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Mendelian randomization reveals
apolipoprotein B shortens healthspan and
possibly increases risk for Alzheimer’s
disease

Check for updates

Leah Martin1, Brian B. Boutwell2,3, Carmen Messerlian1,4,5 & Charleen D. Adams 5

Apolipoprotein B-100 (APOB) is a component of fat- and cholesterol-transporting molecules in the
bloodstream. It is the main lipoprotein in low-density lipoprotein cholesterol (LDL) and has been
implicated in conditions that end healthspan (the interval between birth and onset of chronic disease).
However, APOB’s direct relationship with healthspan remains uncertain. With Mendelian
randomization, we show that higher levels of APOB and LDL shorten healthspan in humans.
Multivariable Mendelian randomization of APOB and LDL on healthspan suggests that the
predominant trait accounting for the relationship isAPOB. In addition,weprovidepreliminary evidence
that APOB increases risk for Alzheimer’s disease, a condition that ends healthspan. If these
relationships are causal, they suggest that interventions to improve healthspan in aging populations
could include strategies targeting APOB. Ultimately, given that more than 44 million people currently
suffer from Alzheimer’s disease worldwide, such interventions are needed.

Apolipoprotein B-100 (APOB) is a component of fat- and cholesterol-
transporting molecules in the bloodstream: namely, it is a building block of
very low-density lipoproteins (VLDLs), intermediate-density lipoproteins
(IDLs), and low-density lipoproteins (LDLs). Elevated levels of circulating
APOB1 and APOB-containing lipoproteins2 are strongly associated with
lifespan (the interval between birth and death). Likewise, APOB has been
implicated in conditions that endhealthspan (the interval betweenbirth and
onset of chronic disease)3–5. A condition that ends healthspan isAlzheimer’s
disease (AD), the most common cause of dementia6. More than 44 million
people (about twice the population of the state ofNewYork) suffer fromAD
worldwide. The prevalence of AD is likely underestimated, however, since
AD may begin decades before memory loss is noticed by a person losing
memory and thus go undiagnosed for years7. Moreover, as the populations
ages (as lifespans increase), more people are living with AD in their later
years. For these reasons and because APOB is a potentially environmentally
modifiable factor, we take a particular interest in circulating APOB in
relationship to healthspan andAD. If the relationships betweenAPOB, AD,
andhealthspan are causal, this suggests that efforts tomodify levels ofAPOB

are a potential avenue for protecting cognitive function as the popula-
tion ages.

To that end, although evidence exists to support the role of APOB in
other diseases that end healthspan, such as heart disease and stroke3–5,
whether APOB directly ends healthspan and causes AD is uncertain. Sup-
port for the role of APOB in causing AD comes from a growing body
research in humans and animal models. Wingo et al. 8 observed that rare
APOB-coding variants were more abundant than expected in early-onset
AD (EOAD) cases after adjusting for the apolipoprotein E ε4 (APOE E4)
allele8. (Mutations in APOE are the most common genetic risk factor for
AD9 and arewhat probably come tomindwhen thinking of apolipoproteins
and AD). The finding by Wingo and colleagues comports with earlier
observations. Caramelli et al. 10 and Kuo et al. 11 found higher serum con-
centrations of APOB in AD patients than elderly controls10,11. This led
Caramelli and colleagues to suggest that APOE may not be the only factor
influencing AD pathogenesis10. Likewise, Namba, Tsuchiya, and Ikeda
(1992) detected APOB immunoreactivity in senile plaques, vascular
amyloids, and neurofibrillary tangles (NFT) in the brains of two
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patients with AD12. They suggested that APOB may be involved in the
formation of NFT and amyloid12.

Picard et al. 13 recently detectedAPOB in the cerebral spinalfluid (CSF)
of subjects classifiedas at risk forAD.They concluded that its presence in the
CSF may represent an early biomarker of tau pathology in AD13. Similar
results, though, have been observed in the CSF of patients with cere-
brotendinous xanthomatosis, consistent with the view that APOB detected
in CSF is the result of disease-inducedweakening of the blood-brain barrier,
BBB (the interface between circulating blood and neural tissue)12–14.

Damage to both the structure and functions of theBBBhavepreviously
been reported in AD patients15. Moreover, Bowen, Kaye, and Quinn (2012)
reported dyslipidemia in 47% of the mild-to-moderate cases of AD they
studied and in 75% of AD cases with BBB impairment16. The latter suggests
that dyslipidemia specifically may impair the BBB. It is worth noting,
though, that ref. 13 foundno evidence that presence ofAPOB inCSF resulted
from BBB leakage of circulating APOB in their sample, a result consistent
with their suggestion that localized production of APOB in the brain is
possible. If evidence emerges suggesting causal effects of APOB, this point is
worth revisiting when contemplating mechanisms and causal pathways.

Additional support for the role ofAPOB inADcomes fromAPOB-100
transgenic mice models. Löffler et al. 17 suggest that APOB is a vasculature
risk factor for AD that may affect brain aging and cognitive function. They
found that overexpression of APOB in human APOB-100 transgenic mice
caused memory decline17. Others from the same lab observed high plasma
levels of triglycerides, cognitive impairment, and increased BBB perme-
ability in the hippocampuses of the transgenic mice15. While the APOB
bound toVLDL, IDL, and LDL is not believed to be produced in the human
brain18, APOB mRNA has been observed in the brains of the APOB-100
transgenic mice19. Together with the human data mentioned above, this
reinforces thepossibility thatAPOBcouldbe involved in thepathogenesis of
AD, and thus, contribute to brain-based ending of healthspan. Yet causality
is uncertain.

When it comes to causality, Mendelian randomization (MR) is an
approach that can overcome some of the gaps in causal inference when a
randomized controlled trial (RCT) in humans has not been done. Here, we
usedMR, a genetic causal inference technique, to interrogate links between
(a) circulatingmetabolites and healthspan and (b) betweenAPOB and low-
density lipoprotein cholesterol (LDL) and AD. MR uses effect estimates
from genetic variants strongly associated with exposure traits (i.e., inde-
pendent variables) in models instead of the traits themselves. Due to the
random transmission of alleles from parent to offspring, using genetic
variants strongly associated with traits (instead of the traits) quasi-
randomizes subjects on characteristics other than the trait acting as the
intervention (i.e., the exposure). Thus, MR mimics an RCT. Crucially,
because of this, MR avoids most sources of non-genetic confounding that
can distort causal estimates in observational designs20.

In thisMRstudy,we show that higher levels ofAPOBandLDL shorten
healthspan in humans and, with multivariable MR, observe that the pre-
dominant trait accounting for the relationship is APOB. In addition, we
provide preliminary evidence that APOB increases risk for AD. If these
relationships are causal, they suggest that interventions to improve
healthspan and reduce cognitive decline in aging populations could include
strategies targeting APOB.

