once an optimal
model is selected using only the training data, a validation dataset is used to validate

the lockedmodel. The training data included the Cancer GenomeAtlas (TCGA) and
Cancer Cell Line Encyclopedia (CCLE) cell line samples. Validation was completed
on over 10,000 patient samples, including over 1400 metastatic samples (b – TCGA
orange, CCLE green, non-TCGA purple). Two models were built – a cancer site of
origin model with 22 classes and a cancer lineage model with 8 classes (c), with
validation samples for all classes.
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tumors, including 134 adenocarcinoma and 24 SCC gastroesophageal
cancers, 469 adenocarcinoma and 168 SCC lung cancers, and 17 ade-
nocarcinoma and 61 SCC cervical cancers. Overall, the accuracy of our
lineage classifier in distinguishing between adenocarcinoma and SCC
was high, ranging from 89% to 100% across the three sites (Fig. 3a).
When we looked at the difference between the adenocarcinoma and SCC
lineage scores, we saw clearly separate distributions between adeno-
carcinomas and SCCs (Fig. 3b).

Sarcomatoid differentiation in mesothelioma
Mesothelioma of the lung is a pleural-based tumor that arises from the
mesothelium, commonly due to exposure to asbestos. This tumor type is
unique in having three distinct subtypes, epithelioid, sarcomatoid (more
aggressive), and biphasic (a mix of the epithelioid and sarcomatoid).
Thus, it serves as an excellent tumor type in which to study the dis-
tribution of the sarcoma lineage score. Given the small total number of
lung mesothelioma samples available (N = 88), we decided to remove all
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Fig. 2 | Accurate predictions of cancer site of origin and lineage. Cancer site of
origin and cancer lineage models were trained and performance was evaluated on
five-fold cross-validation resamples, noting top performance with gene expression
(a – gene expression/mutations/copy number alterations grey, gene expression/copy
number alterations orange, gene expression/mutations yellow, gene expression
purple, mutations/copy number alterations green, copy number alterations blue,
mutations blue, with order of legend matching position of curves), with no
improvement when combined with mutation and copy number calls. The finalized
models included 500 features and 200 features for the cancer site of origin and cancer
lineage models, respectively. Model validation accuracy on 10,376 samples was
91.4% for the cancer site of originmodel and 97.1% for the cancer lineagemodel (b –
accuracy blue, sensitivity purple, specificity green, AUC is red). Performance for

these models was worse on metastatic samples, but still very high accuracy at 86.8%
and 95.7%, respectively (c – darker shades of green represent higher accuracy).
Model accuracy by predicted class is shown (d), noting worse performance in gas-
trointestinal (GI) sites and gynecologic sites (e-f). All model prediction classes had a
corresponding probability score, with the maximum score corresponding to the
predicted class. When the probability score was ≥ 0.99 (a majority of samples in all
sub-groups shown), the models had very high accuracy (g – correct prediction red,
wrong prediction blue). When samples were stratified by low tumor purity (ESTI-
MATE Tumor Purity < 0.5), accuracy of both models was found to be higher in
samples with a high tumor purity (h). AUC is the area under the receiver operating
characteristic (AUC-ROC) curve. HPB Cancer – Hepato-pancreato-biliary cancer.
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mesothelioma samples from TCGA and all other cohorts, excluding
them from any of the training or validation thus far. Thus, the sarcoma
lineage predictions would be made in a tumor type that the model was
never trained on (termed Zero Shot Learning or ZSL28). In these 88 lung
mesothelioma samples, we first examined the distribution of the sarcoma
lineage scores across subtypes, as well as comparing them to non-small
cell lung cancer (NSCLC) tumor lineages (adenocarcinoma and SCC).
The sarcoma lineage scores were higher in mesothelioma (N = 88,
median = 0.0065) compared to the other NSCLC tumor types (N = 637,
median = 0.000007; Wilcoxon rank-sum test P < 0.001; Fig. 4a). Within
mesothelioma, the sarcomatoid and biphasic subtypes (N = 25) have
higher sarcoma lineage scores (median = 0.042) compared to the epi-
thelioid subtype (N = 63, median=0.003; Wilcoxon rank-sum test
P < 0.001; Fig. 4a). The sarcoma lineage score had a high area under the
receiver operating characteristic (AUC-ROC) curve for differentiating
epithelioid samples from biphasic/sarcomatoid samples (AUC = 0.81;
Fig. 4b). An optimal cut was identified and used to create high and low
sarcoma lineage score groups, which were prognostic for survival
(Fig. 4c, log-rank P = 0.049), with a median survival of 15.0 months and
23.9 months, respectively. The sarcoma lineage score results are
remarkably consistent with the known phenotypic subtypes of meso-
thelioma, revealing an emergent property of our lineage models on
which the model was not directly trained in an example of ZSL.
Two mesothelioma samples had such high sarcoma lineage scores
that they were classified as sarcoma by our model. In the original
pathology data, one of these samples was reported as biphasic, and the

