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Longitudinal monitoring of the mouse
brain reveals heterogenous network
trajectories during aging
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The human aging brain is characterized by changes in network efficiency that are currently best
captured through longitudinal resting-state functional MRI (rs-fMRI). These studies however are
challenging due to the long human lifespan. Here we show that the mouse animal model with a much
shorter lifespan allows us to follow the functional network organization over most of the animal’s adult
lifetime. We used a longitudinal study of the functional connectivity of different brain regions with rs-
fMRI under anesthesia. Our analysis uncovers network modules similar to those reported in younger
mice and in humans (i.e., prefrontal/default mode network (DMN), somatomotor and somatosensory
networks). Statistical analysis reveals different patterns of network reorganization during aging.
Femalemice showed a pattern akin to human aging, with de-differentiation of the connectome,mainly
due to increases in connectivity of the prefrontal/DMN cortical networks to other modules. Our male
cohorts revealed heterogenous aging patterns with only one group confirming the de- differentiation,
while the majority showed an increase in connectivity of the somatomotor cortex to the Nucleus
accumbens. In summary, in line with human work, our analysis in mice supports the concept of de-
differentiation in the agingmammalian brain and reveals additional trajectories in agingmice networks.

A gradual age-related decline of most biological processes including
alterations in brain structure and function have been extensively reported1,2.
These brain changes are concomitantwith cognitive impairments leading to
the hypothesis that structural and functional alterations may contribute to
cognitive decline in several pathological conditions, such as Alzheimer
disease3.Most of the aging studies inhumanrest uponcross-sectional design
which are shown to be limited in terms of estimations of age-related changes
over time compared to a longitudinal setting4.However, this is often difficult
in humans due to the long observational window required to detect age-
related changes. While pathological aging is typically not found in non-
humans, other mammalian biological processes display a similar gradual
decline of function5. Given their shorter lifespan (months versus decades),
rodent animal models of aging are advantageous by substantially reducing
the observational window required. However, there are currently no long-
itudinal mice studies of changes in brain function. It is therefore not known
whether the aging mouse brain shares features of human brain aging.

Studying aging in another mammalian brain could allow an understanding
of age-related changes that are specific for the human brain, and whether
other mammals show similar vulnerability.

Advances in functional magnetic resonance imaging (fMRI) during
resting-state (rs-fMRI) have revealed that several brain regions show slow,
correlated,fluctuations inhemodynamic brain responses6–8. The application
of graph theory has allowed researchers to characterize functional brain
networks9 as a set of nodes and edges in a flexible and simple representation
for whole-brain network analysis10. Using this approach it became possible
tomathematically divide thehumannetwork into segregated groupsofwell-
connected communities/modules, such as the default-mode network
(DMN), the fronto-parietal, somatosensory-motor networks and the dorsal
and ventral attention networks7. Network analyses can detect common
features, such as hubs, number of edges connecting nodes, modules of
closely related nodes, and importantly, allows analyses to relate changes in
the hubs/nodes connectivity to different neuro-psychiatric diseases11. The
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combination of rs-fMRI and network analysis have revealed an important
facet of humanaging: changes in thedegree of integration and segregationof
functional brain networks12. In human aging, the degree of segregation of
these networks becomes blurred, characterized by a reduction of within
module connectivity and an increase of between module connectivity12,13.
Changes in whole brain graph properties during aging have also been
described regarding parameters as local efficiency and modularity14,15. Such
graph properties are less dependent onmodule detection as required for the
segregation index. While the relationship between network changes during
aging and cognition is not fully understood, it has become clear that changes
inmodule configuration are neurological hallmarks of cognitive decline 16,17.

Studies in rodents have reported the typical resting state networks. A
consensus paper18 on rodent rs-fMRI showed large similarities in data
acquired from various groups under different conditions (e.g., MR setup,
anesthesia). A connectivity analysis of the mouse brain from 17 data sets
revealed multiple components consistent with a latero-cortical network
(somatomotor and somatosensory areas), the DMN (prefrontal, cingulate/
retrosplenial, and temporal associative areas) and the insular area (AI).
Egimendia andcolleagues19 extended the analysis to includeolder animals in
a cross-sectional functional connectivity studyof 2 to 13months oldC57BL/
6 J male mice, covering young-adult to middle age20. Interestingly, they
found globally decreased functional connectivity in middle-aged mice
(12–13 months) compared to 8–9 months mice. However, cross-sectional
age-related differences might deviate from longitudinal trajectory and thus
longitudinal studies are called for to characterize the trajectoryof age-related
changes, particularly for old mice (18–24 months). Longitudinal studies of
functional connectivity in older rodents are difficult, due to the potential
fragility of such animals. Given the substantive benefits of investigating
aging in animal models, longitudinal evaluations are desperately needed to
clarify the general biological processes underlying human aging. Thus, in
this study, we aim to extend the rs-fMRI analysis to show that the mouse
animal model is usable for longitudinal monitoring of brain activity in old
mice. More specifically, we set out to estimate age-related changes in brain
functional organizationusing graph theoretic approach akin to thoseused in
human brain aging analysis of network dynamics, i.e., analysis of commu-
nity/module de-segregation. Furthermore, we also wanted to look at the
effect of aging on additional network properties (node and edge properties)
to uncover any critical hubs and whether these nodal graph measures can
uncover any brain regions that are most associated with brain aging.

