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Förster resonance energy transfer (FRET) is a widely-used and versatile technique for the structural
characterization of biomolecules. Here,we introduce FRETpredict, an easy-to-usePython software to
predict FRET efficiencies from ensembles of protein conformations. FRETpredict uses a rotamer
library approach to describe the FRET probes covalently bound to the protein. The software efficiently
and flexibly operates on large conformational ensembles such as those generated by molecular
dynamics simulations to facilitate the validation or refinement of molecular models and the
interpretation of experimental data. We provide access to rotamer libraries for many commonly used
dyes and linkers and describe a general methodology to generate new rotamer libraries for FRET
probes.We demonstrate the performance and accuracy of the software for different types of systems:
a rigid peptide (polyproline 11), an intrinsically disordered protein (ACTR), and three folded proteins
(HiSiaP, SBD2, andMalE). FRETpredict is open source (GPLv3) and is available at github.com/KULL-
Centre/FRETpredict and as a Python PyPI package at pypi.org/project/FRETpredict.

Förster resonance energy transfer (FRET) is a well-established technique to
measure distances and dynamics between two fluorophores1,2. Single-
molecule FRET (smFRET) and ensemble FRET have been broadly used to
study protein and nucleic acid conformational states and dynamics3–5,
binding events6,7, and intramolecular transitions8,9. The high spatial (nm)
and temporal (ns) resolutions enable FRET experiments to uncover indi-
vidual species in heterogeneous and dynamic biomolecular complexes, as
well as transient intermediates10–15.

In a typical smFRET experiment on proteins, two residues are labeled
with a donor and an acceptor FRET probe, respectively. While the FRET
probes may sometimes be fluorescent proteins, they are more commonly
organic molecules optimized for spectral and photophysical properties.
Each such probe consists of a fluorophore and a linker, which can vary in
length and is covalently attached to the protein16. For FRET to occur, the
donor and acceptor fluorophores must have respective emission and
absorption spectra that partially overlap, and the efficiency of the energy
transfer depends on the proximity and relative orientation of the
fluorophores.

Computational advancements, combined with enhanced sampling
methods and approaches to coarse-grain, have enabledmolecular dynamics
(MD) simulations of biomolecules to explore time scales up to the milli-
second or beyond17–19. Concomitantly, the molecular-level insights into
protein structural dynamics provided by MD simulations are routinely
employed to aid the interpretation of a multitude of experimental approa-
ches, including FRET measurements14,20. Irrespective of whether the
underlying protein structure is static or dynamic, the conformational
ensembles of thefluorescentprobesmust be taken into account to accurately
predict FRET efficiencies from MD simulations21.

To model the conformational space of dyes attached to a protein,
several methods have been developed22,23. At the low end of the spectrum of
computational cost, the available volume (AV) method uses a coarse-
grained description of the probe for predicting the geometric volume
encompassing the conformational ensemble of the probe24–26, achieving
good accuracy with smFRET experimental data13,15,16. At the high end, MD
simulations can be performed with explicit FRET probes20,22,27–29, achieving
high accuracy18. Although this approach provides unique insight into the
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motionof and interactions betweenprotein andFRETprobes, it is limited in
its capability to sample the conformational space, particularly since the dye
distribution changes with conformational changes of the biomolecule23.
Such studies also depend on that the forcefield used for the fluorescent dyes
fully being accurate and compatible with the force field used for the
biomolecule22,28,30. Furthermore, comparison with studies that integrate
results frommultiple pairs of probe positions requires running independent
MDsimulations for eachprobepair. Somewhere in themiddle of the scale of
computational cost and resolution is the rotamer library approach (RLA),
where multiple rotamer conformations of the FRET probe are placed at the
labeled site of a protein conformation, and the statistical weight of each
conformer is estimated using a simplified potential31. The advantage of the
RLA over MD simulations with explicit FRET probes is that it reduces the
computational effort, since the simulations required to generate a rotamer
library for a new FRET probe only need to be performed once, and the
resulting library can then be applied tomany different systems. In addition,
the simulated system is considerably smaller. Polyhach et al.31 introduced
the RLA in the context of electron paramagnetic resonance32. TheRLAmay,
however, also be employed to predict FRET22,33, in addition to double
electron-electron resonance (DEER) and paramagnetic relaxation
enhancement (PRE) nuclear magnetic resonance data31,32,34,35.