other as epithelioid. We performed blinded re-review of the TCGA
histological images by an institutional pathologist, who described
both samples as biphasic with approximately 90% sarcomatoid differ-
entiation (Fig. 4d). These cases illustrate the potential clinical utility of
our molecular classifier. Divergence in initial pathologic review and
strong molecular classifier results could suggest re-review or additional
stains.

De-differentiated lineage associated with neuroendocrine
disease
Tumors unfortunately do not remain static as they progress fromprimary
to metastatic tumors and evolve under various selective pressures such as
treatment. De-differentiation into more anaplastic tumors is a well-
established phenomenon across cancer types29. Neuroendocrine differ-
entiation is a specific example of this, associated with a more aggressive
phenotype in prostate cancer30,31 and lung cancer32,33. We characterized
the degree of differentiation by focusing on the cancer lineage model
predictions for this analysis, which would produce eight cancer lineage
scores for each sample. Each sample will have a maximum cancer lineage
score, which we collected and labeled as a “differentiation score”. The
rationale behind this categorization was that a weaker resemblance
towards a particular lineage indicates a more de-differentiated and ana-
plastic tumor.

We first evaluated the performance of this differentiation score in
identifying malignant neuroendocrine tumors. Because TCGA does not
include neuroendocrine samples, no neuroendocrine tumors were
included inmodel training, or anyof the validation results up to this point.
Therefore, we identified an additional 198 neuroendocrine samples
(neuroendocrine prostate cancer and small cell lung cancer) from 8
cohorts. The distribution of lineage scores for 8 selected highly differ-
entiated tumors showed very confident predictions for a single cancer
lineage (Fig. 5a). This is in contrast with selected neuroendocrine samples,
that exhibited de-differentiation towards a more heterogenous distribu-
tion of lineage scores with a lower maximum score (Fig. 5b), supporting
our rationale for thedifferentiation score.Wenoted a clear global decrease
of the differentiation score in neuroendocrine tumors (N = 198, med-
ian = 0.868) compared to non-neuroendocrine lineages (N = 10,376,
median = 0.999; Wilcoxon rank-sum test P < 0.001; Fig. 5c). The differ-
entiation score produced a high ROC AUC (Fig. 5d) for differentiating
non-small cell lung cancer (N = 606; NSCLC) from small cell lung cancer
(N = 137; SCLC; AUC 0.963) and for differentiating metastatic prostate
adenocarcinoma (N = 721) from neuroendocrine prostate cancer (N = 61;
NEPC; AUC 0.834), representing another example of ZSL with an
emergent property of the lineage model on which it was never directly
trained.

