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The cortical representation of language
timescales is shared between reading and
listening
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Language comprehension involves integrating low-level sensory inputs into ahierarchyof increasingly
high-level features. Prior work studied brain representations of different levels of the language
hierarchy, but hasnot determinedwhether thesebrain representations are sharedbetweenwritten and
spoken language. To address this issue, we analyze fMRI BOLD data that were recorded while
participants readand listened to the samenarratives in eachmodality. Levels of the languagehierarchy
are operationalized as timescales, where each timescale refers to a set of spectral components of a
language stimulus. Voxelwise encoding models are used to determine where different timescales are
represented across the cerebral cortex, for each modality separately. These models reveal that
between the two modalities timescale representations are organized similarly across the cortical
surface. Our results suggest that, after low-level sensory processing, language integration proceeds
similarly regardless of stimulus modality.

Humans leverage the structure of natural language to convey complex ideas
that unfold over multiple timescales. The structure of natural language
contains a hierarchy of components, which range from low-level compo-
nents such as letterforms or articulatory features, to higher-level compo-
nents such as sentence-level syntax, paragraph-level semantics, and
narrative arc. During human language comprehension, brain representa-
tions of low-level components are thought to be incrementally integrated
into representations of higher-level components1. These representations
have been shown to form a topographic organization across the surface of
the cerebral cortex during spoken language comprehension2–6.

Both written and spoken language consist of a hierarchy of compo-
nents, but to date it has been unclear to what extent brain representations of
these hierarchies are shared between the two modalities of language com-
prehension. At low levels of the hierarchy, brain representations are known
to differ between the two stimulus modalities. For example, visual letter-
forms inwritten language are represented in the early visual cortex, whereas
articulatory features in spoken language are represented in the early auditory
cortex7,8. In contrast, many parts of temporal, parietal, and prefrontal cor-
tices process both written and spoken language9–14. It could be the case that
in these areas representations of higher-level language components are
organized in the same way for both written and spoken language compre-
hension. On the other hand, these areas could contain overlapping but

independent representations for the two modalities. One way to differ-
entiate between these two possibilities would be to directly compare the
cortical organization of brain representations across high-level language
components between reading and listening. However, prior work has not
performed this comparison.Most prior studies of reading and listeninghave
compared brain responses generally, without explicitly describing what
stimulus features are represented in each brain area9–12. Other studies
focusedon relatively fewcomponents (e.g., low-level sensory features,word-
level semantics, and phonemic features), and therefore did not provide a
detailed differentiation between different levels of the language
hierarchy13,14. Studies that did differentiate between different levels focused
on one modality of language2,5,6,15. Prior studies are therefore insufficient to
determine whether brain representations of the language hierarchy are
organized similarly between reading and listening.

To address this problem, we compared where different levels of the
language hierarchy are represented in the brain during reading and listen-
ing. Intuitively, levels of processing hierarchy can be considered in terms of
number ofwords. For example, low-level sensory components such as visual
letterforms inwritten language and articulatory features in spoken language
vary within the course of single words; sentence-level syntax varies over the
course of tens of words; paragraph-level semantics varies over the course of
hundreds of words. Therefore we operationalize levels of the language
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hierarchy as language timescales, where a language timescale is defined as
the set of spectral components of a language stimulus that vary over a certain
number of words. For brevity, we refer to “language timescales” simply as
timescales.

We analyzed functional magnetic resonance imaging (fMRI) record-
ings fromparticipantswho readand listened to the same set ofnarratives13,16.
The stimulus words were then transformed into features that each reflect a
certain timescale of stimulus information: first a language model (BERT)
was used to extract contextual embeddings of the narrative stimuli, and then
linear filters were used to separate the contextual embeddings into
timescale-specific stimulus features. Voxelwise-encodingmodels were used
to estimate the average timescale to which each voxel is selective, which we
refer to as the “timescale selectivity”. These estimates reveal where different
language timescales are represented across the cerebral cortex for reading
and listening separately. Finally, the cortical organization of timescale
selectivity was compared between reading and listening.

Results
We compared the organization of timescale representations between
written and spoken language comprehension for eachparticipant. First, the
set of language-selective voxels for eachmodalitywas identified as those for
which any of the timescale-specific language feature spaces significantly
predicted blood oxygenation level-dependent (BOLD) responses (one-
sided permutation test, P < 0.05, false discovery rate (FDR) corrected).
Then, voxel timescale selectivity was compared between reading and lis-
tening across the set of voxels that are language-selective for both mod-
alities. For each participant, voxel timescale selectivity is significantly
positively correlated between the two modalities (S1: r = 0.41, S2: r = 0.58,
S3: r = 0.44, S4: 0.34, S5: 0.47, S6: 0.35, S7: 0.40, S8: 0.49, S9: 0.52, P < 0.001
for eachparticipant; Fig. 1a).Visual inspectionof voxel timescale selectivity
across the cortical surface confirms that the cortical organization of
timescale selectivity is similar between reading and listening (Fig. 1b, c).
For both modalities, timescale selectivity varies along spatial gradients
from intermediate timescale selectivity in the superior temporal cortex to
long-timescale selectivity in the inferior temporal cortex, and from inter-
mediate timescale selectivity in the posterior prefrontal cortex to long
timescale selectivity in the anterior prefrontal cortex.Medial parietal cortex
voxels are selective for long timescales for both modalities. Estimates of
timescale selectivity are robust to small differences in feature extraction—
results are quantitatively similar when using a fixed rolling context instead
of a sentence input context, andwhenusingunits fromonly a single layer of
BERT instead of from all layers (Supplementary Figs. S1–S5). These results
suggest that for each individual participant, representations of language
timescales are organized similarly across the cerebral cortex between
reading and listening.

