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Common mitochondrial DNA (mtDNA) deletions are large structural variants in the mitochondrial
genome that accumulate inmetabolically active tissueswith age andhavebeen investigated in various
diseases. We applied the Splice-Break2 pipeline (designed for high-throughput quantification of
mtDNA deletions) to human RNA-Seq datasets and describe the methodological considerations for
evaluating common deletions in bulk, single-cell, and spatial transcriptomics datasets. A robust
evaluation of 1570 samples from 14 RNA-Seq studies showed: (i) the abundance of some common
deletionsdetected inPCR-amplifiedmtDNAcorrelateswith levels observed inRNA-Seqdata; (ii) RNA-
Seq library preparation method has a strong effect on deletion detection; (iii) deletions had a
significant, positive correlation with age in brain and muscle; (iv) deletions were enriched in cortical
grey matter, specifically in layers 3 and 5; and (v) brain regions with dopaminergic neurons (i.e.,
substantia nigra, ventral tegmental area, andcaudatenucleus) had remarkable enrichment of common
mtDNA deletions.

Mitochondrial DNA (mtDNA) deletions are large structural variants in the
mitochondrial genome where a large piece of DNA (often several kilobases
or more) is missing1–6. These mtDNA molecules may or may not have the
ability to replicate and can lead to metabolic impairment by disrupting
regions that code for proteins, ribosomal and/or transfer RNAs essential for
the oxidative phosphorylation (OXPHOS) pathway3,7–9. The identification
ofmtDNAdeletion breakpoints and the relative quantification of deleted vs.
wild-type mitochondrial genomes have traditionally relied on several
approaches, including Southern Blot analysis, Sanger sequencing, and
quantitative polymerase chain reaction (qPCR)10–12. Recently, however,
several bioinformatics programs and pipelines have been described to
identify mtDNA deletions with high accuracy using next-generation
sequencing (NGS) data13–17. Our group developed the Splice-Break pipeline
for this purpose, and we previously demonstrated its accuracy and appli-
cations to human disease and aging research when used on Illumina
sequencing data derived fromNGS libraries prepared usingmitochondrial-
enriched, long-range PCR products as the DNA input13. While PCR

amplification of the mitochondrial genome in one or more large fragments
is a common approach used bymanymitochondrial research groups, it still
represents a niche method, and such sequencing data is limited. With the
more widespread availability of RNA-sequencing (RNA-Seq) data from a
variety of tissues andphenotypes, however, it is of great interest todetermine
if these datasets can be utilized as a resource for mtDNA deletion
investigations.

In this study, we demonstrate how Splice-Break213 may be utilized to
evaluate mtDNA deletions from RNA-Seq data. We describe a robust
evaluation of 30 common mtDNA deletions in 1570 human samples from
14 RNA-Seq studies18–29, including 1107 samples across 11 tissues from the
Genotype-Tissue Expression (GTEx) Project29. Studies analyzed include
both publicly available and newly presented datasets and cover a variety of
methods including those that utilized bulkRNA-Seq (polyA/non-ribosomal
depletion vs. ribosomal depletion), laser capture microdissection (LCM)
RNA-Seq, spatial transcriptomics, and single-cell RNA sequencing
(scRNA-Seq) library preparation methods. These 14 studies include
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1570 samples that vary in age, diagnosis and tissue, including: (1) age ranges
from prenatal to 96 years; (2) diagnoses of Parkinson’s Disease (PD)18,22,24,
Alzheimer’s Disease (AD)19, schizophrenia (SCZ)20,21, major depressive
disorder (MDD)21, bipolar disorder (BD)21, and healthy controls (CTRL);
and (3) tissues of several brain regions18–21,24–26,28,29, skeletal muscle22,23,29,
liver29, blood29, and the pancreas27.

Large mtDNA deletions are often associated with short repeat
sequences proximal to the 5′ and 3′ breakpoints; these repeats lead to an
incorrect joining of two distal regions of the mitochondrial genome, either
through strand-displacement during mtDNA replication or homologous
end-joining during DNA repair processes30–33. Our previous study evalu-
ating mtDNA deletions from brain and blood samples found that all the
“Top 30”most frequent mtDNA deletions (which were detected in 69% or
more of all samples) were associated with (perfect/imperfect) repeat
sequences of 8–22 base pairs in length. These 30 deletions were previously
validated by Sanger sequencing and include 12 breakpoints that had been
previously described in patients with mitochondrial deletion disorders13,34.
Three such examples are the 6335–13999, 7816–14807, and 8471–13449
deletions, which represent 5′-3′ positions 6341–14005, 7814–14805, and
8482–13460, respectively, when adjusted to the first repeat base13,33,35–39.
These deletedmolecules have been associatedwith anumberof rare diseases
including (but not limited to) Kearns-Sayre Syndrome (KSS)36,37, chronic
progressive external ophthalmoplegia (CPEO) with or without an asso-
ciated POLG mutation37,40,41, and diffuse leukodystrophy39; moreover, they
have been found to be enriched in metabolically-active, somatic tissues and
have been investigated in pathogenic phenotypes associated with cellular
aging (e.g., PD, AD)42–44.

MtDNA sequences present in RNA-Seq datasets are likely derived
from real, transcribed RNA molecules, but may also be attributed to DNA
contamination or “off-target” effects26,45,46. The amount of mitochondrial
gene transcripts detected inRNA-Seq studies can also be highly variable due
to overall RNA quality and library preparation procedures26,45–51. Due to
these concerns, many RNA-Seq and ATAC-Seq bioinformatics pipelines
remove mitochondrial reads prior to genome alignment and/or transcript
quantification26,45–51. As such, our first objective was to determine which
subset or species of mtDNA deletions demonstrated a significant and
positive correlation between RNA-Seq and the aforementioned DNA
sequencing processes that utilize long-range PCR amplification of the
mitochondrial genome. We PCR-amplified mtDNA from the dorsolateral
prefrontal cortex (DLPFC) and processed the NGS data through the tra-
ditional Splice-Break2 pipeline13, and compared the deletion read %’s to
mRNA-Seq data that was previously published by Zeppillo et al. using the
same tissue (GSE224683)20. Next, we evaluated 14 RNA-Seq studies18–29 to
determine how methodological differences in library preparation and
sequencing depth affected our ability to detect mitochondrial reads and
common mtDNA deletions. Lastly, taking our library preparation obser-
vations into account, we evaluated 11 of the 14 RNA-Seq datasets derived
from human brain, muscle tissue, liver and blood, and examined if these
common deletions significantly correlated with age20–23,29, were enriched in
disease phenotypes or brain regions18–22,24,25,29, or had differential levels in
cortical grey matter layers (I-VI) compared to white matter26. Cortical layer
evaluations were performed using two spatial transcriptomics datasets,
including one dataset of middle temporal gyrus (MTG) that is newly pre-
sented here in this study26 (GSE226663).

Here, we describe the methodological considerations for applying the
Splice-Break2 pipeline to RNA-Seq datasets, and present evidence that
somatic aging effects, tissue specificity, and metabolic dysfunction can be
studied with this approach. Given the wealth of both publicly available and
restricted RNA-Seq datasets, this strategy may expedite investigations of
common mtDNA deletions, especially for cases where the affected human
tissue is not readily available for additional sequencing studies (e.g., rare
diseases). Moreover, RNA-Seq studies are already designed to appreciate
factors such as tissue and cellular specificity, environmental context, aging
and drug exposure, whereas germline DNA studies (e.g., whole genome
sequencing (WGS)) oftenuseDNAderived fromsaliva or blood,whichmay

not accurately recapitulate the somatic structural variation present in
metabolically-active tissues or cells52,53. Taken together, we believe this study
will open a new door to study commonmtDNA deletions and their role in
human health and disease.

Methods
Samples
We evaluated 1570 samples from 14 RNA-Seq datasets. Thirteen of these
datasets are provided on the National Center for Biotechnology Informa-
tion’s (NCBI) Gene Expression Omnibus (GEO) website or are otherwise
publicly available- we refer to these datasets collectively as “GEO+”18–28.
This consisted of 7 bulk sequencing with and without ribosomal depletion
(GSE226663, GSE114517, GSE159699, GSE224683, GSE140089,
GSE164471, and the Stanley Neuropathology Consortium dataset: http://
sncid.stanleyresearch.org), 2 LCMRNA-Seq (GSE114918 andGSE166024),
2 spatial transcriptomics (GSE226663 and SpatialLIBD dataset available at
Globus endpoint “jhpce#HumanPilot10x”), and 2 single-cell sequencing
datasets (GSE81547 and GSE67835). The last dataset came from the
Genotype-Tissue Expression Consortium (GTEx)29, where we analyzed
bulk sequencing samples from 11 human tissues (dbGaP
phs000424.vN.pN). All described studies obtained consent from living
donors and/or next-of-kin for postmortem tissues, along with necessary
approvals from Institutional Review Boards (IRBs) and/or ethics
committees.

