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Glymphatic and lymphatic communication
with systemic responses during
physiological and pathological conditions
in the central nervous system
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Crosstalk between central nervous system (CNS) and systemic responses is important in many
pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc.
Accumulating evidence suggest that signals for central-systemic crosstalkmay utilize glymphatic and
lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic
system, and together these pathways may be involved in the distribution of soluble proteins and
clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and
meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical
lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, β-amyloid) might
activate a systemic inflammatory response. There is also an element of time since the immune system
is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been
shown to change during the day and night. Understanding the mechanisms regulating the brain-
cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is
fundamental to find specific targets and timing for therapeutic interventions.

The glymphatic system was first explained1 as a macroscopic waste clear-
ance system that utilizes astroglial (glial-lymphatic) channels to eliminate
soluble proteins and metabolites from the central nervous system. Since
then, an updated model for clearance of brain interstitial solutes now
includes four segments of brain fluid transport: (1) periarterial CSF influx,
(2) interstitial solutemovement, (3) efflux along the perivenous spaces (that
contributes to the already known cranial and spinal nerves CSF efflux) and
(4) meningeal lymphatic drainage2.

Tissue homeostasis and efficient elimination of waste products -
such as protein aggregates or toxic metabolites (e.g., amyloid-b) were
traditionally attributed to intracellular and extracellular mechanisms.
This includes cellular and protein degradation and efflux of solutes to the
bloodstream through the blood-brain barrier (BBB)3. After the report of
Iliff et al. 1, more evidence has shown how this clearance system might

also help to distribute non-waste molecules such as lipids4, glucose5,
nutrients and neurotransmitters within the brain6. Further studies sug-
gested that the glymphatic activity might have daily rhythm and that the
clearance of toxic compounds, attributed to the glymphatic system,
works mostly during sleep6.

Although physically detached, the glymphatic and meningeal lym-
phatic systems seem to be functionally connected. Animal studies have
demonstrated that cerebrospinal fluid (CSF) drains via meningeal lym-
phatic vessels into cervical lymph nodes (CLN)7 and further human studies
have shown similar connections8,9. CSF flow into cervical lymph nodes
(CLN) can regulate the trafficking of immune cells10. Inflammatory med-
iators can induce lymphangiogenesis11 by VEGFC-VEGFR3 binding12. This
signaling has been showed to also regulate the inflammatory process in
pathological conditions like focal cerebral ischemia13.
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Ischemic stroke, occurring when blood supply to part of the brain is
interrupted or reduced, is a leading cause of disability and death for which
no acute treatments exist beyond recanalization. However, despite the
decreasing numbers in stroke risk and post-stroke disability, many neuro-
protectants have failed in clinical stroke trials, and new therapies for both
acute and chronic stroke are still needed14. Time of stroke onset might also
need tobe taken into consideration15,16. In the context of stroke, theremaybe
a circadian pattern, e.g., strokes in patients occur mostly in the morning (8
AM) and in the evening (8 PM), as the second peak16.

Circadian biologymodulates all aspects ofmammalian physiology and
disease. Circadian “circa diem” rhythms are daily cycles of physical and
behavioral changes regulated by ahighly phylogenetically conserved system.
Circadian clocks are found in all cells of CNS and peripheral organs. The
central clock located in the suprachiasmatic nuclei (SCN) of the brain
synchronizes other internal clocks through chemical and physical cues,
light-based signals, and non-light-based signals. Meanwhile, factors like
body temperature, hormone levels, andpatterns of eating and fasting17 could
impact the peripheral circadian clocks regulated by the SCN.

The circadian system regulates a variety of critical cellular processes,
including aspects of inflammation18,19, metabolism20 and cell redox
homeostasis21.

