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Polygenic risk score (PRS) is useful for capturing an individual’s genetic susceptibility. However,
previous studies have not fully exploited the potential of the risk factor PRS (RFPRS) for disease
prediction. We explored the potential of integrating disease-related RFPRSs with disease PRS to
enhance disease prediction performance.We constructed 112 RFPRSs and analyzed the association
of RFPRSs with diseases to identify disease-related RFPRSs in 700 diseases, using the UK Biobank
dataset. We uncovered 6157 statistically significant associations between 247 diseases and 109
RFPRSs. We estimated the disease PRSs of 70 diseases that exhibited statistically significant
heritability, to generate RFDiseasemetaPRS—a combined PRS integrating RFPRSs and disease PRS
—and compare the prediction performance metrics between RFDiseasemetaPRS and disease PRS.
RFDiseasemetaPRS showed better performance for Nagelkerke’s pseudo-R2, odds ratio (OR) per
1 SD, net reclassification improvement (NRI) valuesanddifferenceofR2 consideredby varianceofR2 in
31 out of 70 diseases. Additionally, we assessed risk classification between twomodels by examining
OR between the top 10% and remaining 90% individuals for the 31 diseases; RFDiseasemetaPRS
exhibited betterR2, NRI and OR than disease PRS. These findings highlight the importance of utilizing
RFDiseasemetaPRS, which can provide personalized healthcare and tailored prevention strategies.

Genome-wide association studies (GWASs) have revealed numerous
genetic variants associated with complex traits1. However, the modest effect
size of each genetic variant accounts for only a small fraction of phenotypic
variation, even in traits with high heritability2. This fact emphasizes the
polygenic nature of the most complex traits and diseases, in which a mul-
titude of genetic variants, each with a small effect, collectively contribute to
trait variance3.

Polygenic risk scores (PRSs) have been developed in response to this
complexity. PRSs compile risk information from a large number of genetic
variants, thus, providing a cumulative measure of an individual’s genetic
susceptibility to a disease4. The field is growing rapidly with advances in
methods5, reporting standards6, and cataloguing7,8. Despite the proven value
of PRSs in disease risk prediction, their performance has not been fully
optimized because of the inherent limitations of the PRS methodology and
complexities of disease etiology.

Recent studies have made efforts to improve PRS performance by
incorporating information from multi-traits9,10, disease-related
biomarkers11,12, clinical risk factors13–16 and environmental variables11,16

that can affect disease risks. To improve statistical power of GWAS, Turley
et al.9 and Lin et al.10 have developed the new tools. They performed meta-
analysis on multiple traits using genetic correlation information from
diverse traits. Several studies have provided evidence of the additional value
of the PRSs in predicting common diseases. O’Sulllivan et al.15 and Riveros-
Mckay et al.14 examined the combined effects of PRSs and established
clinical risk factors such as the American Heart Association/American
College of Cardiology pooled cohort equations17,18, UK QRISK319,20, and
CHA2DS2-VASc

21. In addition, Mars et al.13 and Tamlander et al.16 utilized
information on risk factors such as family history, age, sex, and clinical
measurements (systolic blood pressure, high-density lipoprotein, low-
density lipoprotein, and triglyceride). Furthermore, Dudbridge et al.22
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demonstrated that combining the PRS and environmental scores improved
the prediction accuracy. Although the improvement in prediction accuracy
from the combined PRS and environmental scores was slight, the classifi-
cation availability for diseases exhibited a significant increase.

Abraham et al.23, Ma et al.11, and Lin et al.12 adopted another approach
wherein they constructed a disease PRS by integrating PRSs associated with
risk factors for the disease. Risk factors are burdened by problems such as
measurement errors, bias, and non-random messiness24,25. However,
adopting PRS can help to solve these problems, thereby leading to clear
benefits in its usage. Ma et al.11 published ExPRSweb, which is a database
comprising PRSs for up to 27 health-related exposures associated with
disease risk. They developed 12 “YPRS + multi exposure PRS” models
involving the amalgamation of disease PRS and risk factor PRSs for various
diseases. These PRSs were computed with an additive model using the
coefficient values derived from each PRS via linear regression. They pro-
ceeded to compare the performance metrics of disease PRS and “YPRS +
multi exposure PRS.” The findings revealed that 9 out of 12 “YPRS+multi
exposure PRS”models surpassed prediction accuracy based on area under
the curve values. However, the additive model might lead to an over-
estimation owing to the correlation between exposure and PRSs. Similarly,
Lin et al.12 developed the CHDBioPRS, which integrated biomarker PRSs
and coronary heart disease (CHD) PRS. The CHDBioPRS showed
improved predictive performance forCHD in comparison to theCHDPRS.
Abraham et al.23 tried to develop a meta-genetic risk score (meta-GRS) by
combining 19 PRSs associated with stroke-related traits. This was achieved
through the application of elastic net regression to ischemic stroke. They
observed that the ischemic strokemeta-GRSexhibiteda strongerassociation
with ischemic stroke than previously published genetic scores.

Despite these advances, previous studies have not fully exploited the
potential of the risk factor PRS (RFPRS). One salient limitation was the
narrowly tailored focus on a few diseases and their associated risk factors.
This approach inherently presents biases toward well-documented risk
factors, thereby potentially neglecting less-studied but possibly significant
factors in disease prediction. There is a clear and pressing need for a more
comprehensive approach that encompasses a broader array of diseases
and their associated risk factors. Such an approach could provide a more
holistic understanding of disease prediction and further refine the pre-
dictive performance of the PRSs. Given the complex and polygenic
nature of many diseases, integrating a wide range of risk factors into PRS
models may provide a more accurate representation of disease
susceptibility.

To this end, we examined the association between 112 potential risk
factor PRSs (RFPRSs) and 700 diseases as defined by the International
Classification of Diseases, 10th revision (ICD-10) in the UK Biobank. This
approachprovides amore comprehensive understandingof the relationship
between the risk factors and disease risk. Based on these results, we con-
structed a combined PRS called RFDiseasemetaPRS, which incorporated
both the RFPRS and PRS for individual diseases. We then compared the
predictive potential of RFDiseasemetaPRS with that of traditional PRS,
thereby enabling anevaluationof their respective ability to risk stratification.

