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Regulation of developmental gatekeeping
and cell fate transition by the calpain
protease DEK1 in Physcomitrium patens
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Calpains are cysteine proteases that control cell fate transitionswhose loss of function causes severe,
pleiotropic phenotypes in eukaryotes. Although mainly considered as modulatory proteases, human
calpain targets are directed to the N-end rule degradation pathway. Several such targets are
transcription factors, hinting at a gene-regulatory role. Here, we analyze the gene-regulatory networks
of the moss Physcomitrium patens and characterize the regulons that are misregulated in mutants of
the calpain DEFECTIVEKERNEL1 (DEK1). Predicted cleavage patterns of the regulatory hierarchies in
five DEK1-controlled subnetworks are consistent with a pleiotropic and regulatory role during cell fate
transitions targeting multiple functions. Network structure suggests DEK1-gated sequential
transitions between cell fates in 2D-to-3D development. Our method combines comprehensive
phenotyping, transcriptomics and data science to dissect phenotypic traits, and our model explains
the protease function as a switch gatekeeping cell fate transitions potentially also beyond plant
development.

Multicellular organisms establish distinct cellular identities leading to
individual tissues, cell types and functionswhencells acquire specific cellular
fates in response to environmental signals and developmental patterning
cues1. Transitions between cellular fates are accompanied by reprogram-
ming of gene expression and modulation or turnover of the cell protein
complement. In plants, cell fate integrates spatial localization and inter-
cellular communication in a highly coordinated manner. In particular,
asymmetric, formative cell divisions mostly involve a reorientation of the
division plane2.

Aleurone cells of the grain endosperm and the protodermal and
derived epidermal L1 layers of flowering plants are prime examples for cell
fate specification. These cell types form the outer layers of the respective
flowering plant tissues via asymmetric cell division as a function of their

position3,4. Notably, loss of DEFECTIVE KERNEL 1 (DEK1) function in
monocots5 and dicots6 abolishes these cell fate specifications, with strong
dek1 alleles causing embryo lethality. dek1 mutants in various organisms
display pleiotropic phenotypes with severely impaired development,
including that of the shoot apical meristem6,7. Consistent with a role for
DEK1as a key factor in the evolution of landplantmeristems8, studies in the
bryophyte model system Physcomitrium patens9 demonstrated a vital role
for DEK1 as a developmental regulator controlling cell fate decisions in the
moss simplex meristems during their transition from 2D to 3D growth10,11.

Null dek1 mutants have disorganized division planes resulting in
defective division patterns and cell shapes6,10 due to defects in microtubule-
mediated orientation, cell wall deposition and remodeling, and cell
adhesion12. Changes in gene expression levels and patterns also hint toward
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a regulatory role for DEK1, as the expression of several cell-type-specific
transcription factors including ML1, PDF2, HDG11, HDG12, and HDG2,
embryo- and post-embryo developmental regulators such as CLV3, STM,
WOX2,WUS, PIN4 and potential downstream target genes involved in cell
wall biosynthesis and remodeling including XTH19, XTH31, PME35,
GAUT1, CGR2, EXP11 are all misregulated11–13.

DEK1 is a 240-kDa multi-pass transmembrane (TM) protein with a
cytosolic calpain cysteine protease (CysPc and C2L domains) as effector
(Fig. 1a)11,14. DEK1-type calpains are deeply conserved and likely evolved in
eubacteria15. Calpains constitute a third proteolytic system besides the
lysosomal and proteasomal systems16. Ca2+-dependent calpains are con-
sidered modulatory proteases that cleave proteins at a few specific sites,
generating fragments or neo-proteins with novel functions (e.g., activating
preproteins) or modulating protein function, associations and localization.
Like plant DEK1 calpains, classical calpains are pivotal to animal develop-
ment and cell fate transitions, suggesting that the ancestral functions of the
calpain superfamily are cell division and cell cycle regulation17. Human
calpains are aggravating factors inmany pathophysiological conditions and
illnesses, including cancers and hereditary diseases like muscular
dystrophy17,18.

Calpains have fuzzy target specificity that is less reliant on the primary
sequenceof the substrate andmaydependonhigher-order factors like 2Dor
3D protein structure or cofactors17, complicating the systematic identifica-
tion of calpain targets. Indeed, a few hundred calpain substrates have been
reported, mostly in mammals. Notably, no direct DEK1 substrates are
known in plants, which is at odds with the severe impact of loss of calpain
function.

Mammalian calpain targets are short-lived substrates for the N-end
rule degradation or N-degron pathway (NERD19–21). These proteins bear
N-terminal residues (N-degrons) that attract and activate the NERD
pathway, leading to their ultimate degradation by the ubiquitin-
proteasome system19. Here, calpain cleavage causes destabilization or
inhibition of biological functions, providing a plausible explanation to
align calpains’ limited target specificity with their broad biological effects.
However, as calpains also target transcription factor (TFs) and tran-
scriptional regulators, a more direct path to impact both the physical and
regulatory layers of cell fate transitions emerges. In this case calpains act as
post-translational regulators of gene functions through either (a) directly
modulating protein function; (b) indirectly affecting the stability of target
proteins by marking them for the NERD pathway; or (c) indirectly con-
trolling the stability of transcriptional regulators (Fig. 1e). While (a)
provides a positive control over a gene’s function, (b) an inhibitory,
negative control, the outcome of (c) depends on whether the targeted TF
or regulator represents a transcriptional activator or repressor and thus
offers bidirectional control of gene functions.

Due to its subcellular localization in the plasmamembrane and its role
in the establishment of cell division plane orientation, so far studies of the
plant calpain have been designed with a scenario inmindwhere DEK1 only
acts as a modulatory protease targeting a limited number of specific targets
in or around the cell division plane apparatus. Combining the pleiotropy
and developmental essentiality inDEK1mutants, the fuzzy target specificity
and the broad range of functions with the inhibitory role in targeting pro-
teins to the NERD pathway, we here postulate a second scenario (dual role
scenario), where in one role the calpain directly modulates specific protein
functions and in a second role, it indirectly controls the half-life of poten-
tially many proteins via the NERD pathway. As this latter role may also
affect the protein stability of transcriptional regulators, it could affect the
expression of a large number of target genes and thereby help to understand
calpains’ widespread developmental and gene-regulatory impact.

Themodel moss P. patens provides an ideal system in which to dissect
these scenarios, due to its evolutionary position, high-quality reference
genome and annotation22, well-established molecular toolbox and com-
prehensive transcriptomics resources (e.g. refs. 23,24). In particular, the
simple morphological structure during early moss development, compris-
ing mostly single-cell-layered tissues, is not impeded in null dek1

mutants10,11,14, allowing a comprehensive dissectionof 2D to 3D transition in
the moss simplex shoot meristem.

We setout to elucidate the positionofDEK1during plant development
and transcriptional regulation by combining phenotypic and transcriptome
profiling of wild-type (WT) and mutant moss lines with a comprehensive,
genome-wide, integrative, multi-scale data-mining approach to analyze the
misregulation of global gene-regulatory networks (GRNs) in the mutants.
The predicted network supported a function for calpain as a post-
translational regulator of gene expression. Importantly, the proposedmodel
explains the protease’s role as a developmental switch gatekeeping cell fate
transitions.

Results
Loss of DEK1 dramatically affects moss development
Previous work demonstrated that dek1 mutations dramatically affect P.
patens development7. Here, we characterized the phenotypes and tran-
scriptome profiles of five moss lines: WT; a Δdek1 deletion strain10; a
strain accumulating the DEK1 linker and calpain domains whose
encoding sequence was driven by the maize (Zea mays) Ubiquitin pro-
moter (oex1, Fig. 1a); and two lines carrying partial DEK1 deletions,
dek1Δloop11 and dek1Δlg314 (Fig. 1a). We collected samples at five time
points comprising the early and intermediate stages of P. patens devel-
opment, including the transition from 2D tip growth in filamentous
protonema to 3D apical growth in leafy shoots (gametophores; Fig. 1b).
Although early protonema development was largely unaltered in the
Δdek1 and dek1Δloop mutants (Fig. 1b), later stages, including the
gametophore formation, were substantially disturbed in all mutant
strains.

The Δdek1 and oex1 lines exhibited opposite phenotypes compared to
WT: reduced (Δdek1) or enhanced (oex1) secondary filament extension,
higher or lower percentage of filaments forming buds (Δdek1, oex1) and a
four-fold higher gametophore bud initiation rate per filament in Δdek1
(Fig. 1b, c). The partial dek1Δloop deletion line displayedmilder phenotypic
changes than Δdek1, except for bud development, as the moss continued to
proliferate and form naked stems without initiating phyllids. dek1Δlg3
showed unique phenotypes, including severely affected protonema differ-
entiation and branching resulting in reduced plant size, and aberrant
gametophore formation. Juvenile dek1Δlg3 plants had stunted phyllids.

How can altering one membrane-bound protease have such variable,
complex and drastic effects on plant development? The clear, distinct
phenotypes of dek1 lines provided an opportunity to explore this question
through transcriptome deep sequencing (RNA-seq).

Many genes and functions are misregulated in dek1mutants
We performed differential gene expression (DGE) analysis based on tri-
plicate RNA-seq libraries generated for the above developmental time
course in all five lines, testing all protein-coding and non-coding genes for
DGE using kallisto/sleuth25, which identified sets of upregulated and
downregulated genes in the mutants at a false-discovery rate (FDR) of 10%
and at 1% (Fig. 1d and Supplementary Data S1). Detailed analysis of gene
sets inferred using both filtering criteria (SupplementaryData S1), as well as
comparisonwith those obtainedby an alternativeDGEmethod and existing
experimental data11 suggested relaxed FDR cut-off (q value < 0.1) as an
optimal tradeoff between false positives and false negatives for the sub-
sequent multi-step data analysis procedure to elucidate the global impact of
dek1 mutation.

Consistent with the dramatic phenotypic consequences of Δdek1 and
oex1, we detected the largest number of misregulated genes between Δdek1
(35% of all genes) and oex1 (44% relative toWT and 49% relative toΔdek1).
Only ~7% of all genes were misregulated in the dek1Δloop and dek1Δlg3
lines. Notably, we observed balanced misregulation, with comparable
numbers of upregulated and downregulated genes.

Overall, the extent of misregulated genes supported a dual-role sce-
nario for DEK1. The balanced directionality of misregulated genes also
suggested that DEK1 cleaves activators and repressors equally. To delineate
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Fig. 1 | Phenotypes and transcriptome profiling of dek1mutant lines inP. patens.
a DEK1 protein domain structure. b Time series analysis of P. patens juvenile
gametophyte development in WT, a DEK1 calpain domain overexpressor (oex1), a
complete deletion of the DEK1 gene (Δdek1)10 and two partial deletion lines lacking
the loop (dek1Δloop11); or the LG3 domain (dek1Δlg314). Microscopy images (scale
bars: 200 μm) show primary filaments in early stages of protonemata development
(3, 5 days), secondary filaments (9–14 days; arrowheads point to apical cells of
individual secondary filaments), buds and gametophores (9–14 days; arrows point to
arrested buds in Δdek1). c Quantitative analysis of gametophore apical stem cell
(bud) formation in dek1mutants (y-axes both panels: color-coded genotypes). The
frequency of meristem initiation is expressed as mean number of buds per 15-cell-
long filament (left panel, n = 100) and percentage of filaments forming buds (right
panel, n = 100). Statistical significance at 95% confidence is indicated in left panel for
mean number of buds (red annotation: a–c). Analysis of variance (ANOVA) and
least significant difference (LSD) test were performed in multiple sample compar-
isons. Individual black open circles in left panel indicate individual data points. Red
error-bars in left panel indicate standard errors. Lighter colored bars (alpha

transparency) in right panel indicate percentages of filaments without bud.
d Pairwise differential time series gene expression analysis of dek1mutants at 3, 5, 9,
12 and 14 days. Stacked bar chart of significantly differentially expressed genes
(DEGs) with a false discovery rate (FDR) < 0.1. Orange, upregulated genes; light
blue, downregulated genes. eWorking model for the gene-regulatory role of DEK1/
calpains. When active calpain is present, a TF is cleaved and targeted to the N-end
rule degradatory (NERD) pathway, resulting in loss of gene regulation. In the
absence of active calpain, the TF regulates target gene expression either as an acti-
vator (blue) or repressor (red). f Size of the top 5 intersections between the DEG sets
in (d). Numbers above bars depict the proportion unique to the given set (black) as
well as the total (gray) size of each intersection. The largest set (red) comprises 2639
genes, which are downregulated in Δdek1 and upregulated in oex1, making these
genes targets of DEK1-controlled repressors. The second-largest set (blue) com-
prises 2445 genes that are upregulated in Δdek1 and downregulated in oex1, likely
controlled by DEK1-targeted activators. These sets represent the most conservative
lists, as the third intersection likely contains additional activator targets with weak
FDR support in the comparison of Δdek1 and the WT.
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the functional consequences of dek1 mutations, we used Gene Ontology
(GO) and Plant Ontology (PO) annotations to assess the global functional
impactof themisregulated genes in themutants (Supplementary Fig. S1 and
Supplementary Data S2). Consistent with a dual role for DEK1 and the
observed pleiotropic phenotypes, we determined that 85% of molecular
functions, 88% of biological processes, 90% of cellular components, 92% of
anatomical entities and 94% of all developmental stages in GO and PO are
misregulated in Δdek1.