De-differentiated lineage associated with worse survival across
cancers
In addition to neuroendocrine differentiation, tumors can also de-
differentiate into more anaplastic tumors that are thought to be more
aggressive29,34. Therefore, we hypothesized that de-differentiation broadly
measured by a lower differentiation score would confer worse outcomes
across cancer types. We examined all datasets with overall survival data,
focusing on subgroups with sufficient samples in each survival outcome
group (≥10) and enough variance in the differentiation score (≥0.001).
Given that metastatic samples would be expected to have lower differ-
entiation scores, we stratified samples into subgroups based on the cancer
site of origin and primary versus metastatic site of biopsy. A reduction in
differentiation score results in a significant decrease in the hazards ratio
(HR) across eight subgroups (primary melanoma [N = 88; HR 0.0001;
P = 0.001], adrenal [N = 26; HR 0.002; P = 0.006], uterine [N = 170; HR
0.025; P = 0.001], HPB [N = 424; HR 0.056; P = 0.023], glioma [N = 615;
HR 0.26; P = 0.0006], lung [N = 611; HR 0.24; P = 0.001], breast [N = 2182;
HR 0.41; P = 0.002] and metastatic melanoma [N = 399; HR 0.31;
P = 0.033]), with all other subgroups trending in the same direction (Fig. 6;
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Fig. 3 | Accurate distinction between adenocarcinoma versus SCC lineage across
cancer sites. Focusing on all cancer sites that had at least 10 adenocarcinoma and
squamous cell carcinoma (SCC) samples—gastroesophageal cancer (134 adeno-
carcinomas, 24 SCCs), lung cancer (469 adenocarcinomas, 168 SCCs), and cervical
cancer (17 adenocarcinomas, 61 SCCs)—the cancer lineage model maintained
highly accurate predictions for all subtypes (a - darker shades of green represent
higher accuracy). Each sample has both a squamous cell carcinoma probability score
and an adenocarcinoma probability score. The difference between these two scores is
plotted b, showing that the vast majority of samples had scores corresponding
strongly to the appropriate cancer lineage. For the presented boxplots, boxes show
the interquartile range, encompassing the middle 50% of the data, the median is
indicated by a line within the box, whiskers extend to 1.5× the interquartile range,
and points beyond this are plotted as outliers.
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primary bladder urothelial carcinoma [N = 108; HR 0.33; P = 0.54], ovarian
[N = 356; HR 0.55; P = 0.45], sarcoma [N = 100; HR 0.98; P = 0.98],
and metastatic ovarian [N = 25; HR 0.045; P = 0.11] and breast [N = 121;
HR 0.063; P = 0.066]). The association of a more de-differentiated/ana-
plastic phenotype withworse outcomes is another emergent property of the
lineage differentiation scores, highlighting the unique benefits of evaluating
lineage separately from site of origin.

Discussion
Herein, we developed ATLAS, a 22-class cancer site of origin clas-
sifier and 8-class cancer lineage classifier trained in 8249 tumor
samples. RNA expression using ~600 genes appeared to distinguish
site of origin and lineage better than DNA alterations, consistent with
the literature6,16,23. Interestingly, we show that DNA alterations can be
used to build models that perform quite admirably, particularly when
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Fig. 4 | Sarcomatoid differentiation inmesothelioma. The sarcoma cancer lineage
scorewas evaluated further inmesothelioma samples to determine themodels ability
to identify subtypes that were not present in model training. The sarcoma score was
higher in pleural mesothelioma samples (sarcomatoid type [N = 2; no boxplot
shown], biphasic type [N = 23], and epithelioid type [N = 63]) compared to non-
small cell lung cancer samples (Wilcoxon rank-sum test P < 0.001; adenocarcinoma
[N = 469] and squamous cell carcinoma [N = 168]), and also was higher in meso-
thelioma biphasic/sarcomatoid subtypes compared to epithelioid subtypes (Wil-
coxon rank-sum test P < 0.001; a. The continuous sarcoma score was effective in
differentiating epithelioid pleural mesothelioma samples from biphasic/sarcoma-
toidmesothelioma samples (AUC = 0.81, b). To create binary sarcoma score groups,
an optimal cut-point was identified in the lungmesotheliomaROCcurve (red X in b)

that minimized the distance to the point where sensitivity and specificity were both
one. These binary sarcoma score groups were prognostic for lung mesothelioma
samples (logrank P = 0.043; c – low sarcoma score blue [N = 48], high sarcoma score
red [N = 39]; dotted red line represents a null AUC of 0.5). Our in-house pathologist
reviewed the two pathologic specimen that had the highest sarcoma scores to
compare our molecular classification score against pathologic review (intermediate
magnification, measuring bar represents 100 µm; d. For the presented boxplots,
boxes show the interquartile range, encompassing the middle 50% of the data, the
median is indicated by a linewithin the box, whiskers extend to 1.5× the interquartile
range, and points beyond this are plotted as outliers. AUC is the area under the
receiver operating characteristic (AUC-ROC) curve.
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using both variant mutations and copy number alterations, but these
alterations do not provide any additional information beyond what is
captured by RNA expression. We show that the RNA expression
classifiers achieve 91.4% accuracy for site of origin and 97.1% accu-
racy for lineage on a validation dataset of 10,376 tumor samples, the
largest and most comprehensive validation of an expression-based
classifier to our knowledge. This accuracy is particularly impressive
given the wide range of RNA-seq techniques used across the vali-
dation data from TCGA and 41 other cohorts, indicating that our
approach is truly platform-independent. Histopathologic assessment
continues to be the gold standard for diagnosing cancer site of origin
and cancer lineage. However, NGS methods could be used to aug-
ment histopathology. In cases where it is challenging to determine
the primary, a NGS method could help guide the immunohisto-
chemical workup, resolve conflicting staining results, and provide
additional information in otherwise unclassifiable cases. Beyond
improving accuracy in cases where there is uncertainty, this method
can also quantitate the degree of uncertainty.

