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Crosstalk of cell death pathways
unveils an autophagy-related gene
AOC3 as a critical prognostic marker
in colorectal cancer
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Hui Xu1,2,3,8, HaiyangCui4,8, SiyuanWeng1,2,3,8, YuyuanZhang1, LiboWang5, ZheXing6, XinweiHan 1,2,3 &
Zaoqu Liu 1,2,3,7

The intricate crosstalk of various cell death forms was recently implicated in cancers, laying a
foundation for exploring the association between cell death and cancers. Recent evidence has
demonstrated that biological networks outperform snapshot gene expression profiles at discovering
promising biomarkers or heterogenous molecular subtypes across different cancer types. In order to
investigate the behavioral patterns of cell death-related interaction perturbation in colorectal cancer
(CRC), this study constructed the interaction-perturbation network with 11 cell death pathways and
delineated four cell death network (CDN) derived heterogeneous subtypes (CDN1-4) with distinct
molecular characteristics and clinical outcomes. Specifically, we identified a subtype (CDN4)
endowedwith highautophagyactivity and theworst prognosis. Furthermore,AOC3was identifiedasa
potential autophagy-related biomarker, which demonstrated exceptional predictive performance for
CDN4 and significant prognostic value. Overall, this study sheds light on the complex interplay of
various cell death forms and reveals an autophagy-related gene AOC3 as a critical prognostic marker
in CRC.

As the second most deadly worldwide, colorectal cancer (CRC) is featured
bydramatical heterogeneity and invasiveness1. By 2030, the global burdenof
CRC is expected to increase by 60%, with more than 1.1 million deaths and
2.2 million new cases2, demonstrating the imperative to improve the diag-
nosis and treatment of CRC patients. With advances in high-throughput
sequencing and experimental techniques, numerous molecular biomarkers
and taxonomies have been developed to facilitate the clinical management
of CRC. A multicenter study of 13 countries internationally validated an
Immunoscore measured by the abundance of CD3+ and CD8+T cells in
the center and invasive margin of tumors, which could accurately estimate
the recurrence risk of CRC patients3. Our study previously integrated ten
machine-learning algorithms to construct amulti-gene panel for improving
outcomes in CRC4. Moreover, molecular subtypes based on snapshot gene

expression or multi-omics data have represented a tremendous stride for-
ward in deciphering intertumoral heterogeneity and optimizing individual
treatments of CRC5–9, such as Consensus Molecular Subtypes (CMS)5 and
CRC Intrinsic Subtypes (CRIS)6. Nonetheless, existing tools were com-
monly developed based on the expression profiles of multiple genes,
obviously ignoring the biological interactions across various genes within a
defined pathway10–12.

Recently, various patterns of cell death have been investigated with
each profoundly impacting the initiation and development of cancers13. In
CRC, unbalanced or defective cell death signaling is involved in the
pathogenesis of colorectal diseases ranging from chronic bowel disease to
colorectal cancer14. Additionally, cell death pathways are essential targets for
current therapies against CRC. For example, inhibition of the autophagy
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pathway has been proven to reduce the proliferative ability of RAS-driven
CRC15. Chaudhary et al. suggested that LCN2 overexpression could lead to
5-fluorouracil resistance via suppressing ferroptosis in CRC16. More
importantly, emerging evidence casts an increasingly clear point that these
pathways tend to operate together. For example, ferroptosis and necroptosis
can be triggered by shared stimuli and are both involved in ischemia-
reperfusion driven pathologies13. Autophagy has been implicated as a
backup mechanism for apoptosis to play a common role in reducing mal-
formations to maintain normal growth and development17. Nonetheless,
little is known about the impact of the crosstalk of different cell death forms
on molecular heterogeneity in CRC.

Broad high-throughput data bring opportunities to integratively
explore various patterns of cell death. Here, we retrieved 11 cell death
pathways to constitute the interplay network as previously reported12. As is
well-known, biological networks tend to maintain stable in normal tissues,
but are significantly perturbated in cancer tissues12,18. Hence, this study
initially constructed the perturbationmatrix of 11 cell death pathways based
on the expression profiles of CRC tissues and normal colon tissues. Sub-
sequently, four cell death-related network (CDN) subtypeswere deciphered
from the perturbation matrix, which displayed considerable heterogeneity
in clinical outcomes, molecular characteristics, and biological processes.
Notably,AOC3was identified as an autophagy-related biomarker predictive
of CDN4 subtype, which could be an important prognostic marker in col-
orectal cancer.

Results
Calculation of interaction-perturbation in the cell death interplay
network
The analysis revealed that scores pertaining to cell death pathways were
significantly elevated in colorectal cancer samples compared to normal
tissues (Supplementary Fig. 1a, b). Dimension reduction analysis, con-
ducted on the basis of cell death genes, indicated aminimal overlap between
the colorectal cancer and normal samples. This suggests an enhanced
activity of cell death pathways in colorectal cancer samples relative to
normal tissues (Supplementary Fig. 2a, b). To generate the interaction-
perturbation of all gene pairs from the cell death interplay network, we
introduced a four-step pipeline as previously reported10 (Fig. 1). CRC tissues
from TCGA-CRC (n = 567) and normal colorectal tissues from GTEx
database (n = 304) were regarded as tumor and normal input, respectively.
The initial rank matrix was obtained based on the rank of each gene in a
single sample, which was subsequently converted to the delta rank matrix
using subtraction in the same direction of gene interactions. Furthermore,
gene interaction was relatively stable and conservative in normal tissues12,18,
thus serving as the benchmark for calculating the interaction-perturbation
matrix in tumor tissues. Collectively, we generated a perturbation network
consisting of 8403 edges and 1056 nodes. Previous evidence has demon-
strated that biological networks are commonly scale-free distribution19,
which was in line with our constructed network (R =−0.963, P < 0.001;
Supplementary Fig. 2c).Notably, relative to normal samples, tumor samples
exhibited stronger perturbations (Supplementary Fig. 2d) and the range of
interaction perturbation is also broader range, suggesting a higher variation
(Supplementary Fig. 2e). These results indicated that the cell death interplay
network was overall stable in normal samples, whereas it significantly
perturbated in tumor samples.