Results
Age-related network reorganization
Using Louvain clustering, we defined network partitions based on indivi-
dual functional connectivity matrices across three time points corre-
sponding to 12, 18, and 24 months of age. Group-average connectivity
matrices are depicted for each time point in Fig. 1a–c. The lower triangle
depicts thresholded networks based on one-sample t-tests (different from
zero; p < 0.05; FDR-corrected). We used baseline observations, i.e.,
12 months, to classify a group-level consensus partition, yielding six net-
works (Fig. 1d). The first three networks largely corresponded to prefrontal/
DMN, somatomotor, and somatosensory networks, while the latter three
networks depicted more integrated structures, including a limbic-visual-
auditory network, midbrain-cerebellar, and bilateral thalamus. A complete
list of nodes and network associations are presented in Supplementary
Data 1. To investigate the classification consistency of our network archi-
tecture, we quantified the number of iterations for which individual nodes
were correctly assigned to their consensus partition. Greater consistency in
network assignment reflects greater network-specific connectivity, while
lower classification consistency implies that a node expresses greater inte-
gration between two or more networks. We observed the greatest con-
sistency within DMN, somatomotor, and somatosensory networks, while
the limbic and two subcortical networks expressed larger classification
inconsistencies. This indicates that subcortical nodes, particularly thalamus,
midbrain and cerebellum, exhibit greater network integration compared to
their cortical counterparts. Next, we set out to investigate age-related

reorganization in network architecture. To this end, we compared network
partitions computed at 12, 18, and 24 months of age. The latter two time
points yielded seven networks. Changes in network architecture and its
reorganization are presented in the flow charts in Fig. 1e with colors illus-
trating network assignment at baseline. We observed that the DMN and
midbrain-cerebellar networks remains relatively stable across all three time
points, while somatomotor and somatosensory regions merge into two
integrated networks at 18 and 24 months compared to baseline.

We further compared our correlation matrices at 12 months to pre-
vious rsfMRI results using the sameAtlas ROIs18. Grandjean and colleagues
used an independent component analysis and derived 13 ICAand the ROIs’
loadings on these components.We compared the functional connectivity of
ROIs that had large loading on an ICA (threshold value 1.5 independent
component analysis loading)with their ICAscoring (Supplementary Fig. 1).
The comparison confirms that higher independent component analysis
scores are associated with positive correlations, pointing to similar results
from the two analyses.

Taken together, Louvain communalities can be detected at 12 months
that in part are like those reported previously, i.e., DMN, somatomotor, and
somatosensory networks. The flowchart depicting the communalities at 12,
18 and 24 months shows variability in the communalities during aging.
Next, we want to quantify the changes between the communalities.

Changes in network segregation during aging
To investigate age-related changes in within and between-modules reorga-
nization (i.e., functional connectivity matrices depicted in Fig. 1a–c), we
calculated the segregation index. Age was defined as days between scan date
and date of birth. Results are presented in Fig. 2a, showing the segregation
index and within and between mean ROI-ROI correlations. Including all six
modules found at 12 months into the segregation index (SI) does not reveal a
significant effect of age (t= 0.156, p= 0.88). However, limiting the analysis to
themost reliablemodules based on the percentage of correct labeling (Fig. 1f),
we obtained the SI for the first three: prefrontal/DMN, somatomotor, and
somatosensory networks (SI3). This now reveals a significant decline in the
segregation index (Fig. 2b: t=−2.24, p= 0.026) and is based on the com-
bining effects of a non-significant decrease in the within functional con-
nectivity (Fig. 2b: t=−1.2, p= 0.23) and increase in the between module
connectivity (Fig. 2b: t= 1.61, p= 0.11). The SI3 calculation also revealed six
mice that had very low SI3 at 12 and 18 months (below 0.43) that further-
more either developed neurological symptoms or died early on of unknown
reasons (listed in Supplementary Table 1 and Supplementary Data 2). These
mice were therefore excluded from further analysis. We also tested the effect
of multiple anesthesia’s on network segregation and found no statistical effect
on the SI3 (see Supplementary Information, Supplementary Note 1).

Statisticalmodeling the interactionof sex and cohort on aging, revealed
no significant interaction between sex and age, and in contrast a significant
interactionof cohortmembership and agewith cohortC showing the largest
interaction with age (t =−3.28, p = 0.0014). In a next step we stratified our
results according to the animal’s sex and cohort affiliation (Fig. 2c–e) and
found that female mice showed a highly significant decrease in SI3 (Fig. 2e:
t =−3.8, p = 0.0004 for females, compared to t =−1.2, p = 0.23 for males).
Further stratifying the mice into different cohorts showed that some male
cohorts (C2) also reveal a significant decrease in SI3 (Fig. 2e: t =−3.4,
p = 0.003). Therefore, we regrouped the mice into group Y (male cohorts
A1/2 and C1) and group X (all females and male cohort C2).