Results
Selection of 112 risk factors and 700 diseases
The study design is illustrated in Supplementary Fig. 1. We selected 112
heritable risk factors showinghigher than 10%SNPheritability according to
the heritability database (https://nealelab.github.io/UKBB_ldsc/index.html;
“Methods”, Table 1, and Supplementary Table 1)26. To perform the GWAS
and estimate the RFPRS, we randomly split the UKBWhite British dataset
(n = 348,977) into GWAS (n = 174,488) and PRS (n = 174,489) sets. We
conducted GWASs on these 112 risk factors using the GWAS set by a linear
regressionmodel adjusted for age, sex, principal component (PC) 1–10, and
genotyping array27. From the GWAS summary statistics of the 112 risk
factors, we estimated their heritabilities using linkage disequilibrium score
regression (LDSC)28 (Supplementary Table 2). All heritabilities of the 112
risk factors were statistically significant (P < 4.46E−04; 0.05/112). The

heritability of vitamin D was the lowest (hg
2 = 0.09) and that of standing

height was the largest (hg
2 = 0.44).

We focused on diseases with a prevalence exceeding 0.1% in the UKB
White British dataset (n = 348,977), and not sex-specific diseases (“Meth-
ods”; Supplementary Data 2). We found that 673 of the 2085 diseases
identified based on ICD10 codes satisfied the inclusion criteria. We incor-
porated 27 additional major diseases (Supplementary Table 3), which
resulted in 700 diseases (Supplementary Fig. 2).

Association analysis between RFPRSs and diseases
We estimated the RFPRS using LDpred29 in the PRS set (n = 174,489). All
RFPRSs significantly correlated with their respective risk factors (Supple-
mentary Table 4). The range of correlation coefficient about 112 risk factors
was 0.11 (duration screen displayed) to 0.40 (mean platelet volume).
Pearson’s correlation coefficient was statistically correlated with the SNP
genetic heritability of the risk factors (r = 0.52, P = 4.47E−09).

To identify the relationship between RFPRSs and diseases, we per-
formed a logistic regression analysis of the PRS set between 112RFPRSs and
700 diseases, adjusted for age, sex, PC1–10, and genotyping array. The
number of associationswas 78,400 associations (112RFPRS× 700 diseases).
We applied aBonferroni-corrected threshold and set the significance level at
P < 6.38E−07 (0.05/78,400). Our analysis revealed 6157 statistically sig-
nificant associations (Fig. 1 and Supplementary Data 3). These associations
included 247 diseases and 109 RFPRSs (12 categories of risk factors: blood
biochemistry, blood count, blood pressure, body composition by impe-
dance, body size measures, bone densitometry of the heel, early life factors,
fluid intelligence/reasoning, hand grip strength, mental health, prospective
memory, and spirometry). The associations between the RFPRSs from each
category are shown in each panel of Supplementary Figs. 3–28—marked
with reddots. RFPRSs categorized bybody composition and impedance had
themost significant associationwithdisease (SupplementaryFigs. 7 and20).
Furthermore, we have depicted the heatmap for the 6157 associations
between diseases and RFPRSs in Supplementary Figs. 29 and 30. We
observed that the number of RFPRSs belonging to the category of body
composition by impedancewas the highest, comparedwith that in the other
categories. In addition, RFPRSs within the categories of body size, blood
biochemistry, and blood count showed a significant number of associations
with diseases of the respiratory system; endocrine, nutritional, and meta-
bolic diseases; diseases of the nervous system; factors influencing health
status and contact with health services; symptoms, signs, and abnormal
clinical and laboratory findings not elsewhere classified; diseases of the
digestive system; diseases of the musculoskeletal system and connective
tissue; anddiseases of the circulatory system.Conversely, the categorieswith
the lowest number of associations were early life factors and prospective
memory. Within the early life factor category, one RFPRS was birth weight
PRS, which has been confirmed to be associated with circulatory system
diseases (such as hypertension, primary hypertension, and chronic ischemic
heart disease) and metabolic diseases (such as type 2 diabetes, coronary
artery disease, and E78; disorders of lipoprotein metabolism and other
lipidaemias). The prospective memory category is represented by the
duration of screen display and was found to be associated with mental
disorders, specifically anxiety disorders and the digestive system.

Among the 247 diseases, diseases of the category diseases of muscu-
loskeletal system and connective tissue demonstrated the highest number of
associations with RFPRSs (Supplementary Figs. 29 and 30). A total of 852
associations were found between 85 RFPRSs and 31 diseases within this
disease category. This category included various inflammatory poly-
arthropathies such as rheumatoid arthritis (M05, M06, M10, and M13),
arthrosis (M15, M16, M17, M18, and M19), joint disorders (M20, M21,
M23, M24, and M25), deforming dorsopathies (M43), spondylopathies
(M47 and 48), dorsopathies (M50, M51, and M54), disorders of synovium
and tendon (M65 and M67), soft tissue disorders (M70, M75, M76, M77,
andM79), osteopathies (M81andM86), anddisorders of continuity of bone
(M84). Among the 85 RFPRSs associated with the disease category, a
majority (63.61%, 542/852) belonged to the risk factor category body
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composition by impedance. As expected, diseases belonging to the cate-
gories of congenital malformations, deformations, and chromosomal
abnormalities did not show any statistically significant associations with the
112 RFPRSs (Fig. 1). Congenital malformations, deformations, and chro-
mosomal abnormalities include congenital diseases such asQ21 (congenital
malformations of the cardiac septa), Q23 (congenital malformations of the
aortic and mitral valves), and Q61 (cystic kidney disease).

Estimation of disease PRS in PRS set
To estimate the disease PRS, we first conducted GWASs on 247 diseases
using the GWAS set (n = 174,488) with a logistic regression model
adjusted for age, sex, PC1–10, and the genotyping array. We estimated
the heritability of the diseases through LDSC, utilizing the GWAS
summary statistics for 247 diseases. Of the 247 GWAS summary statis-
tics, only 72 diseases showed statistically significant heritability, with a
threshold set at P < 2.02E−04 (0.05/247) (Supplementary Data 4). We
imposed an inclusion criterion that required the heritability of diseases to
be statistically significant when estimating the disease PRS using
LDpred229. Subsequently, we constructed disease PRSs for 72 diseases in
the PRS set (n = 174,489) (Supplementary Table 5). The Nagelkerke’s
pseudo-R2 values for the disease PRS ranged from 0.01 for M75 (shoulder
lesions) to 0.20 for K40 (inguinal hernia). On average, the Nagelkerke’s
pseudo-R2 value was 0.06 (SD = 0.05).