Potential indirect DEK1 targets show consistent mutant mis-
regulation patterns
If DEK1 is a post-translational regulator (Fig. 1e) of ubiquitous gene
functions, the RNA-seq datasets should allow us to identify the targets of
repressors cleavedbyDEK1, as their expression shouldbeupregulated in the
oex1 line and downregulated in Δdek1 (referred to hereafter as repressor
targets); genes downstream of DEK1-controlled activators should exhibit
the opposite pattern (activator targets). We thus performed multiple com-
parisons between lines to identify differentially expressed genes (DEGs)
with the predictedmisregulation patterns (Fig. 1f). Indeed, the largest set, of
2639 genes (red bar; Fig. 1f), was downregulated in Δdek1 and upregulated
in oex1, marking these genes as targets of DEK1-controlled repressors
(repressor targets) (Fig. 1e). The second-largest set (blue bar; Fig. 1f) com-
prised 2445 genes upregulated in Δdek1 and downregulated in oex1, sug-
gesting that these genes are targets of DEK1-controlled activators (activator
targets) (Fig. 1e). The third and fourth most frequent patterns were subsets
of these two gene sets. Both gene sets also likely included genes under the
indirect control of DEK1. In subsequent analyses, we focused on the two
major sets of consistently misregulated genes as potential indirect targets of
repressors and activators controlled by DEK1 (Fig. 1f).

DuringWT gametophyte development, 71% of the putative repressor
target genes and 75% of putative activator target genes exhibited substantial
changes in expression levels. The two sets differed in their expression pat-
terns over the time course, as 765 repressor targets were more highly
expressed during the early phase (days 3–5, Fig. 1b), while 794 activator
targets were upregulated during later development (days 9–14). This sug-
gested that some potential DEK1 targets are involved in the developmental
transitions occurring during this period.

Gene regulatory subnetworks are enriched for putative DEK1
targets
We next looked for any consistent misregulation patterns in the moss
GRNs. To this end, we compiled 374 public and novel RNA-seq libraries
and 1736 novel annotated regulators (see Supplementary Data S2 for full
information) using the random forest predictor of GENIE326 and calculated
Pearson’s correlation coefficients between regulator and target gene
expression levels. We then detected the top 10 regulatory interactions for
35,706 genes, which resulted in 11 robust subnetworks (Supplementary
Fig. S2a).We used these predicted regulatory interactions and subnetworks
as tools to assess the putative gene-regulatory role of DEK1.

Using the candidate DEG sets, we performed network enrichment
analysis for the identified subnetwork graphs27, finding significant
enrichment of regulatory relationships of DEK1-controlled repressor and
activator targets in subnetworks II, V,VIII, IX andX (FDR≪ 0.01; Fig. 2a,
rows 1, 3 and Supplementary Fig. S2b). Subnetwork V appeared to be
enriched for repressor targets that are active during the early phase of
moss development consisting mostly of chloronema filaments (3–5 days;
Fig. 2a, row 2). Subnetworks II and X were enriched for activator targets
expressed during the 2D-to-3D growth transition (9–14 days; Fig. 2a, row
5). Subnetwork IX encodes housekeeping gene functions including pri-
mary gene regulation, transcription, translation, constitutive epigenetic
regulation as well as light-independent mitochondrial and cytosolic
metabolic pathways (Fig. 2b, e). Subnetwork VIII harbors the light-
dependent and -responsive pathways, in particular photosynthesis, plas-
tid-morphogenesis/regulation and generally plastid-localized pathways
(Fig. 2b, e).

By tracing the regulatory links of misregulated genes in the GRN, we
identified potential upstream TF genes with unaltered expression levels in
the mutants but whose protein products may be direct cleavage targets of
DEK1. Consequently, we tested subnetworks for enrichment of such
upstream TFs predicted to directly control any of the misregulated genes.
This analysis highlighted subnetworks II, VIII and X, but also suggested
potential direct cleavage targets in three other subnetworks (I, III and XI;
Fig. 2a, row 4). As the misregulated targets of these TFs predominantly also
fell into thefiveDEK1-controlled subnetworks, the latter groupof regulators
might serve as DEK1-controlled interfaces to other regulatory circuits.

Network structure suggests DEK1-gated sequential transition
between cell fates
The majority of regulatory interactions are found within subnetworks
(Supplementary Fig. S2a). However, as evident from the enrichment of
inter-subnetwork connections (Supplementary Fig. S2a), the putative
indirect DEK1 targets are predicted to be also controlled by regulators from
other subnetworks. In order to determine whether the respective TFs act as
positive (activators) or negative (repressors) regulators of potential DEK1-
controlled gene functions, we studied the directionality of the inter-
subnetwork connections based on the sign of the expression profiles’ cor-
relation coefficients (black [+] vs. red [−] colored edges in Fig. 2b and
Supplementary Fig. S2c and Supplementary Data S6) and compared the
relative proportions of intra- and inter-connections among the enriched
subnetworks split according to positive and negative interactions (Figs. 2b, f
and S4).

We foundmore than expected negative links betweenV⊣ II andX⊣V
(i.e., TFs fromV repressing targets in II andXTFs as repressors ofV targets)
and more positive, activating regulatory interactions between II→X and
X→ II (i.e., TFs from II activate genes in X and vice versa; Fig. 2f). In our
interpretation, this chained pattern potentially reflects the developmental
transition between different cell fate identities including primary filament
cells differentiating to side branches and gametophore buds. Furthermore,
we also observe a biased distribution of activator and repressor targets
among the subnetworks (Fig. 2a). While subnetwork IX contains both
patterns,Vharborsmore repressor targets and II,VIII andXcomprisemore
activator targets. It therefore seems that the enriched subnetworks respond
in a specific fashion to the mutation of the plant calpain DEK1.

Taken together, the preferential developmental timing and the biased
directionality chain suggest the presence of an inherent directionality of
DEK1 action on the regulatory circuitry of these subnetworks. These find-
ings may hint toward a mechanism in which DEK1 affects distinct cellular
identities as displayed in the DEK1 mutants.

DEK1 is part of the APB-controlled subnetwork II guarding the
2D-to-3D transition
Thedirected edges of theGRNgraph canbe used to reconstruct a regulatory
hierarchy by ranking regulators according to their network centrality.
Applying this local reaching centrality criterion, we identified the TF
AINTEGUMENTA, PLETHORA and BABY BOOM 4 (APB4) as the
master regulator at the top of the regulatory hierarchy in subnetwork II
(rank 1; reaching >99% of the subnetwork). The eponymous members
AINTEGUMENTA, PLETHORA and BABY BOOM of this subfamily are
involved in various developmental processes including the formation of the
stem cell niche in the Arabidopsis shoot apical meristem28,29.

Consistent with the documented role as master regulators of moss
gametophore apical stem cell formation, the timed tissue and cell-type
specific expression patterns and the additive, but distinct phenotypic
severity of single, double, triple and quadruple knockoutmutants of the four
mossAPBs30, the outparalogous copies APB2 (rank 35) andAPB3 (rank 41)
are localized downstream of APB4 in the regulatory hierarchy of subnet-
work II. The inparalogous APB1 is localized in subnetwork VII, but is also
an indirect target of APB4 (Supplementary Fig. S5a). DEK1 is predicted to
be localized downstream of APB2 and APB1 in subnetwork II (Supple-
mentary Fig. S5b).
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Fig. 2 | Tracing DEK1-misregulated genes and their upstream regulators in the
predicted P. patens gene-regulatory network (GRN) highlights subnetworks that
encode the developmental transitions governed byDEK1.Prediction of regulatory
interactions with subsequent clustering results in 11 subnetworks (Supplementary
Fig. S2a). a Network enrichment analysis highlighting specific overrepresented
subnetworks among DEK1-misregulated gene sets (activator and repressor targets)
and their upstream regulators (TFs with misregulated target) as well as the distinct
phases of WT development (WT 3–5 and 9–14 days). See Fig. S2d for overlap
analysis of these gene sets. Heatmap represents the ratio between observed and
expected sizes of specific candidate gene sets among the identified subnetworks.
Significant (FDR < 0.01) enrichment (+) or depletion (−) is shown. Ratios were
clustered for both rows and columns using theward.D2method. bNetwork graph of
the five DEK1-misregulated subnetworks: for each enriched subnetwork (II, V, VIII,
IX and X), all genes with an activator (blue nodes) or repressor (red nodes) mis-
regulation pattern in the dek1 mutants (Fig. 1f) are shown as nodes together with
unchanged, direct upstream TFs (using subnetwork color codes) as a triangular
subgraph in subnetwork-color-framed boxes. Node sizes are scaled by local-
reaching centrality, i.e., the fraction of the total subnetwork that can be reached via
regulator→ target connections. Edges, representing the predicted regulatory

interaction between a TF and its target, are colored according to putative direc-
tionality, with negative, repressive interactions in red and positive, activating reg-
ulatory interactions in black. Insets (c) and (d) significantly enriched developmental
stages and tissue or cell types. c Schematic of the predicted roles of subnetworks V
and II in the different cell fates comprising the haploid protonema stage.d Schematic
of the haploid, leafy, juvenile gametophore that, except for the filamentous rhizoids
encoded by subnetwork II, is predominantly implemented by subnetwork X.
e Schematic of a plant cell depicting the significantly enriched intracellular locali-
zations of DEK1-controlled subnetworks. In the accompanying text box, subnet-
works are ranked (1–4) according to the percentages of genes with terms affiliated
with the respective compartment. f Small network plot showing major significantly
enriched inter-subnetwork connections (Pearson residuals > 4; Supplementary
Fig. S4). Drawings of the Physcomitrium protonema (c) and gametophore (d) stages
adapted from ref. 103. Drawing of plant cell (e) adapted fromWikimedia Commons
User Domdomegg. Subnetwork assignments to developmental stages and cell types
(c, d) are based on network enrichment of stage-specific DGE sets inferred from
Physcomitrium gene atlas data24. Ranked subnetwork assignment of subcellular
localizations (e) is based on ontology enrichment analysis of GO cellular component
terms (Supplementary Fig. S3 and Supplementary Data S3).
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The immediate upstream regulatory context suggests that DEK1
(Supplementary Fig. S5b) is positively regulated by subnetwork V TFs,
activated early in development and subsequently negatively controlled by an
auxin/ent-kaurene responsive cascade31,32 that is encoded downstream of
the aforementioned APBs by subnetwork II regulators as well as a hier-
archical cascade of SQUAMOSA promoter binding protein-like (SBP) TFs
in subnetwork X which already has been shown to be involved in bud
formation33. In light of the biased directionality chain identified in the
DEK1-controlled inter-subnetwork connections (Fig. 2f and Supplemen-
tary Fig. S2c), this might represent a negative feedback loop buffering the
2D-to-3D transition at the transcriptional level.