Results
Study overview
To implementMR,we integrated summary statistics (Table 1) from various
genome-wide association (GWA) studies. Figure 1 contains an overview of
our approach. First, we started by integrating the GWA studies for circu-
latingmetabolites (usingmetabolite quantitative trait loci,metQTLs)4,21 and
healthspan22.With these integrated data,we performedanMRscreen of 103
circulating nuclear-magnetic resonance (NRM) metabolites (sample sizes
up to 24,925) and examined them in relation to healthspan (sample
size = 300,447). This metabolite screen revealed that APOB and lipids
containingLDLshortenhealthspan.Next,we replicated thesefindingsusing

larger GWA studies of APOB (sample size = 439,214) and LDL (sample
size = 440,546) from the UK Biobank (UKBB) and performed a multi-
variable MR analysis to assess the direct effects of APOB and LDL on
healthspan, given that APOB is a component of LDL (see Fig. 2) The
multivariable MR analysis indicated that APOB has a direct effect on
healthspanwhenaccounting for LDL.Havingobserved thatAPOBshortens
healthspan and has a direct effect on healthspan when accounting for LDL,
we sought to determine whether it increases risk for AD. As part of our
preliminary investigation into this, because circulating APOB-containing
lipids are prevented from crossing the blood-brain barrier under normal
circumstances, we wondered whether APOB was expressed in brain. Cir-
culating APOB is primarily produced in liver and small intestine, but we
observed that it is expressed in very small amounts in brain and spinal cord
tissue. We observed this by examining gene expression in 13 central-
nervous system tissues (12 brain regions and spinal cord) and in liver and
small intestine from participants in the Gene-Tissue Expression (GTEx)
project. See Fig. 2 and Supplementary Data 1. Next, we integrated summary
statistics for (UKBB) APOB and (UKBB) LDL with an AD GWA study
(21,982 cases; 41,944 cognitively normal controls) and ranMRon each.MR
revealed that APOB, but not LDL, increases risk for AD. Having observed
that APOB shortens healthspan and increases risk for AD, we performed
transcriptomic summary-data based MR (SMR) to identify candidate gene
targets whose expression in blood influences the levels of circulatingAPOB.

MR screen of 103 circulating NMR-measured metabolites on
healthspan
We began our investigation testing whether metabolites influence health-
span. To do this, we (a) extracted metQTLs data for a set of 103 circulating
metabolites (lipoproteins, lipids, small molecules, and amino acids) mea-
sured with anNMRplatform and (b) extracted the SNPdata (i.e., summary
statistics) for the samemetQTLs fromwithin a GWA study of healthspan22.
Using these data, we performed an inverse-variance weighted (IVW) MR
screen (comprising meta-analyses with ≥ three independent SNPs per
metabolite: those not in linkage disequilibrium [LD], r < 0.001) of the
metabolites in relation to healthspan. To account for multiple testing, we
applied a Bonferroni-correction for the 103 IVW meta-analyses (Fig. 3a).
Nine Bonferroni-significant metabolites shortened healthspan: apolipo-
protein B (APOB) and eight lipoproteins including LDL. The eight lipo-
proteins including LDL included: cholesterol in large LDL (L.LDL.C),
cholesterol esters in large LDL (L.LDL.CE), free cholesterol in large LDL
(L.LDL.FC), total lipids in large LDL (L.LDL.L), concentration of large LDL
particles (L.LDL.P), phospholipids in large LDL (L.LDL.PL), phospholipids
inmediumLDL (M.LDL.PL), and total lipids in small VLDL (S.VLDL.L). A
comparison of the IVW estimates for the top metabolites with three sen-
sitivity estimators (MR-Egger, weighted median, and weighted mode
methods)—a qualitative screen against pleiotropy in the IVW estimate23—
revealed that the meta-analytic estimators aligned in their directions and
magnitudes of effect for APOB and the eight LDL-containing lipoprotein
measures. The MR-Egger intercept test was also performed as a formal test
against unbalanced pleiotropy in the IVW estimator for the top findings.
Together, these sensitivity tests provided no evidence for horizontal pleio-
tropy in the IVW estimates for the top metabolites in the screen. Supple-
mentary Data 2–4 display the metabolite-screen results in tabular form,
provide the SNP characteristics (SupplementaryData 3), show details of the
sensitivity analyses for horizontal pleiotropy using the MR-Egger intercept
test, and provide the results for the MR-Egger, weighted median, and
weighted mode sensitivity estimators. The metabolite screen yielded evi-
dence for a shortening of healthspan per standard-deviation (SD)-unit
increases in levels of APOB and various LDL-containing lipoproteins.

Genetic correlations between APOB, LDL, parental lifespan, and
healthspan
Next, to triangulate the MR analyses with a different genetic approach, we
calculated genetic correlations between APOB, LDL, and two measures of
longevity (parental lifespan [hereafter “lifespan”] and healthspan).
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We used linkage disequilibrium score regression (LDSC)24 to calculate
the genetic correlations (i.e., shared genetic architectures). While LDSC is
not a causal inference method (being rather a correlative measure), it is
complementary to two-sample MR in that it is not biased by sample
overlap24 (participants of the GWA studies being in both studies under
investigation). LDSCrevealed that healthspan (SNP-heritability [h2g] = 0.03)
and lifespan (h2g = 0.02) were strongly positively genetically correlated
(genetic correlation [rg] = 0.70; P = 5.27E-51) (Fig. 3b; Supplementary
Data 5). This demonstrates the extensively shared genetic architecture

between healthspan and lifespan but also suggests independent genetic
components for each trait (0.30 not genetically correlated). Healthspan and
APOB (h2g = 0.09) were negatively genetically correlated (rg =−0.12;
P = 1.26E-03). The relationship between healthspan and LDL (h2g = 0.08)
was null (rg = 0.02; P = 0.68). We also looked at lifespan and APOB and
lifespan and LDL. The relationship between lifespan and APOB was null
(rg =−0.06; P = 0.07). Likewise, the relationship between lifespan and LDL
was null (rg = 0.05; P = 0.21). APOB and LDL were strongly genetically
correlated (rg = 0.95; P < 5E-51). The genetic associations between

Table 1 | Data sources

Trait GWA study data source: consortium
and website for obtaining the data

Descriptive notes Sample size

Healthspan Zenin et al.22; UK Biobank (UKBB)53,54;
https://www.gwasarchive.org/ 55

Living free from congestive heart failure (CHF), myocardial
infarction (MI), chronic obstructive pulmonary disease
(COPD), stroke, dementia, diabetes, cancer, and death;
mid-life participants aged 37 to 73

300,447

Lifespan LifeGen study by Timmers et al.41;
UKBB53,54; https://datashare.ed.ac.uk/
handle/10283/3209/ 56

Parental lifespans; participants aged 40 to 107 up to 640,189

Late-onset Alzheimer’s dis-
ease (AD)

Kunkle et al.42; MRC IEU ID: ieu-b-244,57;
https://pubmed.ncbi.nlm.nih.gov/
30820047/

Subjects from: International Genomics of Alzheimer’s
Project (IGAP). Mean age at onset of 76 for cases, and
mean age at examination of 71 for controls

21,982 cases; 41,944 cogni-
tively normal controls

AD and AD-by-proxy Jansen et al.27; https://www.ebi.ac.uk/
gwas/publications/30617256 58

Subjects from four consortia: Alzheimer’sdiseaseworking
group of the Psychiatric Genomics Consortium, (PGC-
ALZ), (IGAP), and the Alzheimer’s Disease Sequencing
Project (ADSP), UKBB.