During day-time/light phase, humans are awake and in their active
phase, opposite to night-time/dark phase when they are asleep and inactive.
However, most of the preclinical studies are done in rodents, nocturnal
animals, where the phases are opposite to humans. In rodents, day-time/
light phase corresponds to their asleep/inactive phase, while night-time/
darkphase corresponds to their asleep/activephase. Itwashypothesized that
diurnal or daily rhythms may affect stroke mechanisms and neuroprotec-
tion in rodentmodels of cerebral ischemia15. Because rodents are nocturnal,
preclinical stroke studies that are performed in the daytime correspond to
their inactive or sleep phase. In contrast, clinical trials aremostly performed
during human active or awake phase. Moreover, another study showed that
there are significant diurnal effects on the immune response after focal
cerebral ischemia in mice22. Therefore, understanding how circadian
rhythm affects stroke would help define targets, finding biomarkers and
potential therapy in stroke.

In this mini-review, we will introduce the CNS clearance system with
particular focus on the meningeal lymphatic uptake and drainage into
cervical lymph nodes and how this pathway might be important in
pathological events, such as stroke. Some attention will be given to the daily
effect on waste clearance as well as in CNS pathologies.

Glymphatic system in the regulation of cerebrospinal
fluid transport
Cerebrospinal fluid (CSF) is a clear, colorless plasma-like fluid that bathes
the CNS. CSF circulates through a system of cavities: ventricles, sub-
arachnoid space in the brain and the central canal of the spinal cord23. The
CSF is mainly secreted by the choroid plexus epithelium, which is located
within the lateral, third and fourth ventricles and flows through the four
ventricles into the subarachnoid space of the cortex and spinal cord. The
estimated secretion of CSF is around 150-270milliliters within the CNS24. It
has been suggested that CSF production in humans may be subjected to
circadian regulation with a peak in CSF production during the night25,26,
however, more studies are needed.

The glymphatic system is a glial-dependentwaste clearancepathway in
the central nervous system of vertebrates. This system supports the peri-
vascular exchange of CSF and interstitial solutes throughout the brain.
According to this model from the subarachnoid compartments, the CSF is
transported into perivascular spaces (PVS)27 through areas called Virchow-
Robin space, i.e., penetrating arteries that surround the brain
parenchyma28,29.

The CSF influx through the interstitium is facilitated by aquaporin-4
(AQP4)1, a water channel expressed in the astrocyte end-feet that com-
municates with the interstitial fluid (ISF), aiding in the removal of toxic
compounds through the PVS. Ultimately, the efflux fluids are drained into

lymph vessels existing in the meninges and transported out of the CNS to
the bloodstream through cervical lymphatic vessels30,31.

It is still unclear what drives CSF flows into the PVS. Modeling has
helped to investigate several mechanisms32. It seems that the forces are
relatively small (i.e., peristalsis created by intravascular blood pressure
pulses33) and may originate from several mechanisms34, including arterial
pulsation35,36, cardiac systolic pressure36,37, respiration38, CSF pressure gra-
dients and sleep6,39. CSF clearance pathways might also be altered by
intracranial pressure elevation40.

However, additional research is necessary to determine the precise
proportionsof physiological contributions tomodelingCSF influx.Tangible
biological discoveries and modeling are both crucial for a comprehensive
understanding of this system.

Age is also an influencing factor of the glymphatic system, whose
activity is reducedduring the agingprocess41–43. These factors drivebulkflow
of CSF, facilitating glymphatic ISF–CSF exchange and clearance
function35,44.

As demonstrated in rodents by Iliff et al. 35 the administration of
Dobutamine, an adrenergic agonist, enhances cardiac contractility and
arterial pulsatility, resulting in higherCSFpenetration in brainparenchyma.
These findings were supported by other works where mice, subjected to
internal carotid artery ligation, showed the opposite effects45. Taken toge-
ther, these studiesmight suggest that cardiac failure could potentially reduce
glymphatic fluid exchange, through the reduction of vascular tone. How-
ever, more studies are needed to validate this hypothesis.