In this work we introduce FRETpredict, an easy-to-use Python
module based on the RLA that enables FRET efficiency calculations from
protein conformational ensembles.We describe a generalmethodology to
generate rotamer libraries for FRET probes and provide access to rotamer
libraries for many commonly used dyes and linkers. We present case
studies for proteins displaying different dynamics ranging from dis-
ordered proteins to flexible and relatively static folded proteins (ACTR,
Polyproline 11, HiSiaP, SBD2, andMalE). We selected systems for which
FRET data has been carefully measured and validated using independent
methods. The systems cover sizes up to 370 residues (for MalE), showing
that both FRETpredict and FRET experiments are applicable to large
systems and distances.

Results
Rotamer libraries
Each FRET probe consists of two parts: the fluorescent dye, responsible for
the FRET, and the linker, which comprises (i) a spacer, to distance the dye
from the protein and (ii) a moiety to attach the probe covalently to the
protein. For example, many of the most widely used probes can be pur-
chased with maleimide (to link to Cys), N-hydroxysuccinimide (to link to
Lys), or azide (for click chemistry) functional groups.

As detailed in Supplementary Note 1, we generated rotamer libraries
through a series of clustering steps and, to further decrease their sizes, we
filtered out low-populated cluster centers based on three different cutoffs.
Briefly, the steps used to generate the rotamer libraries are (i) generation of
the conformational ensemble of the FRET probe usingMD simulations; (ii)
selection of combinations of themost populated dihedral angles to generate
theC1 set of cluster centers; (iii) assignmentof trajectory frames to theC1 set
based on the least-square deviations of the dihedral angles; (iv) average over
the angles of the trajectories frames of eachC1 cluster center to generate the
C2 set of cluster centers; (v) assignment of trajectory frames to the C2 set
based on the least-square deviations of the dihedral angles; (vi) filtering of
clusterswithpopulations lower than10, 20, and30 structures to generate the
rotamer libraries referred to as large, medium, and small hereafter. In this
work, we created rotamer libraries for AlexaFluor, ATTO, and Lumiprobe
dyes with different linkers (Supplementary Figs. 1, 2 and 3), using the force
fieldsdevelopedbyGraenet al.36. This selectionof rotamer libraries ofwidely
used FRET probes are made available as a part of the FRETpredict package.

To illustrate the extent to which the conformational ensemble of the
probes is reduced upon the generation of the rotamer libraries, we plotted
the projection on the xy-plane of the distance vectors between the Cα atom
and the central atom of the fluorophore (Fig. 1 and Supplementary Figs. 4,
5 and 6) of all the generated rotamer libraries. Compared to the unfiltered
rotamer libraries (Supplementary Fig. 4), the distribution of fluorophore
positions for the large rotamer libraries (cutoff = 10) are less isotropic and
homogeneous, as evidenced by the deviation of the scatter plot from a
circular shape. Unsurprisingly, the anisotropicity is increasingly more
pronounced for the medium and small rotamer libraries which were
obtained by filtering out clusters of less than 20 and 30 conformers,
respectively (Supplementary Figs. 5 and 6).

The rotamer libraries of some FRET probes show pronounced aniso-
tropy, illustrated by the deviation of the scatter plots from a circular shape
(A48 L1R, A53 L1R, A56 L1R, A59 L1R, and A48 B1R). The observed
anisotropy can be related to the length of the linker, and hence to its rota-
tional degrees of freedom.For example, the rotamer libraryA48C1R ismore
isotropic than A48 L1R because L1R is a shorter linker than C1R (Supple-
mentary Fig. 1). On the other hand, a comparison between A48 L1R and
T42 L1R suggests that themore isotropic nature of T42might be due to the
structure of the T42 fluorophore which effectively provides an extension to
the linker length (Supplementary Fig. 2).

The RLA relies on a trade-off between thorough conformational
sampling and computational cost, as the latter increases with the increased
size of the library (Supplementary Fig. 7), which ideally should not exceed

Fig. 1 | 2D projections of the position of the fluorophore with respect to the
Cα atom. Projection on the xy-plane of the distance vectors between the Cα atom
and the central atom of the fluorophore for the large rotamer libraries generated in
this work, which typically contain hundreds of structures (Supplementary Fig. 7).
The projections are obtained as the x and y coordinates of the central atom of the

fluorophore (O91 for AlexaFluor, C7 for ATTO, and C10 for Lumiprobe), after
placing the Cα atom at the origin. Each plot represents a different FRET probe,
divided into rows according to linker type (C1R, C2R, C3R, L1R, B1R, from top to
bottom), and colored according to the manufacturer (green for AlexaFluor, orange
for ATTO, and blue for Lumiprobe).
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~1000 rotamers. To provide an idea of the timedifferences involved in using
rotamer libraries with different numbers of rotamers, we report the times
required to calculate the FRET efficiencies for Polyproline 11 (Supple-
mentary Table 1).