Perturbation of cell death networks deciphered four hetero-
genous subtypes
Previous studies have demonstrated that network perturbation could more
reliably better characterize the biological state of bulk tissues10–12. Here,
representative perturbation features that can strikingly distinguish normal
and tumoral tissues as well as maintain significant heterogeneity across
tumor samples were retained for subtype discovery, which formed a sub-
network including 4203 edges and 924 nodes. Specifically, this sub-network
also fitted a scale-free distribution (R =−0.977, P < 0.001, Supplementary
Fig. 2f). Afterward, Consensus clustering was performed with different

k (k = 2–9) clusters according to the perturbation matrix of representative
features. Results of cumulative distribution function (CDF) curve and
consensus score matrix suggested that the optimal division was achieved
whenk = 4 (Fig. 2a, b and Supplementary Fig. 2g). Thus, four subtypeswere
decoded from cell death network (CDN1, n = 128, 22.6%; CDN2, n = 170,
30%; CDN3, n = 170, 30%, and CDN4, n = 99, 17.4%). Kaplan–Meier
analysis displayed significant survival differences among four subtypes, with
CDN2having the best prognosis andCDN4possessing theworst prognosis
with a 5-year survival rate of about 50% (P = 0.013, Fig. 2c).

To further validate the reproducibility and stability of four CDN
subtypes in independent cross-platform cohorts, we retrieved three
internal datasets to perform multiclass predictions using the NTP algo-
rithm. Initially, 799 subtype-specific genes were identified via differential
expression analysis. Subsequently, cluster prediction was achieved by the
NTP framework integrated 799 featured genes and three testing
expression matrices. Encouragingly, the sample subtypes displayed
similar transcriptome profiles across different cohorts (Supplementary
Fig. 3a–c). In line with the prior findings, CDN4 presented dismal
prognosis relative to other subtypes in all testing datasets (Fig. 2d–f). In
addition to similar transcriptome and clinical traits, four subtypes also
demonstrated analogical proportion (Supplementary Fig. 3d). Taken
together, the above suggested that our CDN taxonomy was robust and
reproductive in cross-platform cohorts.

Correlations of four subtypes with clinical characteristics and
classical subtypes
Subsequently, we compare the distribution of clinical characteristics among
four subtypes (Fig. 2g). CDN1 was closely associated with KRASmutation
(chi-square test, fdr <0.05), whereas CDN2 was related to BRAFmutation
(chi-square test, fdr <0.001) and high level ofmicrosatellite instability (MSI-
H) (chi-square test, fdr <0.001) (Supplementary Fig. 3f, g). In addition,
CDN4 was related to advanced TNM stage (chi-square test, fdr <0.05),
consistent with the poor prognosis of CDN4.

To further compare our CDN taxonomy with previously developed
CRC classifications, patients were reclassified according to criteria based on
previous studies from Guinney et al.5, Isella et al.6, De Sousa E Melo et al.7,
Sadanandam et al.8, and Marisa et al.9. Intriguingly, the results revealed
strong associations between four CDN subtypes and previous classifica-
tions, indicating the molecular convergence in CRC (Fig. 2g). Specifically,
CDN1was linked to the canonical CMS2, CRCA4, CCS1, CRIS-C/CRIS-D,
and CIT1; CDN2 was associated with CMS1, CCS2, CRCA1, CRIS-A, and
CIT2; CDN3was enriched in CMS2, CCS1, CRCA3, CRIS-C, and CIT5. In
contrast, CDN4 was related to more aggressive classification features,
includingCMS4, CCS3,CRCA5,CRIS-B, andCIT4.Ofnote, only a fraction
(20%) of our signature genes overlapped with signature genes of previous
CRC classifications, suggesting that our classification has specific biological
characteristics as well as more room for exploration (Supplemen-
tary Fig. 3e).

Biological characteristics of four subtypes
To characterize the biological behaviors in four subtypes, we calculated
the variation of biological pathways via the GSVA algorithm. The results
indicated that biological functions differed dramatically among four
subtypes (Fig. 3a). Specifically, CDN1 was endowed with moderate
metabolic activity and low immune activity, which demonstrated sig-
nificant enrichment in proliferation pathways, such as cell cycle, G2M
checkpoint, and MYC targets. CDN2 was also enriched in proliferation
pathways but displayed conspicuous enrichment in immune-activated
and multiple cell death pathways. The metabolic pathways, such as lipid,
vitamin, and galactose metabolism, were particularly evident in CDN3.
CDN4 was associated with significant aggressive features, including
cancer stem cell-related pathways, metastasis-related pathways, and
multiple cancer-related signaling pathways. Subsequently, the enrich-
ment of the four subtypes in 11 cell death pathways was explored (Fig. 3b
and Supplementary Fig. 4a–g), and we observed that CDN2 exhibits high
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levels in most of the cell death pathways, especially in necroptosis
(Kruskal–Wallis test, p < 0.001) and apoptosis (Kruskal–Wallis test,
p < 0.001). While CDN1 in most of the cell death pathways showed a
lower level, CDN3 displayed moderate levels in all cell death-related
pathways. CDN4 was mainly enriched in autophagy (Kruskal–Wallis
test, p < 0.001) and lysosome-dependent cell death pathways
(Kruskal–Wallis test, p < 0.001). Overall, CDN1 was defined as a pro-
liferative subtype because of the significant proliferative activity. CDN2
was defined as an immune subtype with strong cell death activity. CDN3
had high metabolic activity as metabolic activity. As a result of high cell
stemness as well as high levels of invasive tumor pathways, CDN4 was
defined as an aggressive subtype, along with high autophagic activity.

