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ScLinear predicts protein abundance at
single-cell resolution
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Daniel Hanhart 1,4, Federico Gossi1,4, Maria Anna Rapsomaniki 2, Marianna Kruithof-de Julio 1,3 &
Panagiotis Chouvardas 1,3

Single-cell multi-omics have transformed biomedical research and present exciting machine learning
opportunities. We present scLinear, a linear regression-based approach that predicts single-cell
protein abundance based on RNA expression. ScLinear is vastly more efficient than state-of-the-art
methodologies, without compromising its accuracy. ScLinear is interpretable and accurately
generalizes in unseen single-cell and spatial transcriptomics data. Importantly, we offer a critical view
in using complex algorithms ignoring simpler, faster, and more efficient approaches.

The use of new single-cell profiling technologies has revolutionized our
comprehension of complex biological systems. Single-cell RNA sequencing
(scRNA-seq) has allowed the generationof expression landscapes across cell
types, tissues or organisms with unprecedented resolution1,2. More recently,
single-cell multi-omics have enabled the simultaneous measurement of
different combinations of (epi)genomic, transcriptomic and proteomic
profiles in the same cell. Notable examples include cellular indexing of
transcriptomes and epitopes by sequencing (CITE-seq) that quantifies
pairedRNAand surface protein levels3, andmethods that integrate the assay
for transposase-accessible chromatin (ATAC) for chromatin accessibility
with single-nucleus RNA sequencing4. These datasets offer immense bio-
logical value and present exciting opportunities for machine learning
applications in the biomedical field. The two main tasks arising from such
approaches are modality matching (i.e. aligning single modalities) and
modality prediction (i.e. inferring one modality from another). Those tasks
have been the focus ofmultiple studies5–9 and themain objectives of a recent
crowdsourcing competition, where the winning methods utilized Deep
Neural Networks and Kernel Ridge Regression (KRR), respectively10. As
documented above, complexmachine- and deep-learning (ML/DL)models
are dominating research in the single-cell field. Although the potential of
ML/DL-based single-cell methods is undisputed, this trend may lead to
overshadowing simpler and more interpretable algorithms that could
potentially be equally ormore accurate and effective. In our study, we tested
this hypothesis for the task ofmodality prediction in single-cellmulti-omics.

Results
ScLinear outperforms complex machine/deep learning models
We developed scLinear, a versatile tool that utilizes a linear regression
approach to predict single-cell protein levels fromgene expression. ScLinear
is developed as a comprehensive end-to-end framework, including all

necessary single-cell data analysis steps, namely quality control, pre-
processing and cell type annotation (Fig. 1a). To ensure community reuse,
scLinear offers both the option to trainnewmodels on customdata, and also
comes equippedwithpre-trainedmodels that canbefine-tuned for different
tasks. We utilized the NeurIPS 2021 competition modality prediction
dataset, which contains 66,175 paired gene expression (GEX) to antibody-
derived tags (ADT) measurements from bone marrow mononuclear cells
(BMMCs) of human donors10. We used the train and test sets as used in the
competition to evaluate the submissions. Moreover, we established an
additional set of methods for comparison: a. adapted KRR, removing the
dimensionality reduction of theADTmodality (KRR_new), b. Babel, one of
the pioneering methods based on an autoencoder architecture9 as imple-
mented in the Dance package11 (Babel_Dance) and c. a naive Neural Net-
work (Vanilla_NN). To perform a fair comparison among the 4 methods,
we adapted the same pre-processing for all of them. This strategy will allow
us to compare to the methods participating in the competition and at the
same time deepen the comparison of scLinear to different ML algorithms.