71,880 clinically-diagnosed
and AD-by-proxy cases and
383,378 controls.

103 Circulating Metabolites Kettunen et al.21; MRC IEU ID: met-c44,57;
https://pubmed.ncbi.nlm.nih.gov/
27005778/

NMR-measures for diverse metabolic pathways: amino
acids, fatty acids, lipids, lipoproteins, and small mole-
cules; mean age of 46 for participants

up to 24,925

Apolipoprotein B (APOB) Richardson et al.4/UKBB53,54; MRC IEU
ID: ieu-b-10844,57; https://gwas.mrcieu.
ac.uk/datasets/ieu-b-108/

Circulating, non-fastedmeasure of APOB;mean age of 57
for participants

439,214

Low-density lipoprotein choles-
terol (LDL)

Richardson et al.4/UKBB53,54; MRC IEU
ID: ieu-b-11044,57; https://gwas.mrcieu.
ac.uk/datasets/ieu-b-110/

Circulating, non-fasted measure of LDL; mean age for
participants of 57

440,546

eQTLs (in blood) eQTLGen Consortium by Võsa et al.43;
https://www.eqtlgen.org/index.html

cis-eQTLs (SNP-gene<1Mbdistance fromcenter of gene) up to 16,987

APOB gene expression in 13
brain regions, liver, and small
intestine

Gene-Tissue Expression Project
(GTEx)59 https://gtexportal.org/home/
datasets

RNA-seq (in transcripts per million) by tissue Average across brain regions,
liver, and small intestine = 204

All GWA studies were performed in those of European ancestry and on males and females.
GWA genome-wide association, eQTL expression quantitative-trait loci,NMR nuclear-magnetic resonance, TSS transcription start site,MRC IEUMedical Research Council Integrative Epidemiology Unit
(University of Bristol).

Fig. 1 | Study overview. The study overview
presents our scientific questions and the MR
designs we employed to investigate them. Part 1
(green) has three components: (1) an MR screen
of circulating metabolites on healthspan; (2) a
replication of top findings from the metabolites
screen (i.e., of apolipoprotein B [APOB] and
low-density lipoprotein cholesterol [LDL]); and
(3) a multivariable MR analysis including both
APOBandLDL as exposures on healthspan. Part
2 (orange) consists of an MR appraisal of whe-
therAPOBor LDL influence risk forAlzheimer’s
disease (AD). Part 3 (blue) comprises a tran-
scriptomic summary-data based MR (SMR)
analysis to identify genes whose expression in
blood influence circulating levels of APOB.
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healthspan and lifespan, healthspan and APOB, and APOB and LDL were
Bonferroni-significant (0.05/6 = 8.33E-03).

Sensitivity tests for the MR of NMR-measured APOB on
healthspan
After this, we performed additional sensitivity analyses for the NMR-
measured APOB and healthspan (Supplementary Data 4), though not for
the significant LDL-containing lipoprotein measures in relation to health-
span. This was due to a lack of genetic correlation between the LDL and
healthspan (Fig. 3b). The additional sensitivity analyses for theMRofNMR-
measured APOB on healthspan included RadialMR to detect and remove
outliers, as outliers can be a source of pleiotropy in multi-variant genetic
instruments. Three outliers were removed (Supplementary Data 2), and the
IVW,MR-Egger,weightedmedian, andweightedmodeestimatorswere run
with a 10-SNPNMR-measuredAPOB instrument.Thisfinal instrument for
the MR test of NMR-measured APOB on healthspan produced the fol-
lowing results: IVW (estimate =−0.06; 95% confidence interval [CI]:
−0.09, −0.03; P = 7.56E-06). The meta-analytic estimators aligned in their
directions of effect and differed only slightly in theirmagnitudes:MR-Egger
(estimate =−0.08; 95% CI:−0.12, −0.03; P = 1.29E-02), weighted median

(estimate =−0.06; 95% CI: −0.10, −0.03; P = 8.72E-04); weighted mode
(estimate =−0.06; 95%CI:−0.10,−0.02; P = 9.91E-03). The proportion of
variance in NMR-measured APOB explained by the SNP instrument (r2)
was 0.06. The F-statistic, ameasure of instrument strength for the IVW,was
101 (F-statistics > 10 are conventionally deemed acceptable25), and I-
squared for the MR-Egger (I2GX) for testing the “NO Measurement Error”
(NOME) assumption was 0.94 (I2GX > 0.90 is conventionally acceptable26).
TheMR-Egger intercept test suggested no evidence of horizontal pleiotropy
in the IVWestimate (MR-Egger intercept = 0.003;P = 0.46).Cochrane’s test
for heterogeneity was null (Q-statistic for the IVW estimate = 8.55, degrees
of freedom (df) = 9, P = 0.48). The final NMR-measured APOB results are
displayed in Fig. 4a.

MR replication of UK Biobank (UKBB) APOB and LDL on
healthspan
The metabolite screen above for the 103 NMR-measured metabolites was
performed in only ~24,925participants.While this sample size is reasonable
for a screen, we sought to replicate the top findings (APOB and LDL) with
larger instrumental variable data sources. To do this, we used the UKBB as
the replication cohort, which has 439,214 participants for a measure of

Fig. 2 | Major classes of apolipoprotein B
(APOB)-containing lipoproteins and APOB
gene expression in various brain regions and
in tissues that produce the protein (small
intestine and liver). a Cartoon of the major
APOB-containing lipoproteins (excluding chy-
lomicrons). APOB is the main lipoprotein in
very-low density lipoprotein (VLDL), inter-
mediate density lipoprotein (IDL), and low-
density lipoprotein (LDL)60. 55Box plots showing
the median values (black dots), interquartile
ranges (blue squares, where the left edge repre-
sents the lower quartile and the right edge the
upper quartile), and outliers (blue circles) of
APOB gene expression (units = transcripts per
million) in (b) brain and spinal cord and (c) the
main tissues that produce the circulating APOB
protein (small intestine and liver).
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Fig. 3 | Volcano plot for the MR screen of metabolites on healthspan and heat-
map of genetic correlations between (parental) lifespan, healthspan, apolipo-
proteinB (APOB), and low-density lipoprotein cholesterol (LDL). aVolcano plot
of the inverse-variance weighted (IVW) betas (X-axis) from the MR screen of 103
metabolites on healthspan. The metabolites consist of lipoproteins, lipids, small
molecules, and amino acids. See Supplementary Data 3 for the metabolite names
and units, which were provided by Kettunen et al., (2016). The size category is given
first, if applicable: e.g., XL = extra-large, L = large, M =medium, S = small and XS =
extra-small. Next, the lipoprotein particle is given: VLDL = very-low-density lipo-
protein particle, IDL = intermediate-density lipoprotein particle, LDL= low-density
lipoprotein particle, and HDL = high-density lipoprotein particle. Last, the lipid