Intriguingly, as stated above, it has been demonstrated that glymphatic
system is predominantly active during sleep. Natural sleep, observed in
rodents, has been associated with enhanced periarterial CSF influx and
improved waste material clearance, including soluble amyloid-β (Aβ)6. It is
now clear that during sleep, interstitial space volume is increased6, and this
in turn could be a consequence of reduced locus coeruleus–dependent
noradrenergic activity. However, no direct correlation between locus
coeruleus activity and glymphatic system has been shown.

In humans, similar findings have been replicated wherein sleep was
able to enhance glymphatic clearance efficiency compared to awake states46

and a night of sleep deprivation47. Overall, these findings may suggest that
the restorative function of sleep may shift brain into a functional state that
facilitates the glymphatic clearance of waste products of neural activity
accumulating during wakefulness48.

CSF transport and clearance under circadian rhythm
Circadian rhythms are defined as biological rhythmswith a period of ~24 h.
In order to be classified as circadian, a biological rhythm endogenously
generated from a self-sustained oscillator can be synchronized to an
environmental cycle (i.e, by the light/dark cycles) and temperature
compensated49,50. Circadian rhythms are driven by circadian clocks found in
all cells of CNS and peripheral organs. The master clock in the supra-
chiasmatic nuclei (SCN) of the brain regulates other central clocks via
chemical and physical stimuli, photic signals, and non-photic signals.
Meanwhile, body temperature, hormone metabolites, and feeding/fasting
cycles may influence SCN-regulating peripheral circadian clocks51. The
circadian system regulates a variety of critical cellular processes, including
inflammation18,19, metabolism20 and cell redox homeostasis21. These cellular
mechanisms are altered in many pathologies including stroke.

Some evidence has revealed how glymphatic function changes during
the day, with a peak of activity at mid-day, when mice are in their inactive
state (mostly asleep)52. Furthermore, it has been demonstrated that differ-
ences in glymphatic influx, solute clearance, and CSF drainage to the lymph
nodes are regulated by circadian rhythms52. Specifically, it has been showed
that in the awake mice CSF distribution is dependent on two main factors:
(1) periarterial influx suppressed during brain active state, and (2) reduced
expression of AQP4 polarized that in turn prevents CSF/ISF exchange by
reducing the interstitial space volume3,6. Indeed, circadian glymphatic
function is sustained by circadian regulation of AQP4 polarization in
astrocytes, whose genetic deletion produces an absence of day/night
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differences in CSF distribution and drainage to the lymph node52. Astro-
cytes, expressed also in the suprachiasmatic nucleus (SCN), are actively
involved in sustaining circadian oscillation53,54, and regulate bulk fluid
movement through CSF/ISF exchange across the brain under circadian
control52.

Sleep, a state of immobility characterized by reduced responsiveness
and rapid reversibility, is an extremely complicated process. Over the past
years, there have beenmany attempts to identify a purpose forwhywe sleep,
few theories have been proposed, including the restorative theory55. Based
on this theory, we sleep to allow the body to reaper biological processes
altered during the awake time56. Despite decades of efforts, the mechanisms
underlying the restorative function of sleep and how its disruption or cir-
cadian disruption (alteration of the daily circadian rhythms57) impairs brain
functions is only partly unraveled. The primary goal remains to compre-
hend how these processes impact glymphatic function and lymphatic
drainage, aiming to prevent the associated comorbidities linked to sleep
misalignment (out of phase with the light/dark cycle58).

Molecular targets of the glymphatic system in the
treatment of stroke
Looking ahead, focusing on themechanismdriving the glymphatic system’s
role in the brain could be pivotal in enhancing neurological function
recovery and enhancingpatient outcomespost-stroke.AQP4may represent
a target for therapeutic purpose with potential application on stroke
therapy59–61. AQP4might indeed be implicated in the edema spreading after
stroke, where CSF could be partly responsible for edema formation62.

Although several potential AQP modulators have been developed63,64,
clinic trials have failed due to related pharmacokinetic issues - lack of
selectivity, stability and toxic side effects.

Some studies have identifiedmicroRNAs (miRNAs), small non-coding
RNAs that regulate post-transcriptional gene expression65; moreover, it has
been shown their involvement as endogenous modulators of AQP
expression66. This identification has opened new perspectives for therapeutic
interventions and provides an alternative approach to target these proteins.

