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Brain structure and function are intimately linked, however this association remains poorly understood
and the complexity of this relationship has remained understudied. Healthy aging is characterised by
heterogenous levels of structural integrity changes that influence functional network dynamics. Here,
we use the multilayer brain network analysis on structural (diffusion weighted imaging) and functional
(magnetoencephalography) data from the Cam-CAN database. We found that the level of similarity of
connectivity patterns between brain structure and function in the parietal and temporal regions (alpha
frequency band) is associated with cognitive performance in healthy older individuals. These results
highlight the impact of structural connectivity changes on the reorganisation of functional connectivity
associatedwith thepreservation of cognitive function, andprovide amechanistic understandingof the
concepts of brain maintenance and compensation with aging. Investigation of the link between
structure and function could thus represent a new marker of individual variability, and of pathological
changes.

The brain is one of the most complex biological systems. One of its fasci-
nating aspects, which remains largely unknown, is how wide varieties of
brain rhythms and temporally-specific activity patterns1 can emerge from a
static network architecture2. Addressing this issue is a major fundamental
endeavour for cognitive neuroscience, which can also improve our under-
standing of brain changes across the lifespan and our ability to detect
pathological processes. Previous work has mostly focused on characterising
brain structure (i.e., grey matter and white matter) or brain function (i.e.,
memory, motor function or cognitive control)3. These unimodal studies
greatly advanced our understating of brain networks and of their associa-
tions with cognition4. However, brain network analysis methods, such as
graph theory, have been applied across modalities to study the interaction
between structure and function, showing strong associations between these
dimensions5,6. Since these seminal studies, the relationship between brain
structure and function has been the focus of intense reflection and
methodological development since this relationship is central to many
cognitive domains, evolves with age and is affected by pathologies5. Here,
we investigate these issues in light of age-related brain changes associated
with changes in brain structure that influence neural dynamics7, which
could further our understanding of the large heterogeneity of individual

cognitive trajectories observed during this life period. In particular,
structure–function interactions could be central to further understanding
the preservation (i.e., maintenance8 or compensation9) or the decline of
cognitive performance during ageing.

Studying the relationships between white matter fibres (acquired by
DWI—diffusion-weighted imaging) and blood-oxygen-level-dependent
(BOLD) signal (acquired by fMRI—functional magnetic resonance ima-
ging), previous studies have shown correlations betweenbrain structure and
function throughout the lifespan, and particularly across development10,11,
and during the performance of cognitive tasks12. Also, in a healthy older
population, Burzynska et al.13 showed that individuals with preserved white
matter fibre integrity had a higher BOLD signal associated with better
cognitive performance (see also14,15).Many studies have thus focused on this
link between structure and function using high-spatial-resolution techni-
ques such as fMRI. However, due to their constrained temporal resolution,
age-relatedchanges in thedynamicsof the involvednetworks remain largely
understudied.

Previous work has also demonstrated interactions between brain
structure and function using high-temporal resolution techniques, such as
magnetoencephalography (MEG) or electroencephalography (EEG).
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Indeed, fluctuations in the synchrony and transfer entropy (i.e., direction-
ality) of brain activity have long been considered as noise to be controlled,
whereas today, they have been reappraised as a fundamental aspect of brain
communication16,17. These studies have notably highlighted that EEG con-
nectivity is associated with structural connectivity measures in young
adults18. With healthy ageing, Hinault et al.19,20 showed that a decrease in
white matter fibre integrity is negatively associated with neural synchroni-
sation between brain regions. However, for all these studies, the inter-
pretation of these interactions is limited as it does not account for the full
complexity of such a relationship.

Arecentapproachenables evaluating the relationshipsbetweendifferent
neuroimaging modalities by constructing a multiplex network model of the
brain21.This approachallows the creationof anetwork inwhicheach region is
connected to itself across different layers22. This technique has already been
used in pathology, such as schizophrenia23 and Alzheimer’s disease24,25,
allowing to highlight brain changes that were not detected in unimodal
analyses. Recently, the study by Battiston et al.26, investigating network
connectivity by combining fMRI and DWI data in a two-layer multiplex
network, revealed relevant relationships between structural and functional
brain networks, showing that this technique is an appropriate choice for the
study of brain network connectivity. Some studies have also investigated
changes in functional connectivity inhealthy27 orpathological28,29 participants
using a multiplex approach applied on MEG data. Thus, multiplex brain
networks can be used to study the structure-function relationship in healthy
ageing. It seems, therefore, necessary to quantify the heterogeneity of this
structure/function relationship in relation to cognitive heterogeneity. More-
over, previous work30 suggested that alterations in brain structure in the
presence of delayed and/or noisier brain communications. Such a combi-
nation of DWI (structural) and MEG (functional) data in a multiplex con-
nectome in healthy ageing is therefore important to identify markers of
individual differences and early brain ageing effects, preceding major struc-
tural changes and loss of functional communications. These changes can lead
to deleterious functional consequences20,31 or compensatory functional
adjustments32. In particular, the functional role of the regions could be
affected by changes in brain structure. Indeed, recent work using fMRI has
shown in humans the presence of a functional asymmetry between brain
regions in terms of afferent and efferent information transfer33. Other com-
puter modelling work has also shown a relationship between network
topology and information directionality, in particular, by identifying certain
brain regions (ornodes) as targets and sources of information34. Thismethod,
therefore, appears ideal to clarify the association between brain structure and
cortical dynamics, to identify the mechanisms underlying cognitive hetero-
geneity with ageing, and the functional adjustments allowing the main-
tenance of cognitive function.

Here, we propose a multiplex network approach with MEG and DWI
data in the context of healthy ageing and the associated non-lesional brain
changes35 (see Fig. 1). We used the multiplex participation coefficient as an
indicator of the similarity of connectivity between brain structure and

function: a high level of this coefficient corresponded to a similarity of
connectivity patterns between these modalities whereas a low level corre-
sponded to a divergence of connectivity patterns between these modalities.
We investigated age-related changes in brain structure and function in
young and older healthy participants from the Cam-CAN database
(CambridgeCentre forAging andNeuroscience36,37). This database includes
multimodal neuroimaging data (MEG, MRI and DWI) as well as cognitive
performance evaluation for each individual. Our objectiveswere twofold: (i)
To investigate changes in the interaction between structural integrity levels
and synchronised functional networks between young and old individuals,
with the underlying hypothesis that a decrease in white matter integrity
could negatively impact brain function. (ii) To study the impact of such
structure–function relationship on participants’ cognitive performance,
where we expected that these changes would be associated with cognitive
performance and reveal unique individual differences therein. Compensa-
tory adjustments or maintenance of brain function at the same level as
young adults would result in the preservation of cognitive performance.
Such results could clarify and better characterise maladaptive and com-
pensatory brain communication changes in the presence of ageing struc-
tural networks.