Initially, we evaluated the performance of the four methods (scLinear,
KRR_new, Babel_Dance, and Vanilla_NN) in the competition test dataset
by estimating the root mean squared error (RMSE) and compared their
performance to all the other submissions (Fig. 1b). Strikingly, ScLinear
performed at state-of-the-art levels and was only outperformed by the new
KRR approach. Next, we explored the computational efficiency of the four
methods. ScLinear is vastly more computationally efficient both in terms of
time needed for training (Fig. 1c) andRAMusage (Fig. 1d). Briefly, scLinear
is 3x faster compared to the naïve NN, 14x faster compared to the
Babel_Dance and 13x faster than the new KRR approach. Importantly, it
uses significantly less RAM (35% compared to Babel, 42% compared to
KRR) across the trainingprocess.We repeated the sameprocess 3 times, and
the results are consistent (Fig. 1c, d).
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ScLinear’s predictions in independent datasets and in various
drop-out rates
We then sought to examine scLinear’s generalizability and robustness. We
evaluated the model trained on the NeurIPS dataset on an unseen multi-
omics (CITE-seq) peripheral blood mononuclear cell (PBMC) dataset.
ScLinear accurately predicts the protein levels irrespective of the individual
protein (Fig. 2a). Notably, four knownmarker genes of the PBMC cell types
(namely CD14, CD19, CD3, and CD56) clearly show the highest predicted
abundance in the anticipated cell type (Fig. 2b). Similar performance was
achieved in an additional humanPBMCdata set (Supplementary Fig. 1a, b),
further supporting the confidence in scLinear’s modeling approach.
Moreover, to investigate model robustness, the dropout rate in the two
PBMC datasets was iteratively increased by randomly adding zeros to the
gene expression matrices. The model performance was evaluated at each
iteration and showed that themodel predictions remain reliable evenat very
high dropout rates (Fig. 2c, Supplementary Fig. 1c).

Furthermore, to explore if this approach can be applied on data from
other organisms, scLinear was trained and tested on CITE-seq data from
mouse lymphnode and spleen samples (Fig. 2d).One sample from the same
tissue was used to train the scLinear model, while the second sample was

used to test the trained model. We observe high correlation values for most
of the proteins, similar to the human datasets. These results demonstrate
a consistent performance, comparable to the human samples and show the
generalizability of scLinear to other species. Taken together, scLinear per-
forms at state-of-the-art levels, while being extremely more efficient and
thus more scalable and widely applicable. Importantly, scLinear accurately
generalizes in a zero-shot context, is robust at very high dropout rates and
can be applied to other model organisms, as well.

ScLinear’s generalizability to spatial data
One of the main limitations of scRNA-seq profiles is the lack of spatial
context. Therefore, in recent years, spatial profiling technologies have
emerged. Importantly, similar to single-cell multi-omics, it is now possible
to simultaneously profile RNA and protein levels while maintaining the
spatial context12. We, therefore, explored if scLinear and its pre-trained
models are applicable in spatial cross modality prediction. We analyzed a
dataset ofTonsil profiledwith spatial transcriptomics and co-detectionof 35
proteins.

ScLinear’s cell type annotation revealed B cells to be the predominant
cell type (Fig. 3a) consistentwithwhat is expected13. 19 out of 35 proteins are
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Fig. 1 | ScLinear overview, efficiency, and accuracy. a ScLinear schematic. bRMSE of predicted values in theNeurIPS test set. cTraining time; n = 3 random seeds. dMedian
RAM usage across training; n = 3 random seeds. The standard deviation of different seeds is shown in error bars.
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common between the trainedmodel and the Tonsil test dataset.Most of the
proteins are accurately predicted with high Pearson correlation values
(Fig. 3b), showcasing that although scLinearwas trained in single-cell data, it
can be successfully applied in spatial datasets. Similar to the PBMC data
observation, CD3 and CD19 protein levels, the most known markers of T
andB cells respectively, are remarkably predicted by scLinear in the relevant
cell types (Fig. 3c). Interestingly,whenexploring thedifferentmodalities and
the predicted values, we clearly see that the predicted values better recapi-
tulate the protein levels compared to the RNA (Fig. 3d), revealing the
importance of such approaches even in spatial transcriptomics datasets
whereprotein levels are not available. Finally, the undisputed and significant
advantage of using a dimensionality reduction and linear regression-based
approach, such as scLinear, is the straightforward interpretability of the
model. We can directly calculate feature importance values that represent
the influenceof each inputGEXfeature on thepredictedprotein abundance.
We therefore estimated the genes that drive the predictions of CD19 and
CD3 in the Tonsil data as representative examples. We see that the top 20
features are highly different between the two proteins (Fig. 3e). Notably,
CD3 genes (CD3E, D and G) are in the most important features for CD3
proteinprediction.GeneOntology (GO)analysis of the top features forCD3
and CD19 show enrichment in T and B cell related biological processes
respectively (Fig. 3f), validating thebiological relevanceof scLinear’smodels.