The 30 samples derived from mitochondrial-enriched, long-range
PCR products as the DNA input are available through dbGaP
(phs002395.v1.p1) as part of a larger investigation of blood and brain-
derived mtDNA13,54. DNA sequencing was performed on mitochondrial
enriched PCR-amplicons fragmented by sonication and prepared for NGS
using a whole-genome library preparation kit13,55. Briefly, ~50mg of frozen
brain tissue was homogenized manually with a pestel; total DNA was
extracted using the AllPrep DNA/RNA/Protein Kit (Qiagen, Valencia, CA,
USA) andquantifiedusing theQubit Fluorometer anddsDNABRAssayKit
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instruc-
tions. mtDNA was enriched for each sample using a long-range (LR) PCR.
The forward primer used was: 5′-CCGCACAAGAGTGCTACTCTCCT
C-3′; the reverse primer used was: 5′-GATATTGATTTCACGGA
GGATGGTG-3′ (Integrated DNA Technologies, Coralville, IA, USA)13,55.
Each sample was amplified in a 50 μl PCR reaction that contained the
following: 50 ng of total DNA, 1 μl of each 10 uM primer, 8 μl of 2.5mM
dNTPs, 0.5 μl of LA Taq DNA Polymerase, Hot-Start Version (Takara Bio
USA, Inc., Mountain View, CA, USA), and 5 μl 10x buffer. Thermocycler
parameters were as follows: 94 °C for 1min, followed by 30 cycles of
denaturation at 98 °C for 10 s and annealing/extension at 68 °C for 15min,
with a final extension at 72 °C for 10min. Reactions were then kept at 4 °C.
Following PCR, 5 μl (10%of the total reaction volume)was loaded into a 1%
agarose gel containing 10mg/ml ethidium bromide and the gel was run at
100 V for approximately 2 h to confirm amplification of the full-length
mitochondrial genome. PCR products were purified using Agencourt
AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA) and were
quantified using the Qubit Fluorometer and dsDNA BR Assay Kit (Invi-
trogen, Carlsbad, CA, USA). DNA shearing was performed in S220Covaris
microTUBEs with the following settings: Duty Factor = 5%, Peak Incident
Power = 175W, Cycles per Burst = 200, Time = 35. 200 ng of the sheared
LR mitochondrial PCR product was used for library preparation using the
TruSeq Nano DNA HT Library Preparation Kit (Illumina, San Diego, CA,
USA). Each library was barcoded for multiplex sequencing with 96 samples
per lane. NGS libraries were quantified and qualified prior to sequencing
using the KAPA Library Quantification Kit (KAPA Biosystems, Wilming-
ton, MA, USA) and Agilent Bioanalyzer DNA 7500 chips (Agilent, Santa
Clara, CA, USA), respectively. Libraries were sequenced as 150-mer paired-
end reads using the Illumina HiSeq 2500 at the UCI Genomics High
Throughput Facility.

All accession numbers for the respective RNA-Seq datasets are pro-
vided in theData Availability, Results section, in SupplementaryData 1 and
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2, and are on GitHub (https://github.com/aomidsalar/RNA-Seq_Splice-
Break2).

Internal data preparation: bulk RNA-Seq
The internal data obtained for methods comparisons (bulk RNA-Seq and
spatial transcriptomics) utilized four subject’s brain tissue obtained from the
Banner Sun Health Research Institute (BSHRI) Brain and Body Donation
Program. These four subjects consisted of one Parkinson’s Disease (PD)
subject (144113–144114), one Alzheimer’s Disease (AD) subject
(144111–144112), and two age-matched controls with no neurodegenera-
tive disease (144105–144106 and 144107–144108). Briefly, frozen middle
temporal gyrus (MTG) was microdissected into ~5mm3 blocks to be
compatible with the grid size used for the 10x Visium Spatial Gene
Expression platform. Each block was dissected to contain a sulcus, all six
cortical layers of the greymatter, andwhitematter. Frozen tissuewas affixed
to cryostat chuckswithOTCand sectionedwith aMicromHM525Cryostat
at −20 °C to 10 μm slices. Frozen tissue slides were adhered to the 10x
VisiumSpatial Gene Expression or TissueOptimization slides following the
manufacturer’s protocols. Additional sections were adhered to Selectfrost
microscope slides for bulk RNA-Seq assays. All slides were frozen at−80 °C
prior to library preparation.

For bulkRNA-Seq, two frozen slides fromone control subject (144107/
144108) were extracted for RNA using the Direct-Zol RNA mini prep kit.
RNAwas quantified and qualified using the Agilent Tape Station-HS RNA
Screen Tape and Tape Station and had an RNA Integrity Number (RIN) of
5.6. 240 ng of RNA was used as input for each bulk RNA-Seq prep, which
utilized the NEBNext Ultra II Directional RNA library prep kit. The polyA
(mRNA) library preparation used the NEBNext Poly(A) mRNAMagnetic
Isolation Module, and the ribo depletion library preparation used the
NEBNext rRNA Depletion Kit V2 and SBP beads. Libraries were barcoded
with the NEBNext Multiplex Oligos for Illumina. Library size and quality
was evaluated using the Agilent Tape Station-HS DNA Screen Tape and
Tape Station; libraries were quantified with the KAPA qPCR library
quantification kit. Both RNA-Seq libraries were sequenced as paired-end
100-mer reads on an Illumina NovaSeq 6000 system using a NovaSeq S1
flowcell. Sequencing was performed by the USC Keck Genomics
Platform (KGP).

For spatial transcriptomics, tissue optimization (i.e., permeabilization
time) was tested according to the 10x Genomics protocols, with 12min of
permeabilization selected for spatial transcriptomics sequencing. Two sec-
tions of each of the four subjects thatwere adhered to the 10xVisiumSpatial
Gene Expression were processed according to the 10x Genomics Visium
protocols. Hematoxylin and eosin (H&E) imaging was performed at 20X
magnification and auto-stitching using a Keyence BZ-X810 Microscope to
generate high-resolution TIFF files. The cDNA was amplified using 12
cycles following Cq determination steps. Library size and quality was
evaluated using the Agilent Tape Station-HS DNA Screen Tape and Tape
Station; libraries were quantified with the KAPA qPCR library quantifica-
tion kit. Spatial transcriptomics libraries were sequenced as paired-end 150-
mer readson an IlluminaNovaSeq6000 systemusing aNovaSeqS4flowcell.
Sequencing was performed by the USC Keck Genomics Platform (KGP).

Downloading files
FASTQ files available on GEO were obtained using the NCBI tool fastq-
dump, with command options to split files (--split-files) and append the
read ID (-I). The LIBD spatial transcriptomics dataset26 is available on
Globus and Github; FASTQ and BAM files from this study were down-
loaded directly from the Globus endpoint jhpce#HumanPilot10x (http://
research.libd.org/globus/jhpce_HumanPilot10x/index.html); “filtered_fea-
ture_matrix.h5” files and tissue images, which were used for clustering and
image annotation, were downloaded from their Github repository (https://
github.com/LieberInstitute/HumanPilot). RNA-Seq FASTQ files from
cerebellum (CER), hippocampus (HIPP), and prefrontal cortex (PFC)
samples were downloaded directly from the Stanley Neuropathology
Consortium website after requesting access to the data portal (http://sncid.

stanleyresearch.org/). GTEx samples were obtained from the AnVIL Gen3
repository and downloaded as BAM after gaining access through dbGaP;
they were sorted using samtools sort56 (version 1.6) and converted to
FASTQ using bedtools bamtofastq57 (version 2.25.0).

HISAT2 alignment
In order to isolate reads that uniquelymapped to chrM and did not contain
nuclear-mapped reads, we performed HISAT258 alignment to the nuclear
genomeon theRNA-Seq samples from theZeppillo et al. study20. Todo this,
we first downloaded the Ensembl human genome reference FASTA file
version GRCh38.10359 and removed the mitochondrial genome (chrM)
from that file. Next, we built the index files for the human genome reference
using the command “hisat2-build”58. We then performed alignment using
HISAT258 default settings and the updated human genome reference file
(without chrM), with the additional option “--un-conc” to store unmapped
reads to separate FASTQfiles. Those FASTQfiles (containing reads that did
not map to the nuclear genome) were then used as the input for Splice-
Break2 analysis13.