Results
Two groups of participants (22–29 years for the younger group and
60–69 years for the older group) were formed from the Cam-CAN36,37

database. Connectivity analyses were performed on MEG data, and in
particular, two measures were studied: phase locking value (PLV), which
measures synchrony between regions, and transfer entropy (TE), which
measures the directionality of the coupling between brain regions. TE is
complementary to the synchrony measure (PLV) as it provides an esti-
mation of directed connectivity. These measures have already been used in
previous works investigating age-related changes28,29. The data from these
two measures were combined with DWI data to form two multiplex
structure–function networks (see Fig. 1). From these networks, the multi-
plex participation coefficient could be calculated. This coefficient was then
studied to determine the level of similarity of connectivity between the two
layers (structural and functional) of the network. The different phases of
data processing, creation of multiplex networks and statistical analysis are
described in the materials and methods section.

The positive association between multiplex participation coeffi-
cients and cognitive performance in older adults
We first studied a multiplex network composed of PLV and DTI data. Our
main objective was to study the effect of healthy ageing on structural and
functional connectivity and its associationwith cognitive abilities (measured
with neuropsychological tests assessing working and short-term memory,
reasoning ability, executive functions and general cognitive functions; see
materials andmethods for more information). Thus, we determined which
region and which frequency bands age-related changes in multiplex

Fig. 1 | Overview of the creation of the multiplex network from MEG and
DWI data. This multiplex network was built with two layers: one representing
functional connectivity (FC) fromMEG data, either PLV or TE data; the other layer
representing structural connectivity (SC) fromDWI (anisotropic fraction) data, i.e.,

FA data. MEG magnetoencephalography, DWI diffusion-weighted imaging, PLV
phase locking value, TE transfer entropy, FC functional connectivity, SC structural
connectivity.
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participation coefficient could be associated with cognitive performance.
First, we identified the regions and frequency bands that differed between
age groups and were associated with cognition: the left temporal and right
parietal regions in the alpha frequency band (these two regions showed,
respectively, a decrease or an increase in participation in the older indivi-
duals compared to the younger). For other regions and frequency bands
showing differences, they were not associated with cognitive performance,
see Fig. S1 in supplementary. We found that, for both of these regions,
increased multiplex participation coefficient levels were positively asso-
ciatedwith cognitive performance in older adults (left temporal/MMSE test,
r = 0.313, p = 0.034; right parietal/MMSE test, r = 0.393, p = 0.007; Fig. 2).
No association was found in young adults.

Maintaining a lower level of multiplex participation coefficient
than younger adults is positive for the older population
To further analyse these results, subgroup analyseswere performed for these
two regions. To do this, participants were grouped according to the level of
participation coefficient in each region, forming two groups of older indi-
viduals. The older subgroups (i.e., Lowparticipation,High participation; see
Table S1 to Table S4 in supplementary data for the characteristics of each
subgroup) did not differ on any measure (e.g., age, gender ratio, level of
education and general cognitive performance) other than the level of
multiplex participation coefficient (left temporal and right parietal regions).
For the left temporal region, young adults differ from both older subgroups,
and both subgroups also significantly differ from each other: the level of the
participation coefficient was significantly higher for the High participation
subgroup than the younger group (p = 0.009). The Low participation sub-
group showed lower multiplex participation levels than both younger
individuals and the High participation subgroup (p < 0.001 for both com-
parisons). The Low participation subgroup showed better cognitive per-
formance on the VSTM test than the High participation subgroup
(r = 0.584, p = 0.009; Fig. 3a). For the right parietal region, young adults
differ from the High participation subgroup, but not with the Low parti-
cipation subgroup.We observed that the Low participation subgroup (with

similar low participation as younger individuals, p = 0.962) showed better
cognitive performance on the VSTM test (r = 0.475, p = 0.040; no associa-
tion with cognition for the high participation older subgroup; Fig. 3b).
Replication of the main findings using wPLI ((weighted Phase Lag Index
analyses) see Fig. S2) (Fig. 3). Multiplex participation coefficient level dif-
ferences between young and older subgroups and association with
cognition.

Age-related changes in network coupling directionality are
positively associated with cognitive performance
Following these results, we examined ageing effects and individual differ-
ences in these regions using directed functional couplings. For this, we used
the multiplex network formed from TE and DTI data. For the right parietal
region only, in the alpha band, we observed an increase in inward direc-
tionality (i.e., directed towards the right parietal region) in older individuals
compared to younger individuals (t-test, p = 0.038; Fig. 4a). See Supple-
mentary Fig. S3 for consistent results involving gamma frequency bands.
This increased participation in the inward direction for the right parietal
regionwith ageingwas positively associatedwith performance in theVSTM
test (r = 0.314, p = 0.034; Fig. 4c).

To further analyse these results, we investigateddifferences in the same
subgroups as in the first part (PLV/DWI) of the results.

We observed that the Low participation subgroup, showing increased
inward-directed couplings in the right parietal region, also showed better
cognitive performance on the VSTM test (r = 0.463, p = 0.046; Fig. 3c) than
the High participation subgroup. Supporting these results, the High parti-
cipation older subgroup showed lower cognitive performance on theVSTM
test (r =−0.491, p = 0.033; Fig. S3 in Supplementary data).

The respective contributionof eachnetwork layer in younger and
older adults
Degree analyses (number of connections) were performed on the respective
contribution of each layer and suggest that the structural layer makes the
largest contribution to the reported results, as the degree was larger in the

Fig. 2 | Multiplex participation coefficient level differences between young and
old groups and association with cognition. a Distribution of the young and old
groups in the left inferior temporal region (t-test) for the multiplex participation
coefficient in the alpha frequency band for the measure of synchrony (PLV) and
positive association between this level of multiplex participation coefficient and
MMSE score. bDistribution of the young and old groups in the right parietal region

(t-test) for themultiplex participation coefficient in the alpha frequency band for the
measure of synchrony (PLV) and positive association between this level of multiplex
participation coefficient andMMSE score in older adults. The level of education was
controlled as a covariate. All results were adjusted for multiple comparisons using
FDR corrections at q < 0.05. n = 46 participants per group. The black vertical line
represents the standard error of the mean. *p < 0.05 **p < 0.01.
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structural layer (DWI) than in the functional layer (PLV/TE) for the right
parietal region (difference between DWI/PLV and DWI/TE layers,
p = 0.001; see Fig. S4 in Supplementary data). The left temporal region
follows this trend as well (difference between DWI/PLV layers, p = 0.086;
difference between DWI/TE layers, p = 0.001).

Interestingly, we examined the contribution of the different layers of
connectivity within both older subgroups compared to the younger group

for alpha temporal andparietal functional activity (see Fig. S5).Weobserved
that the older subgroup that showed lower cognitive performance (High
participation) did show the difference in contribution between the two
functional layers (differences betweenPLVandTE, p < 0.001), in contrast to
the Low older subgroup that did show better associations with cognitive
performance (p < 0.05). These results were found only for the left temporal
region.

