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Parkin inhibits proliferation and migration
of bladder cancer via ubiquitinating
Catalase

Check for updates

Renjie Zhang1,8, Wenyu Jiang1,8, GangWang 2,8, Yi Zhang 3,4, Wei Liu5, Mingxing Li1, Jingtian Yu1,
Xin Yan1, Fenfang Zhou6, Wenzhi Du1, Kaiyu Qian 1,2, Yu Xiao 1,2, Tongzu Liu1 , Lingao Ju 2 &
Xinghuan Wang 1,7

PRKN is a key gene involved in mitophagy in Parkinson’s disease. However, recent studies have
demonstrated that it also plays a role in the development and metastasis of several types of cancers,
both in a mitophagy-dependent and mitophagy-independent manner. Despite this, the potential
effects and underlyingmechanismsofParkin onbladder cancer (BLCA) remain unknown. Therefore, in
this study,we investigated theexpressionofParkin in variousBLCAcohorts derived fromhuman.Here
we show that PRKN expression was low and that PRKN acts as a tumor suppressor by inhibiting the
proliferation and migration of BLCA cells in a mitophagy-independent manner. We further identified
Catalase as a binding partner and substrate of Parkin, which is an important antioxidant enzyme that
regulates intracellularROS levels during cancer progression.Our data showed that knockdownofCAT
led to increased intracellular ROS levels, which suppressed cell proliferation and migration.
Conversely, upregulation of Catalase decreased intracellular ROS levels, promoting cell growth and
migration. Importantly, we found that Parkin upregulation partially restored these effects. Moreover,
we discovered that USP30, a known Parkin substrate, could deubiquitinate and stabilize Catalase.
Overall, our study reveals a novel function of Parkin and identifies a potential therapeutic target
in BLCA.

As the global population ages, cancer is predicted to become the leading
cause of death worldwide by 20301,2. Bladder cancer (BLCA) is projected to
be the fourth most common cancer in men in the United States, with death
from BLCA ranking eighth by 20233. BLCA is classified into non-muscle-
invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer
(MIBC) based on clinical characteristics. NMIBC has a better prognosis but
is more prone to relapse, while MIBC diagnosis is often accompanied by
distant metastases, leading to a poor prognosis4. The incidence of BLCA is
closely related to risk factors such as smoking and exposure to benzidine.
Increasing evidence suggests that the imbalance between oxidants and
antioxidants may play a pivotal role in the development of BLCA5.

Therefore, gaining a comprehensive understanding of the underlying bio-
logical mechanisms of BLCA progression and metastasis is crucial in dis-
covering new therapeutic approaches.

The ubiquitin protease system (UPS) is a critical epigenetic mod-
ification involved in the entire process of tumor development and
progression6. Parkin, encoded by the PRKN gene, is an E3 ubiquitin ligase
initially identified in autosomal recessive inherited juvenile Parkinson’s
disease7. Subsequent research revealed that phosphorylation of Parkin by
phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK-1) has a
neuroprotective function by removing damaged mitochondria through
mitophagy8. In recent years, increasing studiesand reviewshave emphasized
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a potentially more significant role of Parkin in cancer9–11, one that depends
on its well-known function in mitophagy12,13, while the other relies on its
crucial role as anE3ubiquitin ligase, acting as an antitumor factor bydirectly
or indirectly affecting genes in some critical pathways10,14–16. Notably, Parkin
is downregulated in multiple cancers17,18. Although one study reported the
involvement of Parkin in mitophagy in BLCA19, the effects of Parkin on the
biological behavior of BLCA cells were not explored.

Oxidative stress has been recognized as a significant factor in the
occurrence and development of tumors20,21. Reactive oxygen species (ROS),
which include hydroxyl radicals (·OH), superoxide anions radicals (·O2

-),
and hydrogen peroxide (H2O2), are considered a double-edged sword.
Physiologically, ROS play a crucial role in organisms. Excessive ROS can
damage proteins and DNA through oxidative damage, causing many dis-
eases, including cancer. ROS can cause cancer cells to die in high
concentrations22,23. Catalase, a relatively ancient redox protein, is mainly
involved in regulating ROS (mainly H2O2), which is important for main-
taining intracellular redox levels24,25. However, the role of Catalase in cancer
is still controversial, and its expression varies in multiple cancers. For
instance, Catalase has been observed to have higher expression in chronic
lymphocytic leukemia26, melanoma27, gastric carcinoma28, and glioma29. In
contrast, the expression level or activity ofCatalase is decreased inpancreatic
cancer30, prostate carcinoma31, acutemyeloid leukemia32, colorectal cancer33,
andnon-melanoma skin cancer27. InBLCA, lower expression and activity of
Catalase have been reported34,35. However, recent studies found that a sig-
nificant increase in Catalase activity was observed in BLCA patients com-
pared to controls36,37. Clearly, the role of Catalase in BLCA requires further
investigation.

Ubiquitin-specific protease 30 (USP30) is a protein located in the
mitochondrial outer membrane and peroxisomes and is characterized by a
unique transmembrane domain38. As a ubiquitin-specific deubiquitinase,
USP30 cleaves the Lys6-ubiquitin chain39 and Lys11-linked polysomes40.
Studies have shown that USP30 regulates peroxisomal autophagy inde-
pendently of PINK1 and Parkin41. Moreover, USP30 has been found to
stabilize DRP1, promote liver tumor growth42, and regulate tumor
metabolism43.However,USP30canalso antagonizeParkin in the autophagy
pathway44,45. Therefore, investigation of the role ofUSP30 in BLCA could be
intriguing.

Clinical and epidemiological evidence strongly suggests that PRKN is
an important tumor suppressor gene in several types of cancer, and low
expression levels of PRKN are associated with poor prognosis. In this study,
we have demonstrated that PRKN functions as a tumor suppressor gene in
BLCA by reducing Catalase through the ubiquitination of Catalase and
reducing USP30, which in turn stabilizes Catalase. This regulation of ROS
inhibits the proliferation and migration of BLCA cells, which implies that
targeting the Parkin-USP30-Catalase pathway could be a potential mole-
cular therapy for BLCA. Our findings pave the way for further studies
investigating the role of Parkin in BLCA and the development of novel
treatment strategies for BLCA patients.