In contrast to representations of language timescales, low-level sensory
features are represented inmodality-specific cortical areas. Figure 1d shows
the prediction performance of linguistic features (i.e., timescale-specific
feature spaces), and the prediction performance of low-level sensory fea-
tures (i.e., spectrotemporal representations of auditory stimuli, and motion
energy representations of visual stimuli).Voxels are coloredaccording to the
prediction performance of each set of feature spaces: voxels shown in blue
are well-predicted by the linguistic feature spaces, voxels shown in orange
are well-predicted by the low-level sensory feature spaces, and voxels shown
in white are well-predicted by both sets of feature spaces. For both reading
and listening, timescale-specific feature spaces predict well broadly across
temporal, parietal, and prefrontal cortices. In contrast, low-level stimulus
features predict well in the early visual cortex (EVC) during reading only,
and in the auditory cortex (AC) during listening only. These results indicate
that during language comprehension, linguistic processing occurs in similar
cortical areas between modalities, whereas low-level sensory processing
occurs in modality-specific cortical areas.

Within each participant, estimates of timescale selectivity depend not
only on thepresentationmodality, but also on thepresentationorder. This is
because each participant either read all the stories before listening to the

stories, or vice versa, and attentional shifts betweennovel andknown stimuli
may cause small differences in estimated timescale selectivity. Indeed,
activation across higher-level brain regions is often more widespread and
consistent for the first presentation modality than for the second pre-
sentation modality, indicating that participants attend more strongly to
novel stimuli (Supplementary Figs. S6 and S7). In six of the nine partici-
pants, timescale selectivity was slightly longer for the first presented mod-
ality than for the second presented modality (Supplementary Fig. S8). This
change in timescale selectivity between novel and repeated stimuli suggests
that the predictability of high-level narrative components in known stimuli
may reduce brain responses to longer language timescales. Nevertheless, the
overall cortical organization of timescale selectivity was consistent between
reading and listening across all nine participants, regardless of whether they
first read or listened to the narratives. This consistency indicates that the
effects of stimulus repetition on timescale selectivity are small relative to the
similarities between timescale selectivity during reading and listening.

In order to consolidate results across all participants, we computed
group-level estimates of timescale selectivity. To compute group-level esti-
mates, first the estimates for each individual participant were projected to
the standard FreeSurfer fsAverage vertex space17. Then, for each vertex, the
group-level estimate of timescale selectivity was computed as the mean of
the fsAverage-projected values. This mean was computed across the set of
participants in whom the vertex was language-selective. Group-level esti-
mates were computed separately for reading and listening. Group-level
timescale selectivity was then compared between reading and listening
across the set of vertices thatwere significantly predicted in at least one-third
of the participants for both modalities (Supplementary Fig. S9 shows the
number of participants for which each vertex was significantly predicted,
separately for each modality). This comparison showed that timescale
selectivity is highly correlated between reading and listening at the group
level (r = 0.48; Fig. 2a). Cortical maps of group-level timescale selectivity
(Fig. 2b) visually highlight that the spatial gradients of timescale selectivity
across temporal and prefrontal cortices are highly similar between the two
modalities. Gradients of timescale selectivity are also evident within pre-
viously proposed anatomical brain networks (Supplementary Fig. S10).
Overall, these group-level results show that across participants, the orga-
nization of representations of language timescales is consistent between
reading and listening.

The results shown in Figs. 1 and 2 indicate that timescale selectivity is
similar between reading and listening. However, timescale selectivity alone
is insufficient for determining whether representations of different time-
scales are shared between reading and listening—timescale selectivity could
equate voxels with a very peaked selectivity for a single frequency band, and
voxels with uniform selectivity for many frequency bands (Supplementary
Fig. S11 shows how the uniformity of timescale selectivity varies across
voxels). To investigate this possibility we used the timescale selectivity
profile, which reflects selectivity for each timescale separately. Although the
timescale selectivity profile is a less robust metric than timescale selectivity
(see Methods for details), the timescale selectivity profile can distinguish
between peaked and uniform selectivity profiles.

Figure 3 shows the Pearson correlation coefficient between the time-
scale selectivity profile in reading and in listening on the flattened cortical
surface of each participant. The timescale selectivity profile is highly cor-
related between reading and listening across voxels that are language-
selective in both modalities.

To further demonstrate the shared organization of cortical timescale
selectivity, we compared the cortical distribution of selectivity for each of the
eight timescales. For each of the eight timescales, we computed the corre-
lation between selectivity for that timescale during reading and listening
across the set of voxels that are language-selective in both modalities. The
correlations for each timescale and participant are shown in Fig. 4a. A full
table of correlations and statistical significance is shown in Supplementary
Table S1. Selectivity for each timescale was positively correlated between
reading and listening for each timescale and in each individual participant.
Most of these correlations were statistically significant (one-sided
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permutation test, P < 0.05, FDR-corrected). Note that comparing the
timescale selectivity metric is more robust to noise in the data than com-
paring selectivity for each timescale separately (see Methods for details).
Therefore, correlations between selectivity for each individual timescale are
less consistent across participants than correlation between timescale
selectivity.

The cortical distribution of selectivity for each timescale is shown for
reading and listening separately in Fig. 4b. For concision, these results are
shown at the group level. Visual inspection of Fig. 4b shows that for both
reading and listening, short timescales (2–4words, 4–8words, 8–16words)
are represented in posterior prefrontal cortex and superior temporal cor-
tex; intermediate timescales (16–32 words, 32–64 words) are represented
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broadly across temporal, prefrontal, andmedial parietal cortices; and long
timescales (64–128words, 128–256words, 256+words) are represented in
prefrontal cortex, precuneus, temporal parietal junction, and inferior
temporal cortex. The correlations between selectivity for each timescale
and qualitative comparisons of the cortical distribution of selectivity for
each timescale between reading and listening indicate that representations
of language timescales are organized similarly between reading and
listening.