Fig. 3 | Multiplex participation coefficient level differences between young and
older subgroups and association with cognition. a Distribution of young adults
and older adults’ subgroups for the multiplex participation coefficient in the left
temporal region for the measure of synchrony (PLV) in the alpha frequency band.
The positive association between participation in the left temporal region andVSTM
scores for the Low participation subgroup (regression test; no association with
cognition for the High participation older subgroup). b Distribution of the young
adults and older adults’ subgroups for the multiplex participation coefficient in the
right parietal region in the alpha frequency band. The positive association between
participation in the right parietal region and VSTM scores for the Low participation

older subgroup (regression test; no association with cognition for the high partici-
pation older subgroup). c Distribution of young adults and older adults’ subgroups
for the multiplex participation coefficient in the right parietal region in the alpha
frequency band for the measure of directionality (TE). The positive association
between the participation of the right parietal region and VSTM scores for the Low
participation subgroup (regression test; negative association with cognition for the
High participation older subgroup: r =−0.491, p = 0.033). The level of education
was controlled as a covariate. All results were adjusted for multiple comparisons
using FDR corrections at q < 0.05. n = 46 participants per group. The black vertical
line represents the standard error of the mean. *p < 0.05; **p < 0.01; ***p < 0.001.
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Unique detection of subgroups relative to unimodal network
analyses
Finally, we performedunimodal analyses (DWI andMEG) todetermine the
added value of multiplex analyses relative to functional or structural net-
work investigations (see Fig. S6). Regarding the structural layer, we repli-
cated the significant difference in whitematter integrity between young and
old groups (p < 0.001) on global connectivity data. Regarding the functional
layer, we did not find a significant difference between younger and older
adults at the global matrix level in the alpha frequency band. At the nodal
level, no difference between subgroups was observed in functional or
structural networks, in contrast with multilayer analyses.

Discussion
In this study, we have shown the importance of integrating structural and
functional information together to better understand ageing effects. Our
objectives were twofold: to investigate changes in the brain structure-
function association with age and to determine the impact of changes in this
association on cognitive performance in older individuals. Our approach
relied on a two-layer multiplex network, with a structural layer based on
DWI data and another layer based on resting-state MEG data, to identify
changes between younger and older healthy individuals from theCam-CAN
repository and to further understand maintenance8 and compensation9

phenomena observed in ageing. Two aspects of functional network con-
nectivity were studied: phase synchrony and directed connectivity. We
showed the existence of inter-individual variability at the functional level in
older individuals at rest thatwas associatedwith cognitive performance. Low
structure/function multiplex participation coefficient for structure/syn-
chrony and structure/information transfer in temporal and parietal regions
in the alpha frequency band, similar to young adults in the parietal region,
was associated with preserved cognitive performance in older individuals.

The multiplex participation coefficient can be considered as an indi-
cator of co-dependence between modalities: a high level of this coefficient
would indicate a high similarity of connectivity between brain structure and
function,whereas a low coefficientwould indicate a dissociation of structure
and function connectivity. Subgroup analyses based on this coefficient
allowed the detection of heterogeneity within cognitively healthy older
individuals. First, we showed that lower levels of structure/synchrony par-
ticipation relative to younger adults might be beneficial for cognitive per-
formance. Second, using multiplex structure/directed connectivity network
analyses, we showed that low levels of participation in the inward direction
(i.e., corresponding to couplings directed towards a given region), to a
similar level than youngadults, for the regions investigatedwasbeneficial for
cognitive performance. In contrast, an increase in this coefficient was found
to be negatively associated with cognitive performance. These subgroups
were not found in unimodal analyses.

The inferior temporal and supramarginal parietal gyri are both con-
sidered to be brain structural cores38. They are also both part of the default
modenetwork39,40 (DMN), anetwork activated at rest andwhose activity has
been associated with memory and executive performance41. Moreover, the
alpha frequency band is involved in the structuring of neural rhythms and
has notably been associated with attention allocation and the inhibition of
couplings not required for the task42,43. By assessing the interaction between
brain structure and the alpha frequency band, the present results contribute
to existing frameworks about this central brain rhythm42, as they did not
consider such an association. Thus, the disengagement of the DMN, as well
as the posterior alpha reduction, are critical for cognition and are impacted
by aging44,45. Results reveal that, at the scale of our study (i.e., early structural
damage and small individual differences in microstructural integrity), cer-
tain regions and certain frequency bands are more affected than others46.
Recent work47 show that structure–function coupling is heterogeneous

Fig. 4 | Multiplex participation coefficient level differences between young and
older subgroups and association with cognition. a Increased inward directionality
(i.e., directed towards the right parietal region) in older adults relative to younger
adults (t-test) for the right parietal region in the alpha frequency band. b Preserved
outward direction (i.e., directed towards other regions of the network) in older adults
relative to the younger group for the right parietal region in the alpha frequency

band. cPositive association between the increasedmultiplex participation coefficient
in the inward direction for the right parietal region in an alpha frequency band and
VSTM test scores (regression test) in the older group. The level of education was
controlled as a covariate. All results were adjusted for multiple comparisons using
FDR corrections at q < 0.05. n = 46 participants per group. The black vertical line
represents the standard error of the mean.*p < 0.05.
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according to brain region and frequency band. Structure–function coupling
was found tobe greater in the slower and intermediate frequencybands than
in the faster frequency bands. Moreover, the alpha band is a central fre-
quency band that previously showed significant age-related changes30.
Alpha oscillations may play a role in the activation or deactivation of the
DMN48, and Jann et al.49 showed that the BOLD correlates of alpha-band
synchronisation in the resting state were localised in brain regions involving
the DMN. Age-related structural changes would be central to these changes
and would impact brain function. Our results could indicate that in the
presence of fine changes in brain architecture, some older individuals will
show a lower level of participation coefficient (i.e., a dissociation of con-
nectivity patterns between brain structure and function) than others, which
may be due to compensatory functional readjustments involving the alpha
frequency band. These changes would enable better cognitive performance
than individuals who will not make these functional readjustments, with
higher levels of participation coefficient (i.e., a stronger association of
connectivity patterns between brain structure and function). Future, long-
itudinal investigations remain important to further clarify this association.

Our results also reveal that the subgroup of older individuals who
showed lower structure/functionmultiplex participation coefficient and for
whom these changeswere positively associatedwith cognitive performances
showed no difference in contribution (calculated bymeasuring connectivity
levels in each layer) between the phase synchrony and information transfer
layers. Conversely, an increase in the contribution of the phase synchrony
layer compared to information transfer was found for the group without
association with cognition. These results were only observed in the left
inferior temporal region. These results could indicate inefficient con-
nectivity in these individuals (i.e., synchronised couplings with little to no
information exchange). The observation of synchronised activity may,
therefore, be related to cognitive function but may also be dissociated from
it. Thus, considering synchrony in association with information transfer
seems important to clarify age-related changes and to distinguish efficient
communications from inefficient/maladaptive network couplings. These
communications are highly dependent on the integrity of the underlying
structural network, and investigating the respective contribution of struc-
ture and function through a multiplex network could also allow distin-
guishing these functional connectivity patterns in pathologies. Indeed, an
increase in neuronal synchrony can be observed in neurodegenerative
pathologies and has been considered as maladaptive changes (for a review,
see50). Further investigations of this distinction could lead to the identifi-
cation of new markers of subsequent decline and progression of neurode-
generative pathologies.