Results
PRKN has low expression and poor prognosis in BLCA
We first analyzed the expression of PRKN in BLCA using data from TCGA
(https://tcga-data.nci.nih.gov/tcga/). The data indicate that PRKN expres-
sion is reducedby half in BLCA tissues compared to adjacent normal tissues
(Fig. 1a). This finding was consistent in 19 paired samples, including cancer
and adjacent carcinoma samples (Fig. 1b), and we found that PRKN
expression differed according to pathological stage (Fig. 1c). Furthermore,
PRKN was also found to be expressed at low levels in carcinoma tissues in
three different BLCA datasets (Supplementary Fig. 1a). Survival analysis
showed that lowPRKN expressionwas significantly associatedwith a poorer
prognosis (Fig. 1d, e and Supplementary Fig. 1b, c). To confirm this, we
analyzed immunohistochemical (IHC) samples from63BLCApatients and
observed low expression of Parkin in cancer (Supplementary Fig. 1d).
Similarly, patients in the low expression of Parkin group had a worse out-
come inTMAcohort (Fig. 1f).Weobserved the expression of Parkin in both

paracancerous tissue and tumor tissue from the same patient through IHC
staining (Supplementary Fig. 1e).We found that low Parkin expression was
correlated with pathological grade, muscle invasion and T stage (Supple-
mentary Table 1). Furthermore, to further verify the diagnostic value of
Parkin expression, univariate Cox analysis showed that risk factors for poor
prognosis inBLCApatients includedpathological grade,muscle invasion,N
stage and low Parkin expression (Supplementary Table 2). Meanwhile,
multivariate Cox analysis showed that risk factors for poor prognosis in
BLCA patients included pathological grade, muscle invasion, and low
Parkin expression (Supplementary Table 3). In addition, we discovered that
the expression of Parkin in T4 stage BLCA samples and NMIBC samples
decreased (Fig. 1g and Supplementary Fig. 1f, g). Finally, mRNA level
analysis of 9 pairs of BLCA and adjacent normal tissues from Zhongnan
Hospital revealed lower levels of Parkin in the tumor samples (Supple-
mentary Fig. 1h). These results suggest that low Parkin expression is closely
associated with poor prognosis in BLCA patients.

PRKN plays a role as a tumor suppressor in BLCA
We initially assessed the transcriptional and protein expression levels of
Parkin in immortalized uroepithelial cell line SV-HUC-1 and six commonly
used BLCA cell lines using qRT-PCR and Western blot assay (Supple-
mentary Fig. 1i). To investigate the potential functionof Parkin inBLCA,we
transiently transfected empty vector andParkin intohumanBLCA cell lines
(T24, 5637, and UM-UC-3 cells). Overexpression of Parkin was verified to
be efficient (Supplementary Fig. 2a). We then evaluated the proliferation
and migration ability of the cells using MTT and clonogenic assays, which
demonstrated that Parkin overexpression significantly inhibited prolifera-
tion in T24, 5637, and UM-UC-3 cells (Fig. 2a–c and Supplementary
Fig. 2b–d). Transwell and wound healing assays showed that Parkin over-
expressionmarkedly reduced themigration capacity of T24, 5637, andUM-
UC-3 cells (Fig. 2d–f and Supplementary Fig. 2e, f). Western blot analysis
revealed that Parkin overexpression significantly reduced the expression of
mesenchymal-derived proteins, such as N-Cadherin, MMP9, Slug, Snail,
and Vimentin during EMT while increasing the expression of epithelial-
derivedE-Cadherin (Fig. 2g). These results suggest thatPRKNplays a role as
a tumor suppressor by inhibiting proliferation and migration in BLCA.

Parkin upregulation was not associated with autophagy but
increased intracellular ROS
Parkin is an essential molecule in the mitophagy pathway that transmits
signals during the activation of autophagy8,46. However, recent studies have
shown that Parkin also plays roles independent of autophagy9. Here, we
aimed to investigate whether the effects of Parkin on BLCA are linked to
autophagy. First, we used the JC-1 assay kit to determine the level of
membrane potential after Parkin overexpression and found no significant
difference in themembrane potential depolarization ratio in T24, 5637, and
UM-UC-3 cells (Fig. 3a and Supplementary Fig. 3a). Next, we measured
SQSTM1/p62 and protein changes reflecting changes in LC3-II and LC3-I
during autophagy and found that Parkin overexpression was not related to
autophagy-related proteins (Fig. 3b). Using transmission electron micro-
scopy (TEM), we observed the morphology and quality of mitochondria
after Parkin overexpression and found that mitochondrial morphology and
quality were normal in T24, 5637, and UM-UC-3 cells (Fig. 3c).We further
carried out multiple immunofluorescence experiments to investigate this
phenomenon. First, following transient transfection of GFP-Parkin plas-
mids in BLCA cells, we labeled the cell mitochondria withMitoTracker and
observed the localization of Parkin under basal conditions and after indu-
cing mitophagy with CCCP via confocal microscopy. The results revealed
that in T24 cells, transient transfection ofGFP-Parkin plasmids resulted in a
uniform distribution of Parkin in the cytoplasm and nucleus (Fig. 3d).
However, upon mitophagy induction with CCCP, Parkin significantly
aggregated and accumulated on mitochondria (Fig. 3d). This phenomenon
was further confirmed in 5637 andUM-UC-3 cells (Supplementary Fig. 3b,
c). Considering the established role of Parkin inmitophagy, we infer that in
human BLCA cells, mitophagy activation leads to the activation and
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Fig. 1 | Expression level of the PRKN gene in BLCA. a PRKN expression levels in
BLCA (n = 404) and control (n = 19) samples determined by using the Wilcoxon
test, p = 4.6e-10. Data were obtained from the TCGA database. b Comparison of
PRKN expression levels in BLCA (n = 19) versus paired samples (n = 19) by using the
Wilcoxon test, p = 0.00042. Data were obtained from the TCGA database. c The
relationship betweenPRKN expression andBLCA stagewas determined by using the
Kruskal-Wallis test, p = 0.023, and the data were obtained from the TCGA database.
d Survival analysis was used to explore the relationship between PRKN expression