Splice-Break2 analysis
RNA-Seq FASTQ files were pushed through Splice-Break2 (https://
github.com/brookehjelm/Splice-Break2), using either the single-end or
paired-end version based on the data format of the respective study.
Default command line options described were used, apart from the pre-
alignment steps which were skipped (i.e., command line options:
--align=yes, --ref=rCRS, fastq_keep=no, --skip_preAlign=yes). For the
spatial transcriptomics datasets, alignment (BCL to BAM file) was per-
formed with 10x Genomics Space Ranger (https://support.10xgenomics.
com/spatial-gene-expression/software/overview/welcome) and BAM to
FASTQ conversion was performed using the 10x Genomics bamtofastq
tool (https://support.10xgenomics.com/docs/bamtofastq). The FASTQ
files for Read 2 were processed through the single-end version of Splice-
Break2. Single-cell samples were pooled by tissue type (via FASTQ file
concatenation) prior to being run through Splice-Break2. Initial read
numbers for each study were obtained from the stats file (stats.txt); all
other metrics used in this analysis regarding the mtDNA read % for the
“Top 30” common deletions were obtained from the “<sample > _
LargeMTDeletions_DNAorRNA_Top30_NARpub.txt” files output from
Splice-Break2.

Identification of FASTQ reads spanning the 6335–13999,
7816–14807, and 8471–13449 breakpoints
We utilized the Unix command “grep” to identify reads that spanned the
three deletion breakpoints described. For 6335–13999, we searched for a
string containing the deletion breakpoint and ten bases upstream and
downstream from that break (CTCCGTAGACCTAACCTGAC). For the
7816–14807 deletion, we searched for an 18 bp string (TCATC-
GACCTCCCCACCC) first, followed by strings ATCCTAGT and
GAAACTTCGG, which was necessary for specificity. For the 8471–13449
deletion, we searched for a string containing the deletion breakpoint and
fifteen bases upstream and downstream from that break
(CAAACTACCACCTACCTCCCTCACCATTGG).

Cortical layer imputation
Weanalyzed two spatial transcriptomicsdatasets, one from the SpatialLIBD
project26 and the other containing internal (USC) samples (GSE226663).
Spatial transcriptomics datasets were processed using the 10x Genomics
Visium pipeline instructions (https://support.10xgenomics.com/spatial-
gene-expression/software/overview/welcome). Scripts for spatial tran-
scriptomics processing and analysis are available on https://github.com/
aomidsalar/RNA-Seq_Splice-Break2/.

To evaluate mtDNA deletions in cortical layers using spatial tran-
scriptomics data that did not have stereological assessment, we conducted
cortical layer imputation using the SpatialLIBD results as “ground truth”
since that dataset included histology. First, we performed Seurat60 clustering
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starting with “filtered_feature_matrix.h5” files on a pool of our eight USC
spatial samples along with four SpatialLIBD samples (151673–151676) to
generate 10 clusters, as this resulted in the most similar cortical layer
architecture to the SpatialLIBD annotation. We performed further sub-
clustering of cluster 3 (using the Seurat60 command “FindSubCluster”, to
generate clusters 3_0 and 3_1), which gave us further distinction between
cortical layers 2 and 3. The sample barcodes and their assigned clusters were
then used to generate cluster-specific BAM files using the script “split_-
spatial_bam_per_cluster.py” (provided in our GitHub repository). We
compared the proportion of spots that appeared in the eleven Seurat clusters
to the seven “ground truth” designations (white matter and cortical layers
1–6) to assign each Seurat cluster to its corresponding imputed layer. We
assigned clusters that had over 40 percent of the spots overlapping with
“ground truth” annotations to that given cortical layerandomitted clusters 8
and 9which had an overall frequency of less than 5 percent. BAM files were
converted to FASTQ files using the 10x Genomics bamtofastq tool (https://
support.10xgenomics.com/docs/bamtofastq); the cluster-specific FASTQ
files were concatenated (when required) to make imputed cortical layer
FASTQ files for each sample, which were then run through Splice-Break2.

Tofind spot barcodes that contained either the 6335–13999deletion or
8471–13449 deletion, we used the Unix tool “grep” to search for the strings
containing the deletion breakpoints (see Methods section “Identification of
FASTQ Reads Spanning the 6335–13999, 7816–14807, and 8471–13449
Breakpoints”). As a note, the 10x Genomics bamtofastq tool will output 3
typesoffiles for each sample: (1) a “Read1”file,which contains theUMIand
barcode; (2) a “Read 2” file, which contains the cDNA sequence; and (3) an
“Index” file, which contains the sample index. Reads that contained each of
these deletions (from “grep” results of Read 2) were filtered and cross-
referenced with matching headers in the Read 1 FASTQ to output their
correspondingbarcode sequences; barcodeswere then stored in separate csv
files (thiswas done using the script “grepfilestodeletionbarcodes.sh”; https://
github.com/aomidsalar/RNA-Seq_Splice-Break2), and these barcodes were
used for deletion analyses. Two proportion Z-tests were performed by
calculating the proportion of spot barcodes in each imputed cortical layer
that contained a “deletion spot”; spot counting and statistics were done
manually in Microsoft Excel.

Graphical analysis. All figures in this study (Figs. 1–8, Supplementary
Fig. 1–9) were made using R (v.4.1.3); all tables were made in Microsoft
Powerpoint for Mac (v.16.61). Bar graphs, scatter plots, and boxplots
(Figs. 1, 3–7, 8d; Supplementary Figs. 1–7, 9) were made using the
“ggplot2” package (v.3.3.5)61. All boxplots show the median as a solid black
line; the first and third quartiles are captured by the bounds of the box.
Boxplot whiskers are defined as the first and third quartiles ± interquartile
range times 1.5, respectively, and outliers are denoted as points. The
heatmap (Fig. 8a) was made using the “ComplexHeatmap” package
(v.2.10.0)62. Spatial images (Fig. 8b, c; Supplementary Fig. 8) were made
according to the “Secondary Analysis in R” script available on the 10x
Genomics website (https://support.10xgenomics.com/spatial-gene-
expression/software/pipelines/latest/rkit?src=event&lss=tradeshow&cnm=
ts-2020-02-08-event-ra_g-keystone-banff-amr&cid=NULL). Multiple
sequence alignment plots for the 6335–13999, 7816–14807, and
8471–13449 deletions (Fig. 2b–d) were generated using the ClustalOmega
multiple sequence alignment tool on the EMBL-EBI website (https://www.
ebi.ac.uk/Tools/msa/clustalo/) and the “ggmsa” R command (“ggmsa”
package v.0.0.6)63.

Statistics and reproducibility. Statistical analyses were performed in
both R and Microsoft Excel. Spearman’s and Pearson correlation tests
were done in R using the command “cor.test”. Linear regression calcu-
lations were made using the “lm” command and ANOVA test were done
using the command “aov”; t-tests were done using the “t.test” command
in RStudio or “TTEST” formula inMicrosoft Excel. Equality of variances
was testing using the FTEST formula inMicrosoft Excel. Two-proportion
Z-tests were calculated manually in Microsoft Excel. All statistical tests

where four deletionmetrics were evaluated includemultiple comparisons
corrections using the Bonferroni method; this was done using the com-
mand “p.adjust” with option “method = “bonferroni” in R.

All sample sizes for the RNA-Seq studies are shown in the figure
legends and in Tables 1 and 2. All replicates analyzed were from different
subjects, apart from GSE140089 that included PD subjects pre- and post-
exercise. All deletion metrics for GEO+ datasets are shown in Supple-
mentary Data 2.

Scripts and data processing details. All scripts and details on the
above data processing steps are available onGitHub (https://github.com/
aomidsalar/RNA-Seq_Splice-Break2). This includes the following sec-
tions: (1) “Data_Availability_and_Accession”, which includes references
to datasets analyzed in this study and their corresponding accession
information; (2) “Processing_FASTQ_from_GEO”, which includes
scripts used to format and run single-end and paired-end FASTQ files
through Splice-Break2; (3) “Grep_for_Deletions”, which includes scripts
used to isolate reads containing the 6335–13999, 7816–14807, or
8471–13449 deletion reads from FASTQ files; (4) “10xSpatial_Data-
Processing”, which contains scripts for generating cluster-specific BAM
files and identifying barcode sequences for reads containing 6335–13999
or 8471–13449 mtDNA deletions; and (5) “Spatial_Processing_Seurat”,
which contains R scripts used to perform Seurat clustering and create
annotated tissue images. The GitHub repository for this paper (https://
github.com/aomidsalar/RNA-Seq_Splice-Break2) and the Splice-Break2
tool repository (https://github.com/brookehjelm/Splice-Break2) both
contain a document for “RNA-Seq Best Practices for Splice-Break2” to
help guide users with workflow and command lines.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
CommonmtDNA deletions in DNA vs RNA sequencing
We used a paired dataset of 30 postmortem brain samples that under-
went both DNA and RNA-Sequencing20 to explore Splice-Break2’s utility
in analyzing common mtDNA deletions from RNA-Seq data (Fig. 1).
These samples came from DLPFC of patients with schizophrenia (SCZ)
and healthy controls (CTRL). MtDNA-enriched DNA sequencing was
performed as previously described13,55. This DNA dataset had an average
of 3.47 million reads per sample, with 90.31 ± 5.2% alignment to the
revised Cambridge Reference Sequence (rCRS) version of the human
mitochondrial genome (NC_012920.1)64. This resulted in an average MT
Benchmark coverage (i.e., mitochondrial depth) of 23,466x. MT bench-
mark coverage is a measure of the average sequencing depth of the
sample, measured from two 250 bp segments within the RNR1 and CYB
genes13. RNA-Sequencing was performed as described in Zeppillo et al. 20.
This RNA-Seq dataset had an average of 114.5 million reads per sample,
with 16.17±5.9% alignment to the mitochondrial genome
(NC_012920.1)64. Spearman and Pearson’s correlations between the
Splice-Break2 results from the DNA and RNA datasets were performed
for three of the “Top 30”most common mtDNA deletions, as well as the
summation (cumulative read %) of all these 30 deletions together (Fig. 1).
We also evaluated the summation of additional deletions of high fre-
quency (n = 112), but those cumulative read %’s did not have a sig-
nificant correlation between DNA and RNA (Supplementary Table 1), so
we focused exclusively on the “Top 30” deletions for this investigation.
The deletion read %’s for the “Top 30” deletions and the cumulative
deletion read rate for every sample and this paired RNA/DNA dataset is
provided in Supplementary Data 1.