Taken together, these results demonstrate the importance of the rela-
tionship between brain structure and function, particularly with advancing
age. Thus, in a population of healthy older individuals, alterations in white
matterfibres appear to influence the stability of the functional networks they
underlie. These functional changes would then influence an individual’s
cognitive performance. The concept ofmaintenance (8)would, therefore, be
characterised by a relative preservation of white matter fibres, with no
changes in cerebral function and a relative preservation of cognitive per-
formance. In that case, the link betweenbrain structure and functionwould,
therefore, remain similar to that of younger individuals. Conversely, cog-
nitive decline would be related to fine alterations of white matter fibres
without a reorganisation of functional networks. The relationship between
brain structure and function is altered and tends towards a stronger simi-
larity, in contrast to younger individuals. Finally, compensation (9) would
occur when white matter fibres are altered, and compensatory functional
reorganisation takes place. This reorganisation of functional networks
would then enable individuals tomaintain their cognitive performance. The
link between structure and function is thus different, leading to greater
dissimilarity in connectivity patterns.

Several methodological considerations should be discussed regarding
the reported results. First, the study of resting-state activity partly limits the
direct investigation of the neural bases of cognitive processes, as it might be
less directly associated with cognitive functioning than task-related

activity51. Second, the use of phrase synchrony measures (phase locking
value or phase lag index) could potentially be impacted by volume con-
duction, although the main results were replicated across methods. Fur-
thermore, transfer entropy measures are not affected by volume
conduction52 and provide converging findings to phase synchrony. In
addition, multilayer analyses investigate local levels of similarity in con-
nectivity between structure and function for each region of the atlas. Third,
the analysis of layer contributions only showed results for the left inferior
temporal region,whichdoesnot allowus to generalise our interpretations to
the entire brain. Thus, the pattern of layer contributionsmay be different in
other regions and frequency bands2, although the reported changes were
central in the context of healthy ageing. Longitudinal studies could further
validate our interpretations and improve our knowledge of other brain
regions. Fourth, the reduced size of the subgroups may lead to spurious
correlations. Complementary analyses using the participation coefficient as
a continuous variable have, however, enabled replication of the results
observed in the older subgroup analyses. Fifth, the age groups studied donot
allow us to see the changes in the structure/function link that may occur in
middle age.However, these comparisons between young and old groups are
in line with previous studies on healthy ageing. Further longitudinal studies
of this link are needed to complete our results. Sixthly, in addition to the use
ofmeasures such as phase synchrony and entropy transfer withMEG, other
methods are also relevant for studying thedynamics of brain connectivity, in
particular with fMRI53. Seventh, this study, like the previous ones, is still
based on correlational evidence, particularly in the link between cerebral
connectivity and cognition. However, our approach allows us to better
consider the complexity of the relationship between structure and function.
Eighth, in this study, we used sLoreta to determine source locations.
Although alternative source reconstruction methods could have been used,
previous work from the team showed consistent results across methods54.
Finally, these results provide a better understanding of the relationship
between brain structure and function, highlighting the influence of fine
structural alterations on functional connectivity changes with ageing.
Although it seems less consistent with the literature7, the opposite may also
be possible (i.e., an alteration in white matter fibres following a decrease in
functional connectivity in certain regions).

Several questions remain about the association betweenbrain structure
and function2,7. Indeed, this relationship undergoes crucial changes
throughout the lifespan, as well as following several pathologies. The
structure–function coupling also appears to fluctuate both over time and
regionally. Although structural changes appear to drive changes in coupling
between regions, brain functions are not solely determined by brain struc-
ture. Decreased integrity seems to have an impact on neuronal synchrony
and information exchange, and these changes are distinctly associated with
cognitive performance in individuals.Although thiswould be less consistent
with age-related changes on structural network55, this causality can also be
reversed, with reduced synchrony and information exchange impacting
white matter integrity. Here, we defined multiplex structure-function
models in the context of healthy brain ageing to better understand the
heterogeneity of these changes across individuals (see Fig. 5 for a schematic
representation of thismodel). In particular, we show its impact on cognitive
performance,which improves ourknowledgeof different theoreticalmodels
of ageing, such as concepts of cognitive maintenance8 and compensation9.
Maintenance would thus be characterised by an imbalance in the con-
tribution of phase synchrony and transfer information,with a higher level of
contribution from PLV than from TE. Moreover, the level of similarity of
connectivity between brain structure and function would be very low. The
cognitive decline would also be associated with an imbalance in the con-
tribution of phase synchrony and transfer of information. However, in
contrast tomaintenance, the levelof similarity of connectivity betweenbrain
structure and functionwould be very high. Finally, Compensationwould be
characterised by a balance in the contribution of phase synchrony and
transfer information. The level of similarity of connectivity between struc-
ture and brain function would be very low, in the same way as in the
maintenance concept. Indeed, a dissociation of connectivity patterns
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between structure and function has been associatedwith the preservation of
cognitive performance. Importantly, these individual markers were not
found in unimodal analyses. This new approach might yield a better
understanding of the brain, which could be useful in clinical applications to
better understand certain pathologies such as neurodegenerative diseases
and, more generally, to further our understanding of the link between
structure and function in the brain.

Methods
Participants
We selected only individuals in the 20–30 years and 60–70 years age groups
who had completed all the neuropsychological tests and brain imaging
acquisitions, resulting in 46 individuals per group. All participants aged
20–30 years and60–70 yearswere selected from theCam-CANdatabase36,37,
in line with the demographic characteristics of individuals recruited in
previous works19,56. Thus, we analysed data from 46 young (29 women and
17 men; aged 22–29 years) and 46 older healthy adults (29 women and 17
men; aged 60–69 years) whose MEG data have already been published57

(Table 1). All participants were right-handed, showed normal cognitive
functioning58 (MontrealCognitiveAssessment (MoCA) score>26), andhad
no neurological or psychiatric conditions. Participants had no depression
problems measured with the Hospital Anxiety and Depression Scale
(HADS59) and self-report (see Fig. S7 in supplementary for a detail of the
selection process).

This study is conducted in compliance with the Helsinki Declaration
and has been approved by the local ethics committee, Cambridgeshire 2
Research Ethics Committee (reference: 10/H0308/50). Each participant
contributed to the study after written informed consent. All ethical reg-
ulations relevant to human research participants were followed.

Behavioural measures
A detailed description of behavioural measures can be found in supple-
mentary materials (see also refs. 36,37). Cognitive performance was assessed
with the mini-mental state evaluation60 (MMSE) as a measure of general
cognitive functioning, the accuracy of the visual short-term memory61

(VSTM) as a test of short-term memory and working-memory main-
tenance, the Cattel test62 measuring reasoning ability, and the Hotel Test63

assessing executive functions (notably planning abilities). Despite sig-
nificant differences between the two groups, all participants had normal
cognitive functions. These variables were added as covariates in statistical
analyses.