Global network analysis
Next, we tested whether our results of network de-segregation was also
supported throughother global network properties.We examined six global
graph metrics to assess network characteristics over time and plotted the
three showing largest changes in Fig. 3. These characteristics included
network integration (characteristic path length/CPL), segregation (mod-
ularity) and assortativity. We compared the different grouping: sex vs
grouping X/Y (based on similar SI3 changes during aging).We did not find
any significant effect of time alone on any of the graph measures (see Fig. 3
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and Table 1 for details on statistics). We found significant effect of sex on
CPL, modularity and assortativity. These became larger when comparing
group Y vs X.We also found that CPL yielded significant interaction of age
and sex in females showing a decrease in CPL during aging, while males
showed a tendency to increase their CPL. The grouping X vs Y confirmed
and yielded significant interactions for all three parameters with the largest
changes observed inmodularity, with a decrease in group X and increase in

group Y. These results agree with the de-segregation as measured by the
segregation index SI3 and further confirms the grouping of themice into an
X and Y groups.

Graph network analysis – node properties
To understand age-related changes in functional connectivity beyond
individual edges in the first three modules, we computed four network
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Fig. 1 | Reproducibility and dynamics in mice aging brain networks. a–c Mean
ROI to ROI Fischer’s transformed z-score including both positive and negative
correlations are shown in the upper triangular part for each time point. a 12months
(total/male/female: 50/33/17), (b) 18 months (47/31/16) and (c) 24 months (36/20/
16). The lower triangular part shows the −log10 of the p-values derived from an
independent one-sided t-test for each pair of ROIs (threshold p < 0.05, FDR cor-
rected). The color bar on the left relates to the lower triangular part (−log10 p-
values) and on the right to the correlation z-scores. d 12 months Louvain modules.
Modules and their ROIs are color coded and plotted at their mean spatial location.
e Trajectories of computed Louvain modules during aging. Modules display

different stability. The six modules at 12 months split, diverge, and rejoin into 7
modules at 18 and 24months. f Individual level reproducibility of Louvainmodules:
The frequency that a ROIs was correctly assigned to itsmodule was quantified and is
plotted for the three time points at which the mice were scanned. Most ROIs
changed their percentage of correct assignment. However, equal numbers showing a
decrease as well as an increase in correct assignment between the time points. Some
of the largest increases were observed at later ages (18 and 24months) in the first two
modules. This includes the prelimbic and orbital areas of the 1st module (e.g.,
prefrontal/DMN) and caudoputamen and pallidum of the second somatomotor
module (see Supplementary Data 2 for descriptions and ROI number assignment).
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metrics to characterize graph properties on the nodal level. Namely, degree
centrality (representing the number of neighboring nodes), betweenness
centrality (hubs connecting two separate clusters), nodal efficiency (inverse
of the average shortest path connecting all neighbors) and clustering coef-
ficient. Node metrics and ROI’s that show significant changes are listed in
Table. 2. The measures that yielded both similar results and were most
sensitive were nodal efficiency and degree of centrality. Combining left and
right areas and looking at the changes through anLMEanalysis showed that
areas that decreased their connectivity were the secondary somatosensory
(Sss) and the primary somatosensory area (Ssp.n), while the Nucleus
accumbens showed an increase in nodal efficiency/degree of centrality.
These changeswere confirmed in groupY,while groupX showed adifferent
trend by increasing the nodal efficiency of the prelimbic cortex and anterior
cingulate area.

In Fig. 4a–c we added LME edge statistics (same as plotted in
Supplementary Figs. 2) to the results of nodal efficiency. Increases of
nodal efficiency are plotted in red, while decreases are shown in blue
with size and thickness corresponding to the modulation strength
(thresholded at p < 0.05, FDR corrected). Evident is the decrease in
supplemental somatosensory areas’ nodal efficiency in group Y

(Fig. 4b) and an increase in the connectivity of the Nucleus accum-
bens. The changes in edge statistics were quantified in Supplementary
Fig. 2d–n. The strongest effects were found in slope increases in
within-module connectivity in group Y (ks stat 0.48, p = 0.0001).
While group X showed the strongest effects in slope decreases
(ks2stat 0.41, p = 0.0001) in within module connectivity (Supple-
mentary Fig. 2k), mainly due to a decrease (ks2stat 0.41, p = 0.0001)
in intrahemispheric connectivity (Supplementary Fig. 2m). The lar-
gest number of changes were observed in group Y in the between
module connectivity (Supplementary Fig. 2l: 660 vs. 300 counts) and
these were mainly due to decreases (Supplementary Fig. 2n) in
interhemispheric connections (474 counts in Y vs. 204 in X).

Group X showed an increase in the nodal efficiency of the prelimibic
prefrontal/DMN node (Fig. 4c, f) accompanied by increases in the con-
nection to most other modules (Fig. 4c). Figure 4 also compares the nodal
efficiencies within the different cohorts. Evident is that the secondary
somatosensory cortex andNucleus accumbens show the largest changes and
that they are present in most male cohorts (Fig. 4e, h). In contrast, females
display stronger changeswithin the prelimbic cortex, but these are restricted
to the B cohort.