Misregulation of GRNs is consistent with a role for DEK1 as a
post-translational regulator
Mammalian calpains direct proteins toward the NERD pathway19. Thus,
potential direct DEK1 targets should bear N-terminal amino acid residues
marking them for ubiquitylation and subsequent degradation by the pro-
teasome (Fig. 3a). Importantly, the NERD pathway components were
recently identified in P. patens and mutants in key components found to
arrest the 2D-to-3D transition34. We predicted calpain cleavage sites using
the program GPS-CCD35 and classified the identified proteins based on the
number of putative DEK1 cleavage sites and the prevalence of NERD sig-
natures in their resulting novel N-termini (Supplementary Fig. S6a–f).
Strikingly, the three DEK1-controlled subnetworks encoding the 2D-to-3D
transition (V→ II→X) were among the five subnetworks enriched for
such NERD-like calpain cleavage patterns (Fig. 3a) and also displayed the
highest levels of overall genemisregulation among thefiveDEK1-controlled
subnetworks (X < II < V < IX <VIII; Supplementary Fig. S6g). Targets of
misregulated TF genes are more likely to be misregulated than genes
downstream of non-misregulated TF genes. While all five subnetworks
showed significant andpositive correlations ofmisregulation between target
genes and their direct upstreamTFgenes (ρ = 0.1560189;Kendall’s rankand
Pearson’s correlation tests; p < 2 × 10–16), the individual trends for the sub-
networks mirrored those of the overall gene misregulation levels and con-
firmed the notion that subnetworks X, II andV aremost affected by the loss
of DEK1 function (Fig. 3b).

Targets of potential DEK1/NERD-controlled TFs were consistently
more misregulated than other genes. As the three subnetworks were also
enriched for NERD-like calpain cleavage sites, we investigated the depen-
dency of these patterns of target gene misregulation on putative DEK1
cleavages in their upstream regulons. Indeed, themisregulation levels of the
indirect DEK1 target genes in subnetworks II, V and X were positively
correlated with the percentage of putative, direct DEK1 targets among their
upstream TF cascades (Fig. 3c). The upstream regulons of misregulated
genes were significantly enriched for TFs that are indirect and direct targets
of DEK1 (87%; Pearson residuals≫ 4; χ2 test p < × 10–16, Fig. 3d). The
regulatory cascades demonstrated consistent misregulation patterns. The
direct upstream regulons (first order: TF→ target) were mostly mis-
regulated themselves, meaning that they either are indirect DEK1 targets
because their upstream TF is controlled by DEK1 (Fig. 3d, lower left) or are
both direct and indirect DEK1 targets. These TFs were directly cleaved by
DEK1, and their expression was misregulated in the mutants because an
upstream, higher-order TF was a direct DEK1 target (Fig. 3d, lower right).
Consistently, second- (TF→TF→target) and third-order (TF→TF→
TF→target) regulons of misregulated genes were enriched for predicted
direct cleavage by a calpain (Supplementary Fig. S6h).

Filtering of the DEK1-controlled regulons to first-order interactions
yielded 531 TFs that are predicted to be directly cleaved by a calpain (Fig. 3e
and Supplementary Fig. S7a). These TFs were predicted to directly regulate
the expression of 3679 significantlymisregulated indirect DEK1 target genes
(Supplementary Data S6). Eighty-five TFs were both potential direct and
indirect DEK1 targets. These predicted first-order DEK1 targets formed a
highly interconnected network, comprising 10,120 network edges (Supple-
mentary Fig. S7b).Most of these genes (74%)were included in thefivemajor
DEK1-controlled subnetworks (Fig. 3e and Supplementary Fig. S7a). In

addition, 73% of the inherent 4,082 inter-subnetwork connections targeted
oneof thefive subnetworks (SupplementaryFig. S7c).More thanhalf of these
target genes in the three subnetworks were involved in the 2D-to-3D tran-
sition (V, II and X). We confirmed these results by ontology analysis, which
suggested a clear functional delineation of biological processes implemented
by the DEK1-controlled repressive and activating intra- and inter-
subnetwork regulatory interactions (Fig. 3f, g andSupplementaryFig. S8a–e).

Candidate targets suggest deep conservation of DEK1 control
over plant development
Target genes from subnetworks X, II and V positioned downstream of
DEK1-controlled activators were enriched in biological processes, cellular
components and plant anatomical entities (color text; Fig. 3e–g and Sup-
plementary Fig. S8a) that are directly linked to the observed dek1 mutant
phenotypes and tissue- and cell-type-specific expression profiles ofDEK1 in
flowering plants and the moss10–12,14,36,37. The predicted DEK1-controlled
genes regulated or comprised components determining cell polarity, axis,
number, division, division plane and fate. For instance, these genes were
involved in the biological processes regulation of asymmetric cell division
(via STRUBBELIG orthologs38); callose deposition in cell walls and defined
cellular components including the phragmoplast (via orthologs of
AUGMIN639 and TANGLED140) and cell plate (STRUBBELIG orthologs or
CLAVATA1b [CLV1b]41).

Besides these specific processes and compartments, the predominant
pattern was consistent with the role of DEK1 as a regulator governing
development.dek1mutantswere impaired in general cell fate determination
or transition and stem cell, meristem or primordium identity and initiation
(e.g., shoot, flower, root and axillary bud meristems; development of
endosperm, ovule and embryonic meristems; Fig. 3f). In addition, DEK1
target genes from subnetworks X, II and V included components were
enriched in anatomical entities expected to be affected in dek1 mutants
(Fig. 3g), such as leaf lamina, epidermal cells13 or meristem layer L17. L1
provided two striking examples where flowering-plant orthologs of pre-
dicted indirect DEK1 targets are misregulated in dek1mutants of flowering
plants: the homeobox domain leucine zipper IV TF gene MERISTEM
LAYER 113 and CLV38.

Experimental evidence from P. patens pointed to an enrichment of the
protonema side branch initial cell, and gametophore initial cell, two major,
sequentially occurring cell types related to the 2D-to-3D transition
(gametophore bud formation). Both have been extensively studied and
genetically linked to central, conserved developmental regulators acting in
both flowering plants and moss, like APB and CLV28,30,41. This observation
supported a deep evolutionary conservation of the underlying develop-
mental processes controlled by DEK1.

Tracing misregulated molecular actors of pleiotropic DEK1
phenotype in the GRN
To understand the role of the predicted DEK1 targets in these conserved
developmental processes and their role in the pleiotropic dek1 phenotype,
we established a protocol to predict genes underlying specific phenotypic
characteristics of the dek1 mutant strains. The resulting Factorial Differ-
ential Gene Expression Network Enrichment Analysis (FDGENEA)
method utilizes phenotypic traits (Supplementary Fig. S10a) for differential
gene expression analysis. The DEGs displaying significantly altered tran-
script levels in associationwithoneof 17phenotypic factors (Supplementary
Data S8), are then traced in the GRN to identify the predominantly affected
subnetworks (Supplementary Fig. S10b, e).

Again, the observed, significant network associationsdemonstrated the
importance of subnetworks X, II and V in the dek1 phenotype (FDR < 0.01;
Supplementary Fig. S10b). The resulting FDGENEA genes sets associated
with each trait overlapped, but also displayed substantial portions of genes
specifically misregulated in response to a single trait (Supplementary
Fig. S10f). The phenotypic traits tested here clearly clustered into two classes
enriched for either DEK1-controlled activator or repressor targets (Sup-
plementary Fig. S10g), comprising 2048 indirect DEK1 targets.
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Ectopic 3D stem cells linked to deregulation of bud cell-specific,
DEK1-controlled genes
The earliest step of the 2D-to-3D transition that appears to be disrupted in
the DEK1mutants is the initiation of gametophore apical stem cells (buds)
along the protonema filaments. Phenotypically, this is particularly

pronounced in the number of buds per filament and the percentage of
filamentswithbuds (Fig. 1c).While the oex1 line forms fewer, theΔdek1 and
dek1Δloop lines develop significantly more buds per filament than the wild
type (ANOVA with post hoc LSD, p < 0.05). This latter overbudding phe-
notype (Fig. 4a) is consistent with a disrupted control of gametophore
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initiation, leading to ectopic formation of 3D apical stem cells. It shows the
largest unique set of deregulated genes in the FDGENEA of this group of
traits (Fig. S10h and SupplementaryData S8) and is enriched for genes from
subnetworks II, V, IX, X and XI (Figs. 4a, b and S10c, e).

The affected parts of the GRN (Figs. 4a and S10c, d) partitions into
three groups of nodes. Two groups correspond to genes that are either
positively associated with a high number of buds (overbudding-up; i.e.,
up-regulated in Δdek1 and dek1Δloop; right group in Fig. 4a and Sup-
plementary Fig. S10c, d) or those that display a negative association
(overbudding-down; i.e., down-regulated in Δdek1 and dek1Δloop, but
up-regulated in WT, oex1 and dek1Δlg3; left group in Fig. 4a and Sup-
plementary Fig. S10c, d). The third group is composed of their direct
upstream regulators without significant change in expression with
respect to this phenotype (top group in Fig. 4a and Supplementary
Fig. S10c, d). The clustering reveals also a trend in the type of connections
between the first two groups that also harbor negative regulatory inter-
actions (orange edge color; Fig. 4a and Supplementary Fig. S10c, d).
Overall, while subnetwork V dominates the overbudding-down group,
the overbudding-up assemblage is more diverse and consists of subnet-
works X, IX and XI (Fig. 4b and Supplementary Fig. S10c). Subnetwork II
is prominent in both groups. Negative inter-subnetwork links pre-
dominantly involve nodes between subnetwork V and either II or X.
Subnetworks II and X as well as IX and XI seem to act in conjunction, i.e.,
share many positive edges (Supplementary Fig. S10c). These patterns are
consistent with the global network structure discussed above (Fig. 2f) and
the sequential transition between the encoded cell fates (Fig. 4f) from
primary filament cells (V) redifferentiating to pluripotent side branch
initials, that give rise to either secondary chloronemal (V) or caulonemal
filaments (II) or gametophore buds (X).

The set of genes up-regulated in filaments displaying the overbudding
phenotype is dominated by indirect and direct DEK1 targets from sub-
networks II, IX and X (Fig. 4b). Down-regulated genes are either not tar-
geted by DEK1 or encoded by subnetwork V or IX. There is a significantly
larger proportion of DEK1-controlled regulatory interactions for over-
budding associated genes in subnetworks II andX (SupplementaryDataS9).

SubnetworkVdisplaysmorenon-DEK1controlled interactions,most being
negatively associated with overbudding.While these regulatory interactions
likely represent the side-branch initials redifferentiation into secondary
chloronema (Fig. 4f; lower row), the overbudding up-regulated, pre-
dominantly DEK1-controlled interactions in subnetworks II and X likely
encode the cell fate transitions required to establish the gametophore apical
stem cells (buds).

Consistently, the set with positive association to overbudding (up in
Fig. 4b) is enriched for DEK1-controlled activator targets from subnetwork
II andXwhichhave beenpreviously identified to be specific to gametophore
bud cells, while down-regulated genes from V are predominant in the
protonemal tip cell transcriptome23. Overbudding-associated genes from
subnetworks IX and XI are more likely to be found in both transcriptomes,
hinting at their more ubiquitous expression profiles or housekeeping
function. The bud-specific portion of overbudding-upDEK1 targets reveals
248 genes (Supplementary Data S10). The majority (73%) is encoded by
subnetworks II (62; 25%) and X (118; 48%). Thus, the DEK1-controlled,
overbudding up-regulated activator targets from subnetworks II and X
represent prime suspects to harbor the developmental regulons acting in the
cell fate transitions involved in gametophore apical stem cell initiation
which is so pivotal to the 2D-to-3D transition.