MEG, structural MRI and DWI data acquisition
Resting MEG activity was measured for 10min, eyes closed (sampling rate:
1 kHz, bandpass filter: 0.03–330Hz) with a 306-channel MEG system.
Participants’ 3D-T1 MRI images were acquired on a 32-channel 3 T MRI
scanner. The following parameters were used: repetition time = 2250ms;
echo time = 2.99ms; inversion time = 900ms; flip angle = 9°; field of

Fig. 5 | Schematic representation of the proposed model for the left inferior
temporal region. a Level of contribution for PLV and TE. b Participation coefficient
for PLV/DWI and TE/DWI multiplex network. c Summary of the relation between

the level of similarity of contribution from PLV/TE, participation coefficient and
concepts of ageing. DWI diffusion tensor imaging, PLV phase locking value, TE
transfer entropy, FC functional connectivity, SC structural connectivity.
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view= 256mm× 240mm× 192mm; voxel size = 2mm isotropic;
GRAPPA acceleration factor = 2; acquisition time = 4min and 32 s.
DWI data were obtained with the following parameters: repetition
time = 9100ms; echo time = 104ms; inversion time = 900ms; field of
view = 192mm× 192mm; 66 axial slices; voxel size = 2mm isotropic;
B0 = 0.1000/2000 s/mm2; acquisition time = 10min and 2 s, readout time
0.0684 (echo spacing = 0.72ms, EPI factor = 96). See https://camcan-
archive.mrc-cbu.cam.ac.uk/dataaccess/ for more information.

MEG data pre-processing
The Elekta Neuromag MaxFilter 2.2 has been applied to MEG data (tem-
poral signal space separation (tSSS): 0.98 correlation, 10 s window; bad
channel correction: ON; motion correction: OFF; 50Hz+ harmonics
(mains) notch). Afterwards, artefact rejection, filtering (0.3–100Hz band-
pass), temporal segmentation into epochs, averaging and source estimation
wereperformedusingBrainstorm64. Inaddition, physiological artefacts (e.g.,
blinks and saccades) were identified and removed using spatial space pro-
jection of the signal. In order to improve the accuracy of the source
reconstruction, the FreeSurfer65 software was used to generate cortical
surfaces and automatically segment them from the cortical structures from
eachparticipant’sT1-weightedanatomicalMRI.The advancedMEGmodel
was obtained from a symmetric boundary element method (BEMmodel66;
OpenMEEG67), fitted to the spatial positions of each sensor68. A cortically
constrained sLORETAprocedurewas applied to estimate the cortical origin
of the scalp MEG signals. The estimated sources were then smoothed and
projected into standard space (i.e., ICBM152 template) for comparisons
betweengroups and individualswhile accounting fordifferences in anatomy
(i.e., grey matter). This procedure was applied for the entire recording
duration.

Connectivity analyses
Phase-locking value analyses69 (PLV) were used to determine the func-
tional synchrony between regions of interest. PLV estimates the variability
of phase differences between two regions over time. If the phase difference
varies little, the PLV is close to 1 (this corresponds to high synchronisation
between the regions), while the low association of phase difference across
regions is indicated by a PLV value close to zero. To ensure PLV results did
not reflect volume conduction artefacts, additional control analyses were
conducted using phase lag index (weighted PLI analyses) replicated our
main subgroups analyses results (see Fig. S2). BecausePLV is anundirected
measure of functional connectivity and to investigate brain dynamics with

complementary metrics, analyses of transfer entropy (TE) have also been
conducted. TE measures how a signal can predict subsequent changes in
another signal70. It thus provides a directed measure of a coupling’s
strength. If there is no coupling between regions, thenTE is close to 0,while
TE is close to 1 if there is a strong coupling between two regions. This
method quantifies the flow of information between brain regions, which is
whywewill refer to it as information transfer for the rest of this article. This
information transfer enables us to determine the functional role of a brain
region, specifying whether it is a transmitter (i.e., the direction of infor-
mation flow from this region to other brain regions) or a receiver (i.e., the
direction of information flow to this region from other brain regions)34.
Moreover, this complementary measure is not influenced by volume
conduction52.

PLV and TE were computed using these processes selected in Brain-
storm and followed the same processing steps. The range of each frequency
band was based on the frequency of the individually observed alpha peak
frequency (IAF), measured as the average of peaks detected from both
occipitoparietal magnetometers and gradiometers. In line with previous
work71 the following frequency bands were considered: Delta (IAF-8/IAF-
6), Theta (IAF-6/IAF-2), Alpha (IAF-2/IAF+ 2), Beta (IAF+ 2/IAF+ 14),
Gamma (IAF+ 15/IAF+ 80). TheHilbert transformation was used for the
time-frequency decomposition. The number of cycles per frequency was
determinedbasedon IAF (seeTable S5). To reduce thedimensionality of the
data and to preserve the phase of the time series, the first component of the
principal component analysis (PCA) decomposition of the time course of
activation in each of the 68 regions of interest (ROI) from the
Desikan–Killiany brain atlas72. The first component, rather than the average
activity, was chosen to reduce signal leakage and volume conduction
effects73. PLV and TE were computed following these processes in
Brainstorm64.

DWI data pre-processing
Pre-processing of the diffusion data was performed using ExploreDTI74 and
included the following steps: (a) images were corrected for eddy current
distortions and participant motion; (b) a non-linear least squares method
was applied for diffusion tensor estimation, and (c) deterministic DWI
tractography was applied using the following parameters: uniform resolu-
tion of 2mm, fractional anisotropy (FA) threshold of 0.2 (limit: 1), angle
thresholdof 45°, andfibre length rangeof 50–500mm.Thenetwork analysis
tools in ExploreDTI were used to quantify the FA value of the fibres con-
necting the regions of the Desikan atlas to obtain similar matrices to MEG
data, using Freesurfer’s individual cortical parcellation.

Multiplex network construction and measures
Using BRAPH75 software (http://braph.org/), a multiplex network was
defined for each subject, with two layers: one “structural” layer with DWI
tract FA data and one “functional” layer with PLV or TEMEGdata (in this
study, a simplification of TE was used to determine whether a region was a
receiver or sender). TE analyses were performed on each region and dis-
tinguished coupling directed from the network towards a given region (i.e.,
the inward direction) or from a given region towards the rest of the network
(i.e., the outward direction). Frequency bands were analysed separately to
investigate their respective associations with the structural layer, in line with
previous work showing heterogeneous association across frequency
bands76,77. In each layer, brain regions from the Desikan–Killiany atlas78 are
represented by nodes connected by edges (see a method’s summary in
Fig. 1). A binary multiplex matrix was calculated from the individual
matrices ofDWIandMEGdataof eachparticipant.Matriceswere binarized
according to the minimum density observed for DWI in the older adult
group (22%).Thedensity, or numberof connections for allmatrices,was the
same across layers. Auto-correlations between regions were excluded from
the analyses.