Fig. 2 | Segregation index inmice aging brain networks.The segregation index (SI)
was computed at different ages by using the Louvainmodules classification obtained
at 12 months. This allows to compare within and between functional connectivity
and the influence of age. The segregation index (a and b in black) from the within
(a and b in red) and between (a and b in blue) module resting state functional
connectivity’s is calculated for each individual using positive correlations only. No
statistically significant changes in the SI were detected when all modules were
included (b: Age: t = 0.16, p = 0.88, df=129). When only the first three modules were
taken into consideration (SI3 in b) a significant decline in the SI3 (Age: t =−2.24,
p < 0.027, df=129) during aging was evident, mainly due to an effect of female mice
which showed a significant decrease as revealed when we looked at the interaction
between age and sex (SI3~ ~ Age * Sex + (1 | ID): t =−1.2, p = 0.23; Sex (Female):
t = 2.5, p < 0.013; Age/Sex: t =−1.5, p = 0.13). We next tested the effect of sex and
group composition by looking at different cohorts (c–e) as defined by different

vendors and group size composition. A comparison of our two cohorts that were
obtained as adults from the vendors (c) confirmed that females showed a decline in
the SI3 (Age: t =−2.06, p = 0.0488, df = 27). The female result was also confirmed in
the cohort that was bred at the local animal facility (d) with age showing a significant
effect on the decline of SI3 (age: t =−7.3, p = 0.000003, df = 15).Male cohorts largely
did not show a significant decline in the SI3, except for one cohort. Themale cohortC
(Fig. 2d) was further divided into a cohort with a group size of 3 (C1) and one with
group size of 5 (C2), with the former showing a non-significant increase in SI3
(t = 1.13, p = 0.28, df = 11) and the latter a significant decrease in SI3 (t =−3.39,
p = 0.003, df = 19). Figure e depicts the slopes of the LME fits and shows the
regrouping of cohortsA1,A2, andC1 into groupYandmaleC2with females C andB
into groupX. Figure e also includes the groups sizes of the cohorts and the number of
individuals (#mice) and total number of scans per cohort. Error bars in e are the LME
standard error of the coefficient estimate.
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Discussion
In vivo longitudinal analyses of brain networks are critical to
understand brain aging1,4,21. In humans, longitudinal studies are dif-
ficult; nevertheless, few if any longitudinal fMRI of aging mammalian
brains have been conducted so far. Here we show that adult lifespan
imaging approaches in mice are feasible and that they can provide
additional insights into altered brain network organization at an
advanced age.

One challenge in animal longitudinal studies is drop-outs due to
experimental-related intervention (e.g., anesthesia or surgery) at old age. In
our experience, using light anesthesia with α2-adrenoreceptor agonist
medetomidine and low isoflurane22 could limit this loss to about 12% up
until old-age and allows for repeated anesthesia (up to 10) and long data
acquisition durations (up to two hours). A limitation of our approach is the

alteration of network activity due to anesthesia. Recent studies, however,
have shown that light anesthesia such as used in our study retains similar
network activity in cortical DMN and frontal networks as in the awake in
rodents23,24 and in humans25. Critically, these networks are important in
studying brain aging26. A different result was obtained by Paasonen and
colleagues27 using other anesthesia. They showed that rats urethan or pro-
pofol anesthesia had larger similarity to their awake rat networks compared
to medetomidine-low isoflurane. This contrasts with a meta-analysis that
showed that inmice themedetomidine-low isoflurane combination showed
similar high functional connectivity’s as in the awake condition18. The recent
studybyGutierrez-Barraganandcolleagueshas successfullyused rs-fMRI in
awake mice at a younger age (<6 months) by head-post implantation and
habituating the animals to theMR environment. Thismay then allow for an
additional path to monitor further aspects of aging brain networks.
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Fig. 3 | Comparison of sex and cohorts global graphnetworksmeasures. Statistical
comparison using an LMEmodel of global graph measure and age and either sex or
group Y/X interaction with individuals as random factor (a, c, e Global graph
measure ~ 1 + Age * Sex + (1 | ID) or b, d, f Global graph measure ~ 1 + Age *
Group (Y/X)+ (1|ID)). The largest effect was observed on modularity and char-
acteristic path lengths (CPL) with significant effect of sex or group and age:sex or

age:group interaction. Group X showed larger assortativity (a), CPL (c), and mod-
ularity (e) at an early age with a subsequent decline, while group Y showed the
opposite. Data plotted are from n = 58 individuals and 133 observations. The
detailed statistics of different graph properties are listed in Table 1. Confidence
regions plotted correspond to 95% confidence intervals.
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Another critical aspect of using rodent animals for studying agingbrain
is the translational potential of the results to relevant findings in humans.
We therefore selected our data analysis approach to be in line with those
used in prevalent human aging studies: Atlas-based functional connectivity
of ROIs and subsequent differentiating into modules to distinguish within
and between-module connectivity12. Our Louvainmodule analysis revealed
stable components in the first three modules, allowing to study within and
between module connectivity.

A major finding in our study is that we have two patterns of brain
network changes during aging. In femaleC57BL/6Jmice there is an increase
in between-module connectivity and an opposing trend of connectivity
declinewithinmodules. This leads to a de-segregation of brainmodules and
decreased characteristic path length and modularity. Most male C57BL/6 J
mice show little global network changes, but amarked decline in functional
connectivity of the second somatosensory cortex together with an increased
connectivity of the N. accumbens. We also calculated additional global
graphmeasures to test whether Louvainmodule assignment influenced the
segregation index. The changes we observe in the characteristic path length,
modularity and assortative are in line and confirm our de-segregation/
segregation results and show that they are not biased by the module
assignment.