Prediction performances of RFDiseasemetaPRS and
disease PRS
To maximize the prediction accuracy for diseases by adding RFPRSs to the
disease PRS, we integrated them into one index called RFDiseasemetaPRS

using the elastic net regression method30 with a 10-fold cross-validation in
the PRS set (“Methods”). This method effectively balances the RFPRS
variable selection and coefficient shrinkage for high-dimensional data. We
obtained the standardized optimal weights for each RFPRS and disease PRS
for the respective disease using elastic net regression (Supplementary
Data 5). To calculate the RFDiseasemetaPRSs for the 72 diseases using
weighted RFPRSs and disease PRS, we extracted the validation set
(n = 56,192) from theUKB independent of theGWASandPRS sets. This set
was extracted using a selection method previously described by Thompson
et al.31. The defining feature of this set was that it consisted of samples
extracted from the remaining sample group of the original UK Biobank
dataset (n = 487,409) after excluding the unrelated White British dataset
(n = 348,977) (SupplementaryFig. 1).This informationwasprovidedbyUK
Biobank Data Field ID26200. The 72 RFDiseasemetaPRSs were statistically
associated with the respective diseases, with the significance threshold set at
P < 6.94E−04 (0.05/72) considering multiple correlations (Supplementary
Table 6). For these 72 RFDiseasemetaPRSs, the Nagelkerke’s pseudo-R2

values ranged from0.01 forM51 (other intervertebral disk disorders) to 0.22
for coronary artery disease (Supplementary Table 6). On average, the
Nagelkerke’s pseudo-R2 value was 0.07 (SD = 0.05).

To compare the prediction performance of RFDiseasemetaPRS and
disease PRS, we estimated the disease PRSs for 72 diseases in the validation
set (Supplementary Table 7). Among the 72 disease PRSs, 70 disease PRSs
showed statistically significant associations with each disease (P < 6.94E
−04; 0.05/72). R06 (abnormalities of breathing), and I35 (non-rheumatic
aortic valve disorders) did not satisfy this threshold. Therefore, we per-
formed further analyses using RFDiseasemetaPRSs and PRSs for these 70
diseases.

Table 1 | List of 112 risk factors.

Risk factor category Risk factors

Hand grip strength Hand grip strength (left)/Hand grip strength (right)

Body size measures Waist circumference/Hip circumference/Standing height/Sitting height/Body mass index (BMI, Field ID: 21001)/Weight (Field
ID: 21002)

Bone-densitometry of heel Heel bone mineral density (BMD) T-score, automated/Ankle spacing width/Heel Broadband ultrasound attenuation, direct entry/Heel
quantitative ultrasound index (QUI), direct entry/Heel bone mineral density (BMD)/Ankle spacing width (left)/Heel broadband ultra-
sound attenuation (left)/Heel quantitative ultrasound index (QUI), direct entry (left)/Heel bone mineral density (BMD) (left)/Heel bone
mineral density (BMD) T-score, automated (left)/Ankle spacing width (right)/Heel broadband ultrasound attenuation (right)/Heel
quantitative ultrasound index (QUI), direct entry (right)/Heel bone mineral density (BMD) (right)/Heel bone mineral density (BMD) T-
score, automated (right)

Blood pressure Pulse rate, automated reading/Diastolic blood pressure, automated reading/Systolic blood pressure, automated reading

Spirometry Forced vital capacity (FVC)/Forced expiratory volume in 1-second (FEV1)/Peak expiratory flow (PEF)/Forced expiratory volume in
1-second (FEV1), Best measure/Forced vital capacity (FVC), Best measure/Forced expiratory volume in 1-second (FEV1), predicted/
Forced expiratory volume in 1-second (FEV1), predicted percentage

Arterial stiffness Pulse rate

Prospective memory Duration screen displayed

Fluid intelligence/reasoning Fluid intelligence score

Early life factors Birth weight

Mental health Neuroticism score

Body composition by impedance weight (Field ID: 23098)/Body fat percentage/Whole body fat mass/Whole body fat-free mass/Whole body water mass/Body mass
index (BMI. Field ID: 23104)/Basal metabolic rate/Impedance of whole body/Impedance of leg (right)/Impedance of leg (left)/Impe-
dance of arm (right)/Impedance of arm (left)/Leg fat percentage (right)/Leg fatmass (right)/Leg fat-freemass (right)/Leg predictedmass
(right)/Leg fat percentage (left)/Leg fat mass (left)/Leg fat-free mass (left)/Leg predicted mass (left)/Arm fat percentage (right)/Arm fat
mass (right)/Arm fat-free mass (right)/Arm predicted mass (right)/Arm fat percentage (left)/Arm fat mass (left)/Arm fat-free mass (left)/
Arm predicted mass (left)/Trunk fat percentage/Trunk fat mass/Trunk fat-free mass/Trunk predicted mass

Blood count White blood cell (leukocyte) count/Red blood cell (erythrocyte) count/Haemoglobin concentration/Haematocrit percentage/Mean
corpuscular volume/Mean corpuscular haemoglobin/Red blood cell (erythrocyte) distribution width/Platelet count/Platelet crit/Mean
platelet (thrombocyte) volume/Platelet distribution width/Lymphocyte count/Monocyte count/Neutrophill count/Lymphocyte per-
centage/Monocyte percentage/Neutrophill percentage/Eosinophill percentage/Reticulocyte percentage/Reticulocyte count/Mean
reticulocyte volume/Mean sphered cell volume/Immature reticulocyte fraction/High light scatter reticulocyte percentage/High light
scatter reticulocyte count

Blood biochemistry Albumin/Alanine aminotransferase (U/L)/Aspartate aminotransferase (U/L)/Urea (mmol/L)/Calcium (mmol/L)/Cholesterol (mmol/L)/
Creatinine (umol/L)/C-reactive protein (mg/L)/Gamma glutamyltransferase (U/L)/Glycated haemoglobin (mmol/mol)/IGF-1 (nmol/L)/
Phosphate (mmol/L)/SHBG (nmol/L)/Total protein (g/L)/Triglycerides (mmol/L)/Urate (umol/L)/Vitamin D (nmol/L)
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To evaluate the prediction performance of RFDiseasemetaPRS as an
alternative predictive model, separate from the established disease PRS, we
assessed the predictive performance of each PRS using four analyses: (1)
Nagelkerke’s pseudo-R2 values, (2) odds ratio (OR) per 1 SD PRS, (3) net
reclassification improvement (NRI) values, and (4) difference of R2 con-
sidering variance of R2 using r2redux32,33. Among the 70 diseases, the
Nagelkerke’s pseudo-R2 valuesof 60RFDiseasemetaPRSs (86%)werehigher
than those of disease PRS (Supplementary Table 8). Of the 60 RFDisease-
metaPRSs, the difference in the Nagelkerke’s pseudo-R2 values between
RFDiseasemetaPRS and disease PRS ranged from 0.02% (breast cancer) to
1.17% (nasal polyps). On average, this difference was 0.39% for the 60