CDNs heterogeneity under single cells
In this study, we have successfully identified CDNs-like epithelial cells
from tumor samples based on characteristic gene markers. Each subtype
of CDNs-like epithelial cells, when analyzed using Uniform Manifold

Approximation and Projection (UMAP) for dimensional reduction,
exhibited a distinct distribution pattern (Supplementary Fig. 5a). This
pattern suggests the presence of transcriptional heterogeneity among the
four CDNs-like epithelial cells. Intriguingly, this heterogeneity is not only
observed across different samples but is also evident within individual
samples (Supplementary Fig. 5b). Noteworthy, CDN4-like cells showed
the highest scoring in autophagy pathways (Kruskal–Wallis test,
p < 0.001, Supplementary Fig. 5c), which is consistent with the bulk data
analysis.

Multi-omics landscape of four subtypes
To characterize the molecular profiles of four CDN subtypes at the muta-
tional and CNV levels. First, we depicted the mutational landscape of four
subtypes (Fig. 4a), which showed that CDN1 andCDN3were prominent in
APC, TP53, and KRAS mutations, while TTN, SYNE1, and MUC16 per-
formedhighermutation frequencies inCDN2andCDN4 (Fig. 4b).Notably,
KRASmutations can stimulate tumor cell proliferation and growth, which

Fig. 1 | The overallflowof this study. The background network consists offive cell
death related genes and five interactions. There were three normal samples (blue)
and three cancer samples (pink). The genes were sorted according to the expression
value of each sample to obtain a rankmatrix. The rankmatrix was converted into a delta
rank matrix consisting of five rows and six columns representing the interactions and
samples, respectively. The benchmark delta rank vector was calculated as the delta rank

of the average expression value across all normal samples. The benchmark delta rank
vector was subtracted from the rank matrix to obtain the interaction perturbation
matrix. The interaction perturbation matrix was then used to cluster the colorectal
cancer samples to reveal new network-based subtypes. The identified subtypes had
different characteristics, including prognosis, phenotypic traits, multi-omics, immune
infiltration, and prediction of treatment effects.
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leads to a poor prognosis, while mutations are less abundant in CDN2.
Overall, most driver genes in CDN2 have the highest mutation frequency,
and tumor mutation burden (TMB) is also the highest of the four subtypes
(Kruskal–Wallis test, p < 0.001, Fig. 4a, c). Higher TMB tend to generate
more tumor neoantigens (Kruskal–Wallis test, p < 0.01, Fig. 4d), which are
more likely to stimulate immune activation. In addition, the burden ofCNV
(gain or loss) at the level of bases, fragments, and chromosome arms was
highest inCDN3(Fig. 4e). That said, CDN3was inclined to beCNV-driven,
whereas CDN2 was inclined to be mutation-driven.

The immune landscape of four subtypes
Previous studies have demonstrated that the composition of immune cells
within infiltrating CRC tumors is heterogeneous, and the key players are
continuously subject to microenvironmental changes. Thus, to further
explore the immune landscape of four subtypes, the ssGSEAwas employed

to measure the abundance infiltration of 28 immune cells. The results dis-
played thatmost immune cells infiltratedmainly in CDN2 andCDN4, with
CDN3 as an intermediate location, while CDN1 had the lowest level of
immune cell infiltration (Supplementary Fig. 6a). Especially, activated
effector cells that serve an instrumental role in antitumor immunity, such as
activated CD8T cells (Kruskal–Wallis test, p < 0.001), activatedCD4T cells
(Kruskal–Wallis test, p < 0.001), and cytotoxic lymphocytes
(Kruskal–Wallis test,p < 0.001, Fig. 5a),werehighly infiltrated inCDN2and
CDN4. In addition, immune checkpoints such as B7-CD28 family member
proteins and TNF superfamily were highly expressed in CDN2 and CDN4
(Fig. 5b). Among them, the immune checkpoint CD40L binding to CD40
could increase the immunomodulatory ability of DCs, induce effector cell
proliferation and enhance immunotoxicity to tumor cells, which further
indicated that CDN2 and CDN4 had strong immune activation ability.
However, although CDN4 had a higher immune score, macrophages M2,

Fig. 2 | Calculation of interaction-perturbation in the cell death interplay net-
work. a The consensus score matrix of all samples when k = 4. A higher consensus
score between two samples indicates they aremore likely to be grouped into the same
cluster in different iterations. b For the relative change of area under the CDF curve,
the point with insignificant increase is selected as the best K value. c–fKaplan–Meier

curves of overall survival with log-rank test for four CDN subtypes in TCGA and
three validation datasets. g Correlations of four CDN subtypes with clinical char-
acteristics and previous CRC classifications in the TCGA-CRC dataset. Gray areas
represent missing value.
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regulatory T cells, and stromal cells were highly infiltrated in CDN4 with a
higher stromal score, which demonstrated that CDN4 was an immune hot
but suppressed tumor microenvironment. (Fig. 5c–e). Furthermore, the
APS and TIS score also demonstrated that CDN2 and CDN4 had stronger
antigen presentation capacity and better response to immunotherapy
(Kruskal–Wallis test, p < 0.001, Fig. 5f, g). CDN1 possesses highest tumor
purity accompanied by low levels of immune infiltration (Kruskal–Wallis
test, p < 0.001, Fig. 5e). Moreover, CDN2 had higher levels of SNV neoan-
tigen, indel neoantigen, and CDN4 was featured by higher TCR Richness,
TCR Shannon, homologous recombination deficiency, intratumoral het-
erogeneity, and cancer-testis (CTA) scores (Fig. 5h). Taken together, CDN1
was defined as the immune desert subtype because of insufficient immune
cell infiltration. CDN2 had high immune activity and was defined as the
immune activating subtype. CDN3 is the intermediate immune subtype.
With the strong immune activation but suppressed microenvironment,
CDN4 was defined as the immune suppressive subtype.