The de-segregation of modules during aging (associated with a decline
in the segregation index) is a hallmark of human brain aging12,17. Our study
confirms that this can also be observed in mice; however, mostly in females
showing a de-segregation of networks, while most males show few changes
in network segregation. Nevertheless, in all our analysis that we refined to
animals grouped by their different cohorts, the sex effect was non-stringent
with for instance somemales also showing ade-segregationof theirmodules
during aging. Therefore, additional factors such as the social environment
may also shape the networks trajectory during aging. We grouped animals
into different cohorts based on vendor source, cage affiliation and group size
as ameans to verify the sex effects. Thiswas done under the assumption that
mice from same source that grow old together in the same cage will share a

similar upbringing and social environmental influences. Different social
environments could be for instance shaped by different levels of aggression
that would also be expected to bemore prevalent tinmale C57BL/6 Jmice28.
Furthermore, recent studies confirm the emergence of individuality within
inbred female C57BL/6 Nmice and point to additional sources of variation
and require methods quantifying social interactions covering the animals
life29.

Human studies of brain connectivity have confirmed some sex dif-
ferences in the DMN network30–32. Interestingly, these changes showed
different trajectories with aging, with females showing either slower decline
of DMN connectivity32 or different decline topography31, with anterior
DMNshowing adeclinewhile posteriorDMNan increase in connectivity in
females. Most human studies are limited to a cross-sectional design due to
the longer human lifespan. This has several disadvantages2 and leads to a
bias to exclude individuals that will develop cognitive symptoms early on31.
Interestingly, human studies utilizing a longitudinal design17,33,34 show a
rather limited effect of sex on human brain aging.

A current deficit of mouse animal models is the scarcity of behavioral
tests that probe the prefrontal/DMN networks functions. Clearly, primate
behavior allowsmuch closer links to human cognitive functions but retains
the disadvantage of a much longer lifespan. Nevertheless, other behavioral
studies of aging rodents allow us to draw some parallels to the observed
male/female network reorganizations.Male Fischer 344 rats showed a larger
impairment in their spatial memory during aging35 associated with a
stronger decline in their physical activity.Higher physical activity in rodents
is generallymaintained over a longer period in females, withmales showing
a stronger decline36,37. Inmammals, females generally live longer thanmales
due to various factors including a full duplicate of chromosomes, protective
hormones38, less aggressive social interactions39 and more social
communications40. It is conceivable that at least some of these factors (e.g.,
enhanced demands of social interactions) show a similar influence on
network aging leading to a similar aging trajectory as in humans. Future
studies are required (measuring hormone levels, studying cellular effects of
hormones in aged mice brains, evaluating social interactions during aging)
to understand the effect of some of these factors in females, while other
studies are needed to differentiate the factors (e.g., hormones, vascular and
social aggression/interaction) that are important in male brain network
changes. The difference we observe in different cohorts (e.g., male C1 and
C2) with some also showing a “female”/human-like de-segregation of net-
works during aging may point to the importance of the social environment
in shaping aging in mice.

The combination of nodal and edge connectivity analysis allows
additional insights on potentially important nodes and the accompanying
changes in connectivity during aging. Differences due to sex and cohorts
provide further links to the changes in phenotype in older mice. In most
males, theN. accumbens shows an increase in its nodal efficiency bilaterally,
while the secondary somatosensory cortex shows a reduction in its nodal

Table 2 | LME of nodal properties

Nodal efficiency (All) Degree centrality (All) Betweenness centrality (Grp X)

Ssp.n −4.4 0.0011 Ssp.n −3.67 0.0087 PAL −3.6 0.014

Sss −6.1 0.0000 Sss −5.7 0.0000 Clustering coef (All)

ACB 4.6 0.0005 ACB 3.62 0.009 ACB 4.4 0.0006

Nodal efficiency (Grp Y) Degree centrality (Grp Y) Clustering coef (Grp Y)

Sss −4 0.0053 Sss −4.7 0.0007 ACB 4.1 0.0001

ACB 3.54 0.023 ACB 4.4 0.0013 – – –

Nodal efficiency (Grp X) Degree centrality (Grp X) – – –

PL 3.9 0.006 PL 3.4 0.027 – – –

ACA 3.49 0.02 ACA 3.2 0.045 – – –

ROI abbreviations are listed in Supplementary Data 1; t-stat, p-value (FDR corrected).

Table 1 | LME of global network properties

Male vs. female Group Y vs. X

A M CPL A M CPL

Age (t) −1.46 −0.28 −0.82 −0.75 0.39 0.01

Age (p) 0.15 0.78 0.41 0.46 0.7 0.99

Sex M/grp Y (t) −3.1 −2.3 −3.16 −3.38 −3.4 −3

Sex M/grp Y (p) <0.0025 <0.023 < 0.002 <0.0011 <0.0009 <0.004

Age*sex/grp (t) 1.85 1.89 2.45 2.27 3 2.38

Age*sex/grp (p) 0.07 0.06 <0.016 <0.026 < 0.003 <0.019

Bold t- and p-values show significant results.
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Fig. 4 | Comparison of functional connectivitywith nodal graphmeasures. a: First
three Louvain modules obtained at 12 months are shown grouped by color coded
rectangles (left and right hemisphere sides separated by thick line). Stippled lines
separate cortical versus subcortical brain regions. In panel b (group Y) and c (group
X) we plotted the nodal efficiency modulation with age as discs of varying diameter
and the ROI-ROI connectivity’s that also showedmodulation with age (thresholded
at p < 0.01, uncorrected). Increases of nodal efficiency or connectivity strength are
plotted in red, while decreases are shown in blue with size and thickness corre-
sponding to the modulation strength. Evident is the decrease in somatomotor nodal
efficiency (b, c) together with major decreases in interhemispheric connectivity,
while there are some increases in prefrontal/DMN connectivity to the somatomotor
modules. In group Y these mainly target the N. accumbens which also shows
increases in its nodal efficiency. Group X show an increase in the nodal efficiency of
the prefrontal/DMN nodes (strongest in prelimbic cortex) accompanied by major
increases in the connection to most other modules. ROI abbreviations are listed in