RFDiseasemetaPRSs. Of the 70 RFDiseasemetaPRSs, 60 showed an
increased OR per 1 SD PRS as shown in Fig. 2, and the difference in OR per
1 SD PRS between RFDiseasemetaPRS and disease PRS varied among the
diseases, ranging from 6.33E−03 (breast cancer) to 0.22 (chronic renal
failure) (Supplementary Table 9). On average, this difference was 0.08 for
the 60RFDiseasemetaPRSs.Weestimated theNRI values for “Nullmodel+
RFDiseasemetaPRS” and “Null model + disease PRS” (Null model: Dis-
ease ~ age + sex + PC 1 ~ 10 + genotype array) (Supplementary Data 6).
Among the 70 diseases, the NRI values for 54 were statistically significant at
P < 3.57E−04 (0.05/70 × 2) in both models (Supplementary Table 10). Out
of 54models, 43 “Null model+RFDiseasemetaPRS” (80%) showed greater

Fig. 1 | Manhattan plot for association between 112 RFPRSs and 673 diseases
and additional 27 major diseases. The red line indicates the significance for mul-
tiple testing (P < 6.38E−07 = 0.05/78,400). a Association between 112 RFPRS s and

673 diseases plot, they are grouped into 20 disease categories, and the bound
disease category is the x-axis. b Association between 112 RFPRSs and 27 major
diseases plot.
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NRIvalues than “Nullmodel+disease PRS” (Fig. 3). The range of deltaNRI
values, the difference between NRI positive values of “Null model +
RFDiseasemetaPRS” and “Null model+ disease PRS,” was from 0.14% for
M19 (other arthrosis) to 15.71% for N18 (chronic renal failure) (Supple-
mentary Table 10). On average, the delta of NRI values of the 43 RFDi-
seasemetaPRSs increased by approximately 4.37%. Further, we performed
the r2redux32,33 analysis,which estimated thedifference ofR2 considering the
variance of R2 in both models. Among the 43 diseases, the difference of R2

between RFDiseasemetaPRS and disease PRS showed a statistical sig-
nificance for 31 diseases based on the Bonferroni correction (P < 1.16E−03;
0.05/43) (Supplementary Table 11). The difference of R2 ranges from 0.06%
for K40 (Inguinal hernia) to 0.59% for I10 (Essential (primary) hyperten-
sion) (Supplementary Table 11 and Fig. 4). On average, the difference of R2

in the 31 diseases was 0.21% such that R2 of RFDiseasemetaPRS was higher
than that of, disease PRS.

Enhanced risk stratification using RFDiseasemetaPRSs
Oneof the clinical utilities of PRS is the early identification of an individual’s
risk of disease. To assess whether RFDiseasemetaPRS ismore advantageous
than disease PRS for this utility, we examined the OR between the top 10%
and remaining 90%PRS individuals for 31 diseases, where the differencesR2

were statistically significant by r2reduxanalysis. TheORsare summarized in
Supplementary Table 12. For disease PRSs, those in the top 10%PRS had an
average 1.56-fold higher risk of disease compared to those in the remaining
90% PRS. For RFDiseasemetaPRSs, the top 10% had an average 1.76-fold
higher risk. Furthermore, we depicted the cumulative incidence plots over
age for the top six diseases identified by the largest positive change in the
difference of R2 among the 31 diseases between RFDiseasemetaPRS and
disease PRS (Fig. 5, Supplementary Table 13, Supplementary Data 1). The
top six diseases were essential (primary) hypertension (I10), type 2 diabetes
(T2D), coronary artery disease (CAD), disorders of lipoproteinmetabolism

Fig. 2 | Bar plot for Delta of OR per 1 SD between RFDiseasemetaPRS and disease PRS. The difference between the OR per 1 SD of RFDiseasemetaPRS and disease PRS
(ORper 1 SDRFDiseasemetaPRS –ORper 1 SDdisease PRS). It was sorted in descending order, and the disease with themost significant difference is located towards the left.
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and other lipidaemias (E78), chronic renal failure (N18), and other chronic
obstructive pulmonary disease (J44). The graphs for RFDiseaemetaPRS
showed the better splitting between top 10% and remaining 90% in most
cases than those for disease PRS.

Discussion
In this study, we investigated 78,400 associations between 112 RFPRSs
and 700 other diseases. Among these associations, we identified 6157
associations that encompassed 109 RFPRSs and 247 diseases. RFDisea-
semetaPRSs were estimated by integrating disease-related RFPRSs and
disease PRS using elastic net regression on 70 diseases with significant
heritability, and the prediction performance of RFDiseasemetaPRSs was
compared to that of disease PRS. RFDiseasemetaPRSs generally showed
enhanced predictive accuracy, compared with disease PRSs, along with
better Nagelkerke’s psuodo-R2 and OR per 1 SD in 86% diseases, NRI

values in 80% diseases analyzed, and statistically significant increase of R2

using r2redux in 72% diseases. In addition, we found better OR (1.76-fold
on average) for the top 10% in RFDiseasemetaPRS than for disease PRS
(1.56-fold on average).

Diseases are influencedbyadiverse rangeof health-relatedbiomarkers,
traits, lifestyle factors, and environmental variables. Importantly, these risk
factors often possess heritable components that can be identified using
GWASs. Based on these findings, we formulated 112 RFPRSs using GWAS
data to estimate individual PRS for risk factors from the UK Biobank
(Supplementary Table 4). Our results on the association of these RFPRSs
with diseases involved 109 RFPRSs in 12 categories (blood biochemistry,
blood count, blood pressure, body composition by impedance, body size
measurements, bone densitometry of the heel, early life factors, fluid
intelligence/reasoning, hand grip strength, mental health, prospective
memory, and spirometry) among 112 RFPRSs in 20 categories, which

Fig. 3 | NRI values plot for “Null model + disease PRS” and “Null model +
RFDiseasemetaPRS”. The x-axis represents NRI values in prediction performance
when comparing “Null model” and “Null model + disease PRS.” The y-axis

representsNRI values in prediction performance when comparing “Nullmodel” and
“Null model+ RFDiseasemetaPRS.” The Null model is Disease ~ age+ sex+ PC1-
10 + genotyping array.
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showed statistically significant associations for 247 diseases (P < 6.38E−07;
0.05/78,400) (Table 1 and Supplementary Figs. 3–28).