Discussion
This study tested whether representations of language timescales are orga-
nized similarly between reading and listening.We used voxelwise-encoding
models to determine the selectivity of each voxel to different language
timescales and then compared the organization of these representations
between the twomodalities (Fig. 5). These comparisons show that timescale
selectivity is highly correlated between reading and listening across voxels
that are language-selective in both modalities. This correlation is evident in

Fig. 1 | Timescale selectivity across the cortical surface. Voxelwise modeling was
used to determine the timescale selectivity of each voxel, for reading and listening
separately (see Methods for details). a Timescale selectivity during listening (x axis)
vs reading (y axis) for one representative participant (S1). Each point represents one
voxel that was significantly predicted in both modalities. Points are colored
according to the mean of the timescale selectivity during reading and listening. Blue
denotes selectivity for short timescales, green denotes selectivity for intermediate
timescales, and red denotes selectivity for long timescales. Timescale selectivity is
significantly positively correlated between the two modalities (r = 0.41, P < 0.001).
Timescale selectivity was also significantly positively correlated in the other eight
participants (S2: r = 0.58, S3: r = 0.44, S4: 0.34, S5: 0.47, S6: 0.35, S7: 0.40, S8: 0.49, S9:
0.52, P < 0.001 for each participant). b Timescale selectivity during reading and
listening on the flattened cortical surface of S1. Timescale selectivity is shown
according to the color scale at the bottom (same color scale as in (a)). Voxels that
were not significantly predicted are shown in gray (one-sided permutation test,
P < 0.05, FDR-corrected; LH left hemisphere, RH right hemisphere, NS not

significant, PFC prefrontal cortex, MPC medial parietal cortex, EVC early visual
cortex, AC auditory cortex). For both modalities, temporal cortex contains a spatial
gradient from intermediate to long-timescale selectivity along the superior to the
inferior axis, the prefrontal cortex (PFC) contains a spatial gradient from inter-
mediate to long-timescale selectivity along the posterior to the anterior axis, and
precuneus is predominantly selective for long timescales. c Timescale selectivity in
eight other participants. The format is the same as in (b). d Prediction performance
for linguistic features (i.e., timescale-specific feature spaces) vs. low-level sensory
features (i.e., spectrotemporal and motion energy feature spaces) for S1. Orange
voxels were well-predicted by low-level sensory features. Blue voxels were well-
predicted by linguistic features. White voxels were well-predicted by both sets of
features. Low-level sensory features predict well in early visual cortex (EVC) during
reading, and in early auditory cortex (AC) during listening. Linguistic features
predict well in similar areas for reading and listening. After early sensory processing,
cortical timescale representations are consistent between reading and listening
across temporal, parietal, and prefrontal cortices.

Fig. 2 | Group-level estimates of timescale selectivity in standard brain space.
Group-level estimates of timescale selectivity are shown in a standard fsAverage
vertex space. The group-level estimate for each vertex was computed by taking the
mean over all participants in whom the vertex was language-selective. aGroup-level
timescale selectivity during listening (x axis) vs reading (y axis). Each point repre-
sents one vertex that was significantly predicted in both modalities for at least one-
third of the participants. Each point is colored according to the mean of the group-
level timescale selectivity during reading and listening. Blue denotes selectivity for
short timescales, green denotes selectivity for intermediate timescales, and red
denotes selectivity for long timescales. Timescale selectivity is positively correlated
between the two modalities (r = 0.48). b For reading and listening separately group-
level timescale selectivity is shown according to the color scale at the bottom (same

color scale as in (a)). Colored vertices were significantly predicted for both mod-
alities in at least one-third of the participants. Vertices that were not significantly
predicted are shown in gray (one-sided permutation test, P < 0.05, FDR-corrected;
NS not significant, PFC prefrontal cortex, MPC medial parietal cortex, EVC early
visual cortex, AC auditory cortex). Group-averaged measurements of timescale
selectivity are consistent with measurements observed in individual participants
(Fig. 1). For both modalities, there are spatial gradients from intermediate to long-
timescale selectivity along the superior to the inferior axis of the temporal cortex, and
along the posterior to anterior axis of prefrontal cortex (PFC). Precuneus is pre-
dominantly selective for long timescales for bothmodalities. Across participants, the
cortical representation of different language timescales is consistent between reading
and listening across temporal, parietal, and prefrontal cortices.
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individual participants (Fig. 1) and at the group level (Fig. 2). For both
modalities, prefrontal and temporal cortices contain spatial gradients from
intermediate to long-timescale selectivity, andprecuneus is selective for long
timescales. Comparisons of selectivity for each individual voxel (Fig. 3), and
to each timescale separately (Fig. 4), show that the cortical representation of
each timescale is similar between reading and listening.These results suggest
that the topographic organization of language processing timescales is
shared across stimulus modalities.

Prior work has studied brain representations of contextualized and
non-contextualized language, separately for written15 and spoken language
comprehension5. Those studies showed that areaswithin themedial parietal
cortex, prefrontal cortex, and inferior temporal cortex preferentially

represent contextualized information; whereas other areas within superior
temporal cortex and the temporoparietal junction do not show a preference
for contextualized information. Our results build upon these previous
findings by directly comparing representations between reading and lis-
tening within individual participants and by examining representations
across a finer granularity of timescales. The fine-grained variation in
timescale selectivity that we observed within previously proposed cortical
networks supports the hypothesis that language processing occurs along a
continuous gradient, rather than in distinct, functionally specialized brain
networks3.

Our study provides new evidence on the similarities in language pro-
cessing between reading and listening. To compare brain responses between

Fig. 3 | Voxelwise similarity of timescale selectivity. The Pearson correlation
coefficient of the timescale selectivity profile between reading and listening is shown
on the cortical surfaces of each participant. The correlation coefficient is shown
according to the color scale at the bottom. Red voxels have positively correlated
timescale selectivity profiles between reading and listening. Blue voxels have

negatively correlated timescale selectivity profiles between reading and listening.
Voxels that were not significantly predicted in both modalities are shown in gray
(one-sided permutation test, P < 0.05, FDR-corrected). In areas that are language-
selective in both modalities, the timescale selectivity profile is highly correlated
across voxels.
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reading and listening, prior work correlated timecourses of brain responses
between participantswho read and listened to the same stimuli12. That work
found similarities in areas such as superior temporal gyrus, inferior frontal
gyrus, and precuneus; and differences in early sensory areas as well as in

parts of parietal and frontal cortices. However, that work did not specifically
model linguistic features. Therefore the differences they observed between
modalities in parietal and frontal cortices may indicate differences in non-
linguistic processes, such as high-level control processes, rather than