FRETpredict algorithm
For each protein structure to be analysed—either individually or as an
ensemble—the FRETpredict algorithm places the FRET probes at the
selected protein sites independently of each other (Supplementary Note 2).
Relative orientations and distances between the dyes are then computed for
all combinations of the donor and acceptor rotamers. Further, nonbonded
interaction energies between each rotamer and the surrounding protein
atoms are calculated within a radius of 1.0 nm. Using these energies, sta-
tistical weights are first estimated for donor and acceptor rotamers inde-
pendently and subsequently combined to calculate averageFRETefficiencies
(Fig. 2). The calculation of the average FRET efficiency are implemented
assuming three different averaging regimes (detailed in Methods).

FRETpredict is written in Python and is available as a Python package.
The FRETpredict class carries out the FRET efficiency predictions. The
class is initialized with (i) a protein structure or trajectory (provided as
MDAnalysis Universe objects37), (ii) the residue indices to which the
fluorescent probes are attached, and (iii) the rotamer libraries for the
fluorophores and linkers to be used in the calculation. The lib/libraries.yml
file lists all the availableRotamerLibraries, alongwithnecessaryfluorophore
information, including atom indices for calculating transition dipole
moments and distances between fluorophores. As shown in the Results
section, the calculations are triggered by the run function.

The main requirements are Python 3.6-3.8 and MDAnalysis
2.037. FRETpredict can be installed through the package manager PIP by
executing

pip install FRETpredict

Tests predicting FRET data for the multidomain protein Hsp9016 can
be run locally using the test running tool pytest.

In the following, we showcase how FRETpredict can be used to cal-
culate FRET efficiencies using different labels, different averaging schemes
and different types and sources of protein/peptide conformations. Our goal
here is not to discuss the biophysics of the individual systems, but rather to
highlight the capabilities of FRETpredict.

Case study 1: simulation trajectory of pp11
Polyproline 11 (pp11) has been described as behaving like a rigid rod, and
was used as a “spectroscopic ruler” in the seminal paper by Stryer and
Haugland38; subsequent work showed additional complexity29,39–41. The
pp11 system is thus a classical example of the importance of comparing
molecular models with FRET data. Here, we compared FRET efficiency
values estimated using FRETpredict with reference values from
experiments39 and from extensive all-atom MD simulations of pp11 with
explicit FRET probes28. For analyses with the RLA we removed these FRET
probes to ensure that the conformational ensembles were comparable, and
thus compared the different ways of representing the dyes (explicitly or via
RLA). In both experiments and simulations, the terminal residues were
labeled with AlexaFluor 488 - C1R (donor) and AlexaFluor 594 - C1R
(acceptor), and the R0 value was fixed to 5.4 nm. We used large rotamer
libraries to estimate the FRET efficiency of pp11 in the three averaging
regimes (Fig. 3 and Supplementary Table 2). We observe that the Dynamic
regimebest approximates the experimental value.As a convenient approach
to calculate FRET efficiencies when there is no information about which
averaging regime touse,we also calculate the average, 〈E〉, over the estimates
of the static, dynamic, and dynamic+ regimes. Comparison with the
reference values (Fig. 3 and Supplementary Table 2) indicates that FRET-
predict yields predictions that are in slightly better agreement with experi-
ments thanMD simulations with explicit representation of the probes. This
result suggests that the RLA provides relatively accurate FRET predictions
and thatMD simulations may not necessarily yield themost accurate result
unless they are able to adequately sample the full range of dye
conformations42,43.

FRET efficiencies were calculated from the pp11 trajectory through the
following lines of code:

from FRETpredict import FRETpredict
u = MDAnalysis.Universe("pp11.pdb", "pp11.xtc")
FRET = FRETpredict (protein=u, residues=[0, 12],
electrostatic=True,

donor="AlexaFluor 488", acceptor="Alexa
Fluor 594",
libname_1="AlexaFluor 488 C1R cutoff10",
libname_2="AlexaFluor 594 C1R cutoff10")

FRET.run()
FRET.reweight()

Fig. 2 | Visual summary of the functionalities of FRETpredict. FRETpredict
consists of two main routines: rotamer library generation (a, b) and FRET efficiency
calculation (c, d). a All-atom MD simulations of a free FRET probe in solution are
performed to thoroughly sample the conformational ensemble of the probe. b The

obtained conformations are clustered and the clusters are filtered by population size
to generate the rotamer library of the FRET probe. c The rotamer libraries of the
donor and acceptor probes are placed at the labeled sites and (d) average FRET
efficiencies are estimated according to different averaging regimes.
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Line two generates the MDAnalysis Universe object from an
XTC trajectory and a PDB topology. Line three initializes the FRETpredict
objectwith the labeled residuenumbers, the FRETprobes from the available
rotamer libraries, and turns the electrostatic calculations on. Line seven runs
the calculations and saves per-frame and ensemble-averaged data to file.
Line eight recomputes the FRET efficiencies using per-frame weights cal-
culated based on dye-protein energies and saved to file by the FRETpre-
dict.run() function. R0 was computed for each combination of FRET
probes via Eq. (1).

