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Epidemiological studies have robustly linked lower birth weight to later-life disease risks. These
observations may reflect the adverse impact of intrauterine growth restriction on a child’s health.
However, causal evidence supporting such a mechanism in humans is largely lacking. Using
Mendelian Randomization and 36,211 genotyped mother-child pairs from the FinnGen study, we
assessed the relationship between intrauterine growth and five common health outcomes (coronary
heart disease (CHD), hypertension, statin use, type 2 diabetes and cancer). We proxied intrauterine
growth with polygenic scores for maternal effects on birth weight and took into account the
transmissionof genetic variants betweenamother andachild in the analyses.We find limitedevidence
for contribution of normal variation in maternally influenced intrauterine growth on later-life disease.
Instead, we find support for genetic pleiotropy in the fetal genome linking birth weight to CHD and
hypertension. Our study illustrates the opportunities that data from genotyped parent-child pairs from
a population-based biobank provides for addressing causality of maternal influences.

The relationship between birth weight and disease risk has been extensively
studied in epidemiological settings, revealing associations with adverse
health consequences both for lower and higher birth weights1–8. Of parti-
cular note is the connection between low birth weight and cardiometabolic
diseases9,10. This connection has been speculated to arise from long-lasting
changes in metabolic programming due to intrauterine growth restriction,
referring to poor fetal growth9,10. This concept has led to the hypothesis of
developmental origins of health and disease (DOHaD) suggesting that
several non-communicable diseases originate in early development—dur-
ing prenatal life, in an unfavorable intrauterine environment, or in early
childhood11. The causal evidence in support of the DOHaD mechanism in
humans has been, however, largely lacking, and conflicting3,12,13. Conse-
quently, although the relationship between birth weight and disease risk is
clear at the epidemiological level, the underlying causes behind these
associations have been a subject for debate for decades3.

Mendelian randomization (MR) has become a popular method for
assessing causal relationships between an exposure and an outcome14. In
short, MR utilizes genetic variants robustly associated with the exposure
to test whether the same variants have consistent effects on the outcome.
MR strategies using genetic variants of the mother associated with birth
weight of the child therefore offer a means to assess the potential causal

influences of intrauterine growth as approximated by the birth weight of
the child12,14,15.

Variation in birth weight has a large genetic component (SNP-based
heritability (h2

SNP) being ~40%, of which a fifth can be specifically allocated
to maternal genetic variation), making it an amenable trait for genetic
studies15. However, since many different factors, including both the
maternal and fetal genome, influence the size of the baby, using MR in
assessing the DOHaD hypothesis has some important prerequisites3,15–18.
First, using genetic factors specifically reflecting maternal influences on
birth weight as instrumental variables in MR is crucial12,19, as these can
plausibly reflect intrauterine growth as opposed to the variants with strict
fetal effects. Secondly, a standard two-sample MR using the maternal gen-
otype only can lead to biased causality estimates as it fails to account for the
50% correlation between the maternal and fetal genotypes, therefore vio-
lating the exclusivity assumptionofMR12,20. Toovercome this issue, data sets
with genotyped mother-child pairs are of great value, as they allow for
blocking the path through the child’s genome by adjusting the analysis with
information on the child’s genetic variants at the loci tested.

Recent studies utilizing these MR principles and mother-child pairs
suggest that small genetic effects on intrauterine growth (IUG) have only
limited effects on child’s cardiometabolic risk factors12,15. These studies,
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based on mother-child pairs from the Norwegian HUNT study
(N = 26,057)12 and the UK Biobank (N = 3886)15, have reported lack of
strong effects of IUG on cardiometabolic risk factors such as lipid and
glucose levels and hypertension. To our knowledge, comparable studies are
limited, primarily due to the scarcity of suitable genotyped parent–child
cohorts21. Additionally, it remains uncertain whether these results might
extend to the development of cardiovascular disease.

Population-based biobank data may offer new possibilities to conduct
MR studies of maternal exposures12,22, as these data typically capture also
familial relationships due to their large scale of sampling. For instance,
within the 430,897 participants of the FinnGen study (release 10)23, corre-
sponding to 8%of the Finnish population, there are 67,986 parent-offspring
and 63,428 full sibling pairswith genotype and extensive longitudinal health
registry information available. A particular advantage of the parent–child
pairs contained within FinnGen, including 36,211mother-child and 31,775
father-child duos, is the comparatively advanced age of the children (mean
46.3 years, SD 14.2), allowing for examination of disease endpoints that
manifest later in life.

Here, we apply an established MR framework12 to the 36,211 mother-
child pairs from the FinnGen study to examine how polygenic scores (PGS)
for maternal influences on birth weight associate with five common health
outcomes in the children (N cases= 996–6150, Fig. 1), while considering the
effects from both the maternal and child genomes in the same model.
Extending the previous findings on biomarkers12,15, we find no evidence for
the role of IUG, as proxied by genetic scores for maternal effects on birth
weight, in determining child’s disease risks. Rather, we show that the scores
of the same variants in the fetal genome associate with CHD and hyper-
tension, an effect that is also detected in the 31,775 father-child pairs, and in
analyses based on the 63,428 sibling pairs from FinnGen. Collectively, these
findings suggest that genetic pleiotropy in the child is largely accountable for
the epidemiological links between birth weight and disease.