Fig. 4 | Similarity of selectivity for each timescale between reading and listening.
Selectivity for each individual timescale was compared between reading and lis-
tening across the cerebral cortex. For each voxel, selectivity for each individual
timescale describes the extent to which the corresponding timescale-specific feature
space explains variation in BOLD responses, relative to the other timescale-specific
feature spaces (seeMethods for details). aFor each timescale, the Pearson correlation
coefficient was computed between selectivity for that timescale during reading and
listening, across all voxels that were significantly predicted for both modalities. For
each timescale, the mean true correlation across participants is indicated by dark
purple diamonds. The mean chance correlation across participants is indicated by
black dots (for clarity, these black dots are connected by a black line). Vertical lines
through purple diamonds and through black dots are error bars that indicate the

standard error of the mean (SEM) across participants for the respective value. True
and chance correlations for each individual participant are respectively indicated by
light purple diamonds and gray dots. The true correlation is significantly higher than
chance in most individual participants and timescales; see Supplementary Table S1
for details. b The group-level selectivity of each vertex to each timescale is shown in
fsAverage space for reading and listening separately. Vertices that were not
language-selective in both modalities are shown in gray. Outside of primary sensory
areas, selectivity for each timescale is distributed similarly across the cortical surface
between both modalities. Among voxels that are language-selective in both mod-
alities, each language timescale is represented in similar areas between reading and
listening. These results further indicate that there is a shared organization of
representations of language timescales between reading and listening.
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differences in language representations. By specifically modeling repre-
sentations of linguistic features, our results suggest that some of the differ-
ences observed in prior work12 could indeed be due to non-linguistic
processes such as high-level control. A separate study suggesting that brain
representations of language differ between modalities compared brain
responses to different types of stimuli for reading and listening: the stimuli
used for reading experiments consisted of isolated sentences, whereas the

stimuli used for listening experiments consisted of full narratives18. This
discrepancy perhaps explains why in that study18, language models trained
on higher-level tasks (e.g., summarization, paraphrase detection) were
better able to predict listening than reading data. Our study used matched
stimuli for reading and listening experiments, and the similarities we
observed highlight the importance of using narrative-length, naturalistic
stimuli to elicit brain representations of high-level linguistic features19.

Fig. 5 | Experimental procedure and voxelwisemodeling.The following procedure
was used to compare the representation of different language timescales across the
cerebral cortex. a Functional MRI signals were recorded while participants listened
to or read narrative stories13,16. Timescale-specific feature spaces were constructed,
each of which reflects the components of the stimulus that occur at a specific
timescale (see (b) for details). These feature spaces andBOLD responseswere used to
estimate voxelwise-encodingmodels that indicate how different language timescales
modulate the BOLD signal evoked in each voxel, separately for each participant and
modality (“Model estimation”). Estimated model weights were used to predict
BOLD responses to a separate held-out dataset which was not used for model
estimation (“Model evaluation”). Predictions for individual participants were
computed separately for listening and reading sessions. Prediction performance was
quantified as the correlation between the predicted and recorded BOLD responses to
the held-out test dataset. This prediction performance was used to determine the

selectivity of each voxel to language structure at each timescale. These estimates were
then compared between reading and listening (“Timescale comparison”).
b Timescale-specific feature spaces were constructed from the presented stimuli. A
contextual language model (BERT35) was used to construct a vector embedding of
the stimulus. The resulting stimulus embedding was decomposed into components
at specific timescales. To perform this decomposition, the stimulus embedding was
convolved across time with each of eight linear filters. Each linear filter was designed
to extract components of the stimulus embedding that vary with a specific period.
This convolution procedure resulted in eight sets of stimulus embeddings, each of
which reflects the components of the stimulus narrative that vary at a specific
timescale. These eight sets of stimulus embeddings were used as timescale-specific
feature spaces in (a).
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The method for estimating timescale selectivity that we introduced in
this work addresses limitations in methods previously used to study lan-
guage timescales in the brain2–6. Early methods required the use of stimuli
that are scrambledat different temporal granularities2,3.However, artificially
scrambled stimulimay cause attentional shifts, evoking brain responses that
are not representative of brain responses to natural stimuli19–21. Other
approaches measured the rate of change in patterns of brain responses in
order to determine the temporal granularity of representations in each brain
region4. However, that approach does not provide an explicit stimulus-
response model which is needed to determine whether the temporal gran-
ularity in each brain region reflects linguistic or non-linguistic brain
representations. Our approach uses voxelwise modeling, which allows us to
estimate brain representations with ecologically valid stimuli, and obtain an
explicit stimulus-response model. Our method uses spectral analysis to
extract stimulus features that reflect different language timescales, decou-
pling the feature extraction process from specific neural network archi-
tectures. This decoupling enables the construction of encoding models that
are more accurate and that are also interpretable in terms of timescale
selectivity. In the future, ourmethod could be usedwith pretrained audio or
visual models (e.g., wav2vec 2.022 or TrOCR23) to estimate selectivity for
different timescales of low-level auditory and visual features. In sum, the
method for estimating timescale selectivity that we developed in this study
allowed us to produce more interpretable, accurate, and ecologically valid
models of language timescales in the brain than previous methods.

To further inform theories of language integration in the brain, our
approach of analyzing language timescales could be combined with
approaches that analyze brain representations of specific classical language
constructs. Approaches based on classical language constructs such as part-
of-speech tags24 and hierarchical syntactic constructs25,26 provide intuitive
interpretations of cortical representations. However, these language con-
structs do not encompass all the information that is conveyed in a natural
language stimulus. For example, discourse structure and narrative processes
are difficult to separate and define. This difficulty is particularly acute for
freely produced stimuli, which do not have explicitly marked boundaries
between sentences and paragraphs. Instead of classically defined language
constructs, our approach uses spectral analysis to separate language time-
scales. The resulting models of brain responses can therefore take into
account stimulus language information beyond language constructs that
can be clearly separated and defined. In the future, evidence from these two
approaches could be combined in order to improve our understanding of
language processing in the brain. For example, previous studies suggested
that hierarchical syntactic structure may be represented in the left temporal
lobe, areas in which our analyses identified a spatial gradient from inter-
mediate to long-timescale selectivity26. Evidence derived from both
approaches should be further compared in order to inform neurolinguistic
theories with a spatially and temporally fine-grained model of voxel
representation that can be interpreted in terms of classical language
constructs.