No approach to classify tumor types is perfect, either histopathology
or NGS-based, and variability will always be present1–3. In both cases, an
assessment of the confidence of the classification is critical in the inter-
pretation of results. In clinical practice, pathologists routinely indicate
when diagnosis is uncertain, or should be interpreted with caveats, such

as scant tissue, high levels of necrosis or treatment effect, or unclear
staining patterns35. A challenge of machine-learning NGS approaches is
that the final prediction can seemingly come out of a black box (i.e.
without comprehensible mechanistic detail), especially in more complex
models36. Therefore, it is critical that the model predictions themselves
contain information on the strength of those predictions in order to
provide context for interpretation. An inaccurate prediction is obviously
not optimal, but a confidently inaccurate prediction is far worse. A major
strength of our classifier is the correlation between accuracy and the
prediction score itself (ranging from 0 to 1). The highest scoring and thus
most confident predictions, representing the majority of predictions,
achieve remarkable accuracies of 98–99%, even in metastatic samples. As
the scores and confidence falls, the prediction accuracy also decreases,
but this is a quantifiable and reportable result. A physician therefore is
able to interpret a low-confidence score of 0.5 very differently than a
high-confidence score of 0.99. Future work can explore how such
an approach can be incorporated into diagnostic workflows and aid
pathologists.

Another unique strength of our approach is the separation of site of
origin and lineage into separate classifiers. While the two are certainly
related, many sites can give rise to multiple tumor lineages. Both site and
lineage ultimately contribute to the final tumor phenotype, and thus we
felt it was critical to examine lineage separately. Our classifier accurately
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Fig. 5 | De-differentiated lineage associated with neuroendocrine disease. For
every sample the cancer lineagemodel produced 8 prediction scores to correspond to
the 8 lineage subtypes. The results of selected samples from the validation cohort
were then plotted on a radar plot to evaluate the heterogeneity of prediction scores.
Most samples had very strong predictions for a single lineage subtype a. Neu-
roendocrine samples, including neuroendocrine prostate cancer (NEPC) and small
cell lung cancer (SCLC), had more heterogenous predictions b, noting that the max
probability was lower in these samples compared to non-neuroendocrine samples.
This max prediction probability (Differentiation Score) was compared across all
samples and noted that neuroendocrine samples had lower scoreswhen compared to
all other samples (Wilcoxon rank-sum test P < 0.001; c—neuroendocrine red, non-
neuroendocrine blue; Neuroendocrine [N = 198], Sarcoma [N = 147], Adenocarci-
noma [N = 7256], Neuroepithelial Cancer [N = 40], Germ Cell Tumor [N = 54],
Melanoma [N = 501], Glioma [N = 718], Lymphoid/Myeloid Neoplasm [N = 1054],

and Squamous Cell Carcinoma [N = 606]). This continuous differentiation score
was then evaluated for its ability to differentiatemetastatic prostate adenocarcinoma
samples (PRAD) from NEPC samples (AUC = 0.833) and differentiate non-small
cell lung cancer samples (NSCLC) from SCLC samples (AUC = 0.963; d metastatic
prostate cancer green [N = 782], primary lung cancer orange [N = 743]; dotted red
line represents a null AUC of 0.5). For the presented boxplots, boxes show the
interquartile range, encompassing the middle 50% of the data, the median is indi-
cated by a line within the box, whiskers extend to 1.5× the interquartile range, and
points beyond this are plotted as outliers. AUC is the area under the receiver
operating characteristic (AUC-ROC) curve. WCMWeill Cornell Medicine, SMC
SamsungMedical Center, FHCRCFredHutchinsonCancer Research Center, ECDT
East Coast Dream Team, UCologne University of Cologne, WCDT West Cost
Dream Team.
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distinguishes between different lineages even within the same site (e.g.
gastroesophageal, lung, cervix), and is capable of zero-shot learning,
identifying sub-lineages in tumor types on which the model was never
directly trained (e.g. mesothelioma, neuroendocrine prostate, and small
cell lung cancer). Perhaps the most interesting emergent behavior of our
model is the ability to identify more de-differentiated or anaplastic
tumors, that have concomitantly worse survival across cancer sites of
origin. Lineage differentiation is not fixed, and plasticity is a well
described phenomenon across cancer types, especially for adenocarci-
nomas transitioning to aggressive neuroendocrine tumors in prostate
and lung primaries37. To our knowledge, this is the first pan-cancer
signature of lineage de-differentiation and anaplasia that is also inte-
grated into a tumor site of origin and lineage classifier.