Few findings highlighted how circulating miRNA patterns are also
implicated in the induction of ischemic tolerance67,68, i.e., ischemic pre-
conditioning and postconditioning. Ischemic tolerance is defined as an
endogenous neuroprotective phenomenon, induced by a small ischemic
event, able to protect an organ from a subsequent/previous lethal ischemic
event68,69. These adaptive processes became attractive, allowing the pro-
spective implementation of personalized therapies70.

Interestingly, several miRNAs have been correlated in cerebral ische-
mia. For instance, miR-320a was reported to inhibit AQP1 and AQP4 gene
expression both in vitro and in vivo in a cerebral ischemia rat model,
whereas anti-miR-320a upregulated AQP1 and AQP4 expression with
consequent reduction of infarct volume71. Other studies, instead, showed
howAQP4 down-regulationmediated bymiR-14572, miR-130b73 andmiR-
29b74 can exert a protecting role against ischemic stroke. Specifically,
AQP4 silencing, associated with an increase of miR-224 and miR-19a
expression, could be responsible for decreased astrocyte connectivity and
fluid movement in the cerebral parenchyma75. However, it is still under
debate and needs further investigation how the reduced protein expression
shown in stroke models might, in turn, influence AQP4 localization on the
astrocytic end-feet and, finally, the glymphatic flow.

It has been demonstrated that Sur1-Trpm4 (a non-selective cation
channel) and AQP4 are able to form a complex “chansporter” involved in
the worsening of ischemic damage due to astrocytic swelling76,77. Probably,
the interaction of ion channels and solute transporter may involve other
protein channels, such as the Na+ -K+ -Cl− cotransporter (NKCC1), the
acid-sensing ion channel 1a (ASIC1a), Na+ /H+ exchanger isoform 1
(NHE1), Na+ /Ca2+ exchanger or K+ channels, crucial factors in the
dysregulation of ion homeostasis in theCNSunder ischemic conditions78–81.
During CNS injury, these proteins can result dysregulated and their
hyperactivation generates an excessive influx of cations (sodium and cal-
cium) worsening brain damage due to ischemic reperfusion. An open

question remains: how are these systems involved in the fluidmovement in
the glymphatic system?The answermayhighlight a novel therapeutic target
in cerebral ischemic stroke.

The meningeal lymphatic system-mediated CSF
clearance
The lymphatic systemmediates the drainage of interstitial fluid (ISF, bodily
fluid naturally produced via trans-capillary blood exchange which sur-
rounds cells and tissues) and regulates immune cell trafficking and sur-
veillance in most mammalian tissues10.

Evidence of the existence of a lymphatic-like system involved in cer-
ebrospinalfluid (CSF) drainage to peripheral LNsgoes back to themiddle of
the 20th century82–84. Yet, it wasn’t until 2015, thanks to the advancement of
more intricate techniques capable of identifying detailed structural and
functional traits, that two separate studies unequivocally demonstrated the
existence of a lymphatic vessel networkwithin themouse brain’s duramater
and its link to the cervical lymph nodes7,85.

Compared to peripheral lymphatics, meningeal lymphatics are com-
posed of a less ramified network of thin-walled initial lymphatic vessels86.
Brain meninges are constituted by three layers: dura, arachnoid, and pia
mater. Meningeal lymphatic vessels are situated in the external meningeal
layer, the dura.

Lymphatic vessels drain components of the cerebrospinal fluid (CSF)
thatfills the subarachnoid space.CNS-draining into the lymphatics has been
recognized as important step for CNS homeostasis. Initial studies proposed
that meningeal lymphatic vessels in the dorsal part of the skull, weremainly
involved in the clearance of cerebrospinal fluid (CSF). Subsequently, the
significance of meningeal lymphatic vessels positioned in the lower part of
the skull has been recognized, emphasizing their anatomical placement and
structural characteristics that aid in the absorption andflowof cerebrospinal
fluid (CSF)87.