Among the 247 diseases, those of the musculoskeletal system and
connective tissue demonstrated the highest number of associations with
RFPRSs (Supplementary Data 3). A total of 852 associations were found
between 85 RFPRSs and 31 diseases within this category. Body composition
measures, such as BMI, are known to be associated with osteoarthritis and
rheumatoid arthritis34–36. This finding aligns with the findings of the present
study. Type 2 diabetes, associated with various risk factors37,38, exhibited the
highest number of associations with RFPRSs. Previous PRS studies of risk
factors by Ma et al.11 linked type 2 diabetes to 24 risk factors; eight of the
twenty-four risk factors in their study overlappedwith ours, and of the eight
risk factors, five (body mass index, diastolic blood pressure, systolic blood
pressure, triglycerides, and cholesterol) showed the statistical significance of
associationwith type 2 diabetes in this study. Hypertension had the second-
highest number of associations with the RFPRSs. Similarly, Ma et al.11

identified 23 risk factors associated with hypertension, among which 8
RFPRS overlapped with those of our study and 5 RFPRS demonstrated
significant similarity (body mass index, diastolic blood pressure, standing
height, systolic blood pressure, and triglyceride).

Recently, Ma et al.11 explained 12 “YPRS + multi exposure PRS”
(similar to RFDiseasemetaPRS in this study) in the Michigan Genomics
Initiative (MGI). Among the 12 diseases, 7 “YPRS +multi exposure PRS”
exhibited enhanced prediction accuracy, compared with YPRS (58.33%; 7/
12). In our study, the prediction performance of 31 RFDiseasemetaPRSs
(72.09%; 31/43) increased. The effectiveness of our study may be attributed
to the utilization of a greater number of RFPRSs, comparedwith that of their
study. As an example, while RFDiseasemetaPRS of type 2 diabetes included
up to 82 RFPRS in this study, “YPRS + multi exposure PRS” of type 2
diabetes in their study included 24 exposure PRSs (Supplementary Data 3).

The significance of identifying high-risk groups using disease PRSs has
been underscored, given their prevalence and value in tailored prevention

Fig. 4 | Forest plot, with difference of R2 and 95% confidence interval using r2redux analysis between RFDiseasemetaPRS and disease PRS. Forest plot indicating
difference of R2, 95% confidence intervals, and p-value for predictive performance of RFDiseasemetaPRSs and disease PRSs across 43 diseases.
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strategies14,39–42. To achieve this goal, it is essential to demonstrate the
superior performance of PRS in risk stratification. Consequently, one of the
major challenges is the integration of multiple PRSs into a single predictor
that accurately reflects the complex nature of these variables, while avoiding
overestimation resulting from overlapping risk factors. In our study, we
addressed this challenge by employing an elastic net regression model,
which is known for its ability to handle high-dimensional data efficiently
through effective variable selection and coefficient shrinkage30. We eval-
uated the risk stratification of RFDiseasemetaPRS to distinguish the
genetically high-risk individuals, compared with disease PRS, leading to an
improvement in 31 diseases and more difference in disease incidence rate
over age andOR between the top 10% and remaining 90% PRS individuals.

These findings underscore the enhanced discriminatory power of the
RFDiseasemetaPRS in delineating variations in disease incidence.

For cardiovascular diseases, Lin et al.12 developed coronary heart dis-
ease biomarker polygenic score (CHDBioPRS) by combining the BioPRSs
of CHD associated biomarkers and the CHD PRS. They demonstrated the
enhanced predictive performance of CHDBioPRS compared to CHDPRS
for early onset CHD (onset age ≤55). We investigated whether the hazard
ratios for early onset of cardiovascular disease were higher with RFDisea-
semetaPRS compared to disease PRS. We selected cases of cardiovascular
diseases (I20, I21, I25, CAD, and CVD) with an early onset age (onset age
≤55) and conducted Cox regression analysis for the hazard ratio (HR) of
PRSs. We summarized the results in the Supplementary Table 14. All

Fig. 5 | Cumulative incidence plots illustrating the predictive performance of
RFDiseasemetaPRS and disease PRS. a, c, e, g, i, and k plots show the estimated
percentage of individuals diagnosed with disease by a given age, for two groups
classified by RFDiseasemetaPRS. b, d, f, h, j, and l plots show the estimated per-
centage of individuals diagnosed with disease by age, for two groups classified by
disease PRS. Line colors indicate the top 10% (red and blue), and the remaining 90%

(yellow and green) of respectively the RFDiseasemetaPRS and disease PRS,
respectively. Shading indicates 95% confidence intervals. a, b Essential (primary)
hypertension (I10), c, d type 2 diabetes (T2D), e, f coronary artery disease (CAD),
g, h disorders of lipoprotein metabolism and other lipidaemias (E78), i, j chronic
renal failure (N18), and k, l other chronic obstructive pulmonary disease (J44).
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RFDiseasemetaPRSs and disease PRSs for abovefive cardiovascular diseases
satisfiedwith statistical significance basedonBonferronimultiple correction
(P < 5.00E−03; 0.05/10). The HRs of RFDiseasemetaPRSs, ranging from
1.55 to 1.81, showed the 1.13-fold increased on average compared toHRs of
disease PRSs, ranging from 1.35 to 1.60. These results support the previous
report that the addition of biomarker PRSs in disease PRS increases the
predictive performance of PRS for early onset of cardiovascular disease.

Theweights calculated using elastic net regression indicated the degree
of influence on disease prediction. By comparing the RFPRS and disease
PRSweights, we can estimate the extent towhich RFPRSweights contribute
to the overall impact on disease prediction. For this purpose, we calculated
the ratio as a formula: ratio = absolute (sumof weights of RFPRSs)/(weights
of disease PRS). For example, the ratio of the weight of the RFPRSs to the
weight of disease PRS for N18 (chronic renal failure), which showed the
highest difference in NRI value between RFDiseasemetaPRS and disease
PRS, was 4.62. This implies that the 21 RFPRSs had a 4.62-fold effect on the
N18 PRS. In contrast, the sum of the RFPRS weights for M19 (other
arthroses), which showed the smallest difference inNRI value,was 0.30. The
correlation value between the NRI delta values and the ratio of weights was
55.12%, with a significant P of 1.31E−03 (Supplementary Table 13 and
Supplementary Fig. 31). The correlation value between the difference of R2

and the ratio of weights was 22.31%, with a non-significant P of 2.28E−01
(Supplementary Table 13 and Supplementary Fig. 31). There is a possibility
that diverse biological pathways affecting disease development exist, and
thesemaybepartially explainedby theRFPRSs.DiseasePRS sometimes fails
to fully capture these complex pathways, and instead, focuses on the most
immediate biological factors causing disease43. Consequently, RFPRS may
provide additional information that is not captured by PRS, leading to an
improvement in the performance of the prediction model.