Immunotherapy
To systematically assess the immunotherapeutic potential of four CDN
subtypes, we need to establish a comprehensive assessment of tumor
immunity. Karasaki et al. proposed an immunogram for quantifying the

cancer-immunity cycle20. Hence, we applied the immunogram to assess the
potential for subtypes to benefit from immunotherapy (Fig. 5i). CDN1 and
CDN3 exhibited low immune cycle scores, in line with previous findings
indicating inadequate immune infiltration. CDN2 and CDN4 displayed
higher levels of immune activation and antitumor related immune cycle
scores, along with relatively high immune checkpoint expression. Thus,
CDN2 and CDN4 are more likely to benefit from immunotherapy. In
addition, we applied an investigational 18-gene signature termedTIS, which
can be used to measure a pre-existing but suppressed adaptive immune
response within tumors. As shown in Fig. 5g, CDN2 and CDN4 displayed
higher levels of TIS scores. SubMap analysis also revealed significant
expression similarity between CDN2 and responders in CAR-T, anti-PD-1,
and anti-CTLA-4 treatment cohorts (Supplementary Fig. 6b). Moreover,
CDN2 and CDN4 might be sensitive to anti-PD-1/CTLA-4 combination
immunotherapy (Supplementary Fig. 6c). These results demonstrated that
CDN2 might benefit from immunotherapy, while CDN4 with the poorest
prognosis might benefit from multi-targeted immunotherapy. Overall,
results indicated that CDN2 and CDN4 might derive clinical benefit from
immunotherapy, whereas CDN1 and CDN3 may not fit it due to the high
cost and underlying immune-related adverse events that accompany low
response potential.

Fig. 3 | Biological processes associated with the CDN subtypes. a Heatmaps of
biological processes for four CDN subtypes in TCGA-CRC datasets. High and low
ssGESA scores are represented in red and blue, respectively. b The degree of

enrichment of the four CDN isoforms in four different cell death pathways
(necroptosis, autophagy-dependent cell death, lysosomal-dependent cell death, and
apoptosis). ns fdr > 0.05, *fdr < 0.05, **fdr < 0.01, ***fdr < 0.001, ****fdr < 0.0001.
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AOC3: a predictive molecule of CDN4 indicate poor prognosis
To further explore the CDN4 subtypewith the worst prognosis, a total of 30
CDN4 feature genes kept AUC > 0.9 in four independent prognostic
cohorts. The result of univariate Cox analysis based on CDN4 signature
genes demonstrated that AOC3, CRYAB, PRICKLE1, and TNS1 were risk
factors with prognostic significance and showed significant consistency in
the four cohorts (Fig. 6a). However, only three genes were eligible for both
conditions, and the mean C-index of AOC3 (mean C-index: 0.612, Fig. 6b)
was the highest compared with CRYAB (mean C-index: 0.598) and TNS1
(mean C-index: 0.605). In cohorts with overall survival information from
TCGA and GEO, the low AOC3 group performed a significantly better
prognosis than the high AOC3 group (Fig. 6c–f). To further validate the
prognostic potential ofAOC3, wedivided the samples into thehighH-scores
group and the low H-scores group based on the H-scores of AOC3 from
103 successfully stained cancer samples in human tissue microarrays
(Fig. 6g). The survival analysis result was consistent with previous analyses
that the highAOC3 group had a significantly worse prognosis than the low
AOC3 group (Fig. 6h). GSEA analysis showed that the molecules sig-
nificantly associated with AOC3 were mainly enriched in the regulation of

autophagy pathway, and AOC3 showed a significant association with the
regulation of autophagy (R = 0.388, P < 0.001, Fig. 6i–j). In addition, high
expression of AOC3 is often accompanied by high expression of autophagy
genes (Fig. 6k).

Discussion
As developing studies focus on cell death, the critical role of cell death
pathways in tumor development and progression has been gradually
revealed. Previous research indicated that imbalancedor defective cell death
signaling might be essential in CRC evolution and poor response to che-
motherapy and radiotherapy21. In contrast, other studies demonstrated that
induction of ferroptosis could reverse drug resistance to inhibit tumor
growth22. Moreover, clinical trials have demonstrated that pharmacological
and molecular blockades of autophagy could improve anticancer therapy
efficacy23. However, different cell death pathways tend to interact in tumors
compared to operating alone. For example, apoptosis and autophagy could
act synergistically to inhibit the signaling of other pathways to kill tumor
cells24. Furthermore, the potential molecular mechanisms of the different
cell death pathways show considerable overlap, which sets a foundation for

0.89
0.72
0.43
0.57
0.23
0.17
0.26
0.21
0.19
0.16
0.10
0.16
0.14
0.12
0.13
0.12
0.10
0.08
0.09
0.12
0.11
0.13
0.07
0.06
0.16
0.08
0.05
0.07
0.08
0.13