Discussion
We present scLinear, a versatile tool which is based on a simple linear
regression modeling approach and predicts protein levels from RNA
expression. ScLinear is easily compatible with themost widely used scRNA-
seq workflows and comes with pre-trained models making it broadly
applicable. We show that scLinear performs at state-of-the-art levels while
being vastlymore efficient compared tomore complex approaches. This fact
makes scLinear more scalable and having a smaller carbon footprint. More
importantly, we show that scLinear can generalize in unseen single-cell and
spatial transcriptomics data, further showing its broad applicability. Finally,
scLinear can be used to generate novel hypotheses by its straightforward
interpretable nature.

Although we showed the performance and reliability of scLinear in
protein abundance prediction, there are some limitations to account for,
mostly arising from the availability and characteristics from the CITE-seq
datasets. The measured proteins in the available CITE-seq datasets are, in
their vast majority, immune-related. Therefore, although scLinear shows
very accurate results in hematopoietic cells from healthy donors, its per-
formance in pathological conditions and in modeling the abundance of
non-immune protein markers remain to be explored.

We hypothesize that the superior performance of scLinear in this
specific prediction task could be attributed to several reasons. Initially, our
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work focuses on predicting protein abundances from RNA levels, which
may inherently be predictable with a linear model due to their direct bio-
logical relationship. In contrast, deep learning models, while highly flexible
and powerful, might easily overfit to the training data, leading to poorer
predictive performance on unseen data. Considering the bias-variance
tradeoff, in instanceswhere the available data size is relatively small or noisy,
simpler models like linear regression can outperform training procedures
with higher variance when evaluated on unseen data14. Even if we consider
the double descent phenomenon, where deep neural networks have been
shown to overcome the bias-variance tradeoff by achieving generalization in
the overparametrized regime15, tuning their architecture and hyperpara-
meters is much more challenging than fitting a linear regression on data
preprocessed with established methods. Interestingly, similar observations
have been done in other research fields where linear regression models
outperformed neural networks or other more complex methodologies16–18.

Taken together, we show that, in some cases, simple, efficient, and
interpretable algorithms such as linear regression are better suited even for
challenging machine learning tasks. We propose that, in the future, such
approaches should be explored in even more complex tasks, such as
scATAC-seq modality prediction, against the trend of utilizing by default
complicated ML/DL architectures.

Methods
Methods performance evaluation
Methods’ accuracy was evaluated by estimated the RMSE of the pre-
dictions, in concordance to the NeurIPS competition. We monitored the
execution time and RAM usage of each method. All the methods were
evaluated on the same hardware and software configuration (Laptop
Intel i7 7th gen, Nvidia GTX 1060 mobile, 32 GB RAM, Ubuntu 22.04),
and the monitoring of the system metrics over time was done using the
experiment tracking library Wandb. It is important to note that the
training time for the Babel_Dance and Vanilla_NN methods heavily
depends on the GPU, since they are based on neural networks.