The glymphatic and meningeal lymphatic systems, though physically
distinct, are functionally linked. Studies by three models using pharmaco-
logical, surgical, and genetic approach demonstrated that impaired
meningeal lymphatic function alters the flow of CSF macromolecules
through the paravascular route. For instance, Da Mesquita et al. found that
surgically ligating meningeal lymphatics reduced the accumulation of a
tracer in cervical lymph nodes injected into the cisterna magna88. This
ligation also led to decreased CSF influx and ISF efflux into the brain tissue.
Moreover, this pathway is affected by aging89, as older mice display reduced
brain perfusion by CSF macromolecules compared to younger
counterparts41. This decline in brain perfusion appears linked to deterior-
ating lymphatic vasculature, potentially influencing various age-related
pathologies.

Themeningeal lymphatic-mediated immune regulation
Themeningeal lymphatic vesselsmight also be involved in themaintenance
of some meningeal immune cells. Indeed, different types of immune cells
can be found in the meninges and meningeal spaces, specifically in the
arachnoid space. In the absence of inflammation or infection, these cells are
retained within the meningeal spaces. Impairment of lymphatic vessels,
either systemically or locally, results in accumulation of T lymphocytes in
the meninges90, suggesting that these vessels are somehow involved in
maintaining the homeostatic immune cell number. In single-cell tran-
scriptomic studies that have explored the immune cells populating the
meningeal compartment, multiple immune cell types, including B cells91,92,
macrophages93 but mostly T lymphocytes (CD4), have been shown to be
important for the brain function94. Therefore, immune cells present in the
meninges and meningeal spaces, and their homeostatic regulation by lym-
phatic vessels, might be important for the maintenance of brain function.

The brain to cervical lymph nodes connection via CSF
drainage
The idea that the CNS is a privileged, isolated compartment from the rest of
the body has largely been replaced by the concept that crosstalk between
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CNS and systemic biology is also important in health and disease95,96. His-
torically, the central nervous system has been considered lacking in lym-
phatic vasculature. Lymphatic circulations were thought to only extend
throughoutmost of the body and contribute to tissue homeostasis but not in
the brain97. However, today, many studies have showed the presence of a
lymphatic vessel network in the dura meninges and the CSF transport into
deep cervical lymph nodes through lymphatic vessels7,82–85.

Cervical lymph nodes are located in the neck region. Indeed, they are
also known as the lymph nodes of the neck. Their traditional function is to
filter and transport lymph from surrounding lymph nodes and viscera back
into the bloodstream. In pathological conditions, they are involved in
protecting the body against infection by delivering immune cells, lympho-
cytes, to areas where the immune response has been triggered87,98.

Few animal studies have demonstrated that cerebrospinal fluid (CSF)
drains via meningeal lymphatic vessels into cervical lymph nodes
(CLN)7,85,88,89 and some human studies have also shown similar
connections9,99. Because CSF transports fluid from the brain into deep
cervical lymph nodes through lymphatic vessels, this pathwaymight also be
responsible for clearing the brain from harmful metabolites. Interestingly,
an increase inCSFmovement andwaste clearancehavebeenassociatedwith
sleep52. Indeed, while the glymphatic function is increased during sleep, the
drainage of CSF to the lymph nodes is higher during awake time. After
cisterna magna injection, in vivo imaging of mandibular lymph nodes
showed increased tracer outflowduring the night comparedwith day, when
entry of CSF into the brain is low. This day/night difference in lymph node
filling persists in constant conditions and is absent in animals without
AQP4, suggesting that circadian rhythm mechanisms are responsible for
these differences52. However, more studies are needed to investigate how
daily rhythm affects the brain-CLN signaling.