One limitation of our study comes from the temporal resolution of
BOLD data. Because the data used in this study have a repetition time (TR)
of 2 seconds, our analysis may be unable to detect very fine-grained dis-
tinctions in timescale selectivity. Furthermore, controlling for low-
frequency voxel response drift required low-pass filtering of the BOLD
data during preprocessing. This preprocessing filter may have removed
information about brain representations of very long timescales (i.e.,
timescales above 360 words), thus removing information about these
timescales. Future work could apply our method to brain recordings that
havemorefine-grained temporal resolution (e.g., fromelectrocorticography
(ECoG)or electroencephalography (EEG) recordings)or that donot require
low-pass filtering in order to determine whether there are subtle differences
in timescale selectivity between modalities. A second limitation arises from
the current state of language model embeddings. Although embeddings
from language models explain a large proportion of variance in brain
responses, these embeddings do not capture all stimulus features (e.g.,
features that change within single words). In the future, our method can be

used with other language models to obtain more accurate estimates of
timescale selectivity.

In sum, we developed a sensitive, data-driven method to determine
whether language timescales are represented in the samewayduring reading
and listening across cortical areas that represent both written and spoken
language. Analyses of timescale selectivity in individual participants and at
the group level reveal that the cortical representation of different language
timescales is highly similar between reading and listening across temporal,
parietal, and prefrontal cortices at the level of individual voxels. The shared
organization of cortical language timescale selectivity suggests that a change
in stimulus modality alone does not substantially alter the organization of
representations of language timescales. A remaining open question is
whether a change in the temporal constraints of language processing would
alter the organization of representations of language timescales. One
interesting direction for futureworkwould be to comparewhether a change
in the stimulus presentationmethod (e.g., static text presentation compared
to transient rapid serial visual presentation (RSVP)) would alter the orga-
nization of language timescale representations.

Methods
Functional MRI was used to record BOLD responses while human parti-
cipants read and listened to a set of English narrative stories13,16. The sti-
mulus narratives were transformed into feature spaces that each reflect a
particular set of language timescales. Each timescale was defined as the
spectral components of the stimulus narrative that vary over a certain
number of words. These timescale-specific feature spaces were then used to
estimate voxelwise-encoding models that describe how different timescales
of language are represented in the brain for each modality and participant
separately. The voxelwise encoding models were used to determine the
language timescale selectivity of each voxel, for each participant and mod-
ality separately. The language timescale selectivity of individual voxels was
compared between reading and listening. The experimental procedure is
summarized in Fig. 5 and is detailed in the following subsections.

MRI data collection
MRI data were collected on a 3T Siemens TIM Trio scanner located at the
UCBerkeley Brain Imaging Center. A 32-channel Siemens volume coil was
used for data acquisition. Functional scans were collected using gradient
echo EPI water excitation pulse sequence with the following parameters:
repetition time (TR) 2.0045 s; echo time (TE) 31ms; flip angle 70°; voxel size
2.24 × 2.24 × 4.1 mm (slice thickness 3.5mm with 18% slice gap); matrix
size 100 × 100; and field of view 224 × 224mm. To cover the entire cortex,
30 axial slices were prescribed, and these were scanned in interleaved order.
A custom-modified bipolar water excitation radiofrequency (RF) pulse was
used to avoid signals from fat. Anatomical data were collected using a T1-
weighted multi-echo MP-RAGE sequence on the same 3T scanner.

Tominimize headmotion during scanning and to optimize alignment
across sessions, each participant wore a customized, 3D-printed or milled
head case that matched precisely the shape of each participant’s head27,28. In
order to account for inter-run variability, within each run MRI data were
z-scored across time for each voxel separately. The data presented here have
been presented previously as part of other studies that examined questions
unrelated to timescales in language processing8,13,16. Motion correction and
automatic alignment were performed on the fMRI data using the FMRIB
Linear Image Registration Tool (FLIRT) from FSL 5.029. Low-frequency
voxel response drift was removed from the data using a third-order
Savitzky–Golay filter with a 120 second window (for data preprocessing
details, see ref. 13).

Participants
Functional data were collected on nine participants (six males and three
females) between the ages of 24 and 36.All procedureswere approved by the
Committee for the Protection of Human Subjects at the University of
California, Berkeley. All participants gave informed consent. All ethical
regulations relevant to human research participants were followed. All
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participants were healthy, had normal hearing, and had normal or
corrected-to-normal vision. The Edinburgh handedness inventory30 indi-
cated that one participantwas left-handed.The remaining eight participants
were right-handed or ambidextrous.

Because the current study used a voxelwise-encoding model frame-
work, each participant’s datawere analyzed individually, and both statistical
significance and out-of-set prediction accuracy (i.e., generalization) are
reported for each participant separately. Because each participant provides a
complete replication of all hypothesis tests, sample size calculations were
neither required nor performed.

Stimuli
Human participants read and listened to a set of English narrative stories
while in the fMRI scanner. The same stories were used as stimuli for reading
and listening sessions, and the same stimuli were presented to all partici-
pants. These stories were originally presented at The Moth Radio Hour. In
each story, a speaker tells an autobiographical story in front of a live audi-
ence. The selected stories cover a wide range of topics and are highly
engaging. The stories were separated into a model training dataset and a
model test dataset. The model training dataset consisted of ten 10–15-min
stories. Themodel test dataset consisted of one 10-min story. This test story
was presented twice in each modality (once during each scanning session).
The responses to the test story were averaged within each modality (for
details, see refs. 16 and 13). Each story was played during a separate fMRI
scan. The length of each scan was tailored to the story and included
10 seconds of silence both before and after the story. The listening and
reading presentation order was counterbalanced across participants.