Overbudding up-regulated DEK1 targets form a regulon with
known molecular actors of meristematic cell fate specification
Network analysis reveals that around51%of the 901overbudding-upDEK1
activator targets form an interconnected regulon (Supplementary Fig. S10i).
Given the post-translational role ofDEK1, a direct cleavage targetwill not be
deregulated in the mutant context unless an upstream regulator is also a
direct cleavage target. Thus, a regulon solely inferred based on the
overbudding-up geneswill be an under-prediction. Indeed, whenwe extend
the regulatory context of these genes to include theup tofive highest ranking
DEK1-controlled upstream TFs, 100% of the overbudding-up genes are
interconnected (Supplementary Fig. S10j).

Two regulatory circuits from subnetworks II and X control the
majority of theoverbudding-up components in the regulon (Supplementary

Fig. 3 | Loss of DEK1 function causes global misregulation of the moss GRN in
accordance with the pleiotropic phenotype of dek1 mutants and is consistent
with a post-translational role of plant calpain in the regulation of TF stability.
a Network enrichment analysis (NEAT) of the prevalence of three specific
N-terminal amino acid signature types in predicted calpain cleavage sites of encoded
moss proteins. Two of these signature types have been identified in mammals to
activate the NERD pathway, resulting in ubiquitylation and subsequent degradation
by the 26S proteasome (extended panel on the right adapted from ref. 34).While the
first route has been confirmed to be active in the moss and other plants (NERD), the
second route (other) via acetylation of N-terminal residues has not yet been
demonstrated in planta. The third class represents proteins with no cleavage or sites
with N-terminal residues that would not attract the NERD pathway (unchanged).
The heatmap shows the ratio between observed and expected sizes of specific can-
didate gene sets encoding for proteins enriched for these types of cleavages among
the identified subnetworks. Significant (FDR < 0.01) enrichment (+) or depletion
(−) is shown. b Target gene misregulation in dek1 mutants is positively correlated
with themisregulation of direct upstreamTFs. Linear relationship of target gene and
TF misregulation in DEK1 mutants in the five most affected subnetworks. Mis-
regulation of both types of genes is again depicted as the cumulative effect size of the
LRTs in each gene. Lines depict the result of generalized linear regression of the
cumulativemisregulation of TF genes (x-axis) and their target genes (y-axis) for each
of the five subnetworks. Gray areas depict 95% confidence intervals. c Target gene
misregulation shows a positive, linear correlation with the fraction of directly and
indirectly DEK1 calpain-controlled upstream TFs. Linear regression analysis of the
cumulative misregulation of target genes (y-axis; sum of Likelihood-ratio test (LRT)
effect sizes) and the percentage of the upstream TFs for each gene where TFs are
either directly NERD-targeted by DEK1 (blue line; i.e., classified as NERD-type
cleavage, a), indirectly DEK1 targeted (orange line; i.e., significantly misregulated;
contained in gene sets displayed in b and Fig. 1f) or either of the two types (green
line) for unchanged (left plot) and significantly misregulated (right plot; FDR < 0.1)

target genes. Upstream regulons for each target gene in subnetworks II, V andXwere
evaluated up to third-order relationships. Gray areas depict 95% confidence inter-
vals. d DEK1 calpain-dependent misregulation in the three subnetworks imple-
menting the 2D-to-3D transition: misregulated genes in subnetworks II, V and X
display significant enrichment of putative NERD-type calpain cleavages and mis-
regulation of upstream TFs. Mosaic plot showing the relative proportions of sig-
nificantly misregulated genes in dek1 mutants depending on the binary status of
their upstream regulon with respect to predicted levels of DEK1 control (x-axis:
predicted NERD-type calpain cleavages i.e., direct DEK1 targets; y-axis indirect
DEK1 targets). Binary status defines whether the regulon comprises TFs predicted as
direct (x) or indirect (y) DEK1 targets (>0% of the TFs) or not (= 0% TFs). Boxes are
colored based on Pearson residuals from a significant χ2 test of the cross-table
comparing the proportions of both binary classes. e Alluvial plot depicting the
distribution of thefiltered, predicted direct and indirect DEK1 targets among the five
predominantly controlled subnetworks. Color-coding of bands reflects direction-
ality of misregulation patterns in the mutant lines (see Fig. 1f for details). Green
bands represent unaffected upstream TFs predicted to control the significantly
misregulated target genes. f Significantly enriched Gene Ontology (GO) terms
associated with direct and indirect DEK1 target genes are overrepresented in pro-
cesses related to observedDEK1 phenotypes in flowering plants and themoss.Word
cloud depicts filtered, significantly enriched GO biological processes and cellular
components (FDR < 0.1). Text color code depicts subnetwork identity (i.e., sub-
networks II, V and X) of (indirect) target gene. Black text corresponds to overall
enrichment among target genes. gOverrepresented tissue and cell type localizations
consistent with dek1 phenotypes and expression patterns. Based on enrichment
analysis using Plant Ontology (PO) term annotations for moss genes or their
flowering plant orthologs. Word cloud of selected plant anatomical entity PO terms
displaying an overall enrichment among direct and indirect DEK1 target
genes (FDR < 0.1).
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Fig. S10i). The first circuit is dominated byTFs from theAP2 superfamily in
subnetwork II and comprises several well-characterized key players in
meristematic cell fate regulation of flowering plants and P. patens (DRN,
DRNL and PUCHI42, STEMIN343, APB-330). The second circuit is domi-
nated by subnetwork X encoded, gibberellin-responsiveMYBTFs that have
been shown to orchestrate reproductive organ development as well as the
production of extracellular hydrophobic barriers like the cuticle and spor-
opollenin of flowering plants and the moss (GAMYB231; MYB8044;
MIXTA45). While the two circuits are mostly insulated, some of the target
genes overlap (17% of overbudding-up only- and 35% of the extended
regulon; Fig. S10l, m). At the regulatory level, this insulation might be
unidirectional in that one of the subnetwork X MIXTA orthologs is pre-
dicted to positively regulate a DRN and a DRNL ortholog in subnetwork II.
This might represent a positive feedback mechanism.

Target genes of both circuits are involved in reorientation of the
division plane, modulation of the cell wall, the cytoskeleton and the
phragmoplast (e.g., Fig. 4a). Moreover, they encompass a notable accu-
mulation of components required for generation, transduction and per-
ception of local queues like mechanical stress (MSCL1646) and longer
distance, gradient-forming, developmental signals like plant peptide hor-
mones (CLV1b, CLE941) or the phytohormones auxin, gibberellin, strigo-
lactone and cytokinin. The latter is especially noteworthy. While the other
three phytohormone pathways are represented by one or two components
involving either transport (LAX247), biosynthesis (GA2ox432; CCD848) or
activation (GA20ox632), in the case of cytokinin, all major aspects are cov-
ered. The regulon comprises several genes encoding biosynthesis (IPT349),
activation (LOG50), degradation (CKX51), transport (ENT, ABCG52) per-
ception (CHK1, CHK251) and transduction (ARR53) of cytokinins. In
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addition, the MYB circuit of the regulon also is predicted to induce
cytokinin-responsive genes like NO GAMETOPHORES 2 (NOG254),
whose loss-of-function mutant similar to DEK1 also displays an over-
budding phenotype. Consistently, the exogenous application of cytokinin51

and cytokinin-overproducing mutants55 also result in an overbudding
phenotype. These findings clearly demonstrate the conservation of hor-
monal control in stem cell initiation and cell fate specification in land
plants56.

Asmentioned above, the regulon also comprises essential components
of the CLAVATA (CLV) peptide and receptor-like kinase pathway that has
been shown to control cell fates and division planes of land plant apical stem
cells41,57,58 via CLV3/EMBRYO SURROUNDING REGION-Related
(CLE59) peptide hormones which are perceived and transmitted to down-
stream signaling cascades via CLV1-type receptor-like kinases60. Several
studies in both Arabidopsis61 and Physcomitrella41,54,62 already have identi-
fied parallels in mutant phenotypes and expression patterns and have
proposed models locating the CLV signaling pathway somewhere down-
streamofDEK1and themossAPBs.Thepredictedoverbudding-up regulon
identified here, now provides us with a robust explanation for these con-
nections.Ourpredictions indicate thatCLV1bandCLE9are an integral part
of the regulon that is downstream of both of the above DEK1-controlled
circuits (Fig. S10i, k), in particular downstream of APB-3 (Fig. 4c). APB-3 is
predicted to coordinate its control over these genes with a calmodulin-
binding WRKY group II transcription factor (WRK763), that could act to
integrate a possible Ca2+ signal emerging in response to the swelling of the
gametophore initial cell64. Furthermore, our calpain cleavage predictions
indicate cleavage sites thatwouldallow thematurationofCLEpeptides from
their respective preproteins encoded by the P. patens genome41 (External
File PpCLEs.ccd.all). This could represent another potential feedback layer
of the regulon in that CLEs are both positively (maturation/activation) and
negatively (indirect activator targets) controlled byDEK1.The secondorder
regulatory context of CLV1b (Figs. 4c and S10k) suggests that all positional
and developmental queues discussed above are co-regulated in one DEK1-
controlled CLAVATA regulon. Consistent with the findings from two
recent studies65,66, our data suggests that this DEK1-controlled, cytokinin-
mediated pathway governs stem-cell homeostasis acting separately from the

cytokinin-independent pathway involving the RECEPTOR-LIKE PRO-
TEIN KINASE2 (RPK2; subnetwork VIII).

The overbudding-down part of the GRN is controlled predominantly
byMADS box TFs, contains several correctly predicted, negative regulators
of bud and gametophore formation (e.g., DEK111 PHK267) and is enriched
for cytoskeletal components involved with polarized tip growth of proto-
nemal filaments (e.g., FOR1D68 SPR269). Plant Rho GTPases (ROP) are key
regulators of cellular polarization and are involved in several symmetry
breaking mechanisms70,71. Activated ROP binds effector proteins e.g., to
initiate remodelingof the cellwall (96) or the cytoskeleton71. Sometimes they
act as transducers for receptor-like kinases72. TheP. patensROP4 is localized
at the tip of a growing protonema filament and relocalizes prior to proto-
nemal branching to the future site of side branch formation73. ROP4 is
predicted to be an overbudding-downDEK1 repressor target. RhoGTPase-
dependent signaling by ROPs is tightly controlled at the protein level70.
ROPs are activated by RhoGEFs, while RhoGDIs and RhoGAPs provide
independent means of ROP inactivation. Our analysis detected a repre-
sentative of both ROP-regulator types as overbudding-associated, indirect,
DEK1-targets with opposing regulatory patterns (DEK1 activator target,
overbudding-up, part of the CLAVATA regulon: ROP-GEF,
Pp3c10_9910; DEK1 repressor targets, overbudding-down: RhoGAP,
Pp3c3_5940 and RhoGDI, Pp3c10_19650). This observation is con-
sistent with their proposed antagonistic role in controlling ROP signaling. It
provides a compelling example of how DEK1 might post-translationally
control asymmetric and other types of formative cell division by remodeling
of cell walls and the cytoskeleton.