0.67
0.52
0.59
0.35
0.37
0.31
0.28
0.32
0.30
0.27
0.30
0.18
0.21
0.26
0.24
0.23
0.25
0.24
0.23
0.17
0.20
0.19
0.21
0.20
0.18
0.20
0.20
0.26
0.19
0.12

0.87
0.64
0.37
0.40
0.21
0.22
0.22
0.16
0.13
0.10
0.13
0.12
0.13
0.07
0.09
0.08
0.12
0.09
0.10
0.14
0.08
0.13
0.10
0.10
0.09
0.13
0.10
0.04
0.08
0.12

0.74
0.58
0.51
0.44
0.32
0.28
0.21
0.18
0.14
0.18
0.19
0.17
0.17
0.22
0.22
0.20
0.15
0.18
0.14
0.17
0.17
0.12
0.16
0.18
0.14
0.13
0.15
0.11
0.12
0.17

APC
TP53
TTN

KRAS
SYNE1
MUC16
PIK3CA

FAT4
RYR2

OBSCN
ZFHX4

FBXW7
LRP1B
DNAH5

DNAH11
PCLO

ABCA13
CSMD1
CSMD3

FLG
RYR1
FAT3

USH2A
LRP2

MUC4
ADGRV1

RYR3
NEB
ATM

SMAD4

****
***
*
***
*
**

*
****

**
*
*
***
****
**

***
****

**
****
****
**

Frequency

0

0.4

0.8

a b

e

c

Neoantigen

CDN1 CDN2 CDN3 CDN4

0

2

4

6

R
el

at
iv

e 
Ex

pr
es

si
on

TMB

CDN1 CDN2 CDN3 CDN4

−1

0

1

2

R
el

at
iv

e 
Ex

pr
es

si
on

d

0

2

4

0

0.5

1

TMB

Subtype

MutSig

79%
61%
48%
43%
28%
25%
25%
23%
20%
19%
18%
17%

APC
TP53
TTN
KRAS
SYNE1
MUC16
PIK3CA
FAT4
RYR2
ZFHX4
OBSCN
DNAH11

77%
77%
62%
29%
20%
6%

71%
71%
62%
46%
41%
39%
27%
15%
6%

20q13.12−Amp
20q11.21−Amp
20p11.21−Amp
16p11.2−Amp
5p12−Amp
15q26.1−Amp
18q21.2−Del
18q22.1−Del
18p11.31−Del
8p23.2−Del
15q15.2−Del
15q22.33−Del
10q25.2−Del
9p21.3−Del
8q11.1−Del

0

0.
5 1

PCT

Subtype
CDN1
CDN2
CDN3
CDN4

Alterations
Mutated

Alterations
Gain
Loss

MutSig
Sig.1
Sig.6
Sig.9

CNA
Gain
Loss

FGA FGG FGL

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.25

0.50

0.75

Pe
rc

en
t G

en
om

e 
Al

te
re

d

Arm Gain Arm Loss Focal Gain Focal Loss

0

1000

2000

3000

4000

0

2000

4000

6000

0

5

10

15

20

0

5

10

15

20

25

Pe
rc

en
t G

en
om

e 
Al

te
re

d

CDN1 CDN2 CDN3 CDN4

Kruskal−Wallis
P < 0.001

Kruskal−Wallis
P < 0.01

Kruskal−Wallis
P < 0.001

Kruskal−Wallis
P < 0.001

Kruskal−Wallis
P < 0.001

Kruskal−Wallis
P < 0.001

Kruskal−Wallis
P < 0.001

Kruskal−Wallis
P < 0.05

Kruskal−Wallis
P < 0.001

Fig. 4 | Multi-omics landscape of the CDN subtypes. a Landscape of frequently
mutated genes and CNV of amplification and deletion among the CDN subtypes.
bAnalysis of mutational differences in 30 frequently mutated genes (FMGs) among
the four CDN subtypes. c, dDistributions of TMB (b) andNeoantigen (c) among the

CDN subtypes. eComparison of FGA, FGG, FGL, arm gain, arm loss, focal gain, and
focal loss among the four CDN subtypes. FGA fraction of genome alteration, FGG
fraction of genome gained, FGL fraction of genome lost, *fdr < 0.05, **fdr < 0.01,
***fdr < 0.001, ****fdr < 0.0001.

https://doi.org/10.1038/s42003-024-05980-6 Article

Communications Biology |           (2024) 7:296 6



studying crosstalk among different cell death pathways. To explore various
cell death pathways integratively, we constructed an interaction network by
retrieving critical molecules associated with 11 cell death pathways from
previously reported. As we all know, biological networks remain relatively
constant across time and conditions, which can better characterize the
biological state of the overall tissue10–12. At the same time, this biological
network generally remains stable in normal tissues and highly variable in

tumor tissues18, whichwas also proved in this study.Therefore, basedon this
relatively stable cell death network, we identified four heterogeneous CDN
isoforms and characterized their biological properties, immunological traits,
and genomic features of four subtypes. With the validation of multiple
cross-platform cohorts, our constructed classificationmethod proved stable
and reproducible. Notably, although the CDN subtype was significantly
associated with the published classification for CRC, there were limited
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Fig. 5 | Immune landscape of four CDN subtypes. a The infiltration difference of
CD8 T cells, CD4 T cells, and cytotoxic lymphocytes among four CDN subtypes.
b Assessment of infiltration abundance of 27 immune checkpoints among four CDN
subtypes. c The infiltration difference of macrophages M2, and tregs among four CDN
subtypes. d The infiltration difference of endothelial cells, and fibroblasts among four

CDN subtypes. eComparison of stromal score, immune score and tumor purity among
four clusters. Comparison of APS (f) and TIS (g) among four clusters. h Comparison of
12 immunogenicity associated indicators among the four CDN subtypes, the cell
represented by the mean value of corresponding cluster divided by the overall mean
value. i. Radar plots showed the immunogram patterns of CDN subtypes.
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overlapping signature genes between classical classifications and CDN,
indicating a significant molecular convergence but having distinct
characteristics.