To evaluate across-layer integration, the multiplex participation
coefficient79 was investigated, allowing the quantification of the connectivity
similarity of a node across the different layers. The multiplex participation

Table 1 | Demographics and scores for both groups younger
and older participants

Variables Young
adults

Older adults p-Value t-Value

Number of participants 46 46 1.000 –

Number of women 29 29 1.000 –

Age 26.5 (2.01) 64.5 (2.85) 0.001 −73.887

Years of education 22.2 (2.873) 19.1 (3.262) 0.001 4.774

Hospital Anxiety and
DepressionScale (HADS)

2.07 (0.286) 2.67 (0.360) 0.193 −1.313

MMSE 29.5 (0.863) 28.9 (1.173) 0.013 2.531

VSTM 0.5 (0.088) 0.4 (0.069) 0.001 3.890

Cattell 37.8 (3.628) 30.5 (6.285) 0.001 6.766

Hotel_Num_rows 4.7 (0.585) 4.3 (1.008) 0.018 2.420

Hotel_Time 227.7
(119.796)

326.9
(194.305)

0.005 −2.901

MMSEmini-mental state evaluation, VSTM visual short-term memory, Hotel_num_rows corre-
sponding to the number of rowsperformedby theparticipant,Hotel_Timecorresponding to the time
used to perform all rows by the participant. Differences between the two groups were calculated
using a t-test.
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coefficient of a node i is defined as79: pi ¼ M
M�1 1�PM

/¼1
k /½ �
i
oi

� �2
� �

where

M is the number of layers, k /½ �
i the degree of node i at the/ �th layer and oi

is the overlapping degree of node i, oi ¼
P

/k
/½ �
i . This coefficientmeasures

how similar the connectivity patterns are in both layers of the multiplex
network.Values range between0 and1. Inparticular, a value of 1means that
the node makes the exact connections in both layers, while a value of 0
means that the node’s connections in both layers are different from each
other. A large participation value indicates that the nodemay be central or a
hub. To determine which layer is driving the observed results, the degree
(i.e., number of connections of each layer of the multiplex network for a

given region) was also calculated for each group as: d½α� ¼ PN
j¼1a

½α�
ij ; where

a½α�ij is the link between node i and j in layer α.

Statistics and reproducibility
To assess differences between age groups in multiplex participation for
different brain regions, t-tests were applied using the Jamovi software
(https://www.jamovi.org/; version 1.6.23). Regression analyses were per-
formed in the older adults’ group to assess whether the level of participation
coefficient for a region was associated with cognitive performance. After-
wards, participants were grouped according to the level of participation
coefficient for each region. Two subgroups were then formed: one corre-
sponding to individuals with a high participation coefficient called “High
participant group” and another with a low participation coefficient called
“Low participant group”. The median individuals (four from each group)
were removed from subgroup analyses to reduce median split bias. As a
result, each subgroup was composed of 19 individuals. Subgroups were also
found in young adults but due to the large variability in young individuals,
were considered as a single group.T-tests were also performed to determine
differences between subgroups. Non-parametric correlations were used
when thevalueswerenon-continuous (for theMMSE, for example). Levelof
education, greymatter and total intracranial volumewereused as a covariate
to control it in the various statistical analyses. Results were FDR corrected
for multiple comparisons80 at each step of the analysis, including t-tests
between age groups, between different frequency bands and regions, and for
regressions with cognition. Original degrees of freedom and corrected p-
values are reported.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The datasets analysed in this study are available from theCambridge Centre
for Ageing and Neuroscience (http://www.mrc-cbu.cam.ac.uk/datasets/
camcan/). Numerical source data for figures and plots can be found in
the Supplementary data file.

Code availability
The analyses are based on open-source Matlab toolboxes: Brainstorm
(https://neuroimage.usc.edu/brainstorm/) for MEG data analysis and
BRAPH (http://braph.org/) for graph analysis. Brain region representations
were created using the ENIGMA toolbox (https://github.com/MICA-MNI/
ENIGMA.git), also an open-source toolbox. All the codes can be found on
their respective site. No code has been generated internally.

Received: 5 August 2023; Accepted: 16 February 2024;

References
1. Buzsáki, G. Rhythms of the Brain. (Oxford University Press, 2006).

https://doi.org/10.1093/acprof:oso/9780195301069.001.0001.

2. Liu, Z.-Q. et al. Time-resolved structure-function coupling in brain
networks. Commun. Biol. 5, 1–10 (2022).

3. Sporns, O. Structure and function of complex brain networks.
Dialogues Clin. Neurosci. 15, 247–262 (2013).

4. Park, H.-J. & Friston, K. Structural and functional brain networks: from
connections to cognition. Science 342, 1238411 (2013).

5. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10,
186–198 (2009).

6. Honey, C. J. et al. Predicting human resting-state functional
connectivity from structural connectivity. Proc. Natl Acad. Sci. USA
106, 2035–2040 (2009).

7. Suárez, L. E.,Markello, R. D., Betzel, R. F. &Misic, B. Linking structure
and function in macroscale brain networks. Trends Cogn. Sci. 24,
302–315 (2020).

8. Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U. & Bäckman, L.
Memory aging and brain maintenance. Trends Cogn. Sci. 16,
292–305 (2012).

9. Cabeza, R. et al. Maintenance, reserve and compensation: the
cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 19,
701–710 (2018).

10. Uddin, L. Q., Supekar, K. S., Ryali, S. & Menon, V. Dynamic
reconfiguration of structural and functional connectivity across core
neurocognitive brain networks with development. J. Neurosci. 31,
18578–18589 (2011).

11. Baum, G. L. et al. Development of structure–function coupling in
human brain networks during youth. Proc. Natl Acad. Sci. USA 117,
771–778 (2020).

12. Medaglia, J. D. et al. Functional alignmentwith anatomical networks is
associated with cognitive flexibility. Nat. Hum. Behav. 2,
156–164 (2018).

13. Burzynska, A. Z. et al. White matter integrity supports BOLD signal
variability and cognitive performance in the aging human brain. PLoS
ONE 10, e0120315 (2015).

14. Webb, C. E., Rodrigue, K.M., Hoagey, D. A., Foster, C.M. & Kennedy,
K. M. Contributions of white matter connectivity and BOLD
modulation to cognitive aging: a lifespan structure-function
association study. Cereb. Cortex 30, 1649–1661 (2020).

15. Hinault, T., Larcher, K., Bherer, L., Courtney, S. M. & Dagher, A. Age-
related differences in the structural and effective connectivity of
cognitive control: a combined fMRI and DTI study of mental
arithmetic. Neurobiol. Aging 82, 30–39 (2019).