Since pp11 adopts rod-like conformations, steric clashes between
rotamers and protein occur in a small fraction of frames (2.7%). Accord-
ingly, applying the reweighting approach (Methods and Supplementary
Note 3) to this system leads to similar predictions as the default scheme, i.e.,
discarding frames with steric clashes and assigning equal weights to the
remainder frames (Supplementary Fig. 8).

Case study 2: conformational ensemble of an intrinsically dis-
ordered protein
ACTR (the activation domain of the activator for thyroid hormone and
retinoid receptors) is an intrinsically disordered protein that has previously
been extensively studied44–46. Here, we used ACTR to demonstrate how
FRETpredict can be used on conformational ensembles for intrinsically
disordered proteins.

We used previous experimental FRET measurements and MD simu-
lations forACTRsolutions at differenturea concentrations thatwereused to
assess the effect of chemical denaturants on protein structure47,48. As in the
experiments, we labeled the residue pairs 3-61, 3-75, and 33-75 with Alexa
Fluor 488 - C1R as the donor andAlexa Fluor 594 - C1R as the acceptor. To
account for the dependence of R0 on urea concentration, we used Eq. 4 in
Zheng et al.47 and estimatedR0 = 5.40Å, 5.34Å, and 5.29Å for [urea] = 0M,
2.5 M, and 5 M, respectively.

Figure 4 and Supplementary Table 3 show the FRET efficiency values
predicted by FRETpredict at the different urea concentrations (0 M, 2.5 M,
and 5M) using medium rotamer libraries. The absolute values of predicted
FRET efficiency differ from the experimental values on average by 13.1%,
7.2%, and 12.1% for [urea] = 0M, 2.5M, and 5M, respectively. Notably, the
predicted trend is consistent with the experimental data for all the pairs of
labeled residues of ACTR and at the three urea concentrations. The
agreement between calculated and experimental trends for the E values
shown in Fig. 4 relies on the thorough and accurate sampling of con-
formational ensembles obtained viaMD simulations by Zheng et al.47 while
it also contributes to validating FRETpredict as a model for calculating E.

To determine which regime most accurately predicts the FRET
efficiency, we calculated the root-mean-square error (RMSE) between the

predicted and experimental values for all the residue pairs. For the ACTR
data, RMSE values obtained for the static, dynamic, and dynamic+
regimes and their average for all the urea concentrations are 0.233, 0.177,
0.315, and 0.171, respectively. As observed in Case Study 1, the dynamic
regime and the average best approximate the experimental FRET effi-
ciency data.

The following lines of codewere used to calculate theE values from the
ACTR trajectory at [urea] = 0 M:

from FRETpredict import FRETpredict
u_0M= MDAnalysis.Universe("actr.gro", "actr_urea0.
xtc")
FRET= FRETpredict (protein=u_0M, residues=[3, 61],

fixed_R0=True, r0=5.40,
electrostatic=True,
libname_1="AlexaFluor 488 C1R cutoff20",
libname_2="AlexaFluor 594 C1R cutoff20")

FRET.run()
FRET.reweight()

Line two generates the MDAnalysis Universe object from an
XTC trajectory and a GRO topology. Line three initializes the FRETpredict
objectwith the labeled residuenumbers, the FRETprobes from the available
rotamer libraries, and fixes the R0 value corresponding to the specific urea
concentration listed above. Line eight runs the calculations and saves per-
frame and ensemble-averaged data to file. Line nine recomputes the FRET
efficiencies using per-frame weights.

Since ACTR adopts more collapsed conformations in pure water than
in the presence of urea, we expect the interaction between the protein and
the inserted rotamers to be dominated by steric repulsion in a larger fraction
of frames at [urea] = 0M. Indeed, when applying the reweighting approach
based on rotamer-protein interactions (Methods and Supplementary
Note 3), we estimate that the effective fraction of frames contributing to the
reweighted ensemble are 46.9%, 73.0%, and 67.2% for [urea] = 0, 2.5, and 5
M, respectively. Accordingly, the RMSE between FRET efficiencies pre-
dictedwith andwithout the reweighting approach is the highest for [urea] =
0 M (Fig. 5 and Supplementary Fig. 9). Thus, reweighting improves
agreement with experiments, particularly for the most structured ensem-
ble (we note that the reweighting is based on probe-protein interactions and
is not against the experimental data). Here, the accuracy of the underlying
ACTR protein ensembles is supported by the good agreement with inde-
pendent SAXS experiments47.