ScLinear - Quality control, pre-processing and cell type
annotation
ScLinear includes pre-processing functions designed to prepare a single cell
RNA sequencing experiment for ADT prediction. These functions come
with default settings that typically provide good quality control and pre-
processing for most datasets. The Seurat framework is utilized to carry out
these pre-processing steps19. First empty droplets can be removed using the
DropletUtils package20. Next, the counts are log normalized, and the most
variable features are identified and scaled with Seurat. Heterotypic doublets
are identified and removed with the scDblFinder tool21. To evaluate the
qualityof the cells, three cell-basedmetrics are used, including the percent of
mitochondrial reads, the amount of reads per cell and the amount of unique
features detected per cell. Low quality outlier cells are determined based on
the median absolute deviation (MAD) implementation from the scater
package22 with a default threshold of 3 MAD. For the percent of mito-
chondrial reads, only the upper threshold is used, while for the other two
metrics, the upper and lower thresholds are used. If multiple batches were
sequenced, the data can be integratedwith the anchor-based reciprocal PCA
method from Seurat. To estimate the number of relevant principle com-
ponents (PCs), the maxLikGlobalDimEst function from the intrinsicDi-
mension package23 is used. Clustering of the data is carried out using the
Louvain algorithm implemented in Seurat, and the resulting clusters are
then annotated using the hierarchical human cell type marker set from
PanglaoDB24 and the scMRMA package25.

ScLinear - Protein abundance prediction
ScLinear’s ADT prediction pipeline is based on the best practices for
single-cell protein abundance prediction from the winning methods of
the NeurIPS 2021 Multimodal single cell data integration challenge. For
the gene expression (GEX) data, we employ the same dimensionality

reduction and normalization steps proposed by the winning team of the
GEX2ADT modality prediction task (Guanlab – dengkw). Specifically,
the first step involves fitting a truncated singular value decomposition
(SVD) on the GEX matrix to reduce the feature dimensionality to 300
components. The second step consists in applying a cell-wise z-score
normalization on the low-dimensional GEX matrix, this produces a
matrix where each cell vector has a mean of 0 and a standard deviation of
1. After these transformations of the GEX matrix, we train a multivariate
linear regression model to predict the ADT matrix.

Weprovide theADTprediction pipelines pretrained on theB cells,NK
cells, and T cells of the NeurIPS 2021 competition dataset, as well as the
pipeline pretrained on the whole dataset. The dataset contains CITE-seq
measurements of 66,175 bone marrow mononuclear cells (BMMCs) from
different donors and collected in different sites. Note that the GEX data is
normalized by dividing the UMI counts through the size factor calculated
with scran and then log1p transformed. The ADT data is normalized using
centered log ratio (CLR) transformation across cells, as implemented in
Seurat. Therefore, the pretrained ADT prediction pipelines should be used
on similarly normalizedGEX data and the predictedADT output should be
interpreted as CLR-normalized.

scLinear’s pretrained ADT prediction pipelines can be applied to any
GEX matrix. The function implemented in R takes as input a Seurat assay
object. The gene names are used to compute the genes of the input GEX
matrix which are in common with the genes on which the pipeline was
trained on. The output of the pipeline consists of a Seurat assay object
containing the predicted ADT matrix. The predicted ADT features are the
same as the ones used in the training data.

Feature importance
We express the feature importance as the Jacobian matrix of the predicted
ADT with respect to the input GEX features. Since scLinear involves three
components—truncated SVD, z-score normalization, and linear regression
—we can decompose the Jacobian of the full model as the product of the
Jacobians of these three components. For the truncated SVD, the Jacobian is
simply the right singular vector matrix. For the linear regression, it is the
weight matrix. For the z-score normalization, we compute the Jacobian
using automatic differentiation provided by the PyTorch library. Thus,
the resulting feature importance matrix contains the partial derivatives of
each predicted protein with respect to each input gene. The feature
importance values directly quantify the effect on the predicted ADT of
perturbing each individual GEX feature. This enables straightforward
interpretation of the most influential genes for predicting each protein.
Functional enrichment analysis of the most informative genes was per-
formed using Enrichr26 (version June 8, 2023) and the Gene Ontology
Biological Processes gene set27 (2023 version). The pvalues are calculated
with one-tailed Fisher’s exact test and are adjusted formultiple comparisons
(Benjamini-Hochberg method).