Our studyhas few limitations. First, all analyseswereperformedusing a
single cohort, the UK Biobank. Therefore, replicating our results is essential
to ensure validity. Second, GWASs were conducted for both diseases and
risk factorswith a relatively small sample size of 170KEuropean individuals.
We opted tomaintain consistency and ensure the comparability of both the
RFPRS and disease PRS by generating GWAS data within the same fra-
mework.Third, besides the selected risk factors, awide rangeof other factors
are known to be associated with diseases, such as age44 and gender45,46.
However, givenour specific focusonheritable risk factors,we excluded these
factors from our analysis. Finally, we focused our PRSs generation and
evaluation on only European ancestry because of the limited diversity in
UKB47,48. Therefore, it is necessary to confirm the findings of the RFDi-
seasemetaPRS for better performance in non-European ancestry groups.

In conclusion, our study demonstrated the effectiveness of RFDisea-
semetaPRS in disease prediction by integrating disease-related RFPRSswith
disease PRS using elastic net regression. The inclusion of diverse biological
pathways via RFPRSs improved disease prediction for about 44% of the 70
diseases analyzed. These findings highlight the importance of considering a
wide rangeof risk factors indisease prediction.UtilizingRFDiseasemetaPRS
could provide personalized healthcare and tailored prevention strategies,
compared with the use of PRS alone for many diseases.

Methods
Disease definitions
The identificationof disease endpointswas identifiedon thebasis of hospital
diagnoses or death records. Disease endpoints were defined as the first
occurrence of a 3-character ICD-10 code, as obtained from the hospital
inpatient and death register data49.

We utilized the diagnostic data field of the UK Biobank (Field ID:
41270; July 2022), which provides a summary of the distinct diagnosis codes
for participants across all hospital inpatient records, regardless of whether
the diagnosis was in the primary or secondary position. The endpoints were
determinedbasedon thepresence of primary or secondarydiagnostic codes.
Disease cases were identified by matching the first three characteristics of
ICD-10 codes. Our study focused on the 673 diseases that had a prevalence
of 0.1% or higher and no sex-specific diseases among the 2085 diseases

defined by the first three characteristics of the ICD-10 code in the UK
Biobank White British unrelated samples (n = 348,977) (Supplementary
Data 2). Diseases that were subdivided based on their sex-specific incidence
were excluded. A list of sex-specific diseases is available in the database21. In
addition, previous studies have shown that 27 major diseases can be iden-
tified using other questionnaires. These questionnaires included the fol-
lowing: (1) self-reported non-cancer illness code (Field ID: 20002); (2) self-
reported cancer code (Field ID: 20001); (3) eye problems/disorders (Field
ID: 6148); (4) vascular/heart problems diagnosed by a doctor (Field ID:
6150); and (5) operative procedures (OPCS4 [Field ID: 41272]) (Supple-
mentary Table 15). These questionnaires provide additional information to
screen for 27 diseases and are currently being used in research. This
approach allows for a more detailed understanding of patients’ health
conditions and provides crucial data to aid in accurate diagnosis and
treatment. Consequently, these questionnaires contribute to the acquisition
of valuable information for medical research and clinical practice31.

Study population and design
We used the UK Biobank Resource, a population-based database that
recruited more than 487,409 individuals between 2006–201048. For quality
control of the samples, we used the following filter parameters of the Neale
lab (http://github.com/Nealelab/UK_Biobank_GWAS): PC analysis calcu-
lation filter for selecting unrelated samples; sex chromosome filter for
removing aneuploidy; filtering of PCs for European sample selection for
determining British ancestry; and filters for selecting self-reported “White-
British,” “Irish,” and “White.” The total number of unrelatedWhite British
participants was 348,977.

The 348,977 samples were divided into two subsets: the GWAS
(n = 174,488) and PRS (n = 174,489) sets. The GWAS set consisted of
unrelated White British Europeans (n = 174,488) with 53.7% being female.
The phenotypic information for these participants was collected during the
initial assessment period (2006–2010; instance 0) and was used for GWAS.
We performed a GWAS for diseases and risk factors in the GWAS set
(n = 174,488).

Individual PRSs for risk factor and disease were estimated using
LDpred2 in the PRS set (n = 174,489), of which 53.73% were female parti-
cipants. The phenotypic information for this set was also collected during
the initial assessment period (2006–2010; instance 0). We calculated the
individual PRS and investigated the association between RFPRSs and dis-
eases in the PRS set (Supplementary Fig. 1). In the PRS set (n = 174,489), we
first performed an association analysis using logistic regression to examine
the relationship between each RFPRS and disease. Subsequently, we utilized
elastic net regression to balance RFPRS selection and coefficient shrinkage
on the disease, adjusting for sex, age, genotyping array, and PC1-10. Then,
we obtained reweighted coefficients, which indicate the combined impact of
these RFPRSs on the disease, accounting for other factors.

To calculate and assess RFDiseasemetaPRS, we extracted unrelated
White British samples from the UK Biobank resource (validation set;
n = 56,192),which comprised56.43% femaleparticipants.Thevalidation set
(n = 56,192) was introduced in a previous study by Thompson et al.31. A
validation set was created to avoid sample overlap with the GWAS and PRS
sets (n = 348,977). We extracted the validation set as follows: (1) selecting
samples coded as “Yes” in UK Biobank PRS release testing subgroup (Field
ID: 26200); (2) selecting samples identified as having aWhite British, Irish,
or any white background (Field ID: 21000), (3) thereby excluding the
348,977 samples used in the GWAS (n = 177,488) and PRS (n = 174,489)
sets. Finally, we used 56,192 samples as the validation set to calculate and
evaluate RFDiseasemetaPRS and disease PRS (Supplementary Fig. 1).