The cumulative deletion read%of these “Top 30” had a significant and
positive correlation between theDNAandRNA-Seq datasets after eachwas
normalized to the amount of mitochondrial data (i.e., MT benchmark
coverage) (Spearman’s rho. 0.567, p = 4.33e-3; Pearson’s cor. 0.454,
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p = 0.0468) (Fig. 1a). Not surprisingly, the DNA dataset had a significantly
higher cumulative deletion read% than theRNA-Seqdataset (p = 1.09e-10),
with 124-fold higher levels in the DNA (Fig. 1a). Three individual deletions
were also examined for DNA/RNA correlations: the 6335–13999 deletion,
which was the most frequently detected deletion in our previous study and
was present in 98.9% of samples there, the 7816–14807 deletion, which was
the second most frequently detected deletion and was present in 92.5% of
samples there, and the 8471–13449 deletion (known as “The Common
Deletion”), which was the third most frequently detected deletion in our
previous study and was present in 91.4% of samples there13. The

6335–13999 deletion did not have statistically significant correlations
(Spearman’s rho 0.409, p = 0.0993; Pearson’s cor. 0.235, p = 0.845) after
multiple comparisons corrections (Fig. 1b). The DNA dataset also had a
significantly higher deletion read % for this deletion than the RNA-Seq
dataset (p = 1.35e-8), with 512-fold higher levels in the DNA (Fig. 1b). The
7816–14807 deletion did not have a significant correlation between the
DNA and RNA-Seq datasets when evaluating the ranks (Spearman’s rho
0.342, p = 0.256); however, the correlation of read values was significant
(Pearson’s cor. 0.466, p = 0.0378) (Fig. 1c). The DNA dataset also had a
significantly higher deletion read % for this deletion than the RNA-Seq

Fig. 1 | Correlations and comparisons of mtDNA deletions captured by DNA vs
RNA-Seq.RNA-Seq data from 30 brain samples20 was processed through the Splice-
Break2 pipeline and compared to results using the traditional mtDNA-enrichment
and DNA sequencing approach13,55. All analyses included correlations and relative
abundance of deletion reads detected in each sample (not normalized) and the
deletion read rate for each sample (normalized). a The sum of the Top 30 deletions.
The three most common deletions: (b) 6335–13999, (c) 7816–14807, and (d)

8471–13449. Spearman and Pearson’s correlations are shown. Statistical values for
box plots are fromWelch’s t-tests. All p-valueswere corrected formultiple tests using
Bonferroni. All boxplots show the median as a solid black line; the first and third
quartiles are captured by the bounds of the box. Boxplot whiskers are defined as the
first and third quartiles ± interquartile range times 1.5, respectively, and outliers are
denoted as points.
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dataset (p = 7.65e-6), with 196-fold higher levels in the DNA (Fig. 1c). The
8471–13449 deletion had a significant and positive correlation between the
DNA and RNA-Seq datasets (Spearman’s rho 0.740, p = 1.21e-5; Pearson’s
cor. 0.672, p = 1.88e-4) (Fig. 1d). Again, theDNAdataset had a significantly
higher deletion read% than theRNA-Seq dataset (p = 5.54e-7), with 22-fold
higher levels in the DNA (Fig. 1d). DNA consistently had a higher deletion
read % than the RNA-Seq dataset for each of the “Top 30” deletions, and a
higher percentage of the “Top 30” deletions were captured in the DNAdata
(Supplementary Fig. 1).

The “Top30”mtDNAdeletionsbreakpoints fromSplice-Break2, along
with their adjusted positions (aligned to the first base based on the repeat
sequences), and the mitochondrial genes that encompass these 5′ and 3′
breakpoints are shown (Fig. 2a). Confirmation and visualization of the three
mtDNA deletions analyzed was performed using “grep” and the ggmsa R
package, respectively63. Reads that contained the sequence CTCCGTA-
GACCTAACCTGAC, a 20-bp string that encompasses the 6335–13999
breakpoint, aligned as expected to the COX1 and ND5 genes, with retain-
ment of 1 copy of the repeat sequence (Fig. 2b). Reads that contained the
sequence TCATCGACCTCCCCACCC an 18-bp string that encompasses
the 7816–14807 breakpoint (and that also contained the sequences
ATCCTAGT and GAAACTTCGG), aligned as expected to the COX1 and

CYB genes, with retainment of 1 copy of the repeat sequence (Fig. 2c). Reads
that contained the sequence CAAACTACCACCTACCTCCCTCAC-
CATTGG, a 30-bp string that encompasses the 8471–13449 breakpoint,
aligned as expected to the ATP8 andND5 genes, with retainment of 1 copy
of the repeat sequence (Fig. 2d).

To determine if nuclear-mitochondrial DNA segments (NUMTs)
were contributing to our detection of common mtDNA deletions, and
to assess if it was necessary to process RNA-Seq data with these
sequences removed, we compared the mtDNA deletion results from all
reads to only those that uniquely mapped to chrM (i.e., after HiSat258

alignment to the nuclear genome and downstream processing of
unmapped reads) (Supplementary Fig. 2). The correlations between
the mtDNA deletion reads detected (before normalization) was very
high for both the “Top 30” sum and the three individual deletions
evaluated when comparing all reads to only uniquely mapped reads
(Spearman’s rho range: 0.81 to 0.999, p-value range: 2.40e-7 to 2.72e-
42; Pearson’s cor range: 0.957–0.998, p-value range: 2.06e-20 to 5.10e-
39). There was no significant difference in either the number of dele-
tion reads detected or the deletion read % (after normalization) for any
deletion metric (Supplementary Fig. 2). Additional analysis of the
uniquely mapped reads from RNA-Seq data compared to the DNA

Fig. 2 | MtDNA deletions captured by RNA-Seq. a The Top 30 most frequent
mtDNA deletions evaluated in this study and previously described13. Multiple
sequence alignment (MSA) plot of RNA-Seq reads from a dataset of 30 brain

samples20 containing the (b) 6335–13999 deletion, (c) 7816–14807 deletion, and (d)
8471–13449 deletion.
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dataset demonstrated that utilizing uniquely mapped reads did not
significantly improve the correlations between RNA and DNA (Sup-
plementary Fig. 3); thus, we concluded removal of nuclear mapped
reads was not necessary and we processed all RNA-Seq reads through

the Splice-Break2 pipeline for the remainder of this study to streamline
our workflow. However, both approaches (i.e., using all reads or only
chrM uniquely mapped reads) are described in our “RNA-Seq Best
Practices for Splice-Break2” document on GitHub.