Dropout simulation
Dropout rate of thePBMC10KandPBMC5Kdatawere iteratively increased
to investigate prediction robustness. In each iteration, non-zero values from
the countmatrixwere randomly sampled fromaBernoulli distributionwith
a probability of success of 10%. Subsequently, the sampled valueswere set to
0, increasing the dropout rate and the new dataset was used to predict the
ADTvalues. This process was iteratively repeated until a dropout rate above
99% was reached. In each cell, the Pearson correlation between predicted
and measured ADT values was calculated.

Statistics and reproducibility
Correlation values are estimated with two-sided Pearson method. Mean
values+/− the standard deviation are shown as barplots with error bars.
Source data for the figures, ScLinear’s source code and a notebook to
reproduce the figures are available in github (https://github.com/
DanHanh/scLinear, https://github.com/DanHanh/scLinear_appendix),
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Zenodo (https://zenodo.org/records/10602787, https://zenodo.org/
records/10602824) and in in Supplementary Data 1.

Data processing
The PBMC data were loaded with R (v4.3.1) with Seurat (v4.4.0) and
automatically processed by the prepare_data function from scLinear, as
described under “ScLinear - Quality control, preprocessing and cell type
annotation”. The following package versions were used: scDblFin-
der(v1.14.0), scater (v1.28.0), intrinsicDimension(v1.2.0), scMRMA (v1.0).
Quality control on the ADT assay was performed with the cleanTagCounts
function from DropletUtils(v1.20.0) with default parameters. After quality
control, the isotype controls were removed from the ADT assay. The Tonsil
data were processed using Seurat, spots containing more than 25% mito-
chondrial reads and less than 500 unique features were removed. Gene
expression data was normalized with SCTransform, and the ADT assay
using centered log ratio transformation as implemented in Seurat. The data
was then clustered through the Louvain algorithm using the first 30 PCs.
The predominant cell type for each spot was annotated with the scMRMA
package.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data used in this study are available in the public domain. The
NeurIPS data are available in Gene Expression Omnibus (GSE194122).
The PBMC, Tonsil, and Mouse data are available via the 10x Genomics
public datasets webpage (https://www.10xgenomics.com/resources/
datasets?query=&page=1&configure%5BhitsPerPage%5D=50&configure
%5BmaxValuesPerFacet%5D=1000). PBMC10K: 10k PBMCs from a
Healthy Donor - Gene Expression with a Panel of TotalSeq™-B Antibodies,
Cell Ranger 3.0.0, 10x genomics, (2018, Nov., 19). PBMC5K: 5k Peripheral
Blood Mononuclear Cells (PBMCs) from a Healthy Donor with a Panel of
TotalSeq™-B Antibodies (v3 chemistry), Cell Ranger 3.1.0, 10X genomics
(2019, July, 24). Tonsil: Visium CytAssist Gene and Protein Expression
Library of Human Tonsil, H&E, 6.5 mm (FFPE), Space Ranger 2.1.0, 10x
genomics, (2023, May, 15). Mouse: Mixture of Cells from Mouse Lymph
Nodes and Spleen Stained with TotalSeq™-C Mouse Universal Cocktail,
Cell Ranger 7.2.0, 10x genomics, (2023, Sep, 14). The source data behind
Figures: 1b–d, 2a–d, 3b–c, 3e–f and Supplementary Figs.: 1a–c can be
found in Supplementary Data 1.

Code availability
The scLinear R package can be found at https://zenodo.org/records/
1060278728 or at https://github.com/DanHanh/scLinear. Additional source
code and accompanying information can be found at https://zenodo.org/
records/1060282429 or at https://github.com/DanHanh/scLinear_appendix.

Received: 4 August 2023; Accepted: 22 February 2024;

References
1. The Tabula Sapiens Consortium. The Tabula Sapiens: a multiple-

organ, single-cell transcriptomic atlas of humans. Science 376,
eabl4896 (2022).

2. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs
creates a Tabula Muris. Nature 562, 367–372 (2018).

3. Stoeckius, M. et al. Simultaneous epitope and transcriptome
measurement in single cells. Nat. Methods 14, 865–868 (2017).

4. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals
principles of regulatory variation. Nature 523, 486–490 (2015).