level and BLCA prognosis (p = 0.0062). The data were obtained from the GSE13507
dataset (n = 165). e Survival analysis was used to explore the relationship between
PRKN expression level and BLCA prognosis (p = 0.033). The data were obtained
from the GSE86411 dataset (n = 131). f Survival analysis was used to explore the
relationship between Parkin expression level and BLCA prognosis (p = 0.0011). The
data were obtained from 63 human BLCA samples. g IHC showed that Parkin were
detected in different T stages from the samples of human BLCA in TMA, scale bar:
0.5 mm, 100 μm (enlarged).
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enrichment of Parkin onmitochondria, thereby participating in subsequent
mitophagy processes—a classic function of Parkin in mitophagy. Addi-
tionally, we stably transfected 5637 and UM-UC-3 cells with GFP-LC3
lentivirus and subsequently transiently transfected them with Flag-Parkin
plasmids (Fig. 3e, f). After treatment with CQ for 8 h followed by CCCP for
4 h, we stained the mitochondria of stably transfected GFP-LC3 cells using
MitoTracker. Subsequently, the fixed cells were subjected to immuno-
fluorescence and imaging experiments. The results demonstrated that, in
the control group, there were no or few autophagosomes (GFP-LC3 puncta,
Fig. 3e, f). The addition of the autophagy inhibitor CQ inhibited the binding
of autophagosomes to lysosomes; further stimulation by CCCP activated
mitophagy and increased the number of autophagosomes (GFP-LC3
puncta, Fig. 3e, f). Additionally, compared to Parkin-negative cells, both
stable GFP-LC3 lentivirus-transfected 5637 and UM-UC-3 cells expressing
Parkin accumulated more autophagosomes (GFP-LC3 puncta, Fig. 3e, f).
Furthermore, we constructed stable mCherry-EGFP-LC3 lentivirus-
transfected 5637 cell lines following similar procedures as above. The
results indicated that upon treatment with CQ and CCCP stimulation in
mCherry-EGFP-LC3 lentivirus-transfected stable 5637 cell lines expressing
Parkin accumulatedmore autophagosomes (labeled in yellow bymCherry-
EGFP-LC3, Fig. 3g). These findings demonstrated that upon activation of
mitophagy in bladder cancer cells, the presence of Parkin leads to its
aggregation on mitochondria, recruiting more autophagosomes and
thereby accelerating mitophagy processes. Finally, we provided further
evidence of consistent protein levels of LC3I/II in cells with stable Parkin
expression, irrespective of whether Parkin was overexpressed (Fig. 3b and
Supplementary Fig. 3d). However, upon the addition of CCCP and CQ,
Parkin-overexpressing cells exhibited elevated levels of LC3II protein
(Supplementary Fig. 3d). Subsequently, we observed heightened intracel-
lular levels ofROSandunchanged levels ofmitochondrial ROS (mROS) and
mitochondrial hydrogen peroxide (mH2O2) in T24, 5637, and UM-UC-3
cells following Parkin overexpression, as evidenced by immunofluorescence
(Fig. 3h-j and Supplementary Fig. 3e–g) and flow cytometry analysis
(Supplementary Fig. 4a–c), in comparison to the control cells. To examine
whether the inhibition of BLCA cell proliferation and migration following
Parkin overexpression was caused by ROS, we added 10mM NAC (N-
Acetyl-L-cysteine, a ROS inhibitor) or 1mM H2O2 solution to the empty
vector- and Parkin-overexpressing cells. After 24 h, a clonogenic assay was

performed, and we observed that NAC restored cell proliferation inhibited
byParkinoverexpression,whileH2O2deepened the inhibitory effect on cells
(Supplementary Fig. 4d). Since ROS may cause cells to undergo apoptosis
and Parkin can affect apoptosis by phosphorylating the BCL-2 protein47, we
examined the apoptotic changes in 5637 cells after Parkin overexpression.
Flow cytometry results showed that overexpression of Parkin failed to
increase the proportion of apoptotic cells (Fig. 3k). In light of reports sug-
gesting thatROSmay influence cell cycle arrest and subsequently impact cell
proliferation48, we proceeded to conduct cell cycle analysis on cells over-
expressing Parkin. These findings revealed a partial S-phase arrest in T24
and UM-UC-3 cells, which was mitigated by NAC treatment (Fig. 3l and
Supplementary Fig. 3h).

Parkin negatively regulates Catalase degradation by
ubiquitination
Initially, to investigate the link between Parkin upregulation and increased
intracellular ROS levels, we performed GSEA on the TCGA database and
GSE13507 dataset. Our results showed that the high-Parkin group was
highly related to peroxidase (Fig. 4a). We then examined several redox
proteins byWestern blot and found that Catalase, but not SOD2/MnSOD,
decreased with increased Parkin protein expression (Fig. 4b). To verify
whether this regulatory mechanism was present in BLCA cells, we trans-
fected empty vector, Parkin, and Parkin loss-of-function mutant (C431S)
plasmids into T24, 5637, and UM-UC-3 cells and found that Parkin indeed
negatively regulatedCatalase (Fig. 4c and Supplementary Fig. 5a). However,
transcription levels did not change in T24, 5637, or UM-UC-3 cells (Sup-
plementary Fig. 5b). To ascertain whether this regulation occurs through
direct interaction or indirect effects, we conducted co-immunoprecipitation
(co-IP) experiments in 293 T cells and bladder cancer cells. Moreover, we
found that the two proteins interacted by co-IP in 293 T cells, while Parkin
(C431S) reduced this effect (Fig. 4d and Supplementary Fig. 5c). In addition,
endogenous IP in Parkin-overexpressing BLCA cells revealed a interaction
between Parkin and endogenous Catalase (Fig. 4e). Given the crucial role of
Parkin as anE3ubiquitin ligase and its demonstrated interaction,weposited
that Catalase could be a substrate of Parkin. To explore whether Parkin
influences the stability of Catalase, we conducted cycloheximide (CHX)
assays. Our observations revealed a significant reduction in the half-life of
Catalase following Parkin overexpression in both 293 T and BLCA cells
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(Fig. 4f, g). To investigate themechanism of Catalase degradation, we added
DMSO (as a control), MG132 (10 μM, a proteasome inhibitor), or CQ
(10 μM,anautophagy lysosome inhibitor).Westernblot results showed that
MG132, but not CQ, effectively restored the reduced Catalase induced by
Parkin overexpression (Fig. 4h), which was further confirmed in Parkin
BLCA cells (Supplementary Fig. 5d). Thus, the Parkin-induced reduction in
Catalase depends on the proteasome pathway. Since Parkin acts as an E3
ubiquitin ligase, we hypothesized that Catalase may be specifically recog-
nizedbyParkin andundergo ubiquitin-mediated degradation.Western blot

analysis confirmed that the ubiquitination level of Catalase increased sig-
nificantly duringParkinoverexpression (Fig. 4i), supporting ourhypothesis.