According to biological function, CDN1 was defined as the
proliferation-promoting isoform and CDN3 was defined as the metabolic
isoform. Compared with CDN3, CDN1 has a relatively poor prognosis,

possibly due to the combined effects of significant proliferation and enri-
ched KRASmutations25,26. Despite the high tumor purity, CDN1 showed a
neutral malignancy from prognosis analysis, which was consistent with
previous reports27. Coincidentally, both CDN1 and CDN3 showed low
TMB and immune desert TME and were predicted to respond poorly to
immunotherapy. Additionally, CDN3 has higher copy number deletions

Fig. 6 | The specific molecular of the CDN4 subtype and immunohistochemical
staining. aUnivariate Cox analysis of CDN4 feature genes with p < 0.05 and HR > 1
in TCGA and GEO prognosis cohorts. b Mean C-index of the candidate genes.
c–f Kaplan–Meier curves of overall survival with the log-rank test between the high
AOC3 group and low AOC3 group in TCGA and three validation datasets.
g Representative immunohistochemistry (IHC) staining images of CRC tissue
microarrays in low AOC3 tumor expression and high AOC3 tumor expression

tissues. hKaplan–Meier curves of overall survival with the log-rank test between the
high AOC3 H-scores group and low AOC3 H-scores group in IHC arrays. i The
molecules significantly associated with AOC3 were enriched in regulation of
autophagy pathway. j Correlation analysis of AOC3 with regulation of autophagy
pathways score. k Differential expression of autophagy genes in different AOC3
expressions. ns fdr>0.05, *fdr < 0.05, **fdr < 0.01, ***fdr < 0.001, ****fdr < 0.0001.
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and amplifications at the level of bases, segments, and chromosome arms.
As previously reported, high load of copy number promotes immune
escape, leading to poor immunotherapy28.AndCDN3 showed elevated lipid
metabolism and glucose metabolism. Abnormal metabolic activities pro-
mote the growth and proliferation of cancer cells, which is currently con-
sidered a hallmark in numerous malignant tumors, including CRC29,
meaning these individuals may benefit from antimetabolite medication.

With the highest TMB, the CDN2, considered a mutation-driven
subtype,presents thehighestmutation frequency inmost genes.Tumor cells
with high TMB generally present high levels of neoantigens, which can
induce cytotoxic T lymphocyte activation and proliferation to eradicate
tumor cells30. In CDN2, some cell death pathways such as apoptosis, fer-
roptosis, necroptosis, andpyroptosis alsoplay a synergistic role in antitumor
immunity. According to previous reports, necroptotic cells can release
DAMP to DC cells, triggering antigens, and thereby activating cytotoxic
CD8+ T lymphocytes31. Pyroptosis inhibits Tregs differentiation and
macrophage death to promote adaptive responses32. Correspondingly,
CDN2 showed abundant infiltration of various immune cells and high
immunogenicity in immunology analysis. Additionally, MSI-H tumors,
which are widely reported to be linked to a better immunotherapy response,
are also enriched in CDN233. As the microsatellite instability subtype from
classical subtypes, we observed higher proportions of CCS2 and CMS1 in
CDN2. Taken together, these results suggest that CDN2 has great potential
to benefit from immunotherapy, which has also been validated in several
immunotherapy cohorts.

The CDN4 subtype characterized bymesenchymal transcription has a
poor prognosis, matching CMS4, CRIS-B, CCS3, and CRCA5. Down-
regulation of BMP signaling pathways and upregulation of NOTCH and
WNT signaling pathways can enhance stem cell activation34, while low
tumor purity and high enrichment in cancer stemness signatures also
suggest a malignant phenotype of CDN4. Consistent with previous studies,
autophagy related pathways significantly enriched in CDN4 dominated by
advanced tumors than other subtypes, whichwas validated at the single-cell
level. And autophagy in established solid tumors can help in response to
intracellular and environmental stresses such asnutrient shortages, hypoxia,
cytotoxicity, or cancer treatments, which favor tumor progression35.
Autophagy stimulation can also lead to the degradation of EMT inducers,
thereby accelerating tumor invasion andmetastasis36. In terms of antitumor
immune responses, the immune evasionmechanismofCDN4 ismainly due
to a richer infiltration of immunosuppressive cells and immunosuppressive
molecules in the tumor microenvironment, such as MDSCs and M2 mac-
rophages. In addition, autophagy promotes immunity by degradingMHC-I
escape, leading to intrinsic resistance to tumor immunotherapy37.We found
that CDN4 only responded in combined immunotherapy with anti-PD-1/
CTLA-4, which may contribute to the dual blockade of PD-1/CTLA-4
increasing effector T-cell activity to enhance tumor suppression38. For
CDN4, which has a higher degree of malignancy, we identified AOC3 as its
unique biomarker.AOC3possessed superiorCDN4predictive performance
and significant prognostic significance, and has been shown to be an
independent prognostic risk factor in previous CRC clinical studies39. As an
endothelial adhesion molecule, AOC3 has previously been implicated to
play a role in lymphocyte-endothelial interactions to promote tumor
growth. Our study also showed that AOC3-related genes were mainly
enriched in the autophagy pathway and showed significant correlation.
Thus, autophagy may be another mechanism linking AOC3 and cancer
progression. Recent studies have shown that autophagy can be used as a
diagnostic indicator for postoperative patients, and the expression of
autophagy-related proteins such as Beclin1 in tumor tissues is related to
tumormetastasis and recurrence40. Therefore,AOC3 is promising tobe used
to identify CDN4 with autophagic properties, which may benefit from
autophagy-targeting therapeutic regimens.