5. Gossi, F. et al. Matching single cells across modalities with
contrastive learning and optimal transport. Brief. Bioinform. 24,
bbad130 (2023).

6. Wen, H. et al. Graph Neural Networks for Multimodal Single-Cell Data
Integration. in Proc. 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining 4153–4163 (Association for Computing
Machinery, New York, NY, USA, 2022). https://doi.org/10.1145/
3534678.3539213.

7. Tu, X., Cao, Z.-J., Chenrui, X., Mostafavi, S. & Gao, G. Cross-Linked
Unified Embedding for cross-modality representation learning. Adv.
Neural Inf. Process. Syst. 35, 15942–15955 (2022).

8. Lakkis, J. et al. A multi-use deep learning method for CITE-seq and
single-cell RNA-seq data integration with cell surface protein
prediction and imputation. Nat. Mach. Intell. 4, 940–952 (2022).

9. Wu, K. E., Yost, K. E., Chang, H. Y. & Zou, J. BABEL enables cross-
modality translation between multiomic profiles at single-cell resolution.
Proc. Natl Acad. Sci. USA 118, e2023070118 (2021).

10. Lance, C. et al. Multimodal single cell data integration challenge:
Results and lessons learned. inProc.NeurIPS2021Competitions and
Demonstrations Track 162–176 (PMLR, 2022).

11. Ding, J. et al. DANCE: A deep learning library and benchmark platform
for single-cell analysis. Preprint at https://doi.org/10.1101/2022.10.
19.512741 (2023).

12. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and
applications for single-cell and spatial multi-omics. Nat. Rev. Genet.
24, 494–515 (2023).

13. Boyaka, P. N. et al. Human nasopharyngeal-associated
lymphoreticular tissues. Functional analysis of subepithelial and
intraepithelial B and T cells from adenoids and tonsils. Am. J. Pathol.
157, 2023–2035 (2000).

14. Von Luxburg, U. & Schölkopf, B. Statistical Learning Theory: Models,
Concepts, and Results. In Handbook of the History of Logic, Vol. 10
(eds Gabbay, D. M., Hartmann, S. & Woods, J.) 651–706 (North-
Holland, 2011).

15. Belkin,M., Hsu, D.,Ma, S. &Mandal, S. Reconcilingmodernmachine-
learning practice and the classical bias–variance trade-off. Proc. Natl
Acad. Sci. USA 116, 15849–15854 (2019).

16. Jiao,S., Gao, Y., Feng, J., Lei, T. &Yuan, X. Doesdeep learningalways
outperform simple linear regression in optical imaging? Opt. Express
28, 3717–3731 (2020).

17. Bartol, K., Bojanić, D., Petković, T., Peharec, S. & Pribanić, T. Linear
regression vs. deep learning: a simple yet effective baseline for human
body measurement. Sensors 22, 1885 (2022).

18. Dunne, E., Santorelli, A., McGinley, B., O’Halloran, M. & Porter, E.
Linear regression for estimating bladder volume with voltage signals.
in (IEEE, 2018). https://doi.org/10.23919/EMF-MED.2018.8526019.

19. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell
184, 3573–3587.e29 (2021).

20. Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty
droplets in droplet-based single-cell RNA sequencing data. Genome
Biol. 20, 63 (2019).

21. Germain, P.-L., Lun, A., Meixide, C. G., Macnair, W. & Robinson, M. D.
Doublet identification in single-cell sequencing data using scDblFinder.
F1000Res. 10, 979 (2022).

22. McCarthy,D. J., Campbell, K. R., Lun,A. T. L. &Wills,Q. F. Scater: pre-
processing, quality control, normalization and visualization of single-
cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

23. Johnsson, K. Structures in High-Dimensional Data: Intrinsic
Dimension and Cluster Analysis (Centre for Mathematical Sciences,
Lund University, Lund, 2016).

24. Franzén, O., Gan, L.-M. & Björkegren, J. L. M. PanglaoDB: a web
server for exploration of mouse and human single-cell RNA
sequencing data. Database 2019, baz046 (2019).