measure of the particle is given: C = total cholesterol, D = the mean diameter of the
particle, FC = free cholesterol, L = total lipids, P = particle concentration, PL =
phospholipids, TG = triglycerides21. In the upper-left quadrant are the Bonferroni-
significant metabolites (in red): APOB and various lipoproteins containing LDL
decrease healthspan. Similarly, in green are the false-discovery rate (FDR)-sig-
nificantmetabolites, of whichmost are LDL species which also decrease healthspan.
b Genetic correlations between longevity measures (healthspan and lifespan) with
APOB and LDL. Asterisk indicates Bonferroni-level significance (0.05/
6 = P < 0.008). Strong positive correlation between lifespan and healthspan (rg =
0.70) and an inverse correlation between healthspan and higher levels of APOB. The
genetic correlation between healthspan and LDL was null.

Fig. 4 | Forest plots of the univariate and multivariable Mendelian randomiza-
tion (MR) tests of APOB and LDL on healthspan. Forest plots illustrating (a) the
MR results for nuclear magnetic resonance (NMR)-measured APOB (Kettunen et
al., 2016) on healthspan, (b) UK Biobank (UKBB) APOB on healthspan, (c) UKBB
LDL on healthspan, and (d) the multivariable MR analysis of UKBB APOB and
UKBB LDL on healthspan. For (a−c), in black are the inverse-variance weighted
(IVW; mainMR test) and sensitivity estimators (MR-Egger [red], weighted median
[cyan], and weightedmode [purple]). The error bars correspond to 95% confidence
intervals. The solid-black, vertical lines indicate the null of beta = 0. Solid circles
indicate P < 0.05. The direction and magnitude of the meta-analytic estimators are

compared as screen for pleiotropy: if they align, this is evidence against pleiotropy in
the IVW estimate. For (a−c), the IVW estimate was <0 and the confidence intervals
did not cross zero, indicating that Kettunen APOB, UKBB APOB, and UKBB LDL
shorten healthspan. Also, for (a−c), the sensitivity estimators aligned in their
directions and magnitudes with their respective IVW estimates, indicating no evi-
dence for horizontal pleiotropy in the IVW estimate. d Multivariable MR analysis
reveals that when accounting for LDL, APOB remains negatively associated with
healthspan (it shortens it). When accounting for APOB, the effect of LDL on
healthspan is null.
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APOB (g/L) and 440,546 participants for ameasure of LDL (mmol/L) (both
GWA studies performed by Richardson et al. 4 Table 1). After removing
outliers with RadialMR (viewable in Supplementary Data 6 and 7), we
created a 91-SNP instrument for APOB (r2 = 0.02; F-statistic = 123;
I2GX = 0.97) and a 90-SNP instrument for LDL (r2 = 0.03; F-
statistic = 171; I2GX = 0.98).

For the MR of UKBB APOB on healthspan, the MR-Egger intercept
test suggested no evidence of horizontal pleiotropy (MR-Egger intercept =
−0.0004; P = 0.70). Cochrane’s test heterogeneity was null (no evidence of
heterogeneity;Q-statistic for the IVW estimate = 82, df = 90, P = 0.71). The
IVWestimate andmeta-analytic estimators replicated the findings from the
MR test of NMR-measured APOB, indicating that higher levels of APOB
shorten healthspan (IVW estimate =−0.13; 95% CI: −0.18, −0.09;
P = 1.38E-09; MR-Egger estimate =−0.12; 95% CI: −0.20, −0.05;
P = 1.63E-03; weighted median estimate =−0.15; 95% CI: −0.22, −0.07;
P = 9.34E-05; weighted mode estimate =−0.14; 95% CI: −0.22, −0.06;
P = 6.65E-04). The MR-Egger (−0.12), weighted median (−0.15), and
weightedmode (−0.14) estimators aligned in their directions andmostly in
their magnitudes with the IVW (−0.13) (Fig. 4b).

Similarly, for LDL, the MR-Egger intercept suggested no evidence of
horizontal pleiotropy (MR-Egger intercept =−0.0003; P = 0.77).
Cochrane’s test for heterogeneity was null (Q-statistic for the IVW
estimate = 86, df = 89, P = 0.57). The IVW estimate and meta-analytic
estimators revealed the following: higher levels of LDL shorten healthspan
(IVW estimate =−0.12; 95% CI: −0.15, −0.08; P = 4.08E-10; MR-Egger
estimate =−0.11; 95% CI: −0.17, −0.05; P = 2.89E-04; weighted median
estimate =−0.11; 95% CI: −0.17, −0.06; P = 1.04E-04; weighted mode
estimate =−0.12; 95% CI: −0.18, −0.07; P = 9.85E-06) (Fig. 4c). The MR-
Egger (−0.11), weighted median (−0.11), and weighted mode (−0.12)
estimates aligned in their directions andmagnitudeswith the IVW (−0.12).
These observations suggest that higher levels of APOB and LDL shorten
healthspan.

Multivariable MR of APOB and LDL on healthspan
Having observed with univariate MR analyses that higher levels of APOB
and LDL shorten healthspan, we performed a multivariable MR analysis of
APOB and LDL on healthspan. The benefit of multivariable MR is that it
yields direct (versus total) effects, enabling the assessment of the effect of
LDL when accounting for APOB and the effect of APOB when accounting
for LDL, which is biologically informative since APOB is the main lipo-
protein in LDL3. When accounting for the effect of APOB, LDL was null
(estimate = 0.13; 95% CI: −0.03, 0.29; P = 0.11). When accounting for the
effect of LDL, APOB continued to reflect that elevated APOB shortens

healthspan (estimate =−0.25; 95% CI: −0.41, −0.09; P = 0.001; Fig. 4d;
Supplementary Data 8). This analysis further supports APOB as a key
metabolite influencing healthspan.

MR of UKBB APOB on AD
Having gained evidence that APOB shortens healthspan, we aimed to dis-
cover whether APOB increases risk for a condition that terminates
healthspan: AD. The GWA study for AD was conducted by the Interna-
tional Genomics of Alzheimer’s Project (IGAP) in a discovery sample
containing 21,982 cases and 41,944 controls (Table 1). For APOB, there
were 131 (vs 91 for the MR of APOB on healthspan) instrumental SNPs
available after removing outlierswithRadialMR (r2 = 0.03; F-statistic = 105;
I2GX = 0.96; Supplementary Data 9 contains a list of removed outliers). The
MR-Egger intercept test suggested no evidence for horizontal pleiotropy
(MR-Egger intercept =−0.0003; P = 0.93). Cochrane’s test heterogeneity
was null (Q-statistic for the IVW estimate = 116, df = 130, P = 0.81). The
IVW estimate and meta-analytic estimators indicated that higher levels of
APOB increase risk for AD (IVW estimate [log odds] = 0.25; 95% CI: 0.13,
0.37; P = 3.94E-05; MR-Egger [log odds] = 0.26; 95% CI: 0.04, 0.48;
P = 1.2.25E-02; weighted median [log odds] = 0.27; 95% CI: 0.08, 0.47;
P = 5.15E-03; weighted mode [log odds] = 0.33; 95% CI: 0.09, 0.57;
P = 8.07E-03). TheMR-Egger (0.26), weightedmedian (0.27), andweighted
mode (0.33) estimators aligned in their directions and mostly in their
magnitudes with the IVW (0.25) (Fig. 5a).