Discussion
Here, we traced the misregulation profiles of null dek1 mutants and over-
expressor lines along the GRN of the model plant P. patens, identifying at
least 3679 consistentlymisregulated geneswhose expression is controlled by
531 upstream TFs containing destabilizing calpain cleavage sites. We pro-
pose that these TFs are direct targets ofDEK1, which thus acts as an indirect
regulator of genes farther downstream. Individual master regulators and
downstream TFs, and many of the target effector genes, have been experi-
mentally linked to specific dek1 mutant phenotypes in P. patens and in

Fig. 4 | Tracing the overbudding mutant phenotype to deeply conserved, DEK1-
guarded meristematic regulons controlling the 2D-to-3D transition. a Factorial
Differential Gene Expression Network Enrichment Analysis (FDGENEA) of the
overbudding phenotype reveals enriched subnetworks and upstream regulators
associated with high number of buds per filament that comprise key factors in plant
meristematic and primordial cell fate control. Network plot of genes with significant
association to overbudding (left [blue: overbudding = FALSE] and right node [red:
overbudding = TRUE] groups in background of overlaid text boxes) and direct,
upstream regulators without significant association (top node group). Foreground
text boxes display exemplary, predicted DEK1 targets from the overbudding up
regulated (right = red) and downregulated (left = blue) gene sets with experimental
evidence in flowering plants or themoss. Bold font indicates TFs; italic font indicates
predicted moss genes whose Arabidopsis orthologs have consistent experimental
data connected to DEK1 phenotypes. Nodes are color-coded by the kind and
strength of a gene’s association with the overbudding trait (color intensity gradient
relative to Log-fold-change in DGE analysis; up = positive = red; down =
negative = blue). Node sizes relative to the cumulative, absolute misregulation fold-
change of the respective gene and any predicted downstream target gene in the
mutants. Node shapes: triangles, TFs; diamonds, transcription regulators; inverted
triangles,miRNAs, circles, targets. Edge color and intensity: correlation coefficient of
connected nodes in dek1 RNA-seq data (black = positive; orange = negative). Panel
at right depicts genotypes used and respective phenotypic character state of the
overbudding trait (number of buds per filament high: FALSE⇔ TRUE) in WT and
dek1 mutant lines. b Overbudding-upregulated DEK1 targets from subnetworks II
and X are enriched in the previously identified bud cell transcriptome23. Alluvial
diagram depicts the proportional distribution of subnetworks shared between three
categorical sets: left to right, DEK1 target: predicted direct and indirectDEK1 targets;
overbudding phenotype: genes with significant association with the overbudding
phenotype (up ⇔ down); cell-specific transcriptome; n.d., not detected; specific to

protonemal tip cell; detected but no significant difference between both cell types;
specific to gametophore bud cell. Band coloring is based on subnetworks. c Key
components of the moss CLAVATA3-like peptide (CLE9) and receptor-like kinase
(CLV1b) pathway are predicted to be downstream of an overbudding upregulated,
DEK1-controlled regulon that comprises a 2D-to-3D master regulator (APB3) and
integrates several developmental signals: gibberellin/kaurene (GA20ox6), cytokinin
(LOG, CHK2), mechanical stress (MSCL16), peptide (CLE9). Network graph
depicts the immediate regulatory context of CLV1b. Full regulatory context is shown
in Supplementary Fig. S10i. Node sizes are relative to the overall local reaching
centrality (fraction of downstream nodes in the global network). Node coloring
based on subnetwork affiliation. Triangular nodes are predicted to represent direct
cleavage targets of the DEK1 calpain. All predicted regulatory interactions are
positive, i.e., show positive correlation inWT and mutants along the RNA-seq time
course. d–f Proposed role of DEK1 as a fine-tunable, developmental switch gate-
keeping cell fate transitions. Model illustrating the proposed relationship between
the level of free calpain activity, the number of direct and indirect targets, and the
developmental consequences in three panels with a shared y-axis (calpain activity).
d Model describing three primary DEK1 calpain states (top to bottom): off:
immobile, inactive calpain in full-length DEK1 protein in plasma membrane; few:
mobile, constrained calpain, released by auto-catalytic cleavage at several possible
locations in the Linker-LG3 domain (External File DEK1.jvp; level of calpain
activity, localization, half-life and number/kind of targetsmight be dependent on co-
factor interaction); many: mobile, unconstrained calpain, pure calpain released by
auto-catalytic cleavage directly before or in the CysPc domain. e Proposed rela-
tionship between the number of DEK1 calpain targets (Ntargets = dashed curve) and
the probability of a protonemal cell gaining the bud initial cell fate, i.e., gametophore
apical stem cell (Pbud = solid curve). f Schematic drawing of the cellular fate tran-
sitions affected in the overbudding phenotype in three steps.
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flowering plants.We conclude thatDEK1 exerts a dual role as amodulatory
and destabilizing protease acting on both the physical and regulatory layers
of cell fate transitions, thereby indirectly controlling the expression levels of
many genes.

This post-translational role in gene regulation and the predicted list of
DEK1 targets provide a consistent explanation for the essentiality of this
calpain and for the pleiotropy and broad effects observed in dek1mutants.
We based our predictions on the expression profiles of mutants, together
with the inferred GRNs of P. patens. The breadth of these filtered cleavage
sites, especially in TFs and other gene regulators, is consistent with the
observed broad transcriptional, functional and phenotypic responses
observed in P. patens.

Individual examples like ROP signaling or the above-described CLA-
VATA regulon may help to bridge the gap between the well-established
image of DEK1 as a developmental regulator that is affecting cell fates and
division plane reorientation, and the role as a post-translational regulator
proposed here. Our analyses suggest the existence of deeply conserved,
orthologous, phytohormone-guided regulons governing land plant mer-
istems and stem cells that are post-translationally controlled by DEK1,
which acts as a fine-tunable switch to implement or guard the transitions
between cellular identities. The high levels of conservation in the underlying
regulatory network highlights the utility of P. patens for elucidating
embryophyte development and stem cell regulation. We showed here that
DEK1 is a negative regulator of cell fate transitions, specifically during the
2D-to-3D transition.

In our model, DEK1 integrates multiple developmental signals (phy-
tohormones, peptides, light, mechanical stress) and acts as a gatekeeper in
the transition between distinct cellular fates (Fig. 4d–f). The transcriptional
profiling of the four distinct dek1mutant lines enabled us to monitor three
extreme points in the distribution of calpain activity: the number of direct
and indirect targets (Ntargets; off = Δdek1, dek1Δloop; few = dek1Δlg3;
many = oex1; Fig. 4d, e). With their intermediate phenotypes and mis-
regulation patterns, the two partial deletion lines indicate how the distinct
functional regions of DEK1 might be involved in fine-tuning free calpain
activity. In our model for gametophore bud formation, the level of calpain
activity is proportional to the probability (Pbud; Fig. 4e) of a side branch
initial developing into a gametophore initial cell (Fig. 4f).

The immobile, inactive, full-length DEK1 protein (off; Fig. 4d) resides
at the plasmamembrane31 and can potentially be phosphorylated at several
sites74,75, probably resulting in conformational changes and (de)activation.
While animal calpain activity depends on Ca2+ binding76, it is currently
unclear to what extent Ca2+ activation is required for the DEK1 calpain’s
CysPc-C2L protease domain77,78. The autocatalytic activity of DEK1
(External File DEK1.jvp) likely results in a short half-life of the mobile,
unconstrained calpain that can target many proteins, potentially acting as a
reset switch affecting turnover of the entire or large parts of the cellular
protein complement (Fig. 4d).This is presumably thehighest levelof calpain
activity with a short half-life of individual calpain molecules.

However, not all potential cleavage targets bear destabilizing
N-terminal residues targeting a protein for proteasomal degradation via the
NERDpathway (Fig. 3a). Depending on the amino acid signature of the new
Nterminus, the resultingpolypeptidemaybe eitherNERD-directedor stable
and may represent the activated or mature form of the protein or peptide
(e.g., CLEs), whichmay also hold true for DEK1 itself. Our data suggest that
at least three stable DEK1 variants potentially arise by autocatalytic cleavage
in the Linker domain (External File DEK1.jvp). These are similar to the sizes
of experimentally confirmed forms in Arabidopsis thaliana61. The varying
N-terminal regions resulting from such cleavages might lead to different
half-lives or modify calpain’s specificity or target range (Fig. 4d).

We also found components of the NERD pathway (e.g., orthologs to
crucial N-recognins PRT1 and PRT6; Fig. 3a41) among the indirect DEK1
targets. These potentially represent yet another regulatory layer, allowing to
switch off degradation or fine-tune protein stability and balance post-
cleavage protein fates toward the modulator activity i.e., activation or
maturation (Fig. 4d).

Calpain research has largely focused on calpains’ roles as non-pro-
cessive, modulatory proteases18. Much less attention has been paid to their
destabilizing characteristics, observable in the coactivation with the
ubiquitin-proteasome system and the generation of short-lived substrates
for the NERD pathway19. Importantly, many experimentally characterized
calpain targets, especially those with confirmed NERD degrons19, are
involved in transcriptional or other gene regulation. The functional impli-
cations of this have so far been under-investigated.

It has been difficult to align the observed directionality (activation vs.
inactivation of biological functions), effects, pleiotropy and severity of dek1
phenotypes with DEK1’s role as a sole modulator protease. Our observa-
tions identify DEK1 as an upstream component of the ubiquitin-
proteasome system that directs proteins via the NERD pathway. DEK1
cleavage of activating/repressing TFs can inhibit/activate the expression of
all downstream target genes and thus indirectly regulate gene expression,
largely explaining the substantial changes in gene expression observed in
dek1 mutants. Nevertheless, for some targets, DEK1 may act as a non-
processive andmodulatory protease, like other calpains. Our predictions do
hint at the importance of DEK1 in protein maturation and activation
(CLEs). Thus, we propose a duality of outcomes for proteolysis by calpains
(Fig. 4d). Our data in P. patens indicate that the final outcome of cleavage is
usually degradation by the proteasome.

Calpains participate in a spectrum of biological processes and are
controlled at multiple levels16. The proposed dual role for DEK1 as a
modulatory and destabilizing protease that modulates a fraction of protein
functions, while directing most detrimental cleavage fragments toward the
NERD pathway for degradation, provides the most parsimonious expla-
nation for our observations. The gene-regulatory consequences and effects
of NERD pathway control over calpain-targeted TFs allowed the estab-
lishment of this route as a regulatory mechanism in the form of a post-
translational gatekeeperof cell fates.The fact thatDEK1 is a single-copygene
inmost landplants argues for a crucial anddosage-sensitive role of this plant
calpain8,11,15.

Systematic, large-scale analysis or discovery of calpain targets has been
hindered by their limited target specificity, their involvement in a broad
spectrum of biological processes and the complexity of their regulatory
mechanisms. Considering the confirmed calpain-targeted human gene
regulators and reports of gene misregulation in metazoan calpain mutants
and human pathologies, metazoan calpains, too, might have gene-
regulatory roles. The developed FDGENEA method can also prove to be
invaluable to other sorts of genotype-phenotypemappings.Our approachof
tracing calpainmutantormisregulationprofiles inGRNs to identify indirect
and direct targetsmight help elucidate this under-explored aspect of calpain
biology more broadly. The resulting genome-wide, unbiased target candi-
date gene lists are valuable starting points formechanistic exploration of this
enigmatic major proteolytic system with important regulatory and devel-
opmental implications in all eukaryotes.

Methods
Plant materials and growth conditions
Physcomitrium (Physcomitrella) patens Gransden WT strain and four
mutants, Δdek110, dek1Δloop11, dek1Δlg314 and oex1 (this work), were used.
Protonemata were maintained on minimal medium supplemented with
920mg l–1 ammonium tartrate (BCDA medium) under a 16-h light
(70–80mmolm–2 s–1)/8-h dark photoperiod at 25 °C. Cultures for pheno-
typic characterization and RNA extraction were grown under the same
conditions onminimal BCDmediumwith no ammonium tartrate added10.

Generation of the DEK1 Linker-Calpain overexpressing
strain oex1
The cDNA encoding the Linker-Calpain domains was PCR amplified with
primers P1 and P2 (Supplementary Data S12)11. The PCR amplicon was
cloned into the pCR8/GW/TOPO TA vector (Invitrogen), and mobilized
into the pTHUBI Gateway vector79 using LR Clonase (Invitrogen). The
vector allows expressionduring the entiremoss life cycle, and its targeting to

https://doi.org/10.1038/s42003-024-05933-z Article

Communications Biology |           (2024) 7:261 11



the 108 locus does not induce phenotypic changes80. For transformation, the
targeting fragment was amplified by PCR using the primers P3 and P4
designed at each end of the targeting sequence.