During listening sessions, the storieswere played over Sensimetrics S14
in-ear piezoelectric headphones. During reading sessions, the words of each
story were presented one by one at the center of the screen using a rapid
serial visual presentation (RSVP) procedure10,31. Each word was presented
for a duration precisely equal to the duration of that word in the spoken
story. The stories were shown on a projection screen at 13 × 14° of visual
angle. Participants were asked to fixate while reading the text (for details
about the experimental stimuli, see ref. 13).

Voxelwise-encoding models
Voxelwise modeling (VM) was used to model BOLD responses8,13,16,32,33. In
the VM framework, stimulus and task parameters are nonlinearly trans-
formed into sets of features (also called “feature spaces”) that are hypo-
thesized to be represented in brain responses. Linearized regression is used
to estimate a separate model for each voxel. Each model predicts brain
responses from each feature space (a model that predicts brain responses
from stimulus features is referred to as an “encodingmodel”). The encoding
model describes how each feature space is represented in the responses of
eachvoxel.Aheld-out dataset thatwasnot used formodel estimation is then
used to evaluate model prediction performance on new stimuli and to
determine the significance of the model prediction performance.

Construction of timescale-specific feature spaces
To operationalize the notion of language timescales, the language stimulus
was treated as a time series anddifferent language timescaleswere defined as
the different frequency components of this time series. Although this
operational definition is not explicitly formulated in terms of classic lan-
guage abstractions such as sentences or narrative chains, the resulting
components nonetheless selectively capture information corresponding to
the broad timescales of words, sentences, and discourses34. To construct
timescale-specific feature spaces, first an artificial neural language model
(“BERT”35) was used to project the stimulus words onto a contextual word
embedding space. This projection formed a stimulus embedding that
reflects the language content in the stimuli. Then, linear filters were con-
volvedwith the stimulus embedding to extract components that each vary at
specific timescales. These two steps are detailed in the following two
paragraphs.

Embedding extraction. An artificial neural network (BERT-BASE-
UNCASED35) was used to construct the initial stimulus embedding.
BERT-base is a contextual language model that contains a 768-unit
embedding layer and 12 transformer layers, each with a 768-unit hidden
state (for additional details about the BERT-basemodel see ref. 35). Thew
words of each stimulus narrativeXwere tokenized and then provided one
sentence at a time as input to the pretrained BERT-basemodel (sentence-
split inputs were chosen as input context because sentence-level splits
mimic the inputs provided to BERT during pretraining). For each sti-
mulus word, the activation of each of the p = 13 × 768 = 9984 units of
BERT was used as a p-dimensional embedding of that word. Prior work
suggested that language structures with different timescales are pre-
ferentially represented in different layers of BERT36–38 (though some have
argued that language timescales are not cleanly separated across different
layers of BERT39). Earlier layers represent lower-level, shorter-timescale
information (e.g., word identity and linear word order), whereas later
layers represent higher-level, longer-timescale information (e.g., cor-
eference, long-distance dependencies). To include stimulus information
at all levels of the language processing hierarchy, activations from all
layers of BERT were included in the stimulus embedding. The embed-
dings of the w stimulus words form a p ×w stimulus embedding M(X).
M(X) numerically represents the language content of the stimulus
narratives.

Timescale separation. The stimulus embedding derived directly from
BERT can explain a large proportion of the variance in brain responses to
language stimuli15,40–42. However, this stimulus embedding does not dis-
tinguish between different language timescales.

In order to distinguish between different language timescales, linear
filters were used to decompose the stimulus embeddingM(X) into different
language timescales. Intuitively, the stimulus embedding consists of com-
ponents that vary with different periods. Components that vary with dif-
ferent periods can be interpreted in terms of different classical language
structures34. For example, components that vary with a short period (~2–4
words) reflect clause-level structures such as syntactic complements, com-
ponents that vary with an intermediate period (~16–32 words) reflect
sentence-level structures such as constituency parses, and components that
varywith a long period (~128–256words) reflect paragraph-level structures
such as semantic focus. To reflect this intuition, different language time-
scaleswere operationalized as the components ofM(X)with periods that fall
within different ranges. The period ranges were chosen to be small enough
to model timescale selectivity at a fine-grained temporal granularity, and
large enough to avoid substantial spectral leakagewhichwould contaminate
the output of each filter with components outside the specified timescale.
The predefined ranges were chosen as: 2–4 words, 4–8 words, 8–16 words,
16–32 words, 32–64 words, 64–128 words, 128–256 words, and 256+
words. To decompose the stimulus embedding into components that fall
within these period ranges, eight linear filters bi (i∈ 1, 2, . . , 8) were con-
structed. Each filter biwas designed to extract components that vary with a
period in the predefined range. The window method for filter design was
used to construct each filter43. Each linear filter was constructed by multi-
plying a cosine wave with a blackman window44. The stimulus embedding
M(X)was convolvedwith eachof the eightfilters separately to produce eight
filtered embeddings Mi(X), i∈ 1, 2,…, 8, each with dimension p ×w. To
avoid filter distortions at the beginning and end of the stimulus, a mirrored
version ofM(X) was concatenated to the beginning and end ofM(X) before
thefilterswere applied toM(X). Eachfiltered embeddingMi(X) contains the
components of the stimulus embedding that vary at the timescale extracted
by the ith filter.

Construction of sensory-level feature spaces
Two sensory-level feature spaces were constructed in order to account
for the effect of low-level sensory information on BOLD responses. One
feature space represents low-level visual information. This feature spacewas
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constructed using a spatiotemporal Gabor pyramid that reflects the spatial
and motion frequencies of the visual stimulus (for details, see refs. 13,45,
and 14). The second feature space represents low-level auditory informa-
tion. This feature space was constructed using a cochleogram model that
reflects the spectral frequencies of the auditory stimulus (for details, see
refs. 8,13, and 14).