While the majority of pathology reports offer clear identification, a
substantial 35% are reported by oncologists to contain ambiguous
language38. While less common, a still substantial 1–2% of cancers are
cancers of unknown primary, which presents treatment challenges for
clinicians39. With RNA-seq of tumors becoming more integrated into
standard clinical NGS assays, the platform-independent classifiers we
describe herein could complement traditional pathologic assessment,
especially in more challenging cases. The ability to globally quantify
confidence levels in predicting cancer site of origin, lineage, and tumor
de-differentiation is particularly useful, providing a more reproducible
quantitative measure than traditional histopathology. These models can
continue to be refined as new datasets become available, especially for
rare tumor types not currently well represented. The results from such a
tool could easily be added to existing clinical RNA-seq reports, com-
plementing traditional histopathologic assessment in cancer research,
clinical trial design, and ultimately clinical practice.

Methods
Data collection and organization
Todevelop themodels included in this studywe sought out a variety of large
cancer databases for training and validation—the Cancer Genome Atlas

Program (TCGA)40,41, the Cancer Cell Line Encyclopedia (CCLE)42, the
International Cancer Genome Consortium (ICGC)43, and cBioPortal44,45.
Given the standardized format of data located in cBioPortal, wedownloaded
the TCGA data and most validation datasets from there, while the CCLE,
ICGC, and pan-cancer analysis of advanced and metastatic tumors
(POG570) data46 were downloaded from their respective organizational
repositories. We focused only on samples that had RNA expression data
available, utilizing DNA mutation and copy number data from the TCGA
training cohort only to compare these molecular features against RNA
expression in cross-validation.

The goal of our workflow was to predict both cancer site of
origin and cancer lineage. Given the heterogeneity of the datasets and
understanding that too many classes can result in poor predictions,
we consolidated the model classes into 22 cancer site of origin classes
and 8 cancer lineage classes (Fig. 1). Of note, the neuroepithelial class
for the cancer lineage model represents paragangliomas/pheochro-
mocytomas. Primary site (non-metastatic) samples from the TCGA
Pan-Cancer Atlas41 and samples from the CCLE42 were used for
model training. Any sample in the CCLE or validation cohort that
did not match a cancer subtype in the TCGA Pan-Cancer Atlas
dataset was removed (N = 531). Lung mesothelioma samples repre-
sented a small cohort of samples in the TCGA and likewise would be
a useful cancer type to validate the cancer lineage model scores on,
and so all lung mesothelioma samples were removed from the pri-
mary training and validation cohort. Neuroendocrine prostate cancer
(NEPC) and small cell lung cancer (SCLC) samples were not present
in the TCGA and so were not part of the validation cohort, but we
did use these samples as part of a secondary analysis to evaluate de-
differentiation. These secondary analyses on mesothelioma, NEPC
and SCLC samples allowed for an evaluation on how the cancer
lineage model performed on data that was not included in training.

To producemore accurate and generalizablemodels we utilized both
patient samples (TCGA) and cell lines (CCLE) in the training set to help
overcome some of the limitations of both datasets—patient samples from
the TCGA will have some non-tumor related normal tissue present that
can confound training, in contrast to cell lines which lack this normal
tissue but unfortunately will also lack a tumor microenvironment. The
training set included 1053 CCLE samples and 75% of the primary site
samples from the TCGA Pan-Cancer Atlas (N = 7196). The validation
dataset included the remaining 25% of the primary site TCGA Pan-
Cancer atlas samples, older TCGA samples that did not overlap with the
Pan-Cancer atlas, all metastatic TCGA samples, and novel samples
downloaded from the ICGC, cBioPortal and POG570 (N = 10,376).
Validation focused on adult malignancies and, in addition to 58 TCGA
validation datasets40,41, produced a cohort of 39 independent primary site
datasets30,43,46–71 and 15 independent metastatic datasets30,43,46,64–72. To
increase the number of metastatic samples for validation we also included
samples from the west coast dream team (WCDT) metastatic prostate
cancer dataset that were reported as adenocarcinoma73,74. The secondary
analysis of neuroendocrine differentiation included SCLC and NEPC
samples from 5 studies in cBioPortal30,69–71,75, POG570 dataset46, the
WCDT73,74, and an additional dataset of SCLC samples from Jiang et al. 76.