Partial replication of MR of UKBB APOB on AD
Having gained evidence that higher levels of APOB influence risk for AD,
we sought a partial replication. The replication is partial because the AD
GWA summary statistics for the replication (performed by Jansen et al. 27)
included some of the participants in the IGAP AD GWA study. The
advantage of using the Jansen GWA data, however, is that it included
71,880 cases (some clinically defined and some “proxy” cases; see Meth-
ods). Thus, Jansen’s summary statistics contained more than triple the
number of AD cases as IGAP alone. We created a 135-SNP instrument
after removing outliers with RadialMR (r2 = 0.05; F-statistic = 161;
I2GX = 0.99; Supplementary Data 10). The IVW estimate andmeta-analytic
estimators comported with the MR of APOB on IGAP AD, showing
that higher levels of APOB increase risk for AD, though the magnitude
of the effect attenuated (IVW estimate [log odds] = 0.02; 95% CI: 0.01,
0.04; P = 1.44E-03; MR-Egger [log odds] = 0.01; 95% CI: −0.01, 0.04;
P = 2.21E-01; weighted median [log odds] = 0.01; 95% CI: −0.01,
0.03; P = 3.83E-01; weighted mode [log odds] = 0.01; 95% CI:−0.01, 0.04;
P = 1.91E-01).

Fig. 5 | Forest plots illustrating the Mendelian
randomization (MR) results for UK Biobank
(UKBB) apolipoprotein B (APOB) on Alzhei-
mer’s disease (AD) and UKBB low-density
lipoprotein cholesterol (LDL) on AD. In black
are the inverse-variance weighted (IVW; main MR
test) and sensitivity estimators (MR-Egger [red],
weighted median [cyan], and weighted mode
[purple]). The error bars correspond to 95% con-
fidence intervals. The solid-black, vertical lines
indicate the null. Solid circles indicate P < 0.05.
Results are displayed on the log-odds scale. a For
the MR of UKBB APOB on AD, the IVW estimate
was >0, and the confidence intervals did not cross
zero, indicating that APOB increases risk for AD.
Also, the direction and magnitude of the meta-
analytic estimators tightly align, which is qualitative
evidence against unbalanced pleiotropy in the IVW
estimate. b The results for the MR of UKBB LDL
on AD are null: the IVW (and meta-analytic)
estimates hover around zero, and their confidence
intervals cross it.
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MR of UKBB LDL on AD
Next, we sought to ascertain whether LDL increased risk for AD. For
LDL, there were 121 (vs 90 for the MR of LDL on healthspan) instru-
mental SNPs available after removing outliers with RadialMR (r2 = 0.04;
F-statistic = 138; I2GX = 0.98; Supplementary Data 11 contains a list of
removed outliers). The MR-Egger intercept test suggested no evidence
for horizontal pleiotropy (MR-Egger intercept =−0.0005; P = 0.87).
Cochrane’s test for heterogeneity was null (Q-statistic for the IVW
estimate = 106, df = 121, P = 0.84). The IVW estimate and meta-analytic
estimators were null, indicating that higher levels of LDL do not increase
risk for AD (IVW estimate [log odds] = 0.01; 95% CI: −0.10, 0.12;
P = 0.84; MR-Egger [log odds] = 0.02; 95% CI: −0.17, 0.21; P = 0.81;
weighted median [log odds] = 0.05; 95% CI: −0.13, 0.22; P = 0.60;
weighted mode [log odds] =−0.02; 95% CI: −0.20, 0.16; P = 0.84). See
Fig. 5b. Since the univariable MR of LDL on AD was null, we did not
perform a multivariable MR analysis of APOB and LDL on AD.

Next, we examined the genetic instrument for APOB more closely. If
the SNPs in the genetic instrument for APOB are also associated with
another trait that increases risk for AD, this could possibly violate the MR
assumption that the genetic instrument for APOB influences AD only
through APOB levels (Fig. 2b). Mutations in APOE are known risk factors
for AD.We looked upAPOE in PhenoScanner, a curated database of GWA
study results that cross-references genetic variants with a broad array of
phenotypes28,29.We did this to ascertain whether any of the SNPs associated
withAPOEwere also associatedwithAPOB. Two SNPs on chromosome 19
were found to be associated with both APOE and APOB levels: rs7412 and
rs7249565. Neither of these SNPs were used as genetic instruments for
APOB in the MR of APOB on AD. However, knowledge of whether our
genetic instrument for APOB contained SNPs on chromosome 19 in LD
with rs7412 and rs7249565 was not yet known to us. To decipher whether
this was the case, we used LDlink, a web-based tool to interrogate LD30.

None of SNPs in our instrument for APOB on chromosome 19 were in LD
with either rs7412 or rs7249565 (Supplementary Data 12).

Blood-based summary-data based MR (SMR) of APOB
Having observed that APOB impacts healthspan and increases risk for AD,
we sought to identity genes whose expression in blood influences APOB
concentrations. To do so, we integrated expression quantitative-trait loci
(eQTL) data with the UKBB GWA study data for APOB. A conceptual
approach for this presented in Fig. 6.

We identified 14,057 (lead) eQTLs (P < 5 x 10-6) in blood that were
testable in relation to circulatingAPOBconcentrations.We used the data in
Fig. 7 to obtain the effect of gene expression on APOB by calculating Wald
ratios (i.e., dividing a SNP’s effect on APOB by a SNP’s effect on gene
expression). See Supplementary Data 13 for specific SNP characteristics
(e.g., the effect of the SNP on gene expression and the effect of the SNP
on APOB).