Supplementary Data 2. In d–h we plotted five different nodes and their age-related
changes in efficiency. This allowed us to compare node efficiency in different
cohorts. We took the mean of the left and right side and plotted the nodes that
showed the most conspicuous changes in b and c (e: supplemental somatosensory
area; f: prelimbic area; h: N. accumbens), and for comparison two regions that
showed fewer changes (d: somatomotor areas and g: caudate-putamen). The plots
confirm that somatomotor area and caudate-putamen show the fewest significant
changes, while the N. accumbens showsmost changes within group Y. Furthermore,
group Y showed significant decreases in the nodal efficiency of the supplemental
somatosensory area (e), mainly due to changes in both C cohorts. In contrast, group
X showed an increase in the nodal efficiency of the prelimbic area, mainly due to
larger changes within the female B cohort (f). Number of individuals and observa-
tions are the same as in Fig. 2e. Error bars in d–h are the LME standard error of the
coefficient estimate.
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efficiency bilaterally. This is accompanied by an increase in the functional
connectivity of the somatomotor module to the N. accumbens. The ana-
tomical connections would strongly imply that these are due to an increase
in the strength of the afferent connections from cortical areas to the N.
accumbens. The N. accumbens receives inputs from prefronatal, motor,
somatosensory and cingulate cortices41,42. Many of these afferents are
described as bilateral projections. In contrast, the efferents of the N.
accumbens target mesencephalic and striatal structures and only indirectly
reach cortical areas. A hypothesis could be, that the loss in connectivity
strength of the secondary somatosensory cortex within the motor module
reflects a reweighting of the connections from the other parts of the 1st and
2nd modules to the N. accumbens, with the later receiving strengthened
afferents during aging. Tentatively, this may be interpreted as rearranging
the 1st two modules from somatosensory driven motor control to reward
drivenmotorbehavior. Such a change couldbewell expected from increased
food-intake in males leading to their larger weights43.

In contrast most female mice and a subset of males display a different
path. Here we either have a mainly global network de-differentiation (as
seen in female cohort C) or the additional involvement of the prelimbic
cortex with an increase in it’s nodal efficiency (female cohort B).The ROI-
ROI edge analysis shows that both changes are due to an increase in the
connectivity to the othermodules (second and thirdmodule). Such changes
are quite similar to the de-differentiation found in human networks during
normal aging12. However, in femalemice it is not clear whether this is a sign
of cognitive decline. The prelimbic cortex in mice has been shown to be
involved in cognitive functions such as spatial44 and workingmemory45 and
delayed response tasks46, tasks similar to that of the primate prefrontal
cortex47. It is therefore conceivable that the engagement of such an area in
assisting other brain functions (e.g., somatomotor) may put an additional
burdenon its original functions. Further studieswill be required toassess the
cognitive burden of such an engagement.

Methods
C57Bl/6J cohorts
Weused65C57BL/6 Jmice in this study fromthreecohorts. Thefirst cohort
(Cohort A) of 22malemice were purchased at sixmonths age from Jackson
Laboratory. The second cohort (Cohort B) comprised of 11 females was
purchased from Charles-Rivers (UK) at five months age. The third cohort
(Cohort C), 20 males and eight females, was bred at the Umeå Centre for
Comparative Biology (UCCB) and originated from four females and one
male also purchased from Charles-Rivers (UK). An additional four mice
were supplemented to the 24 months group to increase the number of
females (also from Charles-Rivers UK). Supplementary Table 1 and Data 2
lists the mice cohorts, source, and numbers.

During the study animals were regularly screened for any pathological
signs and their body weights were regularly controlled. Mice showed a gain
in weight in an expected sex-dependent fashion (see Supplementary Fig. 3).
During the observational period twenty-nine mice died or were sacrificed
due to health issues before reaching an age of 24-months. Less than half of
those (n = 13) died during anesthesia. The other 16 died due to different
causes such as: tumors (n = 2); stroke (n = 1); weight loss (n = 2); wounds
(n = 6); not determined (n = 5). Prolonged high isoflurane anesthesia
(longer than an hour) during structural MRI or PET/CT scans was majorly
the cause of anesthesia relateddeaths.Achangeof the experimental protocol
to use only low isoflurane andmedetomidine reduced the number of deaths
considerably: three out of 24 24-monthsmice died under low isoflurane and
medetomidine compared to ten mice that died under the isoflurane only
anesthesia (during non rs-fMRI scans).