Sequencing data processing
The sequencing data utilized in this workflow included RNA expression,
mutations status, and copynumber alteration.TheRNAexpression training
data focused on datasets that were not gene-normalized (not Z-score
adjusted), and thus RNA expression validation datasets that only included
such data were removed. There was a lot of heterogeneity in the per sample
normalization schemes used on the expression data, including RSEM,
FPKM, RPKM, TPM, CPM, and TMM, including some microarray data-
sets, with high model accuracy present across normalization schemes. To
account for these differences we ran a second normalization on all samples,
prior to training and validation, utilizing a per sample Yeo-Johnson
transformation25 that aims to create a normalized distribution for each
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Fig. 6 | De-differentiated lineage associated with worse survival across cancers.
Samples with survival data in the validation cohort were stratified based on their
cancer site of origin and biopsy site (primary versus metastatic; primary sarcoma
[N = 100], primary ovarian cancer [N = 356], primary breast cancer [N = 2182],
primary bladder urothelial carcinoma [N = 108], metastatic melanoma [N = 399],
primary lung cancer [N = 611], primary glioma [N = 615], primary hepato-
pancreato-bilary cancer [N = 424], metastatic breast cancer [N = 121], metastatic
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had significantly improved survival with increasing differentiation score, while all
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sample. This step was sufficient for model training and validation and no
further batch correction was required.

DNAdatawere evaluated only in training to compare to the accuracy
of expression-based models. DNA mutation data was filtered to include
only coding mutations and was turned into a binary classification
(mutant/wildtype). Copy number alteration data was translated into a
ternary call (copy number loss, no copy number change, and copy
number gain).

Model building
Data from the TCGA Pan-Cancer Atlas and CCLE were combined into a
single group for model building. Sex was included in the cancer site of
origin model, and no other clinical variables were included. We first
filtered the feature set of both models to include 12,247 genes by
removing those with missing expression values and those with the 10%
lowest median expression. This gene set was then used to train 6 models
—models based on RNA expression, DNA mutations, and copy number
alterations that separately predicted the cancer site of origin and cancer
lineage. We then ran our modeling workflow (XGBoost, described fur-
ther below) and optimized the number of trees hyper-parameter based
on a five-fold cross validation (CV) re-sampling schema. Hyper-
parameter optimization based on the CV resamples identified the best
six models, which we then proceeded to evaluate with a model variable
importance function77 to rank genes in order of most to least important
for the model (producing a different rank for the 6 models). This rank list
was then utilized to determine how many features would be included in
the final models (across a range of 5-2000 features, which include the
binary sex variable for the cancer site of origin model). This produced the
results in Fig. 2a, which allowed us to identify RNA-seq expression as
sufficient for model building and likewise evaluate the minimum number
of features required to create an optimal model. We first selected the
expression-based cancer of origin and cancer lineage models that pro-
duced the best accuracy (1000 features for both models), evaluated the re-
sampling 95% confidence interval of that accuracy, and then followed the
curve in Fig. 2a to identify the first feature count to fall within that 95%
confidence interval (500 features for the cancer of origin model and 200
features for the cancer lineage model). This step was essential to prevent
overfitting to the training set and to allow for a more efficient modeling
procedure, as a model with more features would take longer to run (for
model training, imputing missing values on validation, and making
predictions on validation).

Model validation
The locked in cancer site of origin and cancer lineage models were then
evaluated for their performance on the validation dataset. Some samples
in the validation cohort had missing values, and so we performed a
k-nearest neighbors’ imputation (k = 5) so there would be no missing
values when a sample was fed into the model. While the model used
(XGBoost) can handle missing values, we observed a validation accuracy
of 86.7% with no imputation, compared to our reported accuracy of
92.5% with imputation. Each sample prediction produced 22 probability
scores for the cancer site of origin and 8 probability scores for the cancer
lineage, with each score corresponding to a class, the scores adding up to
one within each model, and a class call produced based on the highest
probability score for that sample. The class prediction was utilized to
evaluate performance of the models on validation. The probability scores
were utilized to evaluate confidence in a prediction and define a differ-
entiation score that was equal to the maximum cancer lineage score for a
sample.