Ethics approval and consent to participate
All participants provided signed consent to participate in the UKB (Bio-
bank, 2007). The UKB has been granted ethical approval to collect parti-
cipant data by the North West Multicenter Research Ethics Committee,
which covers the United Kingdom; the National Information Governance
Board forHealth and Social Care, which covers England andWales; and the
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Community Health Index Advisory Group, which covers Scotland. The
UKB possesses a generic Research Tissue Bank approval granted by the
National Research Ethics Service (http://www.hra.nhs.uk/), which allows
applicants to conduct research on UKB data without obtaining separate
ethical approval. Access to the UKB data was granted under application no.
83990: “Genetic and environmental analysis for disease predictionmodels.”

Data of risk factors
From the Neale lab dataset (https://nealelab.github.io/UKBB_ldsc/h2_
browser.html)26 of UK Biobank, we selected 112 quantitative risk factors
based on criteria as follows: (1) being quantitative traits, (2) showing more
than 10% genetic heritability, and (3) having more than 100,000 unrelated
sample sizes.We excluded ordinal data type such as age completed full-time
education (Field ID: 845), time spent watching television (TV) (Field ID:
1070),morning/evening person (chronotype) (Field ID: 1180), comparative
body size at age 10 (Field ID: 1687), comparative height size at age 10 (Field
ID: 1697), relative age of first facial hair (Field ID: 2375), age when periods
started (menarche) (Field ID: 2714), birth weight of first child (Field ID:
2744), and eosinophil count (Field ID: 30150). Sensitive information data,
such as age and first sexual intercourse (Field ID: 2139), were excluded.
Female-specific factors including age at first live birth, age at last live birth,
and age at menopause (last menstrual period) were excluded from the
analysis. The basic characteristics of the 112 risk factors in the unrelated
UKB White British set (n = 348,977) analyzed in this study are shown in
Supplementary Table 1.

Genotype data
The487,409UKBsubjectswere genotypedusing theUKBAxiomArray and
UnitedKingdomBiLEVEAxiomArray fromAffymetrix50. Genotypes were
imputed using the Haplotype Reference Consortium (HRC) and the
UK10K haplotype resource51. Next, we performed quality control of SNPs
using PLINK v.1.9027 based on the following exclusion criteria: SNPs with
missing genotype call rates >0.05, minor allele frequency <0.01, Hardy-
Weinberg equilibriumP < 1.00× 10−6, insertion-deletion. Finally, 1,141,242
SNPs were extracted for further analyses after referring to the HapMap 3
SNPs and strand-ambiguous SNPs (i.e., SNPs with alleles A/T or C/G)52,53.

GWAS
We performed a GWASs on the risk factors and diseases in the GWAS set
(n = 174,488) using the linear regressionmodel provided by PLINKv.2.0027.
For the risk factors, the following linear regression formula was used:

Risk factor∼ β1 genotypeþ β2 ageþ β3 sexþ β4 genotyping array þ β5 PC1þ β6 PC2

þ β7 PC3þ β8 PC4þ β9 PC5þ β10 PC6þ β11 PC7

þ β12 PC8þ β13 PC9þ β14 PC10;

ð1Þ

where, β1 denotes the effect size of genotype (coded as 0, 1, or 2), β2 denotes
the effect size of age at recruitment (ranging from 40 to 69), β3 denotes the
effect size of sex (coded as 0 or 1 for female ormale, respectively), β4 denotes
the effect size of genotyping array (coded as 0 or 1 for theUKBAxiomArray
and the UK BiLEVE Axiom Array50), and β5 ~ β14 denote the effect size of
PC1–PC10, which accounts for any population stratification or ancestry
differences between individuals in the study.

For diseases, the following logistic regression formula was used:

Diseaseðcoded as 1 or 0Þ∼ β1 genotypeþ β2 ageþ β3 sexþ β4 genotyping arrayþ β5 PC1

þ β6 PC2þ β7 PC3þ β8 PC4þ β9 PC5þ β10 PC6

þ β11 PC7þ β12 PC8þ β13 PC9þ β14 PC10;

ð2Þ

Where, β1 denotes the effect size of genotype (coded as 0, 1, or 2), β2 denotes
the effect size of age at recruitment (ranging from 40 to 69), β3 denotes the
effect size of sex (coded as 0 or 1 for female ormale, respectively), β4 denotes
the effect size of genotyping array (coded as 0 or 1 for theUKBAxiomArray

and the UK BiLEVE Axiom Array50), and β5 ~ β14 denote the effect size of
PC1–PC10, which accounts for any population stratification or ancestry
differences between individuals in the study.

Estimation of RFPRS and disease PRS
We estimated PRS using LDpred2 version 1.4.7, an algorithm that uses a
Bayesian approach for polygenic risk scoring. Ldpred2 considers the LD
relationship between SNPs and reweighs the effect size of the SNPs esti-
mated usingGWAS29. First, we calculated the LD correlationmatrix among
1,149,057 SNPs (HapMap 3 variants) using 10,000 unrelatedWhite British
samples thatwere randomly extracted from364,761unrelatedWhiteBritish
samples52,53. Second, we reweighted the effect size of the SNPs estimated
using aGWAS29. Each SNPwas assigned aweight based on the LD-adjusted
effect size using an infinitesimal Ldpred2 model, which assumes that all
genetic variants are causal. Finally, we constructed individual PRSs as the
sumof theweighted risk effect sizes of the SNPs in the PRS set (n = 174,489).
The PRS of individual j, as a weighted sum of SNP allele counts, was for-
mulated as follows:

dPRSj ¼
Xm

i¼1

bb1xij; ð3Þ

wherem is the numberof SNPs included, b̂i is the estimated reweight for the
effect size of SNP i, xij is the number (0, 1, or 2) of trait-associated alleles of
SNP i in individual j.

Construction of RFDiseasemetaPRS
We selected the risk factors related to each disease using association analysis
adjusted for age, sex, genotyping array, andPC1–10 in the PRS set. Each risk
factor PRS was standardized (zero mean, unit standard deviation). The
association analysis was performed as follows:

Diseaseðcoded as 1 or 0Þ∼ β1 RFPRSþ β2 ageþ β3 sexþ β4 genotyping array

þ β5 PC1þ β6 PC2þ β7 PC3þ β8 PC4þ β9 PC5

þ β10 PC6þ β11 PC7þ β12 PC8þ β13 PC9þ β14 PC10;

ð4Þ

where, β1 denotes the effect size of each risk factor PRS, β2 denotes the effect
sizeof age at recruitment (ranging from40 to69),β3 denotes the effect size of
sex (coded as 0 or 1 for female or male, respectively), β4 denotes the effect
size of genotyping array (coded as 0 or 1 for the UKB AxiomArray and the
UK BiLEVE Axiom Array)50, and β5 ~ β14 denote the effect size of
PC1–PC10, which accounts for any population stratification or ancestry
differences between individuals in the study.