The three cohorts underwent functional and structural MRI in three
batches. Males of the first (n = 9) and third (n = 8) cohorts also underwent
PET/CT experiments48. A summary of all animals and their functionalMRI
sessions (12-24 motnhs) are listed in Supplementary Data 2. To further
study any effects of group composition (due to different suppliers and
groups size) cohort A was further subdivided into cohort A1 (8 males that
required to be housed in isolation due to aggressive behavior), cohort A2 (9

males raised in 2 groups), C1 (6males raised in 2 groups) and cohort C2 (10
males raised in 2 groups). Summary of cohort numbers at different time
points is listed in Supplementary Table 1. Allmice weremaintained at 21 °C
temperature, 12/12 h of dark/light cycles and received water/food ad libi-
tum. Food was provided as chow (1319 extrudate, Altromin Spezialfutter
GmbH, Lage, Germany) in open-top cages (1284L Eurostandard Type II: L
365 × 207 × 140mm floor area: 530 cm2). All procedures performed in this
study were approved by the regional Animal Research Ethics Committee of
NorthernNorrlandandby theSwedishBoardofAgriculture (Ethical permit
number: A17-2019).

Anesthesia protocol and MRI acquisition
Mice were scanned at 12, 18 and 24 months (exact dates were derived from
session date and date of birth and are listed in Supplementary Data 2).
Functional MRI was performed solely following a dedicated anesthesia
protocol22. After isoflurane induction (ventilation with 100%Oxygen) mice
were placed onto a cryocoil-specific MRI mouse bed (Bruker, Germany)
using both tooth- and ear-bars toprevent headmovement duringMRscans.
A subcutaneous bolus injection of medetomidine (Domitor®, Orion
Pharma AB, Sweden. 0.05mg/kg) was administered to the animals and the
isoflurane concentration was steadily reduced over the next two minutes
from 2% to 0.5%. In addition, two minutes after the bolus injection venti-
lationwas changed to 21%oxygen air. A constant infusion ofmedetomidine
was provided at 0.1 mg/kg/h (s.c.), starting 15min after the initial bolus
injection to maintain anesthesia. Body temperature and respiration were
monitored with SA Instruments (Model 1035, SA Instruments, Inc., Stony
Brook, NY). Body temperature was measured via rectal probe and main-
tained at 36.5–37.5 °C) with the aid of a heating blanket and a water heating
system (Pump fluid heating System, SA Instruments).

Themicewere thenpositioned inside theMR scanner (Bruker BioSpec
94/20, Germany) with the brain in the center of the field-of-view of a
cryogenic RF coil (MRICryoProbe, Bruker, Germany). An actively shielded
gradient coil (Bruker, B-GA12S HP) of 11.4 cm inner diameter was used
with 220mT/m (70 μs rise time).

The animals were first scanned using a T1 FLASH sequence (TR/TE:
50/8milliseconds; flip angle: 20°; pixel dimension: 0.125mm isotropic). For
the rs-fMRI we selected 38 coronal slices of 0.4mm thickness to cover the
brain. These sliceswere acquired at a temporal resolutionof 1.5 s per volume
with single-shot GE-recalled EPI images (TR/TE = 1500/22ms, band-
width=208.33 kHz, FA = 60°, FOV = 16.2mm×9.6mm, Matrix=54×32)
and a total of 420 volumes. For additional structural MRI data acquisitions,
the mice were subsequently anesthetized either using isoflurane (1.5–2%
maintenance) within the same or at a different session, or with continued
medetomidine anesthesia in the same session. Excess isoflurane in the MR
scannerwas constantly removed by a suctionpump.After the scan, themice
were administered 0.3mL of 1:20 atipamezole (Atipam, Dechra Veterinary
Products, Sweden) diluted in 0.9% saline to induce awakening and rehy-
dration. The mice were then placed into a recovery cage until fully awake,
and then returned to their home cage.

MRI preprocessing and data analysis
T1 structural images were corrected for field inhomogeneity using bias field
(N4BiasFieldCorrection, ANTs v2.1) correction49. Individual structural/T1
brain mask were generated for each subject and session using a template-
based brain extraction tool50. Resulting brainmasks were then co-registered
(FLIRT, FSL) to individual functional scan and used for skull-stripping
functional data. Rs-fMRIdatawere preprocessed usingFSL v6.051 andAFNI
v21.2.0452 software libraries. The first five volumes in each scan were
removed to allow the signal to reach equilibrium. Slice timing correction
(slicetimer, FSL), and motion correction (MCFLIRT53) was then applied.
We checked on motion outlier volumes (based on relative frame-wise dis-
placement estimations with fslmotionoutliers, FSL) and did not detect any
(75th percentile+ 1.5* interquartile range). Six scans were excluded in full
due to the presence of artifacts or acquisition errors (see Supplementary
Table 1 and Supplementary Data 2). 128 sessions were obtained with two
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scans (14 had one scan only due the presence of artifacts or acquisition
errors in the other).

The functional data was linearly registered to theAllen ReferenceAtlas
(Mouse Brain Common Coordinate Framework v3.0 available from
atlas.brain-map.org)54 and was performed with FLIRT (FSL). Six estimated
motion correction parameters, white matter, ventricle signals as well as
mean global signal and its linear and quadratic derivatives were regressed
from time series (3dDetrend, AFNI) to reduce the effects of physiological
noise andmotion. A high-pass temporal filter (>0.01Hz) was applied to the
time series rather than a band-pass filter, since it is shown that valuable
signal might be present in higher frequencies55,56. Finally, images were
spatially smoothed with a 0.6-mm full-width at half maximum isotropic
Gaussian kernel (fslmaths, FSL).