Case study 3: single protein structures
Although we generated rotamer libraries for several of the most common
FRETprobes, in some cases smFRETexperimentsmight be performedwith
probes that are currently not available in FRETpredict. In this case study, we
illustrate how, in the absence of the exact probes, accurate trends can be
predicted by (i) choosing rotamer libraries with similar structural char-
acteristics (linker length, linker dihedrals, fluorophore structure) and (ii)
entering the R0 for the experimental pair of dyes (Supplementary Fig. 10).
We apply this strategy to the single structures of HiSiaP, SBD2, and MalE
and show that it leads to results that are consistent with the experimental
trends. The reference FRET efficiency data of this case study was obtained
fromexperiments by Peter et al.49, whereinAlexa Fluor 555 -C2R andAlexa
Fluor 647 - C2R dyes were employed as donor and acceptor, respectively. In
FRETpredict, both donor and acceptor were replaced by AlexaFluor 647 -
C2R, the available rotamer library with the most similar steric hindrance
(Supplementary Fig. 1), whereas we used theR0 value of the FRETpair used
in the actual experiments.

HiSiaP is the periplasmic substrate-binding protein from the sialic acid
tripartite ATP-independent periplasmic transporter of Haemophilus
influenzae. In this protein, ligand binding induces a conformational rear-
rangement from an open to a closed state50. We calculated E values for the
labeled residuepairsmeasuredbyPeter et al.49 (58-134, 55-175, 175-228, and

Fig. 3 | FRET efficiencies for polyproline 11. FRET efficiencies calculated using
FRETpredict and the MD trajectory of polyproline 11 fluorescently labeled at the
terminal residues. We calculated E using the large rotamer libraries and for the
different regimes (static, dynamic, and dynamic+, in blue, orange, and green,
respectively). The graph also shows the average over the three regimes (red) and the
E value obtained fromMD simulationwith explicit FRET probes (purple). The black
dashed line indicates the experimental E value.
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112-175) using structures deposited in the Protein Data Bank (PDB) for the
open and closed structures (PDB codes 2CEY51 and 3B5052, respectively).
The absolute values of the FRET efficiency predicted for HiSiaP differ on
average by 20.6% and 24.3% from the experimental values of the open and
closed conformation, respectively (Fig. 6a and b, and Supplementary
Table 4). The trend of the FRETpredict prediction is about equally con-
sistent with the experimental data for both conformations and for all the
pairs of labeled residues. The code used to calculate the FRET efficiency for
the single HiSiaP open structure with FRETpredict is:

from FRETpredict import FRETpredict
u_open = MDAnalysis.Universe("2cey.pdb")
FRET = FRETpredict (protein=u_open, residues=[58,
134], temperature=298

fixed_R0=True, r0=5.1,
electrostatic=True,
libname_1="AlexaFluor 647 C2R cutoff10",
libname_2="AlexaFluor 647 C2R cutoff10")

FRET.run()
FRET.reweight ()

Line two generates the MDAnalysisUniverse object for the open
structure fromaPDB topology. Line three initializes the FRETpredict object
with the labeled residue numbers, the FRET probes from the available
rotamer libraries, and fixes the R0 value to the experimental one. Line eight
runs the calculations and saves per-frame and ensemble-averaged data to
file. The same FRETpredict code structure has been used for the other single
structure tests of SBD2 and MalE.

SBD2 is the second of two substrate-binding domains constituting the
glutamine ABC transporter GlnPQ from Lactococcus lactis. As for HiSiaP,
upon binding of high-affinity ligands, SBD2 undergoes a transition from an
open to a closed state53. Peter et al.49 performed FRET efficiency measure-
ments on SBD2 by labeling the residue pairs 319-392 and 369-451.We used
the structures for the open and closed structures deposited in the PDB (PDB
codes 4KR554 and 4KQP54, respectively) in combination with AlexaFluor
647 - C2R as both donor and acceptor. The absolute values of the FRET
efficiencypredicted for SBD2differ on average by 21.6%and21.1%from the
experimental values of the open and closed conformation, respectively
(Fig. 6c and d, and Supplementary Table 4).

The maltose binding protein from Escherichia coli, MalE, plays an
important role in the uptake of maltose and maltodextrins by the maltose

Fig. 5 | Effect of reweighting on predicted FRET efficiencies. FRET efficiency for
ACTR at [urea] = 0 M (a) with and (b) without reweighting the trajectory frames
based on rotamer-protein interactions. The protein is fluorescently labeled at three
different pairs of sites: 3-61, 3-75, and 33-75. Bars showFRETpredict estimates of the

E values calculated using medium rotamer libraries. Predictions for the static,
dynamic, and dynamic+ regimes and their average are shown as blue, orange, green,
and red bars, respectively. Black circles show the experimental data from Borgia
et al.48.