Fig. 3 | Sequencing metrics of 14 RNA-Seq datasets evaluated for mtDNA dele-
tions. a–h USC control sample sequenced by three library preparation methods:
bulk RNA-Seq with ribosomal depletion, bulk RNA-Seq without ribosomal deple-
tion (polyA), and spatial transcriptomics (10x Visium platform). i–l All GEO+
samples (n = 463); (m–p) all GTEx samples (n = 1107). Definitions: Total RNA-Seq
Reads = FASTQ reads prior to alignment; MT Benchmark Coverage = average
mitochondrial sequencing depth measured from two 250 bp segments within the

RNR1 and CYB genes13; Deletion Read Rate = deletion reads/MT Benchmark Cov-
erage. MTG (middle temporal gyrus); AM (amygdala); SN (substantia nigra); TL
(temporal lobe); DLPFC (dorsolateral prefrontal cortex); CER (cerebellum); HIPP
(hippocampus); PFC (prefrontal cortex); VTA (ventral tegmental area); LCM (laser
capture microdissection); PD (Parkinson’s Disease); CTRL (control); AD (Alzhei-
mer’s Disease); SCZ (schizophrenia); BD (bipolar disorder); MDD (major depres-
sive disorder). Abbreviations for GTEx tissues are shown on figure.
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Total reads, mitochondrial data and commonmtDNA deletions
across 14 RNA-Seq studies
We processed 14 human RNA-Seq studies18–29 through the Splice-Break2
pipeline and evaluated the effects of library preparation method and

sequencing depth (i.e., total readnumbers andMTbenchmark coverage) on
our ability to capture common mtDNA deletions (Fig. 3). Our analysis
included12previously published studies and2newlypresentedhere.The 12
previously published studies we included are as follows (see Tables 1 and 2

Fig. 4 | Analyses of age in GEO+ samples. Correlations between the Top 30
cumulative deletion, 6335–13999, 7816–14807, and 8471–13449 deletion read rates
with age in brain20,21 and skeletal muscle22,23. aDLPFC samples (n = 30)20; (b) skeletal
muscle samples (n = 36)22; (c) skeletal muscle samples (n = 30)23. d–f Stanley Neu-
ropathology Consortium data21. d cerebellum samples (n = 58); (e) hippocampus

samples (n = 58); f prefrontal cortex samples (n = 58). P-values shown from linear
regression models for Deletion ~ Age, and includeMT benchmark coverage and sex
as co-variates. P-values in (b) also included diagnosis as a co-variate. All p-values
were corrected for multiple tests using Bonferroni.
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Fig. 5 | Analyses of age in GTEx samples. Correlations between the Top 30
cumulative deletion and 8471–13449 deletion read rates with age in 11 GTEx
tissues29. a The cumulative deletion read rate of the “Top 30”mtDNA deletions and
(b) the 8471–13449 deletion. Tissues are from three paired datasets: 183 paired
samples of cerebellum and cortex, 41 paired samples from multiple brain regions

(i.e., amygdala, anterior cingulate cortex, caudate nucleus, frontal cortex, hippo-
campus, and substantia nigra), and 165 paired samples from non-brain regions (i.e.,
blood, liver, and skeletal muscle). P-values shown from linear regression models for
Deletion ~ Age, and include MT benchmark coverage and sex as co-variates. All p-
values were corrected for multiple tests using Bonferroni.

https://doi.org/10.1038/s42003-024-05877-4 Article

Communications Biology |           (2024) 7:200 9



for additional details): (1) Simchovitz et al. (GSE114517) study of
ribosomal-depleted RNA-Seq libraries isolated from substantia nigra (SN),
amygdala (AM), andmiddle temporal gyrus (MTG) brain tissue of patients
with PD+Dementia and CTRL18; (2) Nativio et al. (GSE159699) study of
ribosomal-depleted RNA-Seq libraries isolated from lateral temporal lobe
(TL) tissue of patients with AD and CTRL19; (3) Zeppillo et al. study
(GSE224683) of polyA (non-ribosomal depleted) total RNA libraries iso-
lated from DLPFC brain tissue of patients with SCZ and CTRL20; (4) Kim
et al. study (i.e., The Stanley Neuropathology Consortium) of polyA (non-
ribosomal depleted) total RNA libraries isolated from cerebellum (CER),
hippocampus (HIPP), and prefrontal cortex (PFC) of patients with bipolar
disorder (BD), SCZ, major depressive disorder (MDD) and CTRL21,65; (5)
Lavin et al. (GSE140089) study of polyA (non-ribosomal depleted) total
RNA libraries isolated from skeletal muscle (SM) of patients with PD and
CTRL22; (6) Tumasian et al. (GSE164471) study of polyA (non-ribosomal
depleted) total RNA libraries isolated from SM of CTRL23; (7) Aguila et al.
(GSE114918) study of laser-capturemicrodissection (LCM) SN and ventral
tegmental area (VTA) neurons isolated from patients with PD and CTRL24;
(8) Monzón-Sandoval et al. (GSE166024) study of LCM ventral and dorsal

SN neurons isolated from CTRL subjects25; (9) Maynard et al. spatial
transcriptomics sequencing of DLPFC brain tissue isolated from CTRL
subjects26; (10) Enge et al. (GSE81547) analysis of 2544 single cells (alpha,
acinar, beta, delta, ductal,mesenchymal, andunsure cell types) isolated from
pancreas tissue ofCTRLsubjects27; (11)Darmanis et al. (GSE67835) analysis
of 357 single cells (neurons, fetal quiescent, astrocytes, endothelial, oligo-
dendrocyte precursor cells, and microglia cell types) isolated from fresh
brain tissue28; and (12) Lonsdale et al. (i.e., GTEx) study, evaluatingmultiple
brain regions, skeletal muscle, liver and blood29. Single-cell samples were
pooled by cell type prior to Splice-Break2 analysis, resulting in 7 pools of
pancreas cell types and 6 pools of brain cell types (Table 1). The two newly
presented studies include one bulk sequencing dataset of postmortemMTG
brain tissue with RNA libraries prepared both with (n = 1) and without
(n = 1) ribosomal depletion, as well as one spatial transcriptomics dataset of
MTG brain tissue from patients with PD (n = 2), AD (n = 2), and CTRL
(n = 4) (GSE226663). One of our internal control samples was sequenced
using all three preparation methods; this helped us compare the effect of
library preparation method on our ability to capture mtDNA deletions
without additional effects of tissue type or sequencing site. In total, we

Fig. 6 | Analyses of brain region and diagnosis in GEO+ samples. a–d Com-
parisons between brain regions for the “Top 30” cumulative deletions, 6335–13999,
7816–14807, and 8471–13449 deletion in four studies18,21,24,25. e–l Comparisons of
diagnosis in brain andmuscle in six studies18–22,24. Bar graphs representmean ± SEM.
Sample size per tissue/diagnosis: (a) MTG (n = 23), AM (n = 23), and SN (n = 29)18;
(b) SN (n = 10), VTA (n = 9)24; (c) dorsal SN (n = 7), ventral SN (n = 7)25; (d) CER
(n = 58), HIPP (n = 58), PFC (n = 58)21; (e) PD+Dementia (n = 17), CTRL
(n = 12)18; (f) PD (n = 5), CTRL (n = 5)24; (g) Basal YA (n = 12), Basal OA (n = 12),
Basal PD (n = 12), Post Training PD (n = 5)22; (h) young CTRL (n = 8), old CTRL
(n = 10), AD (n = 12)19; (i) SCZ (n = 15), CTRL (n = 15)20; (j) CTRL (n = 15), BD
(n = 14), MDD (n = 15), SCZ (n = 14)21; (k) CTRL (n = 14), BD (n = 15), MDD

(n = 14), SCZ (n = 15)21; (l) CTRL (n = 15), BD (n = 14), MDD (n = 15), SZ
(n = 14))21. Statistical values for brain region tests are fromWelch’s t-tests. P-values
shown from linear regression models for Deletion ~ Diagnosis, and include MT
benchmark coverage, age and sex as co-variates. All p-values were corrected for
multiple tests using Bonferroni. MTG (middle temporal gyrus); AM (amygdala); SN
(substantia nigra); VTA (ventral tegmental area); CER (cerebellum); HIPP (hip-
pocampus); PFC (prefrontal cortex); TL (temporal lobe); DLPFC (dorsolateral
prefrontal cortex); LCM (laser capture microdissection); YA (young adult); OA
(older adult); PD (Parkinson’s Disease); CTRL (control); AD (Alzheimer’s Disease);
SCZ (schizophrenia); BD (bipolar disorder); MDD (major depressive disorder).
Symbols: (^p < 0.05); (*p < 0.01); (**p < 0.001); (***p < 0.0001).
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examined 1570 samples ranging in age from prenatal to 96 years across the
14 datasets.

We processed all 1570 samples (Fig. 3a–p), including the one internal
(MTG) sample that had been processed three ways (Fig. 3a–h), through the

Splice-Break2 pipeline and compared the following key metrics to deter-
mine which variables influenced common mtDNA deletion levels: total
RNA-Seq reads,mitochondrial (MT) benchmark coverage,MTbenchmark
coverage per million reads, and the “Top 30” cumulative deletion read