Atlas-based functional connectivity. 72 ROIs from AllenMouse Brain
Atlas were selected based on Grandjean et al. 18. This atlas is described in
the study by Lein and colleagues57 and is based on a modified version of
the Swanson58 andHof atlases59. The atlas rois and the descriptionfiles are
available under Github repository, https://github.com/grandjeanlab/
mergeallen. The ROIs were used to create connectivity matrices for
each session by extracting average time series of the BOLD signals of all
voxels in each ROI and calculating the Pearson’s correlation coefficient
(r) between ROIs. Connectivity matrices were averaged in those subjects
that had more than one session. Fisher’s r-to-z score transformation was
applied resulting in a 72 × 72 connectivity matrix (Z) for each subject at
each time point.

Louvain community/module detection. To define a representative set
of functional networks, or communities/modules, we used the Louvain
module detection algorithm with scripts written in MATLAB (R2021b,
Natick, Massachusetts: The MathWorks Inc.) using Rubinov’s BCT
package60 in conjunction with consensus clustering61. First, an initial
network partition was generated for each subject, based on functional
connectivity matrices using positive edges only (Z+). Due the Louvain
algorithm’s susceptibility to local maxima, it was repeated 1000 times
using an iterative modularity fine-tuning algorithm, which maximizes
modularity by reassigning node-network affiliations62. Next, subject-wise
agreement matrices were computed, representing the fraction of repeti-
tions in which nodes were assigned to the same network. Each subjects’
agreementmatrix was subsequently partitioned again until the algorithm
converged to a single, subject-specific consensus partition. To define a
representative group partition, an agreement matrix was computed for
the subject-specific partitions, and the consensus clustering procedure
was repeated until convergence of a group-level partition was reached.
The procedure described above was applied for multiple resolutions,
defined by the resolution parameter γ, with higher values allowing
detection of smaller modules. To avoid arbitrary selection, group-level
consensus partitions were computed for γ-values between 1.0–2.0, in
increments of 0.1. The most representative partition was then defined as
the partition with the greatest normalized mutual information between
solutions63.

The obtained Louvain modules allowed us to calculate a network
segregation index (SI) by comparing within and between connectivity64:
((mean within correlations – mean between correlations)/mean within
correlations). This analysis was performed in MATLAB.

Graph network analysis. Transforming connectivity matrices (Z+) to
binary adjacency matrices involves thresholding z-scores to retain highly
correlated connections and remove spurious connections. We used
sparsity or density thresholding, which keeps the same number of edges
for each graph by applying a subject-specific connectivity strength
threshold and therefore allowing an examination of relative network
organization65. We used 16 different densities thresholds starting from
the lowest threshold with fully connected components (0.1) to highest
threshold (0.25), with steps of 0.02 for sparsity thresholding66,67. The

following global graph parameters were calculated: clustering coefficient,
characteristic path length68, local efficiency69, small world index70, mod-
ularity and assortativity71 as global metrics to assess the segregation,
integration, small-world and vulnerability properties of the graphs72,
respectively. For each measure we obtained the average over the 16 dif-
ferent thresholds.

Several nodal metrics including degree of centrality, nodal efficiency,
clustering coefficient68 and betweenness centrality73 were analyzed for each
node in the graph. The functional brain graphs were constructed using
graph theory network analysis toolbox74. Graphmetric definitions are listed
in (see Supplementary Table 2 and 3).

Statistics and reproducibility
Functional ROI-to-ROI correlations (non thresholded connectivity matrix
Z)were averaged for each timepoint (12, 18 and24months) andwere tested
for significant (being different from zero) with the one-sample t-test. To
investigate longitudinal changes in functional connectivity, ROI-to-ROI
correlations at the three timepointswere analyzedusing linearmixed effects
(LME) model using lme4 v1.1-27.1 package75,76 for R v4.1.277, with sex and
age as fixed effect, and subject as random effect and using maximum like-
lihood estimations. LME can be used to analyze correlated data and therefor
allows tomodel longitudinal data78. Its versatility to account formissingdata
points increases its statistical efficiency and makes it particularly useful to
analyze longitudinal aging data79 where dropouts are a major concern.

We used the exact age (days to scan date from date of birth). We also
included and tested sex and age interactions of nodal graph measures for
eachnode of the atlaswith LME.To estimate potential differences in Sex, we
applied a contrast (see Supplementary Table 4). Time effect alone was
obtained by using equal contrast for both sexes.

We used a two-sampleKolmogorov-Smirnov test (ks2test) to compare
distributionanddetect significantdifferences (p < 0.05).A significance value
of α=0.05 was used after false discovery rate (FDR) adjustment in cases of
multiple comparisons80. A significance value of p < 0.01 was also used with
no multiple comparison corrections in cases where we wanted to delineate
sub-threshold relationships.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Numerical source data for all graphs in the paper have been uploaded to
Dryad81. Exemplary functional and structuralMRI rawdata are available via
the OSF82 data sharing service or upon reasonable request.

Code availability
The scripts employed for rs-fMRI data analysis are available at Github83.
Codes used to generate figures and statistical analysis are available upon
reasonable request.
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