16. Uddin, L. Q. Bring the noise: reconceptualizing spontaneous neural
activity. Trends Cogn. Sci. 24, 734–746 (2020).

17. Untergehrer, G., Jordan, D., Kochs, E. F., Ilg, R. & Schneider, G.
Fronto-parietal connectivity is a non-static phenomenon with
characteristic changes during unconsciousness. PLoS ONE 9,
e87498 (2014).

18. Deslauriers-Gauthier, S. et al. White matter information flowmapping
from diffusion MRI and EEG. NeuroImage 201, 116017 (2019).

19. Hinault, T., Kraut, M., Bakker, A., Dagher, A. & Courtney, S. M.
Disrupted neural synchrony mediates the relationship between white
matter integrity and cognitive performance in older adults. Cereb.
Cortex 30, 5570–5582 (2020).

20. Hinault, T. et al. Age-related differences in network structure and
dynamic synchrony of cognitive control. NeuroImage 236,
118070 (2021).

21. Vaiana, M. & Muldoon, S. F. Multilayer brain. Netw. J. Nonlinear Sci.
30, 2147–2169 (2020).

22. Battiston, F., Guillon, J., Chavez, M., Latora, V. & De Vico Fallani, F.
Multiplex core–periphery organization of the human connectome. J.
R. Soc. Interface 15, 20180514 (2018).

23. Brookes, M. J. et al. A multi-layer network approach to MEG
connectivity analysis. NeuroImage 132, 425–438 (2016).

https://doi.org/10.1038/s42003-024-05927-x Article

Communications Biology |           (2024) 7:239 9

https://www.jamovi.org/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
https://neuroimage.usc.edu/brainstorm/
http://braph.org/
https://github.com/MICA-MNI/ENIGMA.git
https://github.com/MICA-MNI/ENIGMA.git
https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
https://doi.org/10.1093/acprof:oso/9780195301069.001.0001


24. Canal-Garcia, A. et al. Multiplex connectome changes across the
alzheimer’s disease spectrum using gray matter and amyloid data.
Cereb. Cortex 32, 3501–3515 (2022).

25. Guillon, J. et al. Loss of brain inter-frequency hubs in Alzheimer’s
disease. Sci. Rep. 7, 10879 (2017).

26. Battiston, F., Nicosia, V., Chavez, M. & Latora, V. Multilayer motif
analysis of brain networks. Chaos Interdiscip. J. Nonlinear Sci. 27,
047404 (2017).

27. Breedt, L. C. et al. Multimodal multilayer network centrality relates to
executive functioning. Netw. Neurosci. 7, 299–321 (2023).

28. van Lingen, M. R. et al. The longitudinal relation between executive
functioning and multilayer network topology in glioma patients.
Brain Imaging Behav. https://doi.org/10.1007/s11682-023-00770-
w (2023).

29. Yu, M. et al. Selective impairment of hippocampus and posterior hub
areas inAlzheimer’sdisease: anMEG-basedmultiplex network study.
Brain 140, 1466–1485 (2017).

30. Courtney, S. M. & Hinault, T. When the time is right: Temporal
dynamics of brain activity in healthy aging and dementia. Prog.
Neurobiol. 203, 102076 (2021).

31. Tóth, B. et al. Frontal midline theta connectivity is related to efficiency
ofWMmaintenance and is affected by aging.Neurobiol. Learn. Mem.
114, 58–69 (2014).

32. Ariza, P. et al. Evaluating the effect of aging on interference resolution
with time-varying complex networks analysis. Front. Hum. Neurosci.
9, 255 (2015).

33. Xu, N., Doerschuk, P. C., Keilholz, S. D. & Spreng, R. N.
Spatiotemporal functional interactivity among large-scale brain
networks. NeuroImage 227, 117628 (2021).

34. Moon, J.-Y., Lee, U., Blain-Moraes, S. & Mashour, G. A. General
relationship of global topology, local dynamics, and directionality in
large-scale brain networks.PLoSComput. Biol. 11, e1004225 (2015).

35. Park, D. C. & Reuter-Lorenz, P. The adaptive brain: aging and
neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173 (2009).

36. Shafto, M. A. et al. The Cambridge Centre for Ageing and
Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan,
multidisciplinary examination of healthy cognitive ageing. BMC
Neurol. 14, 204 (2014).

37. Taylor, J. R. et al. TheCambridgeCentre for Ageing andNeuroscience
(Cam-CAN) data repository: structural and functional MRI, MEG, and
cognitive data from a cross-sectional adult lifespan sample.
NeuroImage 144, 262–269 (2017).

38. Hagmann, P. et al. Mapping the structural core of human cerebral
cortex. PLOS Biol. 6, e159 (2008).

39. Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default
network and self-generated thought: component processes, dynamic
control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316,
29–52 (2014).

40. Uddin, L. Q., Yeo, B. T. T. & Spreng, R. N. Towards a universal
taxonomy of macro-scale functional human brain networks. Brain
Topogr. 32, 926 (2019).

41. Andrews-Hanna, J. R. et al. Disruption of large-scale brain systems in
advanced aging. Neuron 56, 924–935 (2007).

42. Bonnefond, M., Kastner, S. & Jensen, O. Communication between
brain areas based on nested oscillations. eNeuro 4,
0153–16.2017 (2017).

43. Sadaghiani, S. & Kleinschmidt, A. Brain networks and α-oscillations:
structural and functional foundations of cognitive control. Trends
Cogn. Sci. 20, 805–817 (2016).

44. Anderson, B. A., Folk, C. L. & Courtney, S. M. Neural mechanisms of
goal-contingent task disengagement: response-irrelevant stimuli
activate the default mode network. Cortex 81, 221–230 (2016).

45. Poza, J. et al. Phase-amplitudecouplinganalysisof spontaneousEEG
activity in Alzheimer’s disease. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. 2017, 2259–2262 (2017).

46. Mišić, B. et al.Network-level structure-function relationships inhuman
neocortex. Cereb. Cortex 26, 3285–3296 (2016).

47. Liu, Z.-Q., Shafiei, G., Baillet, S. & Misic, B. Spatially heterogeneous
structure-function coupling in haemodynamic and electromagnetic
brain networks. NeuroImage 278, 120276 (2023).

48. Knyazev, G. G., Slobodskoj-Plusnin, J. Y., Bocharov, A. V. & Pylkova,
L. V. The default mode network and EEG alpha oscillations: an
independent component analysis. Brain Res. 1402, 67–79 (2011).

49. Jann, K. et al. BOLD correlates of EEG alpha phase-locking and the
fMRI default mode network. NeuroImage 45, 903–916 (2009).

50. Jauny, G., Eustache, F. & Hinault, T. T. M/EEG dynamics underlying
reserve, resilience, and maintenance in aging: a review. Front.
Psychol. 13, 861973 (2022).

51. Grigg, O. & Grady, C. L. Task-related effects on the temporal and
spatial dynamics of resting-state functional connectivity in the default
network. PLoS ONE 5, e13311 (2010).