Transformation of WT P. patens was performed via polyethylene
glycol (PEG)-mediated transformation of protoplasts10; the Linker-Cal-
pain overexpressing strain oex1 was selected for further analysis. In
parallel the oex1moss went through a cycle of sexual reproduction36 and
displayed normal sporophyte development. Subsequent spore germina-
tion and gametophyte development were consistent with the observed
phenotype of the original oex1 transformant (Fig. 1). PCR genotyping
showed 5’ targeting of the construct at the 108 neutral locus81. A Southern
blot10 also indicated that oex1 harbors multiple copies of the construct at
the targeted locus (Supplementary Figs. S11 and S13). Genomic DNA for
Southern blot analysis was extracted using the NucleonTM PhytoPur-
eTM Genomic DNA Extraction Kit (GE Healthcare). Southern blotting
was performed using 1 μg genomic DNA per digestion. Probes were
labeled with digoxygenin (DIG; Roche, Indianapolis, USA). DNA from
the pTHUBI Gateway vector36 was used as template for PCR amplifi-
cation of the TS and hygromycin-resistance probes with primers 108_5fw
and 108_5rev (5′ TS probe); 108_3fw and 108_3rev (3′ TS probe); HRC-
fwd and HRC-rev (HRC probe; Supplementary Data S12). Immuno-
blotting using the anti-PpDEK1 specific antibody anti-CysPc-C2L
(GenScript, produced in rabbit, epitope sequence WSRPEEVL-
REQGQDC) confirmed the accumulation of the Linker-Calpain protein
(Supplementary Figs. S11 and S13). For protein extraction, tissue from
12-day-old cultures was homogenized in liquid nitrogen and 300 μg of
powder was resuspended in 600 μl of extraction buffer (0.43% [w/v]
DTT, 6% [w/v] sucrose, 0.3% [w/v] Na2CO3, 0.5% [w/v] SDS, 1.0 mM
EDTA, Roche cOmplete Protease Inhibitor Cocktail).

Samples were incubated at 70°C for 15min and centrifuged at
2000 rpm for 10min. Proteins were separated on 4–15%Mini-PROTEAN
TGX Gels (Bio-Rad) and transferred onto nitrocellulose membranes using
Trans-Blot Turbo Transfer Packs (Bio-Rad). Membranes were incubated
with anti-CysPc-C2L primary antibody diluted 1:500 in Tris-buffered sal-
ine+Tween-20 (TBST) containing 5% (w/v) skimmed milk. A goat anti-
rabbit secondary antibody (IgG [H+ L]) conjugated toHRP (Bio-Rad) was
used and signal was detected using Clarity Max Western ECL Substrate
(Bio-Rad) according to the manufacturer’s protocol.

DEK1 protein domain structure
Positions of the 23 transmembrane helices in Fig. 1a (DEK1 MEM, dark
blue) inferred by MEMSAT382. Positioning of the remaining domains
(DEK1Linker,DEK1Calpain) is based on previous phylogenetic analyses14.

Statistics and reproducibility
Statistics and other data analyses were implemented as described below
using custom R or Python scripts and Jupyter notebooks (see “Data avail-
ability” statement below). Where applicable, a common random seed
number was utilized for the presented final description and visualizations
and is provided with the respective source code or configuration file.Where
applicable reproducibility was assessed by testing different seed numbers.
Wet lab experiments were carried out at least in triplicates. Individual
number of replicates, sample sizes and description of reproducibility is
provided in the respectivemethod descriptions and figure legends. Analysis
of variance (ANOVA) and least significant difference (LSD) test were
performed in multiple sample comparisons presented in Fig. 1c. All data
were provided as part of the SupplementaryMaterials andData or deposited
in FAIR data repositories.

Time series analysis of P. patens juvenile gametophyte
development
For comparison of juvenile gametophytic development in theWT and dek1
mutants (Fig. 1b and Supplementary Figs. S9 and S10a), tissue from1-week-
old protonemata cultures was homogenized in sterile water and inoculated
onto minimal medium (BCD) overlaid with cellophane. Material for RNA

extraction was harvested after 3, 5, 9, 12 or 14 days of growth, always at the
same time of day. The samples were frozen in liquid nitrogen and stored at
−80 °C until processing. Three starting cultures for each strain were used to
initiate parallel cultures (biological replicates) used for RNA extraction.
Phenotypic characterization of the plantmaterial was performed using light
microscopy and image analysis using ImageJ software.

RNA extraction, RNA quality assessment, RNA sequencing of
dek1 mutants
Total RNAwas extracted from frozenmaterial using the RNeasy lipid tissue
mini kit (Qiagen) with few modifications. Briefly, the frozen tissue was
thoroughly homogenized using a tissue lyser with pre-frozen blocks.
Approximately 120 μg of powdered tissue was lysed in 1ml of QIAzol lysis
reagent. Then, 200 μl of chloroform was added and the mixture was cen-
trifuged at 4 °C. The aqueous phase was collected, 1.5 volumes of 100%
ethanol was added to it, and the mixture was vortexed. After binding of the
RNA to a RNeasy mini spin column, on-column DNase I digestion was
performed to remove genomic DNA. The column was washed with RPE
buffer (Qiagen) and air-dried, and the RNA was eluted in 45 μl
ribonuclease-freewater. The concentration of total RNAwasmeasured and
RNA integrity was assessed using an Agilent 2100 Bioanalyzer
(DE54704553; Agilent Technologies) with an RNA 6000 LabChip kit. The
RNAsampleswere stored at−80 °Cuntil being sent for sequencing. Strand-
specific TruSeqTM RNAseq library construction of 74 libraries and
sequencing using a HiSeq2500 instrument (Illumina) as 125-bp paired-end
reads were performed.

RNA-seq data collection, read quality analysis and mapping
In total, 299 publicly available RNA-seq libraries for P. patens were down-
loaded from EMBL ENA service. With the 74 RNA-seq libraries produced
in this study, 373 libraries were analyzed in total.

Raw data were quality-checked using FastQ83 and trimmed to remove
adapter contamination and reads of poor quality using Trimmomatic84.

Non-redundant gene annotation, phylogenomics framework,
regulator classification, improved ontology annotation and
updated gene names
For optimal gene-level RNASeq quantification results, a non-redundant
transcript representation of the v3.3 cosmoss genome annotation of P.
patens22 was generated. To this end, GFF3 transcript features of protein-
coding and non-protein-coding genes were exported using gffread85 to
FASA and independently clustered at 100% sequence identity using CD-
HIT86. The v3.3 genome annotation contains genes encoding both mRNAs
and ncRNAs. As these two transcript types might represent opposite reg-
ulatory outcomes (e.g., an antisense transcript to a protein-coding mRNA),
theywere analyzed independently. The original v3.3 gene idswere extended
by adding the primary tag of the transcript feature (i.e., mRNA vs. ncRNA,
tRNA, miRNA or rRNA). Resulting transcripts were traced to genes using
the original GFF3 parent-child relationships.

Gene families were defined in an automated, phylogenomics approach
incorporating protein sequences from 69 Viridiplantae genomes (Supple-
mentary Data S13) using OrthoFinder87. Homologous relationships among
gene family members were analyzed by species tree reconciliation of gene
trees to infer orthologs, inparalogs and outparalogs. Transcription factors,
transcriptional regulators and other transcription associated proteins were
inferred based on gene family membership and classification of domain
architectures using the TAPScan rule set88.

Inferred orthologous relationships were used to transfer automatic and
experimentally validated annotations from orthologous genes. Gene
Ontology89 and Plant Ontology90 term annotations were obtained and pooled
from Gene Ontology (http://geneontology.org/gene-associations), TAIR
(https://www.arabidopsis.org), and Gramene (ftp://ftp.gramene.org/pub/-
gramene/release52/data/ontology) resources. Gene identifiers were mapped
to public resources using the UniProtKB mapping table (ftp://ftp.uniprot.
org/pub/databases/uniprot/current_release/knowledgebase/idmapping).
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The pfam2GO mapping table available from the Gene Ontology resource
(http://geneontology.org/external2go/pfam2go) was also employed to
transfer GO terms based on the inferred domain architectures. The source
evidence classes of the annotated, orthologous genes were translated into
target evidence codes of P. patens genes as follows: (1) automatic annota-
tions: IEA (Inferred by Electronic Annotation) (2) experimental and
reviewed computational analyses (for full list of evidence codes in these
categories see http://www.geneontology.org/page/guide-go-evidence-codes):
e.g., EXP (Inferred from Experiment) and e.g., RCA (Reviewed Computa-
tional Analysis) and ISO (Inferred by Sequence Orthology) (3) pfam2GO:
ISM (Inferred from Sequence Model). Subcellular localization predictions
using YLOC91, TMHMM92 and MEMSAT382 that were translated into GO
subcellular localization terms. Existing cosmoss P. patens v1.6 GO and PO
ontology annotations were integrated90,93 Altogether, extended annotation
comprising 336K GO terms and 877K PO terms was used for the various
ontology term enrichment analyses.

Gene names were transferred from the community-curated cosmoss
legacy annotations and updated throughout the project to incorporate
names from published moss and orthologous plant genes relevant to
the study. Final gene names, description lines, regulator and superfamily
classifications are provided as part of the External Files (listed in S13; gen-
ome_annotation/Physcomitrium_patens.names_and_regulators.tsv).

Differential gene expression (DGE) analyses
Preprocessing, filtering and preliminary analysis of all DGE analyses con-
ducted in this study were implemented in the Jupyter Notebook dge_ana-
lysis/ SetAnalysis.factors.ipynb.Analysis ofDEGs includingdefinitionof the
repressor and activator targets sets was conducted using the UpSetR R
package94 (R Jupyter notebook dge_analysis/SetAnalysis4Paper.ipynb).

Ontology term enrichment in deregulated genes
Ontology term enrichment analyses for the distinct sets of DEGs obtained
from the pairwise comparisons of wild type and mutant genotypes (Sup-
plementary Fig. S1 and Supplementary Data S2), were carried out using the
Snakemake workflow ontology_enrichment_workflow that builds on the
Ontologizer software to testmultiple sets in parallel for enrichment of terms
in anyOBO formatted ontology. Percentages of deregulated ontology terms
for each mutant genotype were calculated and drawn in the Jupyter note-
book ontology_enrichment_workflow/PercentDeregulated.ipynb (Supple-
mentary Fig. S1).

Quantitative analysis of gametophore meristematic bud forma-
tion in dek1 mutants
The frequency of gametophore apical stem cell initiation (Fig. 1c) was
expressedas the numberof buds formedper 15-cell-longfilament and as the
percentage of filaments forming buds. One hundred filaments from each
strain were analyzed.

RNA-seq analysis and expression matrix
Paired-end reads were aligned to the set of 80,244 P. patens unique tran-
scripts and quantified with Kallisto applying 100 bootstrap replicates using
the Snakemake workflow workflow_kallisto. Bootstrapped, individual
transcript abundances obtained from kallisto were used for downstream
analysis of differential gene expression (see below). To generate the input
expression matrix for gene-regulatory network (GRN) analysis, gene-level
transcripts per million (TPM) values were calculated using the R package
tximport and thennormalizedusing the variance-stabilizing transformation
(VST) implemented in the DESeq2 R package (implemented in the Jupyter
notebook grn_analysis/getGeneMatrix.ipynb).

Pairwise, differential time series gene expression analysis of
dek1 mutants and the WT along the developmental time course
Based on the bootstrapped kallisto transcript abundances, we performed
pairwise, differential time-series gene expression (DGE) analysis of the dek1
mutants and theWTusing the response error linearmodeling implemented

in the sleuth R package (Jupyter notebooks in folder dge_analysis/
TimeSeriesAnalysis.*_vs_*.ipynb).

To identify differentially expressed genes (DEGs) between genotypes,
pairwise comparisons were undertaken. DEGs were inferred using the LRT
false discovery rates (FDR; qval Supplementary Data S1) at 10% and 1%
confidence. Directionality of differential expression (upregulation or
downregulation; Fig. 1d, f) was defined based on the b-value obtained from
Wald’s test.