Fig. 4 | FRET efficiency for ACTR at three urea concentrations. FRET efficiency
for ACTR at [urea] = 0 M (a), 2.5 M (b), and 5 M (c). The protein is fluorescently
labeled at three different pairs of sites: 3-61, 3-75, and 33-75. Bars show FRETpredict
estimates of the E values calculated using medium rotamer libraries. Predictions for

the static, dynamic, and dynamic+ regimes and their average are shown as blue,
orange, green, and red bars, respectively. Black circles show the experimental data
from Borgia et al.48.
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transporter complex MalFGK2
55. MalE undergoes structural transition

between the apo and holo states upon sugar binding, resulting in a ca. 35∘

rigid body domain reorientation56. Peter et al.49 performed FRET mea-
surements on MalE by labeling the residue pairs 87-127, 134-186, 36-352,
and 29-352. We used open and closed structures (PDB codes 1OMP57 and
1ANF58, respectively) with AlexaFluor 647 - C2R as both donor and
acceptor. The absolute values of the FRET efficiency predicted for MalE
differ on average by 15.1% and 10.0% from the experimental values of the
open and closed conformation, respectively (Fig. 6e and f, and Supple-
mentary Table 4). The RMSE values associated with the three averaging
regimes over all single-frame structures of HiSiaP, SBD2, and MalE are
0.097 (static), 0.094 (dynamic), 0.141 (dynamic+), and 0.086 (average).
Based on these results, we observe that even in the case of single-frame
structures, the best predictions correspond to the Dynamic regime.

In this case study, we used probes that are similar but not identical
to those used in the experiments. The main physicochemical factors to
take into consideration to assess the similarity between probes are the
steric bulk of the dye, the length and flexibility of the linker, and the
presence of charged groups. We already noted that the steric bulk of the
FRET probe and the rigidity of the linker have a strong influence on the
clustering of the rotamers. Accordingly, these structural features also
affect the external weights calculated upon placement of the rotamers at
the binding site. On the other hand, we observed that including elec-
trostatic interactions in FRETpredict calculations (electro-
static=true) had little effect on the accuracy of FRET efficiency
predictions for the studied systems (Supplementary Fig. 10). In sum-
mary, we found that using the rotamer library for a probe with similar
steric hindrance, in combination with the R0 value for the correct dye
pair, yields FRET efficiency trends in good agreement with the experi-
mental data (Supplementary Fig. 10).

Discussion
We have introduced FRETpredict, a Python-based open-source software
with a fast implementation of the RLA for the calculation of FRET efficiency
data. FRETpredict’s primary purpose is to be a tool that is easy to use—also
for large conformational ensembles—and we provide access to rotamer
libraries for many dyes and linkers. Users can also use their own generated
libraries following the procedure detailed above. The main advance of this
work is not the use of the rotamer library approach for FRET calculations
(already described for example by Walczewska-Szewc et al.22 and Klose
et al.33) but rather howFRETpredict enables researchers to use such libraries
more easily and for a wider range of problems.

Using three case studies, we have highlighted the capabilities of our
implementation in the case of a peptide trajectory (pp11), an IDP trajectory
(ACTR), and single protein structures (HiSiaP, SBD2, andMalE).TheFRET
efficiency prediction trends are in most cases in good agreement with the
experimental data. However, we note that the accuracy of the method
depends on the quality and relevance of the protein conformational
ensembles that are used as input.

In FRETpredict, the average FRET efficiency can be calculated in three
different regimes: static, dynamic, and dynamic+. TheDynamic regime has
been shown to provide better agreement with experimental data for both
protein conformational ensembles and single protein structures. In the
absence of information about the different timescales, we find that simply
averaging the results from the three regimes often leads to good agreement
with experiments. The averaging over conformational ensembles in the
various regimes can also be performed by assigning weights to each protein
conformation based on the interaction energy between dyes and protein. In
our case studies, this reweighting approach can result in better predictions
compared to excluding frames with steric clashes, but its accuracy and
general utility need further validation.