CAT knockdown inhibited the proliferation of BLCA cells, while
overexpression had the opposite effect
To evaluate Catalase’s potential role in human BLCA, we knocked down
and overexpressed Catalase in BLCA cells and verified its efficiency (Sup-
plementary Fig. 6a-b). As an important oxidoreductase, Catalase decom-
poses excess H2O2 in cells into H2O and O2, leading to a decrease in ROS
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levels in cells49. Therefore,wefirst examined theROS level in the cells byflow
cytometry and found that ROS levels significantly increased after CAT
knockdown in T24, 5637, and UM-UC-3 cells (Fig. 5a, Supplementary
Fig. 6c, e and g), whereas overexpression showed the opposite effect (Fig. 5b,
Supplementary Fig. 6d, f, and h). Next, we evaluated cell proliferation using
MTT and clonogenic assays, which showed that CAT deficiency evidently
attenuated proliferation in T24, 5637, and UM-UC-3 cells (Fig. 5c, Sup-
plementary Fig. 6i, k, m, 7a and c), whereas Catalase overexpression sig-
nificantly increased proliferation in T24, 5637 and UM-UC-3 cells (Fig. 5d,
Supplementary Fig. 6j, l, n, 7b and 7d). We then evaluated the effect of
Catalase on the migratory ability of tumor cells by Transwell and wound
healing assays. SilencingCATmarkedly decreased themigratory capacity in
T24, 5637, and UM-UC-3 cells (Fig. 5e, Supplementary Fig. 7e, g, i, and k),
and overexpression of Catalase distinctly enhanced the migratory capacity
in T24, 5637, andUM-UC-3 cells (Fig. 5f, Supplementary Fig. 7f, h, j and l).
TheWesternblot results showed that knockdownofCAT coulddecrease the
generation of mesenchymal-derived proteins such as N-Cadherin, Snail,
and Vimentin during EMT but increase epithelial-derived E-Cadherin
(Fig. 5g), while overexpression had the opposite effects (Fig. 5h). The above
results indicate that Catalase regulates the intracellular ROS level in BLCA
cells and functions as anoncogene inBLCAbycausing changes in tumor cell
phenotypes.

USP30canbenegatively regulatedbyParkinanddeubiquitinated
to stabilize Catalase
Several studies have reported that USP30 is a classic antagonist of
Parkin40,50,51. Bingol et al. demonstrated that USP30 can be ubiquitinated by
Parkin and act as a substrate51. Here, we first found that the overexpression of
Parkin, rather than Parkin (C431S), could reduce the protein level of USP30
(Fig. 6a). A CHX assay showed that overexpression of Parkin strongly
decreased the half-life of the exogenous USP30 protein (Fig. 6b). We further
confirmed the interaction between Parkin and USP30 through co-IP
(Fig. 6c). Although we validated this interaction and established the existence
of mutual interaction between Parkin and USP30 in BLCA cells (Fig. 4e), it
remains unclear whether USP30 is involved in the Parkin-mediated reg-
ulation of catalase in bladder cancer. To investigate whether the regulation of
Catalase by Parkin is related to USP30 in BLCA cells, we transfected empty
vector, USP30, and USP30 (C77S, a common point mutation affecting
enzyme activity) into stable Parkin-overexpressing T24 and 5637 cells. We
found that the addition of USP30, but not USP30 (C77S), partially restored
the growth-inhibiting effect of Parkin in the cells (Fig. 6d). Next, we inves-
tigated how USP30 affects Parkin-mediated regulation of Catalase. First,
USP30 has been implicated in peroxisomal autophagy41,44,45,52. Given that
catalase is one of the major proteins in peroxisomes, we investigated the
potential impact of USP30, a deubiquitinating enzyme, on Catalase. We
found that overexpression of USP30 could directly increase endogenous
Catalase (Fig. 6e) and that USP30 interactedwith Catalase (Fig. 6f). Given the
significance of USP30 as a deubiquitinating enzyme and its demonstrated

interaction with Catalase, we hypothesized that Catalase could be a substrate
of USP30. To explore whether USP30 influences the stability of Catalase, we
conducted CHX assay. CHX assay showed that, compared with empty
vector, the overexpression of USP30 strongly increased the half-life of the
exogenous Catalase protein (Fig. 6g). To further elucidate the mechanism of
Catalase stabilization, we treated cells with DMSO or MG132 in our
investigation. Among the endogenous Catalase, only USP30, not USP30
(C77S), exhibited increased expression (Fig. 6h). The effect of USP30 on
Catalase was found to be dependent on the proteasome pathway, as MG132
inhibited proteasomal degradation and amplified the positive regulatory
effect of USP30 on Catalase (Fig. 6h). Moreover,Western blot analysis of 293
T cells revealed that the level of ubiquitinated Catalase was lower in cells
overexpressing wild-type USP30 than in those in the empty vector group
(Fig. 6i), indicating that USP30 can stabilize Catalase by deubiquitinating it.
Taken together, these findings suggest that USP30 plays a critical role in
stabilizing Catalase via deubiquitination and is involved in the regulation of
Catalase by Parkin in BLCA cells.

Parkin inhibits the proliferation and migration of BLCA cells via
Catalase
To ascertain the combined effects of Parkin and Catalase in BLCA, we
divided the cells into four groups for subsequent cell function experiments.
First, we examined the intracellular ROS levels in transiently transfected cell
lines. We found that overexpression of Parkin increased ROS levels, while
overexpression of Catalase decreased ROS levels (Supplementary Fig. 8a–c).
The altered ROS levels were partially restored when both plasmids were
transfected together (Supplementary Fig. 8a-c). Then, we generated stable
lentiviral cells (empty vector, Parkin, Catalase, and Parkin + Catalase) and
evaluated cell proliferation usingMTT and clonogenic assays.We found that
overexpression of Catalase rescued the Parkin-mediated inhibition of cell
proliferation in T24, 5637, and UM-UC-3 cells (Fig. 7a–c and Supplemen-
tary Fig. 8d–f). Next, we determined the effect on tumor cell migratory ability
using Transwell and wound healing assays and found that overexpression of
Catalase rescued the Parkin-mediated inhibition of cell migration in T24,
5637, and UM-UC-3 cells (Fig. 7d–i and and Supplementary Fig. 8g–i).
Western blot analysis showed that Catalase overexpression rescued the
expression of mesenchymal-derived proteins such as N-Cadherin, MMP9,
Slug, Snail, and Vimentin, which were inhibited by Parkin overexpression in
T24, 5637, and UM-UC-3 cells (Fig. 7j). Furthermore, it reduced the increase
in epithelial-derived E-Cadherin induced by Parkin overexpression (Fig. 7j).
The results of the above experiments indicate that Parkin inhibits the pro-
liferation and migration of BLCA cells via Catalase.