52. Wibral, M., Vicente, R., Triesch, J. & Pipa, G. Using transfer entropy to
measure thepatterns of information flow thoughcortex: application to
MEG recordings from a visual Simon task. BMC Neurosci. 10,
P232 (2009).

53. Fong, A. H. C. et al. Dynamic functional connectivity during task
performance and rest predicts individual differences in attention
across studies. NeuroImage 188, 14–25 (2019).

54. Hinault, T., Baillet, S. & Courtney, S. M. Age-related changes of deep-
brain neurophysiological activity. Cereb. Cortex 33,
3960–3968 (2023).

55. Westlye, L. T. et al. Life-span changes of the human brain white
matter: diffusion tensor imaging (DTI) and volumetry.Cereb.CortexN.
Y. N. 1991 20, 2055–2068 (2010).

56. Coquelet, N. et al. Theelectrophysiological connectome ismaintained
in healthy elders: a power envelope correlation MEG study. Sci. Rep.
7, 1–10 (2017).

57. Jauny, G., Eustache, F. & Hinault, T. Connectivity dynamics and
cognitive variability during aging. Neurobiol. Aging 118,
99–105 (2022).

58. Nasreddine, Z. S. et al. TheMontreal Cognitive Assessment, MoCA: a
brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc.
53, 695–699 (2005).

59. Zigmond, A. S. & Snaith, R. P. The hospital anxiety and depression
scale. Acta Psychiatr. Scand. 67, 361–370 (1983).

60. Folstein, M. F., Folstein, S. E. & McHugh, P. R. “Mini-mental state”: a
practical method for grading the cognitive state of patients for the
clinician. J. Psychiatr. Res. 12, 189–198 (1975).

61. Vogel, E. K., Woodman, G. F. & Luck, S. J. Storage of features,
conjunctions, and objects in visual working memory. J. Exp. Psychol.
Hum. Percept. Perform. 27, 92–114 (2001).

62. Horn, J. L. &Cattell, R. B. Refinement and test of the theory of fluid and
crystallized general intelligences. J. Educ. Psychol. 57,
253–270 (1966).

63. Shallice, T. & Burgess, P. W. Deficits in strategy application following
frontal lobe damage in man. Brain 114, 727–741 (1991).

64. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M.
Brainstorm: a user-friendly application for MEG/EEG analysis.
Comput. Intell. Neurosci. 2011 (2011).

65. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
66. Kybic, J. et al. A common formalism for the Integral formulationsof the

forward EEG problem. IEEE Trans. Med. Imaging 24, 12–28 (2005).
67. Gramfort, A., Papadopoulo, T., Olivi, E. & Clerc, M. OpenMEEG:

opensource software for quasistatic bioelectromagnetics. Biomed.
Eng. OnLine 9, 45 (2010).

68. Huang, M. X., Mosher, J. C. & Leahy, R. M. A sensor-weighted
overlapping-sphere head model and exhaustive head model
comparison for MEG. Phys. Med. Biol. 44, 423 (1999).

69. Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring
phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999).

https://doi.org/10.1038/s42003-024-05927-x Article

Communications Biology |           (2024) 7:239 10

https://doi.org/10.1007/s11682-023-00770-w
https://doi.org/10.1007/s11682-023-00770-w
https://doi.org/10.1007/s11682-023-00770-w


70. Ursino, M., Ricci, G. & Magosso, E. Transfer entropy as a measure of
brain connectivity: a critical analysis with the help of neural mass
models. Front. Comput. Neurosci. 14, 45 (2020).

71. Toppi, J. et al. Different topological properties of EEG-derived
networks describe working memory phases as revealed by graph
theoretical analysis. Front. Hum. Neurosci. 11, 637 (2017).

72. Brkić, D. et al. The impact of ROI extraction method for MEG
connectivity estimation: practical recommendations for the study of
resting state data. NeuroImage 284, 120424 (2023).

73. Sato, M., Yamashita, O., Sato, M.-A., & Miyawaki, Y. Information
spreading by a combination of MEG source estimation and
multivariate pattern classification. PLoS ONE 13, e0198806 (2018).

74. Leemans, A., Jeurissen, B., Sijbers, J. & Jones, D. K. ExploreDTI: a
graphical toolbox for processing, analyzing, and visualizing diffusion
MR data. (2009).

75. Mijalkov, M. et al. BRAPH: a graph theory software for the analysis of
brain connectivity. PLoS ONE 12, e0178798 (2017).

76. Kulik, S. D. et al. Structure-function coupling as a correlate and
potential biomarker of cognitive impairment in multiple sclerosis.
Netw. Neurosci. 6, 339–356 (2022).

77. Liu, Z.-Q., Shafiei, G., Baillet, S. & Misic, B. Spatially heterogeneous
structure-function coupling in haemodynamic and electromagnetic
brain networks. NeuroImage 278, 120276 (2023).

78. Desikan, R. S. et al. An automated labeling system for subdividing the
human cerebral cortex on MRI scans into gyral based regions of
interest. NeuroImage 31, 968–980 (2006).

79. Battiston, F., Nicosia, V. & Latora, V. Structuralmeasures formultiplex
networks. Phys. Rev. E 89, 032804 (2014).

80. Benjaminit, Y. & Hochberg, Y. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. B
57, 289–300 (1995).

Acknowledgements
This research did not receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors. The authors declare no
competing interests. We would like to thank the reviewers for their advice.
Data collection and sharing for this project were provided by the Cam-
bridge Centre for Ageing and Neuroscience (Cam-CAN). Cam-CAN fund-
ing was provided by the UK Biotechnology and Biological Sciences
Research Council (grant number BB/H008217/1), together with support
from the UK Medical Research Council and the University of Cam-
bridge, UK.

Author contributions
G.J.: Investigation,Analysis,Writing;M.M.:Methodology,Software,Review;
A.C.G.: Methodology, Software, Review; G.V.: Methodology, Software,
Review; J.B.P.: Methodology, Software, Review; F.E.: Supervision, Review;
T.H.: Conceptualisation, Methodology, Supervision, Review.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-05927-x.

Correspondence and requests for materials should be addressed to
Thomas Hinault.

Peer review information Communications Biology thanks Mahmoud
Hassan, Deniz Kumral and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Primary Handling Editors: Joao
Valente. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-05927-x Article

Communications Biology |           (2024) 7:239 11

https://doi.org/10.1038/s42003-024-05927-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Linking structural and functional changes during aging using multilayer brain network analysis
	Results
	The positive association between multiplex participation coefficients and cognitive performance in older�adults
	Maintaining a lower level of multiplex participation coefficient than younger adults is positive for the older population
	Age-related changes in network coupling directionality are positively associated with cognitive performance
	The respective contribution of each network layer in younger and older�adults
	Unique detection of subgroups relative to unimodal network analyses

	Discussion
	Methods
	Participants
	Behavioural measures
	MEG, structural MRI and DWI data acquisition
	MEG data pre-processing
	Connectivity analyses
	DWI data pre-processing
	Multiplex network construction and measures
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