After Bonferroni correction to account for multiple testing, het-
erogeneity of instruments (HEIDI) filtering for genetic colocalization
(HEIDI P > 0.05), and F-statistic filtering (F > 10), there were 49 genes
whose expression in blood appeared to influence circulating APOB
concentrations (Supplementary Data 14). However, we further controlled
for false-positive associations by restricting our top findings to those with
Bonferroni-corrected SMR P < 5E-8. After this, 10 genes remained. We
performed Bayesian genetic colocalization (coloc31) on this set of 10
genes (Table 2 and Supplementary Data 15). Bayesian genetic colocali-
zation estimates a posterior probability that a single genetic variant
affects both traits. Conventionally, a posterior probability (PP4) > 0.80 is
considered evidence for this32. Although HEIDI suggested evidence of no
heterogeneity between instruments for the 10 genes, only two had pos-
terior probabilities >0.80: PELO (pelota mRNA surveillance and ribo-
some rescue factor) and PYGB (glycogen phosphorylase, brain). Notably,

Fig. 6 | Conceptual framework for transcriptomic summary-data based Men-
delian randomization (SMR) of apolipoprotein B (APOB). a This is a model
representing differences in APOB levels that are caused by the dose of a single-
nucleotide polymorphism (SNP)’s effect allele on expression and subsequently
APOBprotein levels. SMR is amethod that can use expression quantitative-trait loci
in models instead of gene expression. b Three explanations for a significant SMR
association are depicted: causal pleiotropy (the SNP influences expression and levels
of APOB through a single causal pathway); horizontal pleiotropy (the SNP influ-
ences expression of some gene and APOB levels, but the SMR result is due to the

SNP’s effect on another process); and genetic architecture (i.e., linkage), where there
are two underlying SNPs near each other in the genome, one impacting gene
expression and the other impacting APOB levels. With SMR alone, it is not possible
to distinguish causal from horizontal from pleiotropy. But it is possible to assume a
single underlying SNP is responsible for an SMR signal (i.e., to assume pleiotropy vs.
linkage). Procedures for doing so are called “genetic colocalization.”We filtered for
genetic colocalization with the heterogeneity in dependent instruments (HEIDI)
method by Zhu et al.61 to reduce false-positive findings61. Figure inspired by Zhu
et al.61.
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Bayesian genetic colocalization identified the lead SNP used by HEIDI as
the likely causal SNP in both cases: PELO (rs1499279) and PYGB
(rs11699953), increasing confidence that PELO and PYGB are potential
drug targets to modify APOB concentrations.

Discussion
Our MR screen identified APOB and lipoproteins containing APOB as
causal determinants of healthspan, a finding that is concordant with
recent observations regarding APOB and lifespan1,2. Our findings for
APOB and LDL in relation to healthspan replicated using the UKBB
genetic instruments and remained robust when subjected to a battery of
sensitivity analyses. In addition, multivariable MR of APOB and LDL on
healthspan revealed that the impact of APOB on healthspan is partially
independent of LDL: APOB remains significant when accounting for
LDL levels as a confounder. Genetic correlation analysis suggested that
APOB (but not LDL) shortens healthspan. Together, these lines of evi-
dence strengthen the hypothesis that APOB is implicated in longevity via
modulation of healthspan and build on the findings by Perrot et al.
(2020)2 and Richardson et al. (2021)1. Like us, Perrot et al. 2 performed
MR analyses of circulating metabolites on lifespan using the Kettunen21

metabolite instruments. They found evidence that higher APOB and
APOB-containing lipoproteins shorten lifespan. We extend their obser-
vation about APOB and longevity by showing that APOB shortens
healthspan.Moreover, we also extend the work by Richardson et al.1, who
observed that APOB is implicated in type 2 diabetes. Like AD, type 2
diabetes ends healthspan.

In addition, we found that circulating APOB (but not LDL) increases
risk for AD. This finding for APOB in relation to AD conflicts with that by
Williams et al. (2020)33, who sought to identify genetic support for the
repurposing of mipomersen (an antisense oligonucleotide inhibitor of
APOB34) for AD prevention. Like us, Williams and colleagues used IGAP
GWAstudy data for theADoutcome source in their two-sampleMR. Their
study differed from ours in the construction of their genetic instrument,
though. Whereas our instruments for APOB contained more SNPs, which
were clumped to prevent LD, they used a principal-components-basedMR
method. We attempted a partial replication of our MR of APOB on AD
using a substantially larger GWA study containing more than triple of the
number ofADcases.Althoughourpartial replication succeeded in the sense

that the results revealed thathigher levels ofAPOB increased risk forAD, the
effect estimate attenuated towards thenull. FutureMR studies ofAD, ideally
with a larger number of clinically defined cases (and not including IGAP
cases) are needed to confirm whether the relationship between APOB and
AD is causal.

The primary strength of our study is a feature of MR generally: quasi-
randomization. When certain assumptions are met, MR can facilitate the
assessment of causal relationships in studies where RCTs are infeasible20.
Due to the use of genetic variants as instrumental variables, we avoidedmost
sources of confounding by non-genetic factors. For example, one might
wonder whether environmental exposures, such as heavy metals, are
responsible for the association between circulating APOB and AD. That is,
maybe heavymetals are a confounder of theAPOB-AD relationship. This is
a realistic concern in observational designs investigating APOB and AD.
The reason is that heavy metals have been reported to dysregulate
lipoproteins35,36, cross the BBB, and cause neurotoxicity37. However, with
MR, this scenario is improbable since biomarkers of exposure to heavy
metals are unlikely to be associated with the SNPs that control
APOB (Fig. 8).

Our study is not without limitations. First, using populations of the
same continental ancestry is required for bothGWAdata sets in two-sample
MR. Since appropriate GWA sources for metabolites, healthspan, and AD
were only available for non-Hispanic whites, our analysis is limited to those
of European ancestry. This means our findings may not generalize to those
of other ancestries. But even likelier is that we are missing part of the story
about APOB. As the data become available, future studies ought to examine
the relationships between APOB and healthspan and APOB and AD in
other populations.

Second, the MR analyses of UKBB APOB and UKBB LDL on
healthspan could possibly suffer to some extent from Winner’s curse.
Winner’s curse is an idea stolen from bidding at auctions. It refers to the
situation when a bidder wins an item by placing a bid exceeding the item’s
value38. The bidmaybewon, but the buyer paysmore than the item isworth.
Something similar occurs in GWA studies. Namely, sometimes the effect of
a causal SNP is overestimated in the discovery GWA study. This can lead to
bias inMRapproaches that use the data fromdiscovery samples.However, a
recent empirical examination of this bias found that it might not practically
change the inference inMR38. Even though this concernmaybeminimal,we