Parkin suppresses tumor growth and lung metastasis in vivo
Next, we used four types of stably transfected lentiviral T24 cell lines (empty
vector, Parkin, Catalase, and Parkin + Catalase) to establish xenograft
models. Parkin overexpression significantly reduced tumor volume and
weight compared to controls. Conversely, Catalase overexpression

Fig. 3 | Overexpression of Parkin increased intracellular ROS levels in an
autophagy-independent manner. a The depolarization levels of the mitochondrial
membrane potential in T24, 5637, and UM-UC-3 cells were analyzed by flow
cytometry (n = 3, unpaired two-tailed Student’s t-test). bWestern blot showing the
expression of autophagy-related proteins (SQSTM1/p62 and LC3B-I/II) in Parkin
upregulation in T24, 5637, and UM-UC-3 cells. cMitochondrial morphology was
observed by TEM in T24, 5637, and UM-UC-3 cells following Parkin over-
expression, scale bar: 1 μm, 200 nm (enlarged). d Representative immuno-
fluorescence images of GFP-Parkin overexpressed in T24 cells, labeled with control
and CCCP-treated mitochondria (MitoTracker), are shown. n = 5, scale bar: 20 μm.
Representative immunofluorescence images of 5637 (e) and UM-UC-3 (f) cells
stably transfected with GFP-LC3, overexpressing Flag-Parkin, and labeled with
DMSO or CCCP+ CQ, are shown. The statistical graphs presented on the right
quantify the GFP-LC3 puncta (green) associated with mitochondria (red) in both
Parkin-negative and Parkin-positive cells (blue) (scale bar: 20 μm, n = 3, one-way
ANOVA, a total of 28–32 slides were randomly acquired, with each slide containing

a minimum of one Parkin-positive cell). g Representative immunofluorescence
images of 5637 cells stably transfected with mCherry-EGFP-LC3, overexpressing
Flag-Parkin (blue), and labeled with CCCP+ CQ, are shown. The corresponding
statistical analysis is presented on the right (scale bar: 20 μm, n = 3, one-way
ANOVA, a total of 52 slides were randomly acquired, with each slide containing a
minimum of one Parkin-positive cell). hThe intracellular ROS levels weremeasured
by DCFH-DA via immunofluorescence in T24 (scale bar: 120 μm, n = 5, unpaired
two-tailed Student’s t-test). The mitochondria ROS levels (i) and mitochondria
H2O2 (j) were measured byMitoSOX Red andMitoPY1 via immunofluorescence in
T24 (scale bar: 120 μm, n = 5, unpaired two-tailed Student’s t-test). kThe proportion
of apoptotic 5637 cells was determined by flow cytometry after overexpression of
Parkin (n = 3, unpaired two-tailed Student’s t-test). l Cell cycle analysis of T24 cells
transfected with empty vector or Parkin was performed by flow cytometry, with or
without the addition of NAC. n = 3, one-way ANOVA. Data are the mean ± SD.
Exact p values are shown. The n number represents n biologically independent
experiments in each group.
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significantly increased these parameters (Fig. 8a–c). The double-
overexpression group then exhibited restored inhibition of tumor growth
caused by overexpressing Parkin (Fig. 8a–c). IHC staining revealed that the
number ofKi-67protein-positive cellswas lower in theParkin group than in
the control group but was higher in the Catalase group, and the Catalase

protein-positive level was extremely low in the Parkin group (Fig. 8h).
Additionally, by injecting four groups of cells (1 × 105/50 μL) into the tail
vein and imaged after 50 days, we found that overexpression of Parkin
inhibited the lung metastasis of tumor cells in mice (Fig. 8d, e), while
overexpression of Catalase promoted lung metastasis (Fig. 8d, e). The
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simultaneous overexpression of Parkin and Catalase significantly restored
the lung metastatic capacity of tumor cells in mice overexpressing Parkin
(Fig. 8d, e). Furthermore, the number of pulmonary nodules in each group
was consistent with the above changes (Fig. 8f, g). The results of the above
experiments showed that Parkin inhibited the tumorigenicity and lung
metastasis ability of BLCA cells by inhibiting Catalase in mice.

Discussion
Parkin was initially discovered in Parkinson’s disease7 and subsequently
identified as a key molecule in mitophagy53. Mitophagy removes damaged
mitochondria, thereby exerting neuroprotective effects in multiple

studies8,51. Several reviews have indicated a link between Parkinson’s disease
and cancer54,55, including lung cancer11,56, melanoma57, and glioblastoma58.
Additionally, mitophagy plays a role in cancer regulation under specific
conditions12,13,59,60. This raises the question of whether Parkin plays an
important yet unknown role in cancer. Indeed, recent years have seen a
growing number of studies examining Parkin’s role in various cancers9–11,
which indicate lower levels and poor prognosis in multiple cancers17,18,56.
Therefore, we aimed to investigate Parkin’s function in BLCA.

We examined a variety of BLCA data sets, and combined with human
tissue microarray (TMA), we found that Parkin is expressed at lower levels
in cancer tissues, which is consistent with previous studies17,18,56. We

Fig. 4 | Parkin and Catalase were negatively correlated and interacted. a Gene set
enrichment analysis (GSEA) was performed via the expression level of PRKN in the
GSE13507 dataset (left) and TCGA database (right). FDR, false discovery rate; NES,
normalized enrichment score. bWestern blot shows Catalase protein changes after
dose-dependent upregulation of Parkin in 293 T cells. cWestern blot analysis
showed protein changes in Catalase after Parkin and Parkin (C431S) overexpression
in T24 cells. The corresponding statistical analysis is presented on the right (n = 3,
one-way ANOVA) d Exogenous Parkin protein and Catalase protein were detected
in 293 T cells by co-IP assay. e Endogenous co-IP assays revealed the concomitant
presence of Parkin, USP30, and Catalase proteins in T24, 5637, and UM-UC-3 cells

stably expressing Parkin. The protein bands are indicated by arrow symbols for
Catalase. fWestern blot analysis showing associated protein levels after the addition
of CHX at different times in 293 T cells overexpressing Parkin. g Western blot
analysis of Parkin-overexpressing T24 cells after the addition of CHX for different
durations.hWestern blot showing the protein levels ofGFP-Catalase after treatment
with DMSO, MG132, or CQ in 293 T cells overexpressing Parkin and Parkin
(C431S). i An in vivo ubiquitination assay of Parkin overexpression was performed
in 293 T cells. Data are the mean ± SD. Exact p values are shown. The n number
represents n biologically independent experiments in each group.
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Fig. 5 | Catalase upregulation promotes cell proliferation and migration, and
CAT knockdown has the opposite effect. The intracellular ROS levels were mea-
sured after CAT knockdown (a) (n = 3, one-way ANOVA) and Catalase over-
expression (b) (n = 3, unpaired two-tailed Student’s t-test) by DCFH-DA via flow
cytometry in T24 cells. The MTT assay indicates the proliferative capacity of T24
cells after CAT knockdown (c) and overexpressing Catalase (d) (n = 8, two-way
ANOVA). Transwell assays represent the migration capacity of T24 cells after