To integrate multiple RFPRSs associated with each disease in the
RFDiseasemetaPRS, we used elastic net regression23,30,54. Elastic net regres-
sion is a statistical method that combines LASSO and Ridge regression
techniques to balance variable selection and coefficient shrinkage when
dealing with predictive modeling and numerous predictors. It incorporates
both L1 (LASSO) and L2 (ridge) penalties into the loss function, thereby
promoting sparsity for variable selection and handling of multicollinearity.
The elastic net hyperparameter can be adjusted to control the tradeoff
between these penalties, rendering it valuable for analyzing high-
dimensional data and identifying crucial predictors. In addition, we used
the R packages “glmnet” to obtain per-risk factor PRS weights for the dis-
ease, adjusting for age, sex, genotyping chip (UKB vs BiLEVE), and 10
genetic PCs in PRS set. A range of models with different penalties was
evaluated using 10-fold cross-validation. To focus on selecting the optimal
model with the smallest lambda value, which corresponds to the minimum
error, we portioned the dataset into ten subsets using nine for training and
one for validation. The optimal model with the smallest lambda value
yielding the highest cross-validatedAUCwas selected. For each disease, the
RFPRS used in the elastic net regression are summarized in Supplementary
Data 3, and those, including the information on the per-risk factor PRS
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weights used in the optimal model, are summarized in Supplemen-
tary Data 5.

In the validation set (n = 56,192), we estimated the SNP effects for risk
factors. The per-risk factor PRSweights γ1,…,γc derived from the elastic net
model were converted to an equivalent per-SNP score via aweighted sum as
follows,

ðPRSmetaÞi ¼
Xm

j¼1

xijð
γ1
σ1

αj1 þ � � � þ γc
σ
αjcÞ; ð5Þ

where,m is the total number of SNPs, c is number of associated risk factor
for each disease, σ1,…,σc are the empirical standard deviations of each of
PRSs in PRS set (n = 174,489), αj1,…,αjc are the SNPweight estimate for the
jth variant in each of the risk factor PRSs, respectively, and xij is the genotype
for ith individual’s jth variant. Per-risk factor PRS weights were used to
construct the RFDiseasemetaPRS. Risk factor level SNPweights were scaled
according to the per-risk factor elastic net regression weights and PRS set
standard deviation and then summed over traits to create RFDiseaseme-
taPRS SNP weights.

Statistics and reproducibility
To investigate the association between risk factors and diseases in the PRS
(n = 174,489) and validation (n = 56,192) sets, a logistic regression model
was constructed using R statistical package version 4.1.0, as follows:

Diseaseðcoded as 1 or 0Þ∼ β1 RFPRSþ β2 ageþ β3 sexþ β4 genotyping array

þ β5 PC1þ β6 PC2þ β7 PC3þ β8 PC4þ β9 PC5

þ β10 PC6þ β11 PC7þ β12 PC8þ β13 PC9þ β14 PC10;

ð6Þ
where, logit(Disease) is the log odds of binary outcome variable disease
(coded as 1 for control or 2 for case), age range is from 40 to 69, sex is coded
as 0 or 1 for female ormale, array is the genotyping array coded as 0 or 1 for
the UKB Axiom Array and the UK BiLEVE Axoim50, and PC1–PC10
account for any population stratification or ancestry differences between
individuals in the study. These formulas differ in the inclusion of different
variables.

We evaluated the predictive accuracy of RFDiseasemetaPRS in com-
parisonwith disease PRSusingNRI. For this analysis, we split our validation
set (n = 56,192) into two equal subsets: AModeling set (n = 28,096) and an
evaluation set (n = 28,096). RFDiseasemetaPRS was developed using a
logistic regression model adjusted for age, sex, PC1-10, and the genotyping
array. We assessed its prediction performance metric using the continuous
NRI, employing the “PredictABEL”55 package in R.

To understand the incremental benefits of our models, we first estab-
lished a null model (referred to as the “old model”) that incorporated age,
sex, genotyping array andPC1-10.We then developed twonewmodels: one
that added RFDiseasemetaPRS (new model 1), and another that added
disease PRS (new model 2) to the null model. The NRI quantifies how well
these newmodels differentiate between cases and controls compared to the
null model, thereby considering both upward and downward risk
reclassifications.

The formula for calculating the censoredNRIwhen comparing thenull
model with new models 1 and 2 is as follows:

NRI ¼ Pðupnewmodel > nullmodeljCaseÞ � Pðdownnewmodel < nullmodeljCaseÞ
þPðdownnewmodel < nullmodeljControlÞ � Pðupnewmodel > nullmodeljControlÞ: ð7Þ

We generated and NRI indices for both “null model vs. new model 1”
and “null model vs. newmodel 2” and compared these indices to assess the
relative predictive performances.

Weassessed the significance of thedifference inR2 betweendiseasePRS
and RFDiseasemetaPRS using r2redux32,33 package in R, which implements
amethod to test the difference between the prediction performance of a pair
of PRSs.

To estimate the HR, we performed the Cox proportional hazards
models using R package “survival” on I20, I21, I25, CAD, and CVD. In this
case, the onset agewasused as the time variable in theCox regressionmodel.
Also, the cases with late onset were excluded and the control cases were
censored at the upper limit of the early onset age.

To investigate the influence of RFPRS in the RFDiseasemetaPRS, we
calculated the ratio of sumofweights of RFPRSs toweights of disease PRS as
a result of elastic net regression. The formula is as follows:

Xn

i¼1

RFPRSweighti
disease PRS

�����

�����; ð8Þ

where n is the total number of RFPRS used for the RFDiseasemetaPRS.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The individual-level genotype and phenotype data of UK Biobank are
available by application from http://www.ukbiobank.ac.uk/. All data sup-
porting the findings of this study are available within the paper and its
supplementary information files. The GWAS summary data are deposited
in GWAS catalog (GCST90309819 to GCST90309930) and Zenodo
(https://zenodo.org/records/10477575). The 112 risk factor PRSs, 70disease
PRSs and 70 RFDiseasemetaPRSs investigated in this manuscript are
available at the PGS Catalog under PGP000561 (https://www.pgscatalog.
org/publication/PGP000561). Source data underlying the plots presented in
the Figs. 2, 4, and 5 are available as Supplementary Tables 9, 11, and as
Supplementary Data 1 respectively.
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