Fig. 6 | Predictions of FRET efficiencies for single structures. FRET efficiency
values obtained on the single structures for the open (a–c) and closed (d–f) con-
formations of HiSiaP (a and d), SBD2 (b and e), and MalE (c and f) for the different
residue pairs, using large rotamer libraries. Predictions for the static, dynamic, and

dynamic+ regimes and their average are shown as blue, orange, green, and red bars,
respectively. Black circles show the experimental reference values from Peter et al.49

for each pair of residues.
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FRETpredict calculations and, more generally, FRET efficiency pre-
dictions from protein trajectories involve a trade-off between computation
time and prediction accuracy. Accordingly, the choice of the optimal
rotamer library selectionmust take its size into consideration. Large rotamer
libraries may lead to greater accuracy but are also more computationally
expensive than smaller libraries.On the other hand, bothmediumand small
rotamer libraries are a good compromise between calculation time and
accuracywhen long simulation trajectories are used.However, using a small
number of rotamer clusters (i.e., small rotamer libraries) may compromise
the prediction of FRET efficiency, especially in case of tight placement at the
labeled site, in whichmany rotamers may be excluded from the calculation
due to probe-protein steric clashes. Therefore, we recommend using large
rotamer libraries when the computational cost is not a limiting factor and
medium libraries for larger conformational ensembles.

Possible application scenarios include coupling FRETpredict more
directly with methods that generate structures in a ‘modeling loop’, i.e.
improving a model by minimizing the difference between prediction and
experimental values. It is also possible to benchmark simulations, test or
rank structural models, optimize force fields against FRET data, or generate
input to so-called reweighting approaches (as has also been done using EPR
data59).

FRETpredict has a general framework and can be readily extended to
encompass non-protein biomolecules and additional rotamer libraries of
FRET probes. In the current implementation, we consider all combinations
of rotamers from the respective donor and acceptor libraries and inde-
pendently weigh each dye based on protein-dye interaction energies, which
are evaluated for the two rotamers independently. The approach could be
further developed to randomly sample pairs of rotamers and to account for
dye-dye interactions in the calculation of the statistical weights assigned to
each pair. Further, the calculation of average FRET efficiencies could be
based on the diffusive motion of the FRET probes in a potential of mean
force derived from donor–acceptor distance distributions, as recently
described60 and implemented in the MMM software-tool33.

Methods
FRET efficiency calculation
FRET efficiency is defined as the fraction of donor excitations that result
in energy transfer to the acceptor, and can be calculated as E ¼ kET

kDþkET
,

where kET is the instantaneous FRET rate and kD is the spontaneous
decay rate of donor excitation by non-FRET mechanisms (e.g. donor
emission or non-radiative mechanisms). kET can be calculated as
kET ðκ2; rÞ ¼ 3

2 kDκ
2ðR0

r Þ
6
, where R0 is the Förster radius, and κ2 is the

orientation factor, related to the relative orientation of the dipole
moments of the dyes. The Förster radius is defined as

R0 ¼ 0:02108 ðJκ2QDn
�4Þ1=6 Å; ð1Þ

where J is the spectral overlap integral between the fluorescence emission of
the donor and the absorption spectrum of the acceptor,QD is the quantum
yield of the donor in the absence of the acceptor, andn is the refractive index
of the medium. Of these parameters, the most challenging to estimate is κ2.
While it can be difficult to measure κ2 experimentally due to the rapid
isomerization of the linker region of the probes, κ2 is often approximated to
its freely diffusing isotropic average of 2/3 by considering that the fluor-
ophore dynamics occur on a timescale that is sufficiently shorter than the
donor lifetime. By assuming afixeddonor–acceptor distance, r, and κ2 = 2/3,
we obtain

E ¼ R6
0

r6 þ R6
0

: ð2Þ

For most cases, this approximation is acceptable due to the length of the
linker region and rapid fluorophore reorientation. However, the placement

of the probes on a protein structuremay restrict themotions of the dyes due
to interactions with the surrounding protein environment. Because of such
potentially restrictedfluorophoremotions, sometimes κ2 ≠ 2/3. Therefore, a
more general formula for calculating FRET efficiency is

Eðr; κ2Þ ¼ 1þ 2
3κ2

r
R0

� �6
 !�1

: ð3Þ

In this case, it is still assumed that the chromophore is reorienting faster than
the donor lifetime, but that its motion is restricted in space. Due to the
discrete nature of the RLA, FRETpredict allows precise computation of κ2

and the possibility to compute R0 in a κ2-dependent way. κ2-dependent R0
calculations (Eq. (1)) are thedefault inFRETpredict, butusers canalso adopt
a fixed R0 value by setting fixed_R0=True and specifying the R0 value
with the r0 option. R0 values for the most common FRET probes are
reported in lib/R0/R0_pairs.csv.