knockdown of CAT (e) (scale bar: 200 μm, n = 5, one-way ANOVA) and Catalase
overexpression (f) (scale bar: 200 μm, n = 5, unpaired two-tailed Student’s t-test).
Western blot indicates the expression of EMT-related proteins after knockdown of
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transfected BLCA cells with either transient or stable Parkin and observed
significant inhibition of cell proliferation and migration. Furthermore,
intracellular ROS, rather than mitochondrial ROS or mitochondrial H2O2,
influence this phenomenon.Additionally, Parkin-dependent autophagy did
not occur during this process, indicating that this phenotypic change was
not dependent on the mitophagy pathway. Moreover, published reports
suggest that only ROS originating from mitochondria can induce Parkin

recruitment and initiate Parkin-dependent mitochondrial degradation61.
Another study reported that the primary component of ROS, superoxide,
rather than hydrogen peroxide, serves as the major regulator of Parkin/
PINK1-dependent mitophagy62. Emerging functions of Parkin in cancer,
including metabolic reprogramming9, serine synthesis10, and necrotizing
apoptosis15, have also been reported and could be attributed to its E3 ligase
activity even without mitophagy. Further studies demonstrated that Parkin
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can regulate intracellular ROS levels by modulating the expression of Cat-
alase, a protein related to redox reactions25. Mechanistic studies demon-
strated that Parkin interacts with Catalase and negatively regulates it by
ubiquitination. In addition, we found that USP30, an inhibitor of Parkin,
also participated in the process of inhibiting BLCA cell proliferation41.
USP30was also found to be a substrate of Parkin51.We further revealed that
USP30 canpositively regulateCatalase, and speculated that the regulation of
Catalase by Parkin could also be regulated by the intermediate protein
USP30. Our results confirmed our speculation that Parkin indirectly reg-
ulates Catalase by reducing its stabilization through USP30. A diagram of
the underlying mechanism is shown in Fig. 9.

In the course of activated mitophagy facilitated by Parkin, the latter
serves as a crucial mitophagy factor that effectively eradicates impaired
mitochondria and their associated proteins, consequently mitigating the
levels of ROS within the mitochondria63, although its effect may differ on
certain occasions9. A study found that consuming Parkin could attenuate
PD toxin-induced H2O2

64
. Some research indicates that Parkin may play

different roles in various intracellular environments, but they all stem from
its enzymatic activity. Various studies have explored the ubiquitination of
Parkin9,65–68. For instance, by using induced neurons from embryonic stem
cells and performing quantitative proteomics, one study demonstrated the
potential specificity of the central neural regulation of Parkin-modified

ubiquitin68. Another study utilized comparative genomics and protein
domainmapping analysis to identify novel functional relationships between
Parkin ubiquitination and RNA metabolism in proteomes67. Additionally,
Rose et al. reporteda cell line and tissue sample-compatiblemethod to reveal
the protein and ubiquitination status of mitochondria undergoing PINK1/
Parkin mitophagy, identifying an extensive collection of targets ubiquiti-
nated by Parkin and PINK166. All these studies demonstrate the critical and
unique role of Parkin in ubiquitin-mediated degradation.

High levels of oxidative stress are common characteristics of several
diseases, including tumors. In recent years, several new types of cancer
cell death, such as ferroptosis, cuproptosis, disulfidocytosis, and necrotic
apoptosis, have been discovered in tumors. These types of cell death alter
intracellular oxidative stress and create barriers to the synthesis or
transport of essential substances, resulting in the accumulation of toxic
substances that ultimately lead to high levels of ROS. These ROS can
damage proteins, DNA, and lipids. Several studies have found a corre-
lation between Parkin and multiple biological phenomena, including
lactate metabolism, serine metabolism, necrotic apoptosis, immuno-
metabolism, and lipid remodeling. Parkin may be reminiscent of other
cardinal tumor suppressors, such as p53, suggesting that the two proteins
are highly similar in many aspects. Therefore, Parkin may be considered
the next “p53”9.
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This study has several limitations that should be noted. First, the low or
absent expression levels of Parkin in many BLCA cell lines make it difficult
to observe the biological phenomena of cells effectively when PRKN is
knocked down or knocked out. Second, our study found that the effects of
Parkin on BLCA are independent of mitophagy. Specifically, within BLCA
cells, the expressionofParkindoesnot induce autophagy, as indicatedby the
expressionof LC3.However, Parkin is still capable of engaging inmitophagy
when cells receive specific signals. Furthermore, the overexpression of
Parkin results in elevated levels of ROS; nevertheless, this overexpression
does not impact mitochondrial ROS andmitochondrial H2O2 levels.While
Parkin primarily functions to recruit autophagy-related proteins and
degrade them to reduce ROS levels withinmitochondria upon activation of
mitophagy, its role may vary in the basal state. Additionally, ROS can act as
an important signal to activate mitophagy, but the quantity levels of ROS
and the balance betweenoxidized and reduced proteins in different cells and
microenvironments are also important factors that can determine down-
stream signaling pathways.

In summary, our study uncovers a previously unknown role of Parkin
in cancer cells under oxidative stress without inducing mitophagy. Speci-
fically, we demonstrate that Parkin targets antioxidant proteins to suppress
tumor growth and metastasis through a pathway that does not involve
mitophagy activation. We also show that Parkin’s E3 ligase activity is
necessary for targeting the key redox protein Catalase for degradation.
Furthermore, we demonstrate that USP30, a known Parkin substrate, can
deubiquitinate and stabilize Catalase. These mechanisms lead to altered

intracellular ROS levels and induce cell cycle arrest, ultimately inhibiting
bladder cell proliferation and reducing metastatic tumor growth and lung
metastatic capacity in vivo.

Methods
Human tissue samples
The study using human bladder cancer tissues and paired paracancerous
tissues (n = 9) was approved by the Institutional Ethics Committee of
Zhongnan Hospital of Wuhan University (approval number: 2021125).
Informedconsentwasobtained fromall individuals. Thebladder cancer and
paired paracancerous tissues were collected after radical bladder cancer
surgery and pathological confirmation.

A human tissue microarray (TMA) consisting of 63 patients with
confirmed BLCA (including 16 adjacent tissues) and clinical characteristics
was purchased from Shanghai Outdo Biotech. Clinical information is
provided in Supplementary Table 1, and immunohistochemical (IHC)
stainingwas performedusing an anti-Parkin antibody. The analysis process
was blinded to the clinical outcomes, clinical characteristics, and patholo-
gical stages. Tissue sections were scanned and imaged using a slice scanner.
The TMA plug-in in Quant Center 2.3 analysis software was used to set the
chip tissue point diameter size, rank the number and generate the number
automatically. Positive grades were assigned using the Densito quant
module in theQuantCenter 2.3 analysis software: negativewithno coloring,
weak positive light yellow, medium positive light yellow and strong positive
tanwere counted as “0”, “1”, “2” and “3”points, respectively. The number of
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weak, medium, and strong positive cells and the total cell number were
calculated in the measured area. The percentage of positive cells and the
positive score per spot were calculated from the number of positive cells
(percentage: 1 < 25%, 2 = 25-50%, 3 = 50-75%, 4 > 75%). The staining signal
in the tumor cells was quantified using a scoring system of 0 to 12. The final
score was obtained by multiplying the positive grade by the percentage of
positive cells. Low and high expressionwere defined as scores < average and
≥ average, respectively.