Stimulus downsampling
Feature spacesweredownsampled inorder tomatch the sampling rate of the
fMRI recordings. The eight filtered timescale-specific embeddings Mi(X)
contain one sample for each word. Because word presentation rate of the
stimuli is not uniform, directly downsampling the timescale-specific
embeddings Mi(X) would conflate long-timescale embeddings with the
presentation word rate of the stimulus narratives6. To avoid this problem, a
Gaussian radial basis function (RBF) kernelwas used to interpolateMi(X) in
order to form intermediate signalsM0

iðXÞ, following ref. 6. EachM0
iðXÞ has a

constant sampling rate of 25 samples per repetition time (TR). After this
interpolation step, an anti-aliasing, 3-lobe Lanczos filter with cut-off fre-
quency set to the fMRI Nyquist rate (0.25Hz) was used to resample the
intermediate signalsM0

iðXÞ to the middle time points of each of the n fMRI
volumes. This procedure produced eight timescale-specific feature spaces
Fi(X), each of dimension p × n. Each of these feature spaces contains the
components of the stimulus embedding that vary at a specific timescale.
These feature spaces are sampled at the sampling rate of the fMRI record-
ings. The sensory-level feature spaces were not sampled at the word pre-
sentation rate. Therefore, Gaussian RBF interpolation was not applied to
sensory-level feature spaces.

Before voxelwise modeling, each stimulus feature was truncated, z-
scored, anddelayed.Data for thefirst 10TRsand the last 10TRsof each scan
were truncated to account for the 10 s of silence at the beginning and end of
each scan and to account for non-stationarity in brain responses at the
beginning and end of each scan. Then the stimulus features were each
z-scored in order to account for z-scoring performed on the MRI data (for
details, see “MRI data collection”). In the z-scoring procedure, the value of
each feature channel was separately normalized by subtracting the mean
value of the feature channel across time and then dividing by the standard
deviation of the feature channel across time. Note that the resulting feature
spaces had low correlation with each other—for each pair of feature spaces,
themean pairwise correlation coefficient between dimensions of the feature
spaceswas less than0.1. Lastly,finite impulse response (FIR) temporalfilters
were used todelay the features inorder tomodel thehemodynamic response
function of each voxel. The FIR filters were implemented by concatenating
feature vectors that had been delayed by 2, 4, 6, and 8 seconds13,14,16.

Voxelwise-encoding model fitting
Voxelwise-encoding models were estimated in order to determine which
features are represented in each voxel. Each model consists of a set of
regression weights that describes BOLD responses in a single voxel as a
linear combination of the features in a particular feature space. In order to
account for potential complementarity between feature spaces, the models
were jointly estimated for all ten feature spaces: the eight timescale-specific
feature spaces, and the two sensory-level feature spaces (the two sensory-
level feature spaces reflect spectrotemporal features of the auditory stimulus
and motion energy features of the visual stimulus)46,47.

Regression weights were estimated using banded ridge regression46.
Unlike standard ridge regression, which assigns the same regularization
parameter to all feature spaces, banded ridge regression assigns a separate
regularization hyperparameter to each feature space. Banded ridge
regression thereby avoids biases in estimated model weights that could
otherwise be caused by differences in feature space distributions. Math-
ematically, the m delayed feature spaces Fi(X), i∈ 1, 2,…,m (each of
dimension p) were concatenated to form a feature matrix F0ðXÞ
(dimension (mp) × n). Then banded ridge regressionwas used to estimate
a mapping B (dimension v × ðPm

i¼1 pÞ) from F0ðXÞ to the matrix of voxel
responses Y (dimension v × n). B is estimated according to

B̂ ¼ argminB jjY � BF
0 ðXÞjj22 þ λjjCBjj22. A separate regularization

parameter was fit for each voxel, feature space, and FIR delay. The
diagonal matrix C of regularization hyperparameters for each feature
space and each voxel is optimized over tenfold cross-validation.

Regularization hyperparameter selection
Data for the ten narratives in the training dataset were used to select reg-
ularization hyperparameters for banded ridge regression. Tenfold cross-
validation was used to find the optimal regularization hyperparameters for
each feature space and each voxel. Regularization hyperparameters were
chosen separately for each participant and modality. In each fold, data for
nine of the ten narratives were used to estimate an encoding model and the
tenth narrative was used to validate the model. The regularization hyper-
parameters for each feature space and voxel were selected as the hyper-
parameters that produced theminimumsquarederror (L2) loss between the
predicted voxel responses and the recorded voxel responses
(argminhyperparameters jjŷ � yjj22). Because evaluating k regularization
hyperparameters for m feature spaces requires km iterations
(1010 = 10,000,000,000 model fits in our case), it would be impractical to
conduct a grid search over all possible combinations of hyperparameters.
Instead, a computationally efficient two-stage procedure was used to search
for hyperparameters47. The first stage consisted of 1000 iterations of a
random hyperparameter search procedure48. In total, 1000 normalized
hyperparameter candidates were sampled from a dirichlet distribution and
were then scaled by 10 log-spaced values ranging from 10−5 to 105. Then the
voxels with the lowest 20% of the cross-validated L2 loss were selected for
refinement in the second stage. The second stage consisted of 1000 iterations
of hyperparameter gradient descent49. This stage was used to refine the
hyperparameters selected during the random search stage. This hyper-
parameter search was performed using the Himalaya Python package47.
Note that hyperparameter selection in banded ridge regression acts as a
feature-selection mechanism that helps account for stimulus feature
correlations47.

Model estimation and evaluation
The selected regularization hyperparameters were used to estimate regres-
sion weights that map from the timescale-specific feature spaces to voxel
BOLD responses. Regression weights were estimated separately for each
voxel in each modality and participant. The test dataset was not used to
select hyperparameters or to estimate regression weights. The joint pre-
diction performance r of the combined feature spaces was computed per
voxel as the Pearson correlation coefficient between the predicted voxel
responses and the recorded voxel responses. The split-prediction perfor-
mance~r was used to determine howmuch each feature space contributed to
the joint prediction performance r. The split-prediction performance
decomposes the joint prediction performance r of all the feature spaces into
the contribution~ri; i 2 1; 2; . . .m of each feature space.The split-prediction

performance is computed as ~ri ¼
P

t
Ŷ i½t�Y ½t�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t
Ŷ ½t�2

� � P
t
Y ½t�2

� �q , where t denotes

each timepoint (further discussion of this metric can be found in refs. 50
and 47).