Fig. 7 | Analysis of brain region and tissue in GTEx samples. a–c Comparisons
between brain regions and tissues for the “Top 30” cumulative deletions,
6335–13999, 7816–14807, and 8471–13449 deletion in paired GTEx datasets29. Bar
graphs represent mean ± SEM. d, eComparisons across all 11 GTEx tissues. Sample
size per tissue: (a) paired samples from cerebellum and cortex (n = 183 ea.); (b)
paired samples from amygdala, anterior cingulate cortex, caudate nucleus, frontal
cortex, hippocampus, and substantia nigra (n = 41 ea.); (c) paired samples from
blood, liver, and skeletal muscle (n = 165 ea.). d the “Top 30” cumulative deletions
for all GTEx tissues and matrix of p-values for individual comparisons. e The
8471–13449 deletion for all GTEx tissues and matrix of p-values for individual

comparisons. Statistical values for paired tests (a–c) are from repeated measures
ANOVA. Statistical values for individual tissue comparisons (d, e) are fromWelch’s
t-tests. All p-values were corrected for multiple tests using Bonferroni. All boxplots
show themedian as a solid black line; the first and third quartiles are captured by the
bounds of the box. Boxplot whiskers are defined as the first and third quartiles ±
interquartile range times 1.5, respectively, and outliers are denoted as points. CER
(cerebellum); CORT (cortex); FC (frontal cortex); HIPP (hippocampus); ACC
(anterior cingulate cortex); AM (amygdala); CAUD (caudate nucleus); SN (sub-
stantia nigra); SM (skeletal muscle).
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Fig. 8 | Mitochondrial deletions in spatial transcriptomics and cortical layers.
aHeatmap showing proportion of spots corresponding to ground truth designations
of four replicate SpatialLIBD26 samples (151673–151676) vs. Seurat clusters after
integrated clustering of 12x sections (i.e., 4x SpatialLIBD DLPFC+ 8x USC MTG).
Clusters selected are outlined inwhite and imputed layers are labeled. b Spatial image
of one SpatialLIBD sample (151673) colored by imputed cortical layers from (a).
c Annotated H&E images and matching spatial images with imputed cortical from

USC MTG dataset. Percentage of spots (mean ± SEM) for each imputed layer that
contained (d) the 6335–13999 deletion or (e) the 8471–13449 deletion. d, e Per-
centages shown are from all 12x sections (4x SpatialLIBD DLPFC+ 8x USCMTG).
Letters above bar graphs describe significant differences between cortical layers from
two-proportionZ-tests. Layers represented by different letters: p < 0.05. L1 (Layer 1);
L2& L3 (Layers 2+ 3); L3 (Layer 3); L5 (Layer 5); L6 (Layer 6);WM (WhiteMatter).
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numbers. Total RNA-Seq reads are the initial reads from each sample prior
to alignment. MT benchmark coverage is a measure of the average
sequencing depth of the sample, measured from two 250 bp segments
within the RNR1 and CYB genes13. The “Top 30” cumulative deletion read
amount is the sum of the “Top 30” reads. The deletion read rates for the
internal samples processed three ways are also shown (Fig. 3e–h), which are
calculated by normalizing the number of reads for eachmtDNAdeletion to
theMT benchmark coverage, and is themetric used to evaluate the effect of
age, tissue, and diagnoses (see Figs. 4–7). The deletion read%’s for the “Top
30” deletions and the cumulative deletion read rate for every sample and all
RNA-Seq studies is provided in Supplementary Data 2 for the GEO+
datasets; individual-level data is not shown for the GTEx dataset because of
dbGaP restrictions.

We observed that samples that used a ribosomal depletion library
preparation method (but had similar abundance of sequencing reads
prior to alignment) had less MT benchmark coverage than polyA (non-
ribosomal depleted) samples (Fig. 3a–c, i–k). Due to a reduced amount
of mitochondrial data in the samples subjected to ribosomal depletion,
we observed little to no common mtDNA deletions in these samples;
conversely, for samples prepared without ribosomal depletion (i.e., bulk
polyA or other), we consistently observed these common mtDNA
deletions and more mitochondrial data overall (Fig. 3). Samples pre-
pared by LCM showed the highest number of deletion reads (Fig. 3l);
however, it is important to note that these LCM samples were all derived
from aged human brain regions with high dopaminergic neuron
innervation, the SN and VTA, so these high values may not solely reflect
the sample preparation method. Evaluations of our internal control
samples prepped by threemethods further confirmed our observation of
higher abundance of mitochondrial reads and deletions in polyA (non-
ribosomal depleted) preparations and showed more MT data was cap-
tured by spatial transcriptomics than by bulk RNA-Seq (Fig. 3b–h). This
is in alignment with previous observations that this spatial tran-
scriptomicsmethod (i.e., 10xGenomics Visium)may capturemore “off-
target” and/or non-polyadenylated reads compared to other
methods26,66. Single-cell RNA sequencing (scRNA-Seq) samples did not
contain the three mtDNA deletions followed in this study, so these
samples were not evaluated further (Table 1, Fig. 3l). Taken together, we
found that bulk sequencing with polyA (non-ribosomal depletion),
spatial transcriptomics, and LCM methods were amenable to mtDNA
deletion investigations, while scRNA-Seq and ribosomal depletion
methods were generally inutile due to insufficient mitochondrial data.

CommonmtDNA deletions and the effects of age and sex
MtDNAmutations and deletions have been positively associatedwith aging
in various tissues such as the brain, skeletalmuscle, andheart4,5,43,67–70.Oneof
the most investigated large mtDNA deletions is the 8471–13449 “common
deletion” (also referred to as the 4977 bp deletion), which was found to
increase with age in the heart and brain of healthy adult patients43,69,70. In
contrast with the nuclear genome, themitochondrial genome is particularly
vulnerable to DNA damage because it is located in close proximity to
damaging free radicals and reactive oxygen species generated through the
OXPHOS pathway, does not have the protection of histones, and has less
efficient DNA repairmachinery71–73. Over time, these factors can lead to the
accumulation of mtDNA deletions within cells70,71,73.

Among the GEO+ datasets, we chose four studies for age analysis
because of the wide age distributions of their samples20–23. In the DLPFC
study20, we observed significant positive correlations between age and the
“Top 30” cumulative deletion read rate (p = 0.0119) and the 8471–13449
“common deletion” (p = 0.0159) (Fig. 4a). In the SM study from PD and
CTRL samples22, we similarly observed significant positive correlations
between age and the “Top 30” cumulative deletion read rate (p = 0.0113) as
well the 8471–13449 “commondeletion” (p = 0.021; Fig. 4b). In the SMstudy
of CTRL samples23, we did not observe a significant correlation between age
and any of the fourmtDNAdeletionmetrics evaluated (Fig. 4c); only ~1/2 of
the samples were included in the aging analysis because we observed a

significant “batch effect” in this study (Supplementary Fig. 4). In the Stanley
Neuropathology Consortium dataset21, which contained CER, HIPP, and
PFC, we observed significant positive correlations between age and the “Top
30” cumulativedeletion read rate (p = 0.0131) and the 8471–13449 “common
deletion” (p = 0.0193) in the PFC (Fig. 4f); these deletion metrics were also
observed to increase with age in the CER andHIPP, but the correlations with
age were not significant after multiple-comparisons corrections (Fig. 4d, e).
We did not observe a significant correlation with age for the 6335–13999 or
7816–14807 deletion in any of these datasets (Fig. 4). In addition, none of
these datasets exhibited significant differences between biological sexes for
any of the four deletion read rate metrics (Supplementary Table 2).

Age analysis for the GTEx RNA-Seq data was also performed on a
subset of available samples, including 183 paired samples of cerebellum
(CER) and cortex (CORT), 41 paired samples from multiple brain regions
(i.e., amygdala (AM), anterior cingulate cortex (ACC), caudate nucleus
(CAUD), frontal cortex (FC), hippocampus (HIPP), and substantia nigra
(SN)), and 165 paired samples from non-brain regions (i.e., blood, liver and
skeletal muscle (SM)) (Fig. 5 and Supplementary Fig. 5). In the paired CER
and CORT dataset, we observed significant positive correlations between
age and the “Top 30” cumulative deletion read rate (p = 0.00238) and the
8471–13449 “common deletion” (p = 5.88e-4) in the CORT, and also a
significant positive correlation between age and the “Top 30” cumulative
deletion read rate (p = 0.0342) in the CER (Fig. 5). The other common
deletions evaluatedwerenot significant for these brain regions aftermultiple
comparisons corrections (Fig. 5 and Supplementary Fig. 5). In the paired
analysis of 6 brain regions, we observed significant positive correlations
between age and the mtDNA deletion metrics for the AM, CAUD and SN;
we did not observe significant correlationswith age in theACC, FCorHIPP
after multiple comparisons corrections (Fig. 5 and Supplementary Fig. 5).
Significant age correlations in the AM included the 8471–13449 deletion
(p = 0.0172) and the “Top 30” cumulative deletion read rate (p = 0.0351).
Significant age correlations in the CAUD included the 6335–13999 deletion
(p = 1.94e-3), the 7816–14807 deletion (p = 0.0358), the 8471–13449 dele-
tion (p = 1.11e-5), and the “Top 30” cumulative deletion read rate
(p = 1.20e-4). Significant age correlations in the SN included the
8471–13449 deletion (p = 0.00896), and the “Top 30” cumulative deletion
read rate (p = 0.0182). Lastly, in the paired analysis of blood, liver and SM,
we only observed significant and positive correlations between age and the
mtDNA deletion metrics for SM, specifically for the 8471–13449 deletion
(p = 0.0210), and the “Top 30” cumulative deletion read rate (p = 0.0210)
(Fig. 5). Overall, we were able to recapitulate previously published findings
that common mtDNA deletions increase with age in the brain and muscle,
and we provide evidence from paired datasets that different brain regions
and tissues have variable susceptibility to this increase, someofwhich, to our
knowledge, is illustrated for the first time.