In general, based on the construction of the cell death crosstalk net-
work, which is more stable and effective than gene features, our study
established four stableCRCmolecular subtypes that couldpredict prognosis
and guided treatment.The studyof tumorheterogeneity in a relatively stable

background network facilitates the rational assignment of individuals with
tumors, whichmay contribute to precise clinical management. In addition,
our study also identified AOC3 as a potential biomarker for identifying
individuals with poor prognosis associated with autophagic properties,
which may facilitate clinical prognostic evaluation and personalized man-
agement in CRC. The study also has certain shortcomings, as the analysis of
the results is limited by the retrospective of the study, such as possible
confounding factors of imbalance between subtypes and non-randomized
patient treatment selection.Accordingly,moreprospective andbasic clinical
trials are needed to validate the conclusions further.

Method
Data collection and preprocessing
Four independent CRC cohorts were retrieved from The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov) and Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) databases, including
TCGA-CRC (n = 567), GSE39582 (n = 521), GSE39084 (n = 68), and
GSE17536 (n = 165). The criteria for our screening cohort were as fol-
lows: (1) primary tumor tissue samples; (2) RNA expression data avail-
able; (3) no preoperative chemotherapy or radiotherapy; (4) survival
information available and survival time >30 days. The detailed baseline
was summarized in Supplementary Table 1. Somatic mutation and copy
number variation (CNV) in TCGA-CRC were also downloaded from the
TCGA portal. RNA-seq count data of TCGA-CRC were converted to
transcripts per kilobase million (TPM) and further log-2 transformed.
RNA-seq data (log2TPM) of 308 normal colorectal tissues were obtained
from Genotype-Tissue Expression (GTEx, http://gtexportal.org). Raw
data of CRC microarrays from the GPL570 platform were processed and
normalized using the robust multichip analysis (RMA) algorithm
implemented in the Affy package. Furthermore, five immunotherapy
cohorts (Nathanson cohort, GSE126044, GSE115821, GSE100797, and
GSE91061) with expression profiles and immunotherapy information
were also included in this study.

Interplay network construction of cell death pathways
We comprehensively retrieved cell death-related genes from previous lit-
erature and Molecular Signature Database (MSigDB, https://www.gsea-
msigdb.org/gsea/msigdb). In total, 1339 genes of 11 cell death pathways
were collected (Supplementary Data 1). This study aimed to investigate
molecular heterogeneity from both nodes and interactions of different gene
sets. A pathway-based analysis requires a functional network of protein
interactions predicted by candidate genes10. Thus, these genes were sub-
jected to the Search Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org/)41, which further generated an interplay network of 11
cell death pathways in the form of protein-protein interactions (PPI). Gene
pairs with confidence >0.8 were retained for background construction.
Ultimately, an interplay network consisting of 1056 nodes and 8403 inter-
actions was constructed (Supplementary Data 2).

Calculation of interaction-perturbation in the cell death interplay
network
As previously reported, biological networks remain stable and conservative
in normal tissues, whereas are significantly perturbated in tumor tissues12,18.
In this study, CRC tissues from TCGA-CRC (Illumina HiSeq 2000) were
regarded as tumor inputs. Nevertheless, TCGA database only includes
tumor-adjacent tissues, which were also dramatically perturbated in bio-
logical networks relative to normal tissues. Thus, colorectal tissues from
GTEx (Illumina HiSeq 2000) were regarded as normal input, which are
derived from healthy donors. Figure 1 illustrates the interaction-
perturbation construction of a small network example composed of five
genes and five interactions. In brief, this pipeline mainly encompassed
four steps:
(1) In tumor and normal expression matrix, the rank of each gene in a

single sample was calculated based on the expression value. Here, we
generated the rank matrix.
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(2) According to gene interactions within the background network, we
utilized subtraction in the same direction of gene interactions to con-
vert the gene rank matrix into the delta rank matrix.

(3) Previous evidencehas demonstrated that biological networks are stable
and conservative in normal tissues but perturbated in tumor tissues.
Hence, the average delta rank of each gene pair in normal tissues was
defined as a benchmark of each gene pair in tumor tissues.

(4) Subsequently, the delta rank matrix minus the corresponding bench-
marks of all gene pairs to form the interaction-perturbation matrix,
which was used for next analysis (See details in the Supplementary
Method).

Consensus clustering
The interaction-perturbation matrix was used to identify heterogeneous
CRC subtypes via the consensus clustering algorithm implemented in the
ConsensusClusterPlus package42. The clustering features were determined
based on the following criteria: (1) significantly distinguished tumor sam-
ples from normal samples; (2) maintained heterogeneity among all tumor
samples. As previously reported, the top 6000 interactions with significant
differences between normal and tumor samples as well as the top 6000 with
high standard deviation (SD) in tumor samples are intersected to form4203
features for consensus clustering. All derived partitions of cluster K (2-10)
were summarized by clustering co-classification matrices. The program
performed 1000 iterations on resample rate of 0.8 by employing the parti-
tioning around medoids approach and 1-Spearman correlation distance.
Furthermore, the optimal cluster was determined synthetically using the
consensus score matrix and cumulative distribution function (CDF) curve.