To identify DEGs during the WT developmental time course, we
selected only the WT samples and performed likelihood ratio and Wald’s
testing comparing the B-spline time-series matrix as described above
(Jupyter notebook dge_analysis/ TimeSeriesAnalysis.WT.ipynb). FDR
cutoff values were chosen accordingly.

To identifyDEGs between the early (3–5 days) and the late (9–14 days)
phase of WT development (Fig. 2a), we selected only the WT samples and
performed likelihood ratio andWald’s testing comparing the two phases in
the full model versus the null model (Jupyter notebook dge_analysis/
TimeSeriesAnalysis.WT.early_vs_late.ipynb). FDR cutoff values were cho-
sen accordingly.

To define patterns or profiles of misregulation of repressor and
activator targets, DEGs were filtered using the R Jupyter notebooks
dge_analysis/profile_phases/ identify_profiles.ipynb and dge_analysis/
profile_phases/getRelaxed.ipynb. For profile 1, we selected genes sig-
nificantly upregulated in WT compared to oex1, downregulated in WT
compared to Δdek1 and downregulated in oex1 compared to Δdek1. For
profile 2, we selected genes significantly downregulated in WT compared
to oex1, upregulated in WT compared to Δdek1 and upregulated in oex1
compared to Δdek1. For an additional description of the different phases
along the time series, each profile was clustered using k-means clustering
into three clusters. These clusters were manually interpreted and trans-
lated into phase descriptions.

We assessed the outcome of our time-series DGE analysis strategy
with two conventional pairwise DGE analysis approaches (Fig. S12).
While we observed a large consistency of results (e.g., 76% of the DEGs
identified by sleuth also identified with edgeR in comparing up-
regulated genes in the DEK1 null mutant), the sleuth DEG sets had
better consistency with previous data11 as well as a more intuitive and
condensed representation of the resulting DEG sets in our approach
with kallisto/sleuth.

Prediction and characterization of gene-regulatory interactions
and subnetwork inference
Regulatory interactions were predicted in the genome-wide VST-trans-
formed expressionmatrix based on 1736 regulators using the random forest
predictor in GENIE326 (R Jupyter notebook grn_analysis/GENIE3.ipynb).
A set of 992 TF genes, 413 transcriptional regulator (TR) genes, 79 putative
transcription-associated (PT) genes, 275 microRNAs and DEK1 were spe-
cified as candidate regulators.

The overall directionality of regulatory interactions was determined by
Pearson’s correlation coefficients between the expression levels of the reg-
ulator and its target gene along the developmental time course in the WT
and dek1mutant samples as well as globally using all columns of thematrix
(Python Jupyter notebook grn_analysis/GetCorrelation.ipynb).

Community detection was carried out using the Parallel Louvain
Method implemented in theNetworKit Pythonpackage based on the top 10
regulatory interactions of each target gene95 (Python Jupyter notebook
grn_analysis/GetCommunities.ipynb).

To characterize the connectivity of nodes and rank the nodes, several
centrality measures were calculated, which were implemented using the
NetworKit Python package (Python Jupyter notebook grn_analysis/Get-
Communities.ipynb). These values leading by the local reaching centrality
were used to sort and rank the nodes to establish a regulator hierarchy.

The barplot summarizing the subnetwork structure (Supplementary
Fig. S2a) of the P. patens GRN was drawn with the Jupyter notebook
grn_analysis/PlotSubnetworkMisregulation Patterns.ipynb.
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Differential gene expression (DGE) analysis of developmental
stages in the P. patens Gene Atlas
Based on the bootstrapped kallisto transcript abundances of the P. patens
Gene Atlas data set24 (dge_gene_atlas/subset.full_metadata.txt), we carried
out DGE analysis for each of the five covered developmental stages (spores,
protonema, gametophores, green sporophytes, brown sporophytes) using
the sleuthRpackage25 as described above for the developmental time course.
In this case, the full model compared samples for each developmental stage
against all other samples. Analyses were implemented in the Jupyter note-
books dge_gene_atlas/DGE.gene_atlas.*.ipynb.

Functional characterization of the subnetworks
Weutilized the developmental stage samples included in the P. patensGene
Atlas24 as well as Plant Ontology (PO) and Gene Ontology (GO) annota-
tions for functional characterization of the subnetworks. Both approaches
independently considered the network’s structure to assess over-
representation of functional concepts among the genes in the network.
Combined with the manually curated set of experimentally/genetically
characterized moss genes, the two analyses provided the basis for the
assignment of subnetworks to tissue and cell types (Fig. 2c, d) and to sub-
cellular compartments (Fig. 2e).

Network enrichment analysis for the Gene Atlas developmental stage
DGE sets defined at FDR < 0.1 (Supplementary Fig. S3a) was carried out
using the NEAT R package27 in the Jupyter notebook grn_analysis/
NEAT.DGE.ipynb as described above for the DEK1 DGE sets.

The ontology analysis comprised a multi-step procedure relying on a
machine learning approach to identify the most specific and characteristic
terms for the genes encoded in each subnetwork. The final set of most
characteristic PO andGO terms for each subnetwork (Fig. S3e–i) comprises
the ontology terms that were most informative to classify the top20 master
regulators from each subnetwork according to their targets’ functional
composition.

Primary ontology term enrichment analysis for the subnetworks was
carried out using the ontology_enrichment_workflow as described above
for the DGE sets. Total number of enriched terms at FDR < 0.1 for each
partition of GO and PO in this primary analysis (Supplementary Fig. S3b)
was analyzed and plotted using the R Jupyter notebook grn_analysis/Study
Enrichments.ipynb.

Specificity of the primary analysis was analyzed via set analysis of
the enriched GO biological process concepts (Supplementary Fig. S3c)
using the UpsetR package (R Jupyter notebook grn_analysis/
StudyEnrichments.ipynb).

The sources of ontology term annotations are manifold and differ in
quality, resolution and intention. Genes can be experimentally connected to
multiple processeswhile their direct functional involvement is limited toonly
some of them. Primary enrichment analysis does not consider the relation-
ships between genes. As functionally related genes tend to be co-regulated,
GRNs provide an additional layer to mine functional relationships. Even
more so in our case, where we are interested in identifying the predominant
biological processes and anatomical structures etc. encoded by each sub-
network. Thus, the subsequent steps were directed to integrate the infor-
mation from the directed graph structures of the predictedGRNof P. patens.

Directed network enrichment analysis tests were carried out for each
enriched ontology concept among the subnetworks using the NEAT R
package27 filtering terms at FDR < 0.01 in Jupyter notebook grn_analysis/
NEAT_enriched_terms.ipynb.

In a next step, we constructed a regulator matrix where the 2084
columns contain for each NEAT enriched ontology term the annotated
downstream gene frequencies for 1667 regulators (R Jupyter notebook
grn_analysis/GetRegulatorMatrix.ipynb).

This matrix was used for a machine learning approach to identify dis-
tinctive ontology concepts for the top 20 regulators of each subnetwork using
Random Forest classification implemented in the randomForest R package96

(Jupyter R notebook grn_analysis/enriched_terms_selection_by_Random

Forest_variableImportance.ipynb). For preprocessing, the regulator matrix
was further filtered to discard non-plant GO concepts as well as terms from
either PO or GO that did represent ≥10% of the respective ontology’s
annotated gene space in at least oneof the subnetworks. Individual regulators’
ontology term gene frequencies of the remaining 379 columns were scaled
using the overall number of genes annotated with each term and the terms
information content. The rows of the matrix were filtered selecting only the
top 20 master regulators for each subnetwork using the centrality rank cri-
terion (220 regulators in total). The resulting,filteredmatrixwas used to train
a Random Forest classifier with 100,000 trees recording variable importance
i.e., each ontology term’s importance to discriminate a subnetworks regulator
fromthoseof other subnetworks.Multidimensional scaling (MDS)plotof the
classifiers’ proximity matrix was carried out to analyze the conceptual simi-
larity of the subnetworks (Supplementary Fig. S3d). The top 5 most specific
terms to describe targets in subnetworks II, V, VIII, IX and Xwere plotted as
word cloud representations (Supplementary Fig. S3e–i). We selected and
ranked terms for each subnetwork demanding variable importance >0 using
thedecrease innode impurity basedon theGini index implementedby theR/
randomForest package.

To identify and rank the five subnetworks contributions to the seven
major subcellular compartments depicted in Fig. 2e, we semi-automatically
screened, sorted and ranked the distinctive terms by their gene frequencies
in the subnetworks using the bash shell (ontology_enrichment/syntax.
get_DEK1_Fig2_numbers).

Identification of the five DEK1-controlled subnetworks
The identification of predominantly DEK1-controlled subnetworks
encoding the 2D-to-3D transition (Fig. 2a and Supplementary Fig. S2b)
was carried out by tracing the overrepresentation and under-
representation of the relevant DGE sets via a Network Enrichment
Analysis Test (NEAT27) implemented in the R Jupyter notebook grn_a-
nalysis/PlotSubnetworkMisregulationPatterns.ipynb. p values were
adjusted for multiple testing using the Benjamini-Hochberg method and
filtered at 99% confidence.

The overall network structure of the putative indirect DEK1 targets
(Fig. 2b) was analyzed and drawn in Cytoscape applying the
AutoAnnotate97 app.

Identification of the major inter-connections between the five
DEK1-controlled subnetworks
To identify themajor regulatory interactions between subnetworks (Fig. 2f),
we analyzed the cross-sectional distribution of inter-subnetwork connec-
tions considering the predicted directionality based on the Pearson corre-
lation coefficient of expression profiles between a regulator and a predicted
target from another subnetwork.

In the Jupyter notebook grn_analysis/PlotSubnetworkDeregula
tionPatterns.ipynb we utilized stacked barcharts in polar coordinate plots, a
mosaic plot depicting the distribution of Pearson residuals indicating sig-
nificant over- or under-representation of inter-connecting edges obtained
from a significant Χ2 test (p value < 2.22e−16; Supplementary Fig. S4) and
cross-tabulation via Χ2, Fisher and McNemar tests implemented in the
gmodels R package98 to assess the distribution of inter-subnetwork edges.
The graph of inter-subnetwork connections shown in Fig. 2f depicts the
major, significantly enriched inter-subnetwork connections with Pearson
residuals >4 (Χ2 test).

Subgraph analysis—regulatory hierarchies, regulons and reg-
ulatory contexts
To analyze and visualize regulatory hierarchies, regulons and compare
regulatory contexts (Supplementary Figs. S5a, b and S10i, k), we uti-
lized the Cytoscape and the k-shortest paths algorithm with additive
edge weights implemented in the PathLinker app99. We used the edge
weights computed by GENIE326 and usually explored several k’s to
optimize resolution.
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Prediction of calpain cleavage sites and classification of poten-
tial for NERD targeting
Calpain cleavage sites were predicted for all predicted protein isoforms
encoded by the P. patensV3.3 genome using GPS-CCD35. The results were
classified using regular expressions capturing the N-end rule (Fig. 2a; cal-
pain_cleavage_prediction/n-terminal_site_classes.csv; bash syntax file cal-
pain_cleavage_prediction/syntax).

The respective proteins were classified based on overall abundance of
putative DEK1 cleavage sites and prevalence of NERD signatures in the
resulting N termini using a combination of principal component analysis
(PCA) and model-based clustering implemented in the R packages Facto-
MineR and mclust100 (Supplementary Fig. S6a–f; Jupyter R notebook cal-
pain_cleavage_prediction/DEK1_cleavage_sites.ipynb).

Overall site frequency and individual NERD site type frequencies were
scaled by total protein length. Log-transformed, scaled overall site fre-
quencies were clustered with k-means clustering into five site abundance
level categories (SLC; Supplementary Fig. S6a). The matrix was utilized for
PCA (Supplementary Fig. S6b). The first ten principal components were
used for model-based clustering using default parameters (Supplementary
Fig. S6c, d). The resulting clusters were interpreted in the context of the first
five principal component eigenvectors (explaining ~99% of the total var-
iation; Supplementary Fig. S6d) and the distribution among the five SLCs
(Supplementary Fig. S6e, f). We assessed the proportion of cleavages
resulting inNERD-like signatures that have been experimentally confirmed
in planta (Supplementary Fig. S6e, f).