Fig. 7 | Circos plot of the data for the summary-
data Mendelian randomization (SMR) of
genes whose expression influences apolipo-
protein B (APOB) levels. The plot depicts SNP
effects on APOB (outer circle) and gene expres-
sion (inner circle). The vertical bars in the center
with ranges indicate SNP effects. Values >0
indicate an increase in APOB (outer circle) and
an increase in expression (inner circle). Con-
versely, values <0 indicate a decrease in APOB
(outer circle) and a decrease in expression (inner
circle). These are the data for summary-data
based Mendelian randomization (SMR). 14,057
lead eQTLs (P < 5 x 10-6) were testable in relation
to circulatingAPOB levels.Weused these data to
obtain the effect of gene expression on APOB
levels by calculating Wald ratios for individual
SNPs (i.e., dividing a SNP’s effect on APOB by a
SNP’s effect on gene expression). See Supple-
mentary Data 14 for detailed SNP character-
istics. The circos plot was created with CMplot62.
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took measures to avoid Winner’s curse by choosing data sources in which
the participants were not expected to overlap. The exceptions are the MR
analyses for UKBB APOB and UKBB LDL on healthspan, for which the
participants in the healthspan GWA study were also included in the UKBB
GWAstudies, and the partialMR replication of theUKBBAPOBon Jansen
AD (which included UKBB participants). As for the MR tests of UKBB
APOB and UKBB LDL on healthspan, the MR metabolite screens with
NMR-measured APOB and LDL-containing lipids on healthspan function
as a sanity check against this issue. This is because the participants in the
GWA studies for the metabolite screen (Kettunen et al.) were not in the
UKBB, yet the results were comparable to those from the analyses with
overlapping samples. Nonetheless, we scrutinized the results for the UKBB
APOB on healthspan further by employingMRlap to correct for bias due to
weak instruments and Winner’s curse that can be caused by use of over-
lapping samples in two-sample MR39 (seeMethods). In addition, we made
use of LDSC’s intercept for the genetic covariance between UKBB APOB
and Jansen AD, which indicated no evidence of sample overlap.

Third, our replication of the APOB and AD MR analysis is partial.
Although the results comport with those from the primary analysis, sup-
porting a causal role of APOB on AD, the Jansen et al. 27 GWA study

includedparticipants in theKunkle et al. (2019) IGAPGWAstudy.As such,
a true replication, which excludes IGAP participants and includes more
cases of AD than IGAP is needed.

A fourth limitation pertains to the SMR results. While HEIDI reduces
the likelihood of false-positive associations, it can sometimes fail to detect
heterogeneity40. Thismay explainwhy theBayesian colocalization approach
failed to provide evidence for a single underlying genetic variant for eight of
the 10 candidate genes detected by SMR. The low posterior probabilities
(PP4) for those eight candidates imply they are unlikely to be useful as drug
targets to influenceAPOB levels.However, use of SMRwithHEIDI followed
by Bayesian colocalization yielded two promising candidate drug targets
whose expression in blood appears to causally influence APOB: PELO
and PYGB.

Ultimately, our findings support the possibility that APOB underlies
the causal effects of APOB-containing lipoprotein traits in ending health-
span and increasing the risk for AD. A finer-grained analysis of molecular
mechanisms, unfortunately, is beyondour scopebut should be part of future
research efforts. For now, our results make it considerably more difficult to
imagine that maximal strategies for improving healthspan andmaintaining
optimal cognitive function can ignore APOB.

Table 2 | Top findings for the summary data-basedMendelian randomization (SMR) of expression in blood on circulating APOB
concentrations

Gene Top SNP Top
SNP
Chr

Top SNP bp Effect
allele

Other
allele

SMR effect
estimate

SMR P Coloc region (500kb +/−
lead SNP from SMR)

No.
Coloc
SNPs

PP4 Causal SNP

PELO rs1499279 5 52106278 G T 0.004 4.52E-27 5:51606278-52606278 2860 9.88E-01 rs1499279

RASIP1 rs1231281 19 49239200 A G 0.043 2.33E-12 19:48739200-49739200 2726 1.61E-44 NA

ILRUN rs3800461 6 34616322 C G 0.007 2.52E-12 6:34116322-35116322 1958 2.93E-13 NA

SARM1 rs4795434 17 26716917 G T 0.010 3.05E-11 17:26216917-27216917 1097 5.19E-09 NA

GRINA rs57957974 8 145076529 A C 0.004 6.77E-11 8:144576529-145576529 1544 1.93E-13 NA

SKAP1 rs34791545 17 46488447 C T 0.007 3.14E-10 17:45988447-46988447 1939 5.09E-10 NA

ZNF664 rs7958691 12 124440743 T G 0.013 4.68E-10 12:123940743-124940743 2192 7.89E-12 NA

PARP10 rs11784833 8 145063412 C T 0.010 5.05E-10 8:144563412-145563412 1561 1.93E-13 NA

PYGB rs11699953 20 25241345 G C 0.003 9.40E-09 20:24741345-25741345 2696 9.14E-01 rs11699953

EVI2B rs9902893 17 29625638 A G 0.023 1.01E-08 17:29125638-30125638 1829 1.27E-04 NA

SNP single-nucleotide polymorphism,Chr chromosome,Bp top SNPbase pair. Displayed SMR findings had heterogeneity in dependent instruments (HEIDI)P > 0.05 and F-statistics > 10 (Supplementary
Data 14).SMRPBonferroni-correctedP-value for the SMR test.Coloc Fully BayesianGeneticColocalization usingBayes Factors. PP4 = posterior probability that a single genetic variant affects both traits
(PP4 > 0.80 suggests evidence that a single variant is responsible for the eQTL and apolipoprotein B (APOB) signal32).

Fig. 8 | Mendelian randomization assump-
tions. Depiction of the three main MR
assumptions: (1) Genetic instruments (i.e.,
single-nucleotide polymorphisms [SNPs]) must
be reliably associated with apolipoprotein B
(APOB). (2) The SNPs for APOB must not be
associated with confounders of the APOB-Alz-
heimer’s disease (AD) or APOB-healthspan
relationship. Examples of confounders are
depicted as toxic metals andmetalloids: lead, Pb;
mercury, Hg; arsenic, As; and cadmium; Cd.
When this assumption is met, MR avoids most
sources of non-genetic confounding. (3) The
SNPs for APOB must influence healthspan or
AD only through APOB.
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Methods
Data sources
Table 1 contains a list of studies used in thepresent analysis andweb links for
accessing the data. All GWA summary statistics were obtained from con-
sortia with participants of European ancestry whomade their results public.
The original authors obtained informed consent from the participants.
Briefly, the lifespanGWAstudywas reported as a protective ratio (i.e., it was
coded by Timmers et al., 2019, to reflect an increase in lifespan)41. The
healthspanGWAstudywas reported byZenin et al. (2019)22 as hazard ratio.
We converted it to a protective ratio (the negation of the hazard ratio) to
make it comparably interpretable with the lifespan GWA study. A such,
both measures are interpreted in relation to a prolongation of either life or
disease-free living. We obtained the GWA studies for the NMR-measured
metabolites from Kettunen et al. (2016)21 and the GWA studies for the
UKBB measures of APOB and LDL from Richardson et al. (2020)4. The
GWA data for AD were obtained from IGAP (Kunkle et al., 2019)42. The
GWA data for the partial replication MR analysis of APOB on AD was
obtained from Jansenet al. (2019)27, which contained clinically defined cases
of AD as well as AD-by-proxy cases. They defined AD-by-proxy cases as
individuals with one or two parents with AD in the UKBB. When both
parents had AD, they upweighted cases. Proxy controls were defined as
those with two parents without AD, where older cognitively normal parents
were likewise upweighted, accounting for the higher likelihood of younger
parents in the UKBB developing AD later in life. Jansen et al.27 included
IGAP participants. We obtained eQTL data derived from whole blood in
31,684 individuals from Võsa et al. (2021) of the eQTLGen consortium43.
We downloaded their binary files, which they had set up for use with SMR.
We obtained version 8 data from GTEx Portal: RNA-seq files for gene
expression within 13 brain regions, the small intestine (terminal ilium), and
liver. The RNA-seq files were normalized by transcript/gene length and
provided in transcripts per million.