Averaging regimes
Protein, linker and dye motions may all contribute to FRET and so
dynamics on different timescales may be important; here we simplify these
as the protein correlation time (τp), the linker-distance correlation time (τl),
the orientation correlation time of the dye (τk), and the fluorescence lifetime
(τf). Given a conformational ensemble, but no explicit representation of the
dynamical motion and timescales, the “average” FRET efficiency depends
onhow rapidly the various time-dependent components ofE (i.e., r and κ2 in
Eq. (3)) are averaged relative to thefluorescence lifetime. If a specificmotion
occurs much faster than the fluorescence decay, the effective kET will be
completely averaged over that degree of freedom. Assuming that protein
fluctuations are slow (i.e., τp > > τf), we obtain three different regimes for the
relationship between the experimentally measured efficiency and the
underlying donor–acceptor distance distribution39.

In the static regime (τk > > τf and τl > > τf), dye distance andorientation
fluctuations are both slow, thus, there is no averaging of transfer rate, and
every combination of protein configurations, linker distance, and dye
orientation gives a separate kET. In this case, the FRET efficiency is averaged
over N protein conformations as well as over the m and l rotamers for the
donor and the acceptor, respectively,

Eh istatic ¼
1
N

XN
s¼0

Xm
j¼0

Xl
i¼0

1þ 2
3κ2sij

rsij
R0

� �6
 !�1

× psi × psj: ð4Þ

where psi and psj are weights corresponding to the rotamers i and j of the
fluorophores in conformation s. In this regime, κ2sij is an instantaneous value
calculated for a given combination of donor and acceptor rotamers as

κ2sij ¼ μ̂i � μ̂j � 3 R̂sij � μ̂j
� �

R̂sij � μ̂i
� �� �2

; ð5Þ

where μ̂si and μ̂sj are the transition dipolemoment unit vectors of the donor
and acceptor, respectively, and R̂sij denotes the normalized inter-
fluorophore displacement. In FRETpredict, the atom pairs defining μ̂si,
μ̂sj, and R̂sij are specified in lib/libraries.yml.

In the dynamic regime (τk < < τf and τl > > τf) the complete con-
formational sampling is achieved within the fluorescence lifetime of the
donor. In this scenario, which is commonly assumed in the treatment of
experimental data, the FRET efficiency is calculated as

Eh idynamic ¼
1
N

XN
s¼0

Xm
j¼0

Xl
i¼0

1þ 2
3 κ2h i

rsij
R0

� �6
 !�1

× psi × psj: ð6Þ
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Here, κ2
� �

is calculated over all the protein conformations and combina-
tions of probe rotamers:

κ2
� � ¼ 1

N

XN
s¼0

Xm
j¼0

Xl
i¼0

κ2sij × psi × psj; ð7Þ

In the dynamic+ regime (τk < < τf and τl < < τf), both dye distances and
orientations are very fast, and thekET for eachprotein frame is averagedover
all dye configurations, considering both distances and orientations. The
FRET efficiency is calculated as

Eh idynamicþ ¼ 1
N

XN
s¼0

As

1þ As
; ð8Þ

where

As ¼
Xm
j¼0

Xl
i¼0

3
2
κ2sij

R0

rsij

 !6

× psi × psj: ð9Þ

Reweighting
In all averaging regimes, protein conformations with steric clashes are
discarded and the remainder are weighted equally. Besides this default
scheme, the code allows for reweighting the frames based on dye-protein
interactions (Supplementary Note 3). This approach is implemented in the
FRETpredict.reweight() function, which efficiently recomputes
Eh i using the pre-calculated per-frame values. Moreover, through the cus-
tom parameter user_weights, the per-frame weights calculated
internally can be combined with user-provided statistical weights from
other methods, such as Bayesian/Maximum Entropy61 or enhanced sam-
pling techniques62.

Statistics and reproducibility
No statistical methods were used to predetermine sample sizes before
analyzing the data presented in this study. No data were excluded from the
analysis. To facilitate the reproducibility of our results, we make available
code and data on GitHub and Zenodo.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data underlying the analyses andfigures presented in thiswork are available
at github.com/KULL-Centre/_2023_Montepietra_FRET and on Zenodo at
https://doi.org/10.5281/zenodo.1057363863. Simulation trajectories of the
dyes in water are available upon request.

Code availability
The FRETpredict package is available on GitHub at github.com/KULL-
Centre/FRETpredict and on Zenodo at https://doi.org/10.5281/zenodo.
1037137864. The repository includes tutorials for predicting FRET effi-
ciencies and creating new rotamer libraries. FRETpredict is licensed under
GPL license v3 and also distributed as a PyPI package (pypi.org/project/
FRETpredict). Jupyter notebooks to reproduce the analyses and figures
presented in this work are available at github.com/KULL-Centre/_2023_
Montepietra_FRET and on Zenodo at https://doi.org/10.5281/zenodo.
1057363863.
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