CommonmtDNAdeletions across brain regions, tissues, and the
effect of diagnosis
Evaluation of the MTG, AM, and SN dataset18 of PD and CTRL subjects
revealedno significant differences in “Top30” cumulative deletion read% in
the SN compared to the MTG or AM for any of the deletion metrics, after
multiple comparisons corrections (Fig. 6a). However, the SN did display
higher levels and it should be emphasized that this study used a ribosomal
depletion method for library preparation, so it is perhaps not surprising we
were unable to detect a significant difference since so little mitochondrial
data is captured with that RNA-Seq method. The SN and VTA LCM
dataset24 fromPDandCTRLsamples (Fig. 6b) and thedorsal andventral SN
LCM dataset25 of CTRL subjects (Fig. 6c) showed no significant differences
in any of the four mtDNA deletion metrics we evaluated. The Stanley
Neuropathology Consortium dataset21 of CER, PFC, and HIPP tissue
showed significantly higher deletion read%’s in theHIPP compared toCER
and PFC for the 7816–14807 deletion (p ≤ 0.01324) and the “Top 30”
cumulative deletion read rate (p ≤ 3.12e-12; Fig. 6d). The HIPP had sig-
nificantly higher deletion read %’s than the CER for the 6335–13999 dele-
tion (p = 0.00636) and the 8471–13449 deletion (p = 2.92e-5) (Fig. 6d). The
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8471–13449 deletion were also significantly higher in the PFC than in the
CER (p = 0.0261) (Fig. 6d).

In general, we did not detect significant differences based on diagnosis
in any of theGEO+datasetswe evaluated. The one exception to thiswas the
SN and VTA LCM dataset24 from PD and CTRL samples had significantly
higher levels of the 7816–14807 deletion in the CTRL subjects in both SN
(p = 0.0109) and VTA (p = 0.0064) (Fig.6f and Supplementary Fig. 6). It
should be noted that all of these studies had a small sample size per diag-
nostic group (range: n = 5–17).

Analysis of GTEx included tissue comparisons of the three paired
datasets used in our aging analysis (Fig. 5). In paired CER and CORT, the
CORT had significantly higher amounts of all four deletion metrics
(6335–13999 deletion (p = 5.72e-19); 7816–14807 deletion (p = 1.43e-
15); 8471–13449 deletion (p = 3.86e-33); and the “Top 30” cumulative
deletion read rate (p = 7.68e-41) (Fig. 7a). Across the six paired brain
regions, deletion levels were also significantly different (6335–13999
deletion (p = 1.46e-17); 7816–14807 deletion (p = 2.29e-15); 8471–13449
deletion (p = 6.64e-20); and the “Top 30” cumulative deletion read rate
(p = 3.38e-21) (Fig. 7b). Similarly, in paired blood, liver and SM, all four
deletion metrics were significantly different (6335–13999 deletion
(p = 1.56e-5); 7816–14807 deletion (p = 5.99e-13); 8471–13449 deletion
(p = 1.18e-10); and the “Top 30” cumulative deletion read rate (p = 9.13e-
38) (Fig. 7c). Cross comparisons of all GTEx tissues revealed the fol-
lowing results: (1) blood had the lowest deletion read % and was sig-
nificantly lower than all other tissues; (2) CER had significantly lower
deletion levels than all other brain regions; (3) liver had significantly
lower deletion levels than SM and cortical brain regions; (4) SM had
significantly lower deletion levels than some (but not all) brain regions;
(5) brain regions with dopaminergic neurons (i.e., the CAUD and SN)
had remarkable enrichment of common mtDNA deletions, with sig-
nificantly higher levels than all other tissues. The SN had by far the
highest mtDNA deletion levels and was likewise significantly higher than
all tissues including the CAUD. All tissue comparisons and p-values are
shown in Fig. 7 and Supplementary Fig. 7.

CommonmtDNA deletions across imputed cortical layers in
spatial transcriptomics data
To investigate the common mtDNA deletion metrics across (imputed)
cortical layers,weused12 spatial transcriptomics samples from two separate
human brain datasets. The two spatial transcriptomics datasets include the
Maynard et al. “SpatialLIBD” dataset26, from which we included 4x section
replicates of DLPFC tissue from a single healthy control subject (sample
numbers 151673–151676), and a new internal dataset of 8x spatial tran-
scriptomics samples of MTG tissue taken from duplicate sections of 4
patients (diagnosed as AD, PD, or CTRL). Both datasets were prepared
according to 10x Genomics’s Visium spatial transcriptomics library pre-
paration and sequencing protocols. The SpatialLIBD sampleswere included
to assist in cortical layer imputation since they contained “ground truth”
measures of cortical layer geography basedon stereology/imaging analysis26.
WeperformedSeurat60 clustering on all 12 spatial samples fromboth studies
and imputed cortical layers based on the Seurat clusters that had the highest
overlap with the SpatialLIBD ground truth annotations; this resulted in the
following imputed cortical layers: “WhiteMatter”, “Layer 1”, “Layer 2+ 3”,
“Layer 3”, “Layer 5”, and “Layer 6” (Fig. 8a–c).

To determine the proportion of spots in each cortical layer that con-
tained the 6335–13999 and/or 8471–13449mtDNAdeletion, we needed the
spot barcode data (which is not output as part of the Splice-Break2 process).
As such, we used “grep” to identify reads that spanned these breakpoints, as
described previously, and then determined which cortical layer these reads
mapped to using the spot barcode. The percentage of spots that contained
the 6335–13999deletion (Fig. 8d) or the 8471–13449deletion (Fig. 8e) for all
12 samples was analyzed for each imputed cortical layer. We observed that
the 6335–13999deletionhad a significantly higher percentage of spots (two-
proportion Z-test) in imputed cortical layers 3 and 5 compared to the white
matter (p ≤ 0.0066; Fig. 8d). The 8471–13449 “common deletion” also had

significantly higher geographical representation in cortical layers 3 and 5
compared to white matter (p ≤ 3.30e-5; Fig. 8e). These spots containing
deletions were also annotated on tissue images for visualization (Supple-
mentary Fig. 8). Further, we observed similar trends in the percentage of
spots with the 6335–13999 or 8471–13449 deletion when analyzing just the
USC internal samples (Supplementary Fig. 9). These 8x spatial sampleswere
split according to their imputed cortical layer (i.e., using “cluster BAMS”
from Seurat60), and each imputed layer was run through Splice-Break2; we
found a significant difference between white and grey matter for the
8471–13449 “common deletion” (p = 0.0393; Supplementary Fig. 9). Taken
together, these results suggest cortical layers have different levels of common
mtDNAdeletions in the aged human brain and aremost abundant in layers
3 and 5 where there is an enrichment of pyramidal neurons26,74,75.

Discussion
The aimof this studywas to determinewhetherRNA-Seq data can be used to
evaluate common mtDNA deletion levels in somatic tissues using the
bioinformatics tool Splice-Break2. Initial analyses were done on a paired
dataset where there was DNA and RNA-Seq data available; we observed
robust differences in DNA and RNA deletion read %, with the DNA data
containingat least 22-foldhigher deletion read rates.Wehypothesize that the
decreased rate of these common deletions in RNA-Seq data may be due to
transcript abundance or stability- that mitochondrial genomes with large
deletions may transcribe polycistronic transcripts less efficiently than wild-
typemolecules, or that RNA transcripts containing deletion breakpointsmay
be less stable, or both. It is worth mentioning that polyadenylation of mito-
chondrial transcripts serves a different role than it does for nuclear-encoded
genes where 3′ polyadenylation helps stabilize mRNA molecules and pro-
motes protein translation; this also occurs forhumanmitochondrial-encoded
genes, but transcripts can alsobepolyadenylated atmany intragenic positions
and are subject to polyadenylation-dependent RNA degradation mechan-
isms that are conserved features of bacteria (the evolutionary origin of
mitochondria)76–78. In addition, the deletion read %’s in the DNA data are
likely increased due to the long-range PCR amplification used for mito-
chondrial enrichment and the smaller size of the deleted genomes.

ThemtDNAdeletionmetrics that were examined in this studywere the
cumulative read% of the “Top 30”most frequent deletions that we identified
andSanger-validated inourprevious study, and the individual read%of three
specific mtDNA deletions: 6335–13999 (adjusted position 6341–14005),
7816–14807 (adjusted position 7814–14805), and 8471–13449 (the “com-
mondeletion”; adjusted position 8482–13460). The cumulative read% of the
“Top 30” deletions and the 8471–13449 deletion had statistically significant
positive correlations between the DNA and RNA-Seq paired dataset exam-
ined, with the “common deletion” having the strongest correlations between
methods. Future studiesmay include additional paired datasets (DNA,RNA-
Seq, and other genomics methods) and analyses of less common mito-
chondrial deletions.Analysis ofpatientswith large clonaldeletionswill alsobe
of interest. The Splice-Break2 pipeline does output additional breakpoints
besides the “Top 30” most common deletions, but those metrics should be
usedwith caution forRNA-Seqdata andmay require further validation (such
as qPCR and/or Sanger sequencing).