25. Li, J., Sheng,Q., Shyr, Y. & Liu, Q. scMRMA: single cell multiresolution
marker-based annotation. Nucleic Acids Res. 50, e7 (2022).

26. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Res. 44,
W90–W97 (2016).

https://doi.org/10.1038/s42003-024-05958-4 Article

Communications Biology |           (2024) 7:267 6

https://zenodo.org/records/10602787
https://zenodo.org/records/10602824
https://zenodo.org/records/10602824
https://www.10xgenomics.com/resources/datasets?query=&page=1&configure%5BhitsPerPage%5D=50&configure%5BmaxValuesPerFacet%5D=1000
https://www.10xgenomics.com/resources/datasets?query=&page=1&configure%5BhitsPerPage%5D=50&configure%5BmaxValuesPerFacet%5D=1000
https://www.10xgenomics.com/resources/datasets?query=&page=1&configure%5BhitsPerPage%5D=50&configure%5BmaxValuesPerFacet%5D=1000
https://zenodo.org/records/10602787
https://zenodo.org/records/10602787
https://github.com/DanHanh/scLinear
https://zenodo.org/records/10602824
https://zenodo.org/records/10602824
https://github.com/DanHanh/scLinear_appendix
https://doi.org/10.1145/3534678.3539213
https://doi.org/10.1145/3534678.3539213
https://doi.org/10.1145/3534678.3539213
https://doi.org/10.1101/2022.10.19.512741
https://doi.org/10.1101/2022.10.19.512741
https://doi.org/10.1101/2022.10.19.512741
https://doi.org/10.23919/EMF-MED.2018.8526019
https://doi.org/10.23919/EMF-MED.2018.8526019


27. The Gene Ontology Consortium. The Gene Ontology Resource: 20
years and still GOing strong. Nucleic Acids Res. 47,
D330–D338 (2019).

28. Hanhart, D., pchouvardas & FedericoGossi. DanHanh/scLinear:
scLinear. Zenodo https://doi.org/10.5281/zenodo.10602787 (2024).

29. Hanhart, D. & pchouvardas. DanHanh/scLinear_appendix:
scLinear_appendix. Zenodo https://doi.org/10.5281/zenodo.
10602824 (2024).

Acknowledgements
Thiswork was supported by the Swiss National Science Foundation (SNSF)
Sinergia (CRSII5_202297) awarded to M.K.d.J. and M.A.R. and ISREC
TANDEM (CCP 10-3224-9) awarded to M.K.d.J.

Author contributions
Conceptualization: P.C.; Methodology: D.H., F.G., M.A.R., M.K.d.J., P.C.;
Software: D.H., F.G.; Formal analysis and Visualization: D.H., F.G., P.C.;
Writing—Original draft: D.H., F.G., P.C.; Writing—Review and Editing: D.H,
F.G., M.A.R., M.K.d.J., P.C; Funding acquisition: M.K.d.J.; Supervision:
M.K.d.J., P.C.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-05958-4.

Correspondence and requests for materials should be addressed to
Panagiotis Chouvardas.

Peer review information Communications Biology thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary
Handling Editors: Yuedong Yang, Anam Akhtar, Christina Karlsson
Rosenthal and George Inglis.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-05958-4 Article

Communications Biology |           (2024) 7:267 7

https://doi.org/10.5281/zenodo.10602787
https://doi.org/10.5281/zenodo.10602787
https://doi.org/10.5281/zenodo.10602824
https://doi.org/10.5281/zenodo.10602824
https://doi.org/10.5281/zenodo.10602824
https://doi.org/10.1038/s42003-024-05958-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	ScLinear predicts protein abundance at single-cell resolution
	Results
	ScLinear outperforms complex machine/deep learning�models
	ScLinear’s predictions in independent datasets and in various drop-out�rates
	ScLinear’s generalizability to spatial�data

	Discussion
	Methods
	Methods performance evaluation
	ScLinear - Quality control, pre-processing and cell type annotation
	ScLinear - Protein abundance prediction
	Feature importance
	Dropout simulation
	Statistics and reproducibility
	Data processing
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