Pathological relevance of brain to CLN connection
The lymphatic vessels (LVs) are composed of lymphatic endothelial cells
(LECs)100,101. Studies available so far show thatmeningeal lymphatic cells are
originated from endothelial cells in a process VEGFR3 dependent. Vascular
endothelial growth factor (VEGF)-C has been shown to stimulate lym-
phangiogenesis by binding its receptor,VEGFR-312. Lymphangiogenesis is a
dynamic process during embryogenesis but in the adult, it only takes place
during certain pathological conditions such as inflammation, tissue repair,
and tumor growth11.

Pathological conditions might influence brain-CLN signaling by
lymphangiogenesis. How damaged brains initially send signals to trigger
systemic inflammation is still an open question. The underlying pathway

involved in pathological conditions might be through brain-to-cervical
lymph node signaling. After focal cerebral ischemia the cerebrospinal fluid
drains into cervical lymph nodes and the pathway induces lymphangio-
genesis along with upregulations of oxidative stress and inflammatory
cytokines13.

Rat and mouse models of focal cerebral ischemia along with co-
cultures of lymphatic endothelium and macrophages, demonstrated the
activation of lymphatic endothelium in cervical lymph nodes (CLNs) fol-
lowing ischemic stroke via VEGF-C/VEGFR3 signaling. Additionally,
inhibiting VEGFR3 signaling pharmacologically or surgically removing
superficial CLNs mitigated post-stroke inflammation and decreased brain
damage. Specifically, lymphatic endothelial cells isolated from CLNs at 3 h
after reperfusion followed by microarray analysis demonstrated that the
transcriptome was rapidly altered. Gene Set Enrichment Analysis (GSEA)
suggested that differentially expressed genes were largely related to matrix
pathways and transmembrane receptor protein tyrosine kinase activity.One
of the most upregulated genes included CCL28, known to regulate lym-
phatic endothelialmigration. The blockade ofVEGFR3 tyrosine kinasewith
MAZ51 treatment significantly reduced CCL28 in superficial CLNs after
cerebral ischemia. Altogether, these data might suggest that brain-to-CLN
signaling is responsible for triggering systemic inflammatory responses after
acute stroke13. However, another study using a mouse model of the active
experimental autoimmune encephalomyelitis (EAE) shows that VEGFR3
blockade in mice induced dural lymphatic vessel impairment and was
insufficient to block autoimmune neuroinflammation102, implicating that
lymphatic inflammation can have complex double-edged sword actions of
either one can worsen acute tissue damage, or under some conditions the
other mechanism can also help resolve damage and promote repair103,104.

How lymphatic drainage can refreshCSF in animals andhumans is still
controversial. In animal models, CSF outflow seems to occur via several
routes: through arachnoidal villi105, along spinal and cranial nerves106, along
dural vessels that transit skull channels into the marrow107 in addition to
dural lymphatics to cervical lymph nodes pathway89. Studies also show
evidence for CSF outflows through arachnoid villi, perineural routes, and
dural lymphatics in humans. However, it has been showed that even if CSF
flows in theparasagittal dura, theduramater adjacent to the superior sagittal
sinuswithhighdensity of lymphatic vessels108, this route doesnot seem to be
the major efflux for CSF109 (Fig. 1).

Several MRI studies in humans have suggested the existence of brain
lymphatic networks linked to cervical lymph nodes, mirroring the obser-
vationsmade inmice, indicating potential clinical relevance8,9. Furthermore,
emerging data from experimental models and clinical trials may now sup-
port the feasibility of directly injecting therapeutics into LN to block
inflammation110,111.