Cell culture
HEK293Tcells and thehumanBLCAcell linesSV-HUC-1,T24,UM-UC-3,
RT4, 5637, ScaBER and J82 were acquired from the Shanghai Cell Bank
(Chinese Academy of Sciences). HEK293T cells were cultured in DMEM
(HyClone), while SV-HUC-1, T24, RT4, 5637, ScaBER and J82 cells were
cultured inRPMI-1640 (Gibco), andUM-UC-3 cellswere cultured inMEM
(Gibco). The cell lines described above were cultured in 10% FBS-

supplementedmedium(ExcellBio, FSP500) andverifiedusing short tandem
repeat (STR) assays. Mycoplasma was not detected in any of the cell lines.

Plasmids and transfection
The PRKN cDNA was ligated into the pcDNA3.1-3×Flag vector. The
plasmid GFP-Parkin was obtained from MiaoLing Plasmid Platform
(Wuhan,China). TheUSP30 cDNAwas inserted into the pEnCMV-3×Myc
vector, while the CAT cDNA was inserted into the pcDNA5 and pCMV-
EGFP vectors. All the plasmids were sequenced prior to use to ensure the
accuracy of their sequences. The small interfering RNA (siRNA) against
CATwas purchased fromGenePharma, and the sequence information was
as follows: si-CAT-1, sense, 5’-CCAAAUACUCCAAGGCAAATT-3’; si-
CAT-2, sense, 5’-GGAAACGUCUGUGUGAGAATT-3’. The recombi-
nant plasmids were sequenced to confirm the absence of sense mutations.
Parkin (C431S) andUSP30 (C77S) pointmutant plasmidswere constructed
using site-directed mutagenesis kits and verified by DNA sequencing.

Fig. 9 | Mechanistic diagram of this study. This study elucidates that Parkin
negatively regulates Catalase, leading to an increase in intracellular ROS levels and
consequently impeding the proliferation and migration of BLCA cells. Mechan-
istically, Parkin directly decreases the protein level of Catalase through ubiquiti-
nation. Moreover, Parkin degrades the established deubiquitinating enzyme USP30,
thereby diminishing its stabilizing effect on catalase through deubiquitination,

ultimately resulting in an indirect reduction in the protein level of Catalase. Creation
of the illustrastions and every element in Fig. 9 was drafted by the authors, and edited
by Dr. Yuruo Chen, a diagram editing expert at the Chinese Academy of Science
using Adobe Photoshop software. No artificial intelligence or database was involved
in the creation of this image.
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The cells were transiently transfected into cells with Lipofectamine 3000
(Invitrogen). The LV5-NC, LV8N-NC, LV5-CAT, LV8N-Parkin, GFP-
LC3, and mCherry-EGFP-LC3 lentiviruses were purchased from
GenePharma.

RNA extraction, reverse transcription and quantitative reverse
transcription PCR (qRT-PCR)
Total RNA from 1×105 cells was first isolated using an RNA extraction kit
(R4111-03, Magen) according to the manufacturer’s instructions. cDNA
was obtained using a reverse transcription kit (TOYOBO, FSQ-101) and
subjected to qRT-PCR. The sequences of primers used were as follows:
PRKN-F: 5’-GTGCAGAGACCGTGGAGAAA-3’; PRKN-R: 5’-GCTGC
ACTGTACCCTGAGTT-3’, CAT-F: 5’-AAAAGATATCATGGCTGACA
GCCGGGAT-3’; CAT-R: 5’-AAAAGCGGCCGCTCACAGATTTGCC
TTCTC-3’, GAPDH-F: 5’-GACTCATGACCACAGTCCATGC-3’; GA
PDH-R: 5’-AGAGGCAGGGATGATGTTCTG-3’. The CT values of
GAPDH were used for normalization.

Transwell assay
The different groups of cells were seeded at 2–10 × 104/200 μL in a 24-well
plate containing a polycarbonate pore filter (Corning). After 16–24 h of
incubation, the cells were fixed and stained.

Wound healing assay
The different groups of cells were placed into plates, and when the cells
reached 100% confluence, we scratched the cells with a pipette tip. The cells
were incubated in a medium without FBS for 0 or 16-20 h and then pho-
tographed with a microscope.

Clonogenic assay
A total of 1000 cells from different groups were added to six-well plates, and
the cells were fixed after 9–12 days of growth and stained.

MTT assay
Forty-eight hrs after transfection, a total of 3 × 103 BLCA cells were added to
96-well plates for 5 days.After the addition of 20 μLofMTTsolution for 4 h,
the precipitate was dissolved in 200 μL of DMSO.A spectrophotometer was
used to measure the absorbance.

Flow cytometry
Intracellular ROS, mitochondrial ROS (mROS) and mitochondrial
H2O2 (mH2O2) level. 48 h after transfection, a total of 1 × 105 cells were
counted and incubated with DCFH-DA (10 μM), MitoSOX Red (10 μM,
HY-D1055, MCE) or MitoPY1 (10 μM, #4428, R&D) for 30 mins. The
cells were subsequently washed three times in PBS and analyzed on the
Cytoflex (Beckman). Intact cells were selected and gated based on the
forward scatter/side scatter (FSC/SSC) plot to exclude small fragments.

Mitochondrial transmembrane potential (MTP) assay. The mem-
brane potential was determined using the JC-1 detection kit. Briefly, 48 h
after transfection, 1 μL of reagent was added, the cells were incubated for
30 mins, and the cells were analyzed on the Cytoflex after three washes.
Intact cells were selected and gated based on the forward scatter/side
scatter (FSC/SSC) plot to exclude small fragments.

Cell apoptosis. For apoptosis analysis, an annexin V-FITC apoptosis kit
(Sungene) was used. 48 h after transfection, a total of 1 × 105 transfected
5637 cells were analyzed on the Cytoflex. Intact cells were selected and
gated based on the forward scatter/side scatter (FSC/SSC) plot to exclude
small fragments.

Cell cycle. A total of 1 × 105 transfected T24 and UM-UC-3 cells were
collected and washed with cold PBS, followed by centrifugation. The cells
were then resuspended in a solution containing propidium iodide (PI,
100 μg/mL) and permeabilization solution from the cell cycle staining kit

(CCS012, Multi sciences). After incubating in the dark for 30 mins at
room temperature, the cells were analyzed using Cytoflex. FlowJo soft-
ware (v10.8.1) was employed for result analysis. Intact cells were selected
and gated based on the forward scatter/side scatter (FSC/SSC) plot to
exclude small fragments.