All Splice-Break2 data is reported as “deletion read %”, which is the
number of deletion reads detected divided by theMTBenchmark coverage;
however, this should not be interpreted as an absolute estimation of het-
eroplasmy rate (for DNA or RNA-Seq) because of inherent biases of these
NGS methods. In our original methods article, we did observe a significant
positive correlation between the Splice-Break2 deletion read % and qPCR
quantificationof the 8471–13449 “commondeletion”, andherewe show the
deletion read %’s can correlate between DNA and RNA-Seq datasets- thus,
we conclude that although absolute heteroplasmy rates cannot be inferred,
the fold differences between samples is retained and allows us to usedeletion
read % for statistical analyses of age, tissue type and diagnoses. Future
studies that pair mitochondrial/metabolic assays with NGS measurements
will be important to understand the physiological relevance of these dele-
tions and at what threshold deletion read %’s impact cellular function.
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Splice-Break2 was used to examine various library preparation meth-
ods, such as bulk RNA-Seq, LCM RNA-Seq, spatial transcriptomics, and
scRNA-Sequencing. We observed that bulk sequencing without ribosomal
depletion allowed for more consistent capturing of mtDNA transcripts and
deletions compared to bulk sequencing with ribosomal depletion. Addi-
tionally, the scRNA-Seq studies we evaluated had minimal to no mtDNA
deletion capture despite containing comparable amounts of mtDNA tran-
scripts (MTBenchmark coverage) compared to the other studies evaluated.
Analysis of additional scRNA-Seq datasets and methods, including LCM,
alongwith other non-RNAsingle-cell genomicsmethods (such as scATAC-
Seq), is warranted in the future. The LCM RNA-Seq samples we evaluated
contained the highest deletion read rates; however, it is important to note
that these samples originated from aged brain tissue from regions inner-
vated with dopaminergic neurons (SN and VTA), which have a demon-
strated significant increase in mtDNA deletion burden79,80. Therefore, we
cannot determine from these LCM datasets if the increased mtDNA dele-
tion levels are strictly due to brain region, library preparationmethod, or are
a combination of both effects. Overall, these data indicate that the most
valuable RNA-Seq wet lab protocols for mtDNA deletion detection include
bulk sequencing without ribosomal depletion (e.g., polyA), LCMRNA-Seq,
and spatial transcriptomics.

Our analysis of aging, differences among brain regions, and diagnostic
effects revealed trends that were consistent with the effects ofmitochondrial
dysfunction reported in current literature2–5,9,79,80. It has been reported in
several studies that mtDNA deletions accumulate in some tissues as they
age, and studies on the “hallmark” mtDNA deletion disorders (e.g., KSS,
Pearson’s Syndrome) have proved these deletions can have functional (and
even lethal) consequences if at a high enough threshold to affect cellular
function36,37. The age-dependent increase in mtDNA deletions has been
observed in various somatic tissues including the brain; in the substantia
nigra, high mtDNA deletions have been linked to age-related and disease-
related (i.e., PD) neuronal loss43,67,79,80. We observed statistically significant
increases in themtDNA deletionmetrics due to age in brain and/or muscle
datasets. Our most robust evaluation of aging was performed using paired
RNA-Seq data from GTEx. Overall, we were able to recapitulate previously
published findings that commonmtDNA deletions increase with age in the
brain and muscle, and show that different brain regions and tissues have
variable susceptibility to this age-dependent increase.

We were able to observe some interesting differences in tissues and
brain regions in the paired GTEx dataset, where common mitochondrial
deletions were lowest in blood, lower in liver than skeletal muscle, higher in
cortex than in cerebellum, and high (but variable) across cortical brain
regions. In both GEO+ andGTEx datasets, we observed increasedmtDNA
deletions in brain regions containing dopaminergic neurons (SN, VTA and
caudate nucleus); however, we did not detect an increase in PD. This is
consistentwith previous reports that have found an increase in SN tissue but
no significant increase in PD specifically79,81–83. It would be interesting to
investigate a larger cohort of patient samples taken at various stages of PD
and/or compare these results neuropathological measures of dopaminergic
cell death (e.g., SN depigmentation scores), as this data suggests the age
effects in PD SN may not be linear. Measures of cell type abundance (e.g.,
histology, in situ gene expression, cell counts from flow cytometry or CBC
tests, or single-cell RNA-Seq data) from paired tissue (preferably the same
dissection/sample)maybe also improve analyses of age and diagnosis if that
data can be obtained and used as a co-variate.

Our commonmtDNAdeletionanalysis of spatial transcriptomics data,
specifically across (imputed) cortical layers of the DLPFC and MTG,
revealed increased deletion burden in grey matter compared to white
matter, which is not surprising given its high metabolic activity74,84,85. Cor-
tical layers 3 and 5 consistently contained the highest percentage of “spot
barcodes” with mtDNA deletions. This supports the hypothesis that brain
regions and cortical layers are differentially susceptible to mtDNA
damage69,79,80,86. Future studies investigating the effect of mtDNAdamage in
neurodevelopment, psychiatric disorders or neurodegenerative diseases
maywant to focus on spatial transcriptomic approaches so that analyses can

focus on specific cortical layers and increase the signal-to-noise ratio for
these tests.

In summary, this robust analysis of multiple, highly used RNA-Seq
methods demonstrated the utility of detecting mtDNA deletions of high
frequency through our bioinformatics pipeline. The Splice-Break2 tool was
effective in quantifying common mtDNA deletions in polyA (non-riboso-
mal depleted) bulk sequencing, LCM, and spatial transcriptomic datasets,
and these datasetsmay also be amenable to other bioinformatics approaches
of mtDNA deletion quantification. Of note, the current version of Splice-
Break2 is only compatible with human data, as the alignment and anno-
tations utilize the rCRS64, our catalogue of human mtDNA deletion
breakpoints13, and MitoMap87, respectively. With the wide breadth of
publicly available and restrictedhumanRNA-Seq datasets that encompass a
variety of tissues, diseases, and experimental/environmental conditions, the
ability to incorporatemtDNAdeletionmetrics into these investigationsmay
provide information about metabolic effects in tissues and their contribu-
tions to disease phenotypes and aging.

Data availability
Our analysis included 12 previously published studies and 2 newly presented
here. The 12 previously published studies we included in this paper can be
accessed from the following: (1) Simchovitz et al.18 study is deposited onGEO
with accession code “GSE114517”; (2) Nativio et al.19 study is deposited on
GEOwith accession code “GSE159699”; (3)Zeppillo et al.20 study is deposited
on GEO with accession code “GSE224683”; (4) Kim et al. study21,65 (i.e., The
Stanley Neuropathology Consortium) is available on their website (http://
sncid.stanleyresearch.org); 5) Lavin et al. study22 is deposited on GEO with
accession code “GSE140089”; (6)Tumasian et al. study23 is depositedonGEO
with accession code “GSE164471”; (7) Aguila et al. study24 is deposited on
GEOwithaccessioncode “GSE114918”; (8)Monzón-Sandoval et al. study25 is
deposited on GEO with accession code “GSE166024”; (9) Maynard et al.
study26 is available on their GitHub page (https://github.com/LieberInstitute/
HumanPilot) and Globus endpoint “jhpce#HumanPilot10x” (http://
research.libd.org/globus/jhpce_HumanPilot10x/index.html); (10) Enge
et al. study27 is deposited on GEO with accession code “GSE81547”; (11)
Darmanis et al. study28 is depositedonGEOwithaccession code “GSE67835”;
and (12) Lonsdale et al. (i.e., GTEx) study29 is available through their portal
(https://gtexportal.org/home/)29. All RNA-Seq samples newly presented in
this study have been deposited on GEO with primary accession code
“GSE226663”. Source data underlying Fig. 1 and Fig. 3a–h can be found in
Supplementary Data 1. Deletion metrics for all GEO+ studies (used for
Figs. 3, 4 and 6) can be found in Supplementary Data 2. Source data
underlying Fig. 8d can be found in Supplementary Data 3. Raw data is not
provided for the GTEx datasets due to restricted access.

Code availability
All scripts and details on processing steps are available (https://github.com/
aomidsalar/RNA-Seq_Splice-Break2; https://doi.org/10.5281/zenodo.
10499375)88. This repository and the Splice-Break2 tool repository (https://
github.com/brookehjelm/Splice-Break2; https://doi.org/10.5281/zenodo.
10499097)89 both contain a document for ‘RNA-Seq Best Practices for
Splice-Break2’ to help guide users with workflow and command lines.
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