Investigating the stability of molecular signatures
Nearest template prediction (NTP) is a single-sample-based flexible class
prediction method that enables cross-platform and multiclass predictions
with confidence assessment43. Signature genes of each subtype were deter-
mined as previously reported (Supplementary Data 3)44. In testing datasets,
NTP was applied to identify four defined subtypes using the expression
profiles of signature genes. Samples with FDR < 0.2 were considered suc-
cessfully classified. Furthermore, this study incorporated a CRC single-cell
cohort (GSE178341), specifically focusing on the extraction of previously
annotated tumor epithelial cells. To categorize these cells into groups
reflective of the various subtype transcriptomes, we used single-sample
Gene Set Enrichment Analysis (ssGSEA) scores to identify epithelial cell
groups based on signature genes unique to each subtype45.

Functional analysis
Toexplore theunderlyingbiological functionof each subtype,weperformed
gene set enrichment analysis (GSEA)46, and terms with FDR < 0.05 were
considered significant. In addition, a total of 9997 gene sets were retrieved
from MSigDB, and the gene expression matrix was converted into a path-
way enrichment scoring matrix through gene set variation analysis
(GSVA)47 algorithm. Characterized pathwayswithin the four subtypeswere
further revealed using the limma package, with thresholds of fdr <0.05 and |
log2FC | >0.2.

Immune landscape
The ssGSEA48 was employed to measure the abundance infiltration of 28
immune cells in bulk tumor samples. Additionally, 27 key immune
checkpoints, including the B7-CD28 family49, TNF superfamily50, and other
molecules51,52, were collected. Immunogenic indicators were also retrieved
for investigating the underlying immune escape mechanisms of four sub-
types (Supplementary Table 2). Cancer-immunity cycle (CIC) proposed by
Karasaki and colleagues20 consists of eight axes of the immunogram score
(IGS), which was measured using ssGSEA algorithm.

Multi-omics landscape
Frequently mutated genes (FMGs) were genes with the top 30 mutation
frequency. GISTIC 2.053 was applied to identify genomic regions with

significant amplifications and deletions, and we quantified the overall
genomic changes by calculating genomic alterations (FGA) fractions,
fractions of genomes lost (FGL), and fractions of genomes obtained (FGG)
to quantify overall genomic changes. Additionally, CNVburdens at the arm
and focal level were quantified based on areas of recurrent alteration ori-
ginating from the GISTIC 2.0 pipeline. Tumor mutational burden (TMB)
was defined as the number of somatic, coding, base substitution, and indel
mutations per megabase of genome examined by using nonsynonymous
and frameshift indels at 5% limit of detection54. TMB was calculated using
single nucleotide variant (SNV) data from the TCGA database with whole-
exome sequencing (WES) profiling.

Immunotherapeutic assessment
To evaluate the therapeutic potential of immunotherapy in each subtype,
four cohorts with both transcriptome data and immunotherapeutic
information were enrolled. Following the Response Evaluation Criteria in
Solid Tumors (RECIST v1.1) criteria, responders and nonresponders
were defined as complete/partial response (CR/PR) and stable/progres-
sion disease (SD/PD), respectively. Subclass Mapping (SubMap) could
quantify the expression similarity between different subgroups in two
datasets55. In this study, we utilized the SubMap algorithm to calculate
the molecular similarity between responders/nonresponders and four
subtypes, further evaluating the therapeutic potential of immunotherapy
in each subtype. Moreover, T-cell inflammatory signature (TIS)56 is an
investigational 18-gene signature that measures a pre-existing but sup-
pressed adaptive immune response within tumors, which was quantified
using the ssGSEA method. A high TIS suggests a higher sensitivity to
immunotherapy.

The specific molecular of the CDN4 subtype
To facilitate the identification ofCDN4phenotypes inCRCsamples, feature
genes of the CDN4 subtype with P < 0.05 and HR > 1 by univariate Cox
regression analysis were retained. The pROC package was applied to cal-
culate the area under the receiver operating characteristic curve (AUC) to
evaluate the CDN4-predicted power of feature genes, of which AUC> 0.9
were included (SupplementaryTable 3). The performance of each candidate
gene in predicting prognosis was comprehensively evaluated in all cohorts
by C-index.

Immunohistochemical staining and quantitative assessment
TheCRChuman tissuemicroarrays (HColA180Su16)werepurchased from
Shanghai Outdo Biotech Company (Shanghai, China), and the accordance
clinical information, including 104 cancer and 76 adjacent non-cancerous
tissues, were obtained from the company website. Immunohistochemistry
(IHC) was performed using AOC3 (1:600; Cat no. 66834-1-Ig, Proteintech,
Wuhan, China). Each specimenwas scored in term of staining intensity (no
staining = 0, weak staining = 1, moderate staining = 2, and strong stain-
ing = 3). Multiplying the intensity score by the proportion of tumor cells
staining generated H-scores.

Statistics and reproducibility
All data processing, visualization, and statistical analysis were conducted in
the R 4.2.1 software. Correlations between two continuous variables were
assessed via Spearman’s correlation coefficient. Initially, we performed
normality tests on these data sets. For data exhibiting normal distribution
and homogeneity of variances, we employed the student t-test and one-way
ANOVA to compare differences between two or multiple groups, respec-
tively. In contrast, for data that are eithernon-normally distributedordonot
meet the criteria for homogeneity of variances, comparisons between two
groups or withinmultiple groups were conducted using theWilcox test and
Kruskal–Wallis test, respectively. Categorical variables were analyzed using
the chi-square test. The p-values were adjusted using False Discovery Rate
(FDR), particularly when performing multiple pairwise comparisons
among groups. To verify the results, we conducted the experiments in
triplicate, confirming their reproducibility.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Public data used in this work can be acquired from the TCGA (https://
portal.gdc.cancer.gov/) and GEO. Other data supporting the findings of
this study are available from the corresponding author upon reasonable
request.
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