Statistics and reproducibility
For theMR screen of 103metabolites on healthspan, theMR tests of UKBB
APOB and LDL on healthspan, and theMR tests of UKBBAPOB and LDL
on AD, each genetic instrument contained a minimum of three SNPs that
were independent (not in LD; r < 0.001). Instrumental SNPswere selected at
P < 0.05 x 10-8. Proxy SNPs in LD (r2 = 0.80) with instrumental SNPs were
used for UKBB APOB (three proxies; Supplementary Data 9) and UKBB
LDL (two proxies; Supplementary Data 11) for the MRs of UKBB APOB
and UKBB LDL on AD. We used proxies when instrumental APOB SNPs
were not available in the Alzheimer’s GWA study. (We did not use proxy
SNPs for theMR tests of UKBBAPOB andUKBBLDL on healthspan. This
is because we imported the healthspan GWA study into R for use with the
TwoSampleMR package, and proxy SNPs were not available using the
extract_outcome_data function for APOB and healthspan).Wald ratios for
the IVW tests were meta-analyzed using first-order weights44,45.

For theMRmetabolites-screen, a Bonferroni correctionwas applied to
address false positives from multiple testing. We conducted all meta-
analytic MR analyses and multivariable MR of UKBB APOB and LDL on
healthspanwithin theTwoSampleMRpackage44 usingR version 4.0.345. The
multivariable analysis was based on that proposed by Sanderson et al.
(2019)46.

Main univariable MR sensitivity analyses
For the NMR-measured APOB on healthspan, the MRs of UKBB APOB
andLDL tests onhealthspan, and theMRsofUKBBAPOBandLDLonAD,
RadialMR47 was used to detect potential outliers, which were removed.
Cochrane’s test for heterogeneity, where a P > 0.05 indicates a lack of evi-
dence for heterogeneity in the genetic instrument, was conducted for all
univariable tests. Details of the instrument selection are available in Sup-
plementaryData 2, 6, 7, 9, and 11. Sensitivitymeta-analyses (i.e.,MR-Egger,
weightedmedian, and weightedmodeMR) were performed (as reported in
Results) as qualitative screens for horizontal pleiotropy in the IVW esti-
mator. These qualitative screens for pleiotropy were done in addition to the

standard quantitative screen for pleiotropy assessed via the MR-Egger
intercept test.

Genetic correlations
Genetic correlations were calculated between UKBB APOB, UKBB LDL,
lifespan, and healthspan using LDSC24. We also used LDSC to test for
possible sample overlap between the summary statistics for UKBB APOB
and Jansen AD by testing whether the intercept for the crosstrait genetic
covariance was consistent with zero.

Post-hoc MR sensitivity analyses
In addition, we performed a battery of post-hoc sensitivity tests to dou-
blecheck for violations of the MR assumptions for the univariable MR tests
of APOB and LDL on healthspan and AD. These included removing
instrumental SNPs with effects on the outcome GWA study of P < 0.05, a
potential source of horizontal pleiotropy.We then re-ran the meta-analytic
MRmodelswith those SNPs removed.We also implemented theMendelian
Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO)48

method. MR-PRESSO is a tool for evaluating, detecting, and correcting for
horizontal pleiotropy.Whereas RadialMR can be used to detect and remove
outliers, MR-PRESSO retains outlier instruments and corrects effect esti-
mates for distortion due to them. In addition, we performed MRlap39,49 for
theMR of UKBBAPOBon healthspan to correct for potential biases due to
overlapping samples. Last, we utilized a feature of LDSC—whether the
intercept for genetic covariance deviates from zero in a crosstrait analysis—
as a sensitivity analysis for sample overlap between the summary statistics
for UKBB APOB and Jansen AD. This revealed no evidence of sample
overlap despite the possibility for this given both GWA studies using some
UKBB samples. Readers are referred to Supplementary Data 16−27 for the
results of the post-hoc analyses, as none altered the inferences from the
primary analyses.

SMR
We conducted the blood-based eQTL analyses of genes whose expression
influences circulating APOB with SMR (version 1.03). HEIDI was imple-
mented in SMR using LD scores computed from European individuals
within 1000 Genomes Project (phase 3)50,51. HEIDI is a genetic colocaliza-
tion method that assumes a single causal variant is responsible for a Wald
ratio signal within an LD region. It estimates whether SNPs in an LD region
produceWald ratios more different from each other than expected. Thus, a
P > 0.05, where the null of a single underlying causal SNP is not rejected, is
used as evidence against heterogeneity to reduce false-positive associations.

For the blood eQTL analyses, we selected only cis-eQTLs (within 1
megabase [Mb] of a target probe), which reduces the probability of hor-
izontal pleiotropy that is more likely with trans-eQTLs. We defined eQTLs
based on a threshold of P < 5 x 10-06. Wald ratios were obtained by dividing
the effect estimate for APOB by the effect estimate for the eQTL. To assess
instrument strength for the Wald ratios (i.e., the SMR test of expression on
APOB), we calculated F-statistics by dividing the absolute value of the effect
estimate for the eQTL by its standard error52. For the blood-based SMR
analysis, 10,542 instruments had F-statistics >10 (Supplementary
Data 13−14). For the genome-wide significant SMR findings (10 genes), we
implemented another colocalization procedure: Fully Bayesian Genetic
Colocalization using Bayes Factors (coloc; by Wallace and colleagues)31.
Coloc estimates a posterior probability that a single genetic variant
affects both traits. We implemented coloc in R with its default settings for
the priors: prior probability a SNP is associated with gene expression
(p1 = 1E-4), prior probability a SNP is associated with APOB levels
(p2 = 1E-4), and prior probability a SNP is associated with both traits
(p12 = 1E-5). We chose to investigate 500 kilobase regions up and down-
streamof a lead SNP’s position for each candidate gene identifiedwith SMR.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
All data sources for the analyses undertaken in this study are publicly
available (Table 1). The data used to generate Fig. 2b, c are presented in
Supplementary Data 1. The data used to create Figs. 4–5 are available in
Supplementary Data 4, 6, 7, 8, 9, 11.

Code availability
Code to run MR analyses can be found at MR-Base (https://mrcieu.github.
io/TwoSampleMR/). Code to run LDSC is available at https://github.com/
bulik/ldsc. Code to run SMR is available at https://yanglab.westlake.edu.cn/
software/smr/#Overview. A tutorial for running Fully Bayesian Genetic
Colocalization using Bayes Factors is available by Chris Wallace at https://
cran.r-project.org/web/packages/coloc/vignettes/a02_data.html.
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