Statistics and reproducibility
All data collection and analysis were performed on our lab Linux server,
which included 120CPUcores, 2TBofRAManda singleNVIDIATesla T4
15GBGPU.Allworkflowwas completed inR (version4.3.2) andutilized the
cBioPortalData package for downloading cBioPortal data78, tidyverse79,

tidymodels80, vip77, survminer81, and fmsb82 packages. Themodel procedure
utilized the extreme gradient boosting (XGBoost) machine learning
model83, which brings together the concepts of decision trees, ensemble
learning andgradient boosting intooneunified, efficient andhighly accurate
framework.We utilizedXGBoost for all ourmodelingworkflow as it tended
to produce similar/improved accuracy on the CV training resamples
compared to a random forest model and was able to run significantly faster
and utilize our servers GPU. The only hyperparameter in the XGBoost
model that we tuned was the number of trees, which we optimized with a
five-fold CV scheme.

For our modeling workflow we utilized the area under the receiver
operating characteristic curve (AUC), sensitivity, specificity, andaccuracy to
evaluate the model. Sensitivity and specificity for multi-class classification
utilized a one-versus-all, macro-averaging scheme80. The AUC that is
reported for all multi-class problems represents the Hand-Till method for
multiclass classification problems84. For the secondary analysis evaluating
the continuous cancer lineage sarcoma probability scores in mesothelioma,
we developed the binary classes based on the ROC curve of the continuous
score and found the splitwith theminimumdistance from theROCcurve to
the point where specificity and sensitivity are both one. This cut was
determined only on the best split to separate epithelioid lungmesothelioma
samples from biphasic/sarcomatoid samples (Fig. 5). Given that this split
was not based on optimizing a split in survival, there was no data leakage in
creating these prognostic groups. Prognostic significance was evaluated
based on overall survival utilizing the Kaplan-Meier estimator and logrank
p-values for the mesothelioma sarcoma groups and the Cox regression
hazard ratios with 95% confidence intervals for the differentiation score
forest plot. All survival data was censored at 5 years to allow for similar
comparisons.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data were primarily downloaded from cBioPortal (https://www.cbioportal.
org/datasets), unless otherwise specified.TheCancerCell LineEncyclopedia
(CCLE) dataset were downloaded from the CCLE website (https://sites.
broadinstitute.org/ccle/datasets). The West Coast Dream Team (WCDT)
data is available at dbGAP (phs001648). The POG570 dataset were down-
loaded from the British Columbia Genome Sciences Center database
(https://www.bcgsc.ca/downloads/POG570/). The Jiang et al. SCLC data
were downloaded from the Gene Expression Omnibus (GSE60052). All
datasets used in this analysis were previously published and had the
appropriate ethical approval for sample collection and publication. Relevent
data labels and predictions utilized to create all figures are provided on the
ATLAS GitHub page (github.com/nickryd/ATLAS) and minted at
Zenodo85.

Code availability
The finalized model workflow and model weights are available at GitHub
(github.com/nickryd/ATLAS) and minted at Zenodo85. The publicly
available model has independent Cancer Site of Origin and Cancer
Lineage XGBoost model parameters. The available workflow can take as
input a table of samples, where the rows are individual samples and the
columns are individual model features (genes and binary sex). The input
can be expression from a microarray or RNAseq with any normalization
schema, just no per gene normalization across a whole cohort. The model
treats each sample independently, first performing a Yeo-Johnson
transformation of the gene expression across a sample, conversion of the
binary sex variable into a dummy variable, k-nearest neighbor imputa-
tion of missing values, and finally a center and scaling of each variable
based on parameters determined during model training. A prediction is
then made using the locked XGBoost model, providing both the class
prediction and class probabilities. Per sample computation time depends

https://doi.org/10.1038/s42003-024-05981-5 Article

Communications Biology |           (2024) 7:314 9

https://www.cbioportal.org/datasets
https://www.cbioportal.org/datasets
https://sites.broadinstitute.org/ccle/datasets
https://sites.broadinstitute.org/ccle/datasets
https://www.bcgsc.ca/downloads/POG570/


on the number of missing values in a sample, with per sample run time
across the validation cohort ranging from 1 to 22 s (approximately 7 h for
all 10,376 samples).

Received: 29 August 2023; Accepted: 27 February 2024;
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