Tracingmisregulationandpredictedcalpaincleavagepatterns in
the P. patens GRN
Directed network enrichment analysis (Fig. 3a) was performed with the
NEAT R package27 using the R Jupyter notebook calpain_cleavage_pre-
diction/NEAT_cleavage.ipynb. Ratios betweenobserved and expected sizes
of specific candidate gene sets were clustered for both rows and columns
using the ward.D2 method and plotted as a heat map (Fig. 3a).

To study gene-wise effects of DEK1 mutation, we calculated the
cumulative misregulation levels of genes with significantly altered expres-
sion levels in themutants as the sumof the three individual χ2 test statistics of
the three likelihood-ratio tests (LRTs) comparingWTtoΔdek1, oex1 toWT,
and Δdek1 to oex1 employing it in the sense of an absolute, cumulative
effect size.

Cumulative misregulation levels were used to analyze their patterns
in the five DEK1-controlled subnetworks using complementary
approaches: generalized linear modeling, random forest classification,
PCA, χ2 tests and correlation analysis (Fig. 3b and Supplementary
Fig. S6g, h; R Jupyter notebook calpain_cleavage_prediction/CCinRe-
gulators.TargetPerspective. only_target_subnetworks.ipynb). Upstream
regulatory context of all genes in the five DEK1-controlled subnetworks
were analyzed by tracing incoming regulatory edges for each gene up to
the third order (TF3→ TF2→ TF1→ gene) building on the make_e-
go_graph function of the igraph R package. We repeated these analyses
for the three subnetworks encoding the 2D-to-3D transition (V→

II→X; Fig. 3c, d; R Jupyter notebook calpain_cleavage_prediction/
CCinRegulators.TargetPerspective.only_II_V_X.ipynb).

Filtering the final set of direct and indirect DEK1 targets
To define direct and indirect DEK1 targets, we analyzed the initial set of
215,189 regulatory interactions from all subnetworks involving TFs as
regulators (R Jupyter notebook calpain_cleavage_prediction/GetCan-
didateTargets.ipynb). Information on calpain cleavage classification,
significance of overall misregulation in dek1mutants and the global dek1
mutants misregulation pattern were added. The final set of DEK1-
controlled regulatory interactions (Fig. 3e and Supplementary Fig. S7)
was analyzed using the R Jupyter notebook calpain_cleavage_predic-
tion/filter_analyze_DEK1Targets.ipynb selecting TF regulators with a
classified NERD-like cleavage pattern and significantly misregulated
target genes. This analysis resulted in 10,120 network edges

(SupplementaryData S6). Themosaic plot comparing the different types
of DEK1-controlled regulatory interactions across the 11 subnetworks
(Supplementary Fig. S7c) was created using the R Jupyter notebook
calpain_cleavage_prediction/filter_analyze_DEK1Targets.ipynb. Allu-
vial plots were created using the R Jupyter notebook calpain_cleava-
ge_prediction/alluvial.ipynb. Ontology term enrichment analysis
(Fig. 3f, g) was carried out using the Jupyter notebook calpain_cleava-
ge_prediction/ontologies/AnalyseEnrichment.ipynb and plotted using
calpain_cleavage_prediction/ontologies/PlotSelectedTerms.ipynb.
Terms shown in Fig. 3f, g were filtered for overall enriched terms among
targets in subnetwork II, V, and X and for connection to dek1 pheno-
types. Text size was scaled by the number of genes per GO term and gene
set. Results were combined for overall enrichment among DEK1 targets
and subnetwork interconnection sets.

Functional characterization of DEK1 targets
Primary ontology term enrichment analysis for the DEK1 targets was car-
ried out using the ontology_enrichment_workflow as described above for
the DGE sets. We carried out two types of comparisons looking globally at
all targets as well as at individual subnetwork pairings and deregulation
patterns (e.g., activator_II_vs_X or repressor_X_V). The enriched terms at
FDR < 0.1 for each partition of GO and POwas analyzed and plotted using
the R Jupyter notebook calpain_cleavage_prediction/ontologies/Analyse
Enrichment.ipynb.

As already demonstrated for the overall DGE sets, DEK1 mutation
results in a deregulation of broad gene functions. Thus, our goal was to
identify overall trends without losing specificity. We chose a two-pronged
approach, combining automated semantic analysis with manual identifi-
cation of representative key concepts.

The basis for the automated analysis of enriched ontology terms, is
semantic similarity analysis101 and information content- or ontology-based
ranking of similar concepts.We used the ontologyX suite of R packages102 in
the above-mentioned R Jupyter notebook to compare and cluster entire
gene sets (Supplementary Fig. S8a–c) as well as compare, group and rank
individual enriched terms to select the most informative for plotting their
semantic similarity-derived distance matrix (1-S) via multidimensional
scaling (Supplementary Fig. S8d, e).

The result of this automated analysis was then manually inspected,
interpreted and curated in light of the external knowledge of DEK1mutant
phenotypes in P. patens and other plants, calpains as well as the NERD
pathway to select the most informative and non-redundant concepts
(Fig. 3f, g; R Jupyter notebook calpain_cleavage_prediction/ontologies/
PlotSelected Terms.ipynb).

Factorial Differential Gene Expression Network Enrichment
Analysis (FDGENEA)
Phenotypic observations of the dek1mutant lines (Supplementary Figs. S9
andS10a)were translated into 17binary, factorial variables (.tsvfile fdgenea/
phenotypic_factors.tsv; Fig. 4a and Supplementary Fig. S10b) and used for
DGE analysis using the R sleuth package (R Jupyter notebook fdgenea/
Analysis.*.ipynb) as described above. A positive association between a gene
and a trait corresponded to a Wald’s test b-value > 0, with negative asso-
ciations for b < 0. The LRT test statistic was interpreted as an effect size for
the strengthof the association.The full data are provided in thefiles fdgenea/
dge/*/dge.full.tsv.gz.

Subsequently, for each trait, network enrichment analysis of sig-
nificantly associated genes (LRT FDR < 0.01) was conducted using the
NEATRpackage (R Jupyter notebook fdgenea/NEAT.iypnb). p values were
adjusted for multiple testing using the Benjamini-Hochberg method and
filtered at 99% confidence. Two types of NEAT analyses were carried out:
(1) Testing enrichment of the two directional sets of significantly asso-

ciated genes independently (e.g., trait number_buds_per_filament
comparison of normal vs. high is up, i.e., genes with b > 0). Full results
of this analysis are provided in the .tsv file fdgenea/
NEAT_subnetwork_enrichment.phenotypic_factors.tsv;
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(2) Testing enrichment of the entire set of genes that is significantly
associated with a given trait (e.g., trait number_buds_per_filament
comparison of normal vs. high, i.e., genes with b < 0 or b > 0). Full
results of this analysis are provided in the .tsv file fdgenea/
NEAT_subnetwork_enrichment.phenotypic_factors.simplified.tsv.

The results of these two analyses were combined for Supplementary
Fig. S10a, using the second analysis as a basis for the heatmap and the results
of the first to derive the cell annotations (+/−), to indicate significantly
enriched sets of either positively (up, i.e.,+) or/andnegatively (down, i.e.−)
associated genes for any of the subnetworks.

As a final step, we implemented a procedure that analyzed the network
structure of the genes associated with each trait, isolated subgraphs with
enriched trait association, and identified common upstream TF genes. For
each gene, the algorithm evaluates the cumulative effect size (i.e., the asso-
ciation of the downstream genes with the trait) and records the numbers of
all downstream regulators and only the downstream TFs in both cases
distinguishing between direct (first-order) downstream genes and indirect
(higher-order) downstream genes. The cumulative effect size was recorded
both as a sum of the LRT test statistic (columns ending in _cb) and as the
sum of the absolute value of the LRT test statistic (columns ending in _cab).
The identified connected components were reported as .tsv files with all the
collected statistics as well as individual GraphML files that can be opened in
Cytoscape. The algorithm was applied to two datasets: one comprising all
subnetworks and the other comprising only the NEAT-enriched (FDR <
0.01) subnetworks for each trait. The algorithm was implemented in R
using the igraph package (Multi-threaded R code fdgenea/FDGE-
NEAE_all.R and fdgenea/FDGENEA_only_enriched.R).An example of the
procedure with additional plots and analyses are provided for the over-
budding trait (normal vs. high number_buds_per_filament; Fig. 4) in the R
Jupyter notebook fdgenea/ FDGENEA.overbudding_only.ipynb.

The GraphML of the identified connected components for both
datasets for the overbudding phenotype (Fig. 4a) as well as subgraphs/
regulonsof identifiedkeyplayerswere analyzedandplottedusingCytoscape
(Figs. 4a, c and S10c, d, i–m).

Intersections among the FDGENEA sets for all traits were analyzed in
the R Jupyter notebook fdgenea/Intersections.ipynb (Fig. S10e, f).

Intersections among the FDGENEA sets for all traits and the two types
of predictedDEK1 targets (activator targets; repressor targets)were analyzed
in the R Jupyter notebook fdgenea/DEK1_targets.Intersections.ipynb
(Supplementary Fig. S10g, h).

Further characterization of overbudding genes using cell-type
specific transcriptomes
Significant DEGs from the cell-type specific transcriptome data for proto-
nemal tip cells and bud cells23 were mapped to the current genome anno-
tation, intersected with the predicted direct and indirect DEK1 targets as
well as the genes associated with the overbudding phenotype and plotted as
an alluvial plot (Fig. 4b) using the R Jupyter notebook fdgenea/Cell-
type_transcriptomes.Intersections.ipynb. The partial overlap between
DEK1-controlled AP2 and MYB TFs in subnetworks II (Supplementary
Fig. S10l, m) was analyzed using Cytoscape and intersections were drawn
using the VIB Venn web interface (http://bioinformatics.psb.ugent.be/
webtools/Venn).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The Physcomitrium patens line (oex1) generated in this study as well as
other P. patens lines used have been deposited at Comenius University in
Bratislava, Department of Plant Physiology moss collection, and are
listed in Supplementary Data sheet S13. RNA-seq data have been
deposited at EBI Array Express and are publicly available as of the date of

publication (E-MTAB-10907). All generated data sets have been depos-
ited at Zenodo https://doi.org/10.5281/zenodo.5513495. This paper
analyzes existing, publicly available data. A table with all accession
numbers for public datasets is provided in Supplementary Data
sheet S13. Raw images generated in this study, including microscopy, gel
and immunoblot images, are publicly available as part of the Zenodo
archive and listed in Supplementary Data sheet S13. All 27 P. patens gene
sets used in the figures or the text are provided as gene id lists in plain text
files in the gene_sets/ folder of the Zenodo archive listed in Supple-
mentary Data sheet S13. Postgresql table dumps, as well as additional
.tsv/.csv tables that are not explicitly mentioned in the text below but are
used in the Jupyter notebooks, are provided in the Zenodo archive listed
in Supplementary Data sheet S13. If not listed explicitly in the “Methods”
section or Supplementary Data sheet S13, data files underlying each
Figure are defined in the respective Jupyter notebook and are uploaded as
part of the Zenodo archive and github repository (see below). The cor-
responding Jupyter notebook for each Figure is described in the
“Methods” section.

Code availability
All original code has been deposited to git repositories. Parallelized Sna-
kemake workflows are provided as individual repositories. Data analyses,
statistics and visualizations were implemented via R or Python Jupyter
Notebooks and for convenience are also accessible via a GitHub repository
(https://github.com/dandaman/moss_DEK1_GRN_analysis). All git repo-
sitories have been pushed to GitHub and deposited at Zenodo and are
publicly available. DOIs are listed in Supplementary Data sheet S13. Used
packaged software are provided via conda environments included in the
Zenodo archive listed in Supplementary Data sheet S13. File names of the
environments correspond to the Jupyter kernels of each notebook.
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