There is now evidence that brain-lymphatic-CLN signaling might be
involved in other CNS pathologies such as stroke, multiple sclerosis
(MS)90,112, aging, Alzheimer’s disease (AD)88,113 and Parkinson’s disease
(PD)114. In stroke animalmodels, as stated before, brain toCLNpathwayhas
been suggested to be involved in the system inflammatory response.
Moreover, in stroke patients, neuronal glutamate receptor antigens and
myelin basic protein fragments have been detected in CLNs115, suggesting
communication between brain and CLNs. MS is an immune-mediated
inflammatory disorder that results in progressive damage to the human
CNS. Evidence that cervical lymph nodes are involved in B and T cell
mediated immunological reactions, in the CNS, has been shown in many
experimental studies. In particular, the ablation of meningeal lymphatics
diminishes pathology and reduces the inflammatory response of brain-
reactive T cells in an animal model of multiple sclerosis, linking the brain-
CLN signaling to the pathophysiology ofMS90,112. For Parkinson’s disease, a
study in PD mouse model, showed how meningeal lymphatics, draining
oligomeric α-syn into the lymph nodes, might contribute to macrophage
activation and to the peripheral inflammation114. In Alzheimer’s disease, a
few studies suggested that the lymphatic system might represent an
important step for the clearance of β-amyloid. Plus, Amyloid-beta has been
found in human lymph nodes88,113.

Fig. 1 | CSF outflow pathways. 1CSF flows through arachnoid villi, found along the
superior sagittal venous sinus, into the blood 2 It drains through the cribriform plate
in association with the olfactory nerves. From this location, CSF is absorbed into
nasal mucosal lymphatics. It does eventually reach the CLNs 3 It flows from the
meningeal lymphatics directly to cervical lymph nodes 4 CSF transits into the skull
marrow trough skull channels.

https://doi.org/10.1038/s42003-024-05911-5 Mini review

Communications Biology |           (2024) 7:229 4



All these studies, in different CNS pathologies, underline how
important it is to understand the mechanisms regulating the brain-CLN
pathway (Fig. 2).

Conclusion
The intricate interplay between the glymphatic and meningeal lymphatic
systems holds pivotal implications for brain health and disease. These sys-
tems, although physically distinct, collaboratively contribute to the clear-
ance of cerebrospinal fluid (CSF) and the removal of macromolecules from
the brain. While their dysfunction has been implicated in various central
nervous system(CNS)pathologies, such as stroke13,62 andother neurological
disorders9,38,116–120, the precise molecular mechanisms underlying these
dysfunctions remain elusive.

Emerging insights suggest potential fluctuations in brain clearance
mechanisms throughout the day, potentially beingmore active during sleep.
Understanding the intricate mechanisms governing glymphatic/lymphatic
interactions and their connection to cervical lymph nodes, along with the
influence of circadian biology on these pathways, represents a promising
frontier for further exploration.

Unraveling the intricatemechanisms governing glymphatic/lymphatic
dynamics, especially their communicationwith the lymphnodes, could give
us insights into pathological conditions affecting the CNS. Moreover,

understanding the mechanisms of circadian influence on these pathways
might revolutionize treatment strategies by pinpointing optimal interven-
tion timings.

Future investigations should, therefore, steer toward unraveling the
molecular complexities of glymphatic to meningeal lymphatic-mediated
clearance pathways as well as the response of drained CLNs, delving
deeper into their malfunctioning in diverse CNS pathologies. Moreover,
understanding the precise influence of circadian rhythms on CSF pro-
duction and clearance mechanisms warrants rigorous exploration to
unveil potential therapeutic targets. This multifaceted understanding
could potentially spearhead the development of precision therapies,
strategically timed interventions, and innovative treatment modalities
tailored to harness the natural ebb and flow of functioning brain
mechanisms, thereby reshaping the landscape of neurological disorder
management.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Received: 6 July 2023; Accepted: 12 February 2024;

Fig. 2 | Glymphatic system and meningeal lymphatic system. The glymphatic
system drains CSF into the brain via a periarterial pathway, while interstitial fluid
(ISF) leaves the brain through the perivenous pathway. CSF, containing macro-
molecules and immune cells, can flow from the brain parenchyma through the dura
meningeal lymphatics into the lymph nodes and extracranial systemic circulation. In
some pathological conditions 1Altered expression of polarizedAQP4 prevents CSF/

ISF exchange by reducing the interstitial space volume, reducing the waste clearance
2 The meningeal lymphatic vessels transport CSF, containing solutes coming from
the brain (such as VEGFC, oligomeric α-syn, β-amyloid) into the cervical lymph
nodes, activating inflammatory response.
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