A figure exemplifying the gating strategy is provided in Supplemen-
tary Fig. 9.

Immunoblotting
The procedure was performed as described previously69. Cells were lysed on
ice for 30mins using amixture of phosphatase inhibitor, protease inhibitor,
and RIPA buffer. The supernatant was collected after high-speed cen-
trifugation.Theprotein concentrationwasdeterminedusing theBCAassay.
Protein extracts were separated by SDS-PAGE gel and transferred to PVDF
membranes. Themembranes were then blocked in TBST buffer containing
5% skim milk and incubated sequentially with primary and secondary
antibodies. The proteins were detected using the BioSpectrum 515 Imaging
System (UVP), and the primary antibodies used are listed in Supplementary
Table 4. In this study, GAPDH served as the only internal control.

Coimmunoprecipitation (co-IP) assay
Cells were harvested and lysed usingmild lysis buffer for half an hour before
high-speed centrifugation.Onehundredmicroliters of the supernatantwere
mixed with 5× loading buffer and boiled for 10mins at 100°C. The
remaining supernatant was incubated with 1 μg of antibody for 16 h, after
which 20 μLof freshproteinA/Gmagnetic beads (BEAVER)was added and
incubated for 2 h. The mixture was washed thoroughly. Immunoblotting
was performed.

Cycloheximide (CHX), MG132 and chloroquine (CQ) assays
After 24-48 h, CHX was added at different time points. The cells were
treated with 10 μM MG132 or treated with 10 μM CQ for 8 h. Cells were
then harvested for Western blot analysis.

Ubiquitination assay
After transfecting cells for 24-48 h. Cells were then harvested and lysed.One
microgram of anti-Catalase antibody was added to the lytic supernatant for
immunoprecipitation assays, and the level of Catalase ubiquitination was
detected by using an anti-HA antibody.

IHC staining
The procedure of the above assays was described previously69. Briefly, fresh
tumors were fixed in 4% PFA for 24 h. Subsequently, the tissues were
embedded in paraffin and cut into 5 μm sections. The slides were then
sequentially probed with primary and secondary antibodies, as listed in
Supplementary Table 4. The DAB chromogen was used for incubation,
followed by counterstaining with hematoxylin. Finally, the sections were
analyzed under a light microscope.

Immunofluorescence staining
A total of 1 × 105 cells were seeded in six-well plates containing cell slides.
Transfection was performed after 24 h. Before fixation, DMSO was added
for 8 h, followed by CQ for 8 h and CCCP for 4 h. DCFH-DA, MitoSOX
Red,MitoPY1, andMitoTracker (1:1000, C1032, Beyotime) were added for
10–30mins. After 24 h, cells were fixed with 4% formaldehyde for 20mins
at room temperature. Subsequently, the cells were washed three times with
PBS and incubated with buffer containing 2% BSA and 0.3% Triton X-100
for 1 hr at room temperature. Then, the cells were incubated with the cor-
responding primary antibody at 4°C for 4 h. After three washes with PBS,
the cells were incubated with the secondary antibody for 2 h at room tem-
perature. Following another wash with PBS, the cells were incubated with
DAPI (1:1000) for 5mins at room temperature (Note: Some cells may skip
this step and not incubate with DAPI). Finally, the cells were sealed, air-
dried overnight, and then photographed using a confocalmicroscopewith a
20× or 60× oil lens.
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Transmission electron microscopy (TEM)
A total of 1 × 107 BLCA cells were transfected and fixed with freshly pre-
pared 2.5% glutaraldehyde at room temperature. The cells were centrifuged
at low speed, washed, and fixed in 1% osmic acid for 2 h. The samples were
rinsedwith 0.1Mphosphate buffer, and different concentrations of ethanol
were added to dehydrate the samples. Sampleswere then infiltrated in 100%
acetone: epoxy resin 812 (1:2) and embedded overnight at room tempera-
ture. Subsequently, the cells were embedded, cured, and sectioned. Samples
were sectioned and then stained with 2% uranyl acetate and lead citrate.
Finally, the sections were imaged using an electron microscope (TEM,
HT7700, Hitachi) at the Research Center for Medicine and Structural
Biology, Wuhan University, China.

Animal experiments
We purchased 36male BALB/c nudemice (6 weeks old) fromWQJX Bio
Technology (Wuhan, China) and adaptively fed them in a specific
pathogen-free (SPF) facility for 1 week. We constructed four T24 cell
lines (empty vector, Parkin, Catalase, and Parkin + Catalase). For the
xenograft model, cells were subcutaneously implanted into nude mice at
1 × 106 cells/150 μL (n = 6). We measured tumor length (L) and width
(W) every three days and calculated tumor volume (V) using the formula
V = 0.5 × L ×W2. The nude mice were sacrificed for tumor weighing and
IHC staining. For the metastasis model, 1 × 106 cells were slowly injected
into the tail vein of nude mice (n = 3). After 50 days, we measured the
lung fluorescence intensity in anesthetized nude mice. The number of
lung nodules was counted, and the nodules were fixed in paraf-
ormaldehyde for H&E staining. The animal experiments in this study
were performed in accordance with the guidelines of the Institutional
Experimental Animal Welfare Ethics Committee (approval number:
ZN2022242).

Statistics and reproducibility
The data were analyzed using GraphPad Prism 7. Data are expressed as the
mean ± standard deviation (SD). Unpaired two-tailed Student’s t-test,
paired two-tailed Student’s t-test, the Wilcoxon signed-rank test, Kruskal-
Wallis test, one-way ANOVA and two-way ANOVA were used. The n
number represents n biologically independent experiments in each group.
p < 0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The publicly available TCGA-BLCA cohort data (the data included 404
tumors, and 19 normal samples) were obtained from the GDC Data Portal
website (https://portal.gdc.cancer.gov/). Thepublicly availableGSEdata sets
(GSE128959, GSE13507, GSE169455, GSE19423, GSE3167, GSE32548,
GSE48075, GSE48276, GSE69795, GSE70691, GSE86411, GSE37817) were
obtained from the National Center for Biotechnology Information website
(https://www.ncbi.nlm.nih.gov/gds/). All data generated or analyzed during
this study are included in this article and its Supplementary Information
files. The Supplementary Information file contains all Supplementary Figs.
(Supplementary Figs. 1-9) and the original uncropped Western blots
(Supplementary Fig. 10). The source data behind all graphs in the manu-
script are in the Supplementary Data 1.
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