Language-selective voxel identification
The set of “language-selective voxels”was operationally defined as the set of
voxels that are accurately predicted by any of the eight timescale-specific
feature spaces. To identify this set of voxels, the split-prediction perfor-
mance was used. The total contribution ~rall timescales of the eight timescale-
specific feature spaces to predicting the BOLD responses in each voxel was
computed as the sum of the split-prediction performance for each of the
eight timescales~rall timescales ¼

P8
i¼1 ~rtimescalei

. The significanceof~rall timescales
was computed by a permutation test with 1000 iterations. At each permu-
tation iteration, the timecourse of the held-out test dataset was permuted by
blockwise shuffling (shufflingwas performed in blocks of 10TRs in order to
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account for autocorrelations in voxel responses6,13). The permuted time-
course of voxel responses was used to produce a null estimate of~rall timescales.
These permutation iterations produced an empirical distribution of 1000
null estimates of ~rall timescales for each voxel. This distribution of null values
was used to obtain theP value of~rall timescales for eachvoxel separately. A false
discovery rate (FDR)procedurewasused to correct the resultingPvalues for
multiple comparisonswithin eachparticipant andmodality51. A lowP value
indicates that the timescale-specific feature spaces significantly contributed
to accurate predictions of BOLD responses in the jointmodel. Voxels with a
one-sided FDR-corrected P value of less than P < 0.05 were identified as
language-selective voxels. The set of language-selective voxels was identified
separately for each participant and modality.

Voxel timescale selectivity estimation
The encoding model estimated for each voxel was used to determine voxel
timescale selectivity, which reflects the average language timescale for which
a voxel is selective. In order to compute timescale selectivity, first the
timescale selectivity profile (~r0) was computed. The timescale selectivity
profile reflects the selectivity of each voxel to each of the eight timescale-
specific feature spaces. Thismetric is computed bynormalizing the vector of
split-prediction performances of the eight timescale-specific feature spaces

to form a proper set of proportions: ~r0timescalei
¼ maxð0;~rtimescalei ÞP8

j¼1
maxð0;~rtimescalej Þ

.

Comparing each index of the timescale selectivity profile separately
cannot distinguish between cases in which a voxel represents similar
timescales between reading and listening (e.g., 2–4 words for reading and
4–8 words for listening) and cases in which a voxel represents very different
timescales between the two modalities (e.g., 2–4 words for reading and
128–256 words for listening). Therefore, we computed the timescale
selectivity �T for each voxel, which reflects the average timescale of language
to which a voxel is selective (we use the weighted average instead of simply
taking the maximum selectivity across timescales, in order to prevent small
changes in prediction accuracy from producing large changes in estimated
timescale selectivity). To compute voxel timescale selectivity, first the
timescale tiof each feature spaceFi(X)was defined as the center of the period
range of the respective filter bi: ti ¼

pi;lowþpi;high
2 , where (pi,low, pi,high) indicates

the upper and lower end of the period range for filter i. Then, timescale
selectivitywas definedas aweighted sumof each feature space log-timescale:
�T ¼ 2bðP8

i¼1ð~r0ilog2ðtiÞÞÞ. Timescale selectivity was computed separately
for each voxel, participant, and modality.

Voxel timescale comparison
To compare timescale selectivity between modalities, the Pearson correla-
tion coefficient was computed between timescale selectivity during reading
and listening across the set of voxels that are language-selective in both
modalities. The significance of this correlation was determined by a per-
mutation test with 1000 iterations. At each iteration and for each modality
separately, the timecourse of recorded voxel responses was shuffled. The
timecourses were shuffled in blocks of 10 TRs in order to account for
autocorrelations in voxel responses. The shuffled timecourses of recorded
voxel responses were used to compute a null value for the timescale selec-
tivity of each voxel for eachmodality separately. The null values of timescale
selectivity were correlated between reading and listening to form an
empirical null distribution. This null distribution was used to determine the
P value of the observed correlation between timescale selectivity during
reading and listening. Significance was computed for each participant
separately.

In addition, for each of the eight timescales separately, the Pearson
correlation coefficient was computed between selectivity for that timescale
during reading and listening. This correlation was performed across the set
of voxels that are language-selective in both modalities. The significance of
the observed correlations was computed by a permutation test. At each of
1000 iterations, the timecourse of recorded voxel responses was shuffled,
and then the shuffled voxel responses were used to compute null values of

the timescale selectivity profile. For each timescale-specific feature space
separately, the null values of the timescale selectivity profile were used to
compute an empirical null distribution for the correlation between selec-
tivity for that feature space during reading and listening. These null dis-
tributions were used to determine the P value of the observed correlations.
Significance was computed for each participant and for each timescale-
specific feature space separately.

Statistics and reproducibility
Data were analyzed for each of the nine participants separately. Statistical
significance and out-of-set prediction accuracy (i.e., generalization) are
reported for each participant separately. Results were reproduced across all
participants.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
This studymadeuse of data originally collected for separate studies8,13,16. The
data can be accessed at https://gin.g-node.org/denizenslab/narratives_
reading_listening_fmri/. The source data for figures in this paper is avail-
able at https://gin.g-node.org/denizenslab/narratives_reading_listening_
fmri/src/master/chen2024_timescales.

Code availability
Custom code for this study is available at https://github.com/denizenslab/
timescales_filtering. All model fitting and analysis were performed using
custom software written in Python, making heavy use of NumPy52, SciPy53,
Matplotlib54, Himalaya47, and Pycortex55. The BERT-BASE-UNCASED
model was accessed via Huggingface56.
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