Results
Polygenic scores predict birth weight in FinnGen
We first constructed polygenic scores (PGSs) for birth weight using the
findingsof the latest genome-wide association study (GWAS)of individual’s
own (N = 321,223) and offspring birth weight (N = 230,069 mothers) that

applied structural equation modeling to dissect the birth-weight-associated
genetic markers (N = 209) into those with maternal only, fetal only, or
shared effects15. Using these GWAS results, we built six PGSs that capture
different degrees ofmaternal and fetal influences on child’s birth weight. To
exclusively model the maternal contribution to birth weight, we used two
PGSs reflecting strictlymaternal effects on birth weight: a score based on 29
lead SNPs with only maternal effects on birth weight (M-SPECIFIC) and a
respective genome-wide score (M-GW). We supplemented these with two
other lead SNP-based scores (M-ALL and MF-ALL) that contain variants
with both maternal and fetal effects on birth weight, and with two scores
reflecting specifically fetal effects on birth weight (F-SPECIFIC and F-GW;
“Methods” section and Supplementary Fig. 1a).

As we aimed to use these PGSs as instrumental variables within a MR
framework to assess causality, our first step was to confirm that the PGSs
predict the measured birth weight in FinnGen. To this end we utilized a
subset of FinnGen participants with available birth weight measurements,
based on thenational birth registry (FinnGen release10N = 39,578;mother-
child pairs N = 9,257; father-child pairs N = 5,740).

All the birth weight PGSs showed statistically significant effects on
birth weight when calculated from an individual’s own genotypes in the full
FinnGen data (P < 0.05; Supplementary Data 1). Inmother–child pairs, M-
ALL, MF-ALL, F-SPECIFIC, and F-GW PGSs were associated with both
child and own birth weight, as expected since these scores contain variants
with both maternal and fetal effects on birth weight. Importantly, however,
the two PGSs based on variants withmaternal effects,M-SPECIFIC andM-
GW, showed strictlymother-specific effects on child’s birthweight. In other
words, only the mother’s score influenced the child’s birth weight (at the
significance level P < 0.05) when including both the mother’s and child’s
M-SPECIFIC or M-GW PGSs in a multiple regression model (Supple-
mentary Data 1).

To further validate the predictive values of the PGSs, we computed
them for fathers and children in the father-child pairs from FinnGen. Here,
as expected given these scores should capture maternal effects, neither
M-SPECIFIC nor M-GW of the father associated with child’s birth weight
(Supplementary Data 1). However, for M-GW, we noted a significant
negative association (P < 0.05) of the father’s PGSs on the child’s birth
weight after including the child’s PGS in the model24,25. This can indicate

Genetic scores for
maternal effects
 on birth weight

Intrauterine 
growth 

Child genotype

Ancestry
mother/child age etc.

Traditional confounders 
Paternal genotype

Gen
eti

c p
lei

otr
op

y

~ Child's risk for diseases?

Genetic confounding 

Causal effect of interest

Po
st-

na
ta

l e
ffe

cts
 

(c
hil

dh
oo

d 
en

vir
on

m
en

t)

Release 10
N=36,211

mother-child pairs

a

CHD Statin useHypertension

T2D Cancer

6,1504,738996

2,841 2,790

b

N cases (children)

Fig. 1 | Illustration of the Mendelian Randomisation framework applied in
mother-child pairs with a summary of the FinnGen dataset. a Illustration of the
Mendelian Randomisation (MR) framework to assess the relationship between
intrauterine growth (IUG) and child’s disease risk, when IUG is approximated by the
child’s birthweight. This MR analysis tests whether a mother’s genetic score for a
child’s birthweight is associated with the child’s disease risk later in life.MR relies on
the assumption that mother’s genetic score does not affect the child’s disease risk
through any pathway other than IUG. Since a child inherits 50% of genetic variants

from themother, approximately half of the variants contributing tomother’s genetic
score are transmitted to the child. Theoretically, the variants that affect the child’s
size in the mother can have different functions when transmitted to the child’s
genome (genetic pleiotropy). Therefore, it is vital to account for this genetic sharing
by conditioning the MR analyses on the child’s genetic score. b Summary infor-
mation on the FinnGen data set, with the case numbers in the children from the
mother-child pairs indicated for each disease. CHD coronary heart disease, T2D
type 2 diabetes.
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both the presence of a potential collider bias and the fact that a genome-wide
score may contain an excess of variants that are not specific to the trait
studied (genetic pleiotropy).We therefore chose to focusonM-SPECIFICas
our main instrument for maternally influenced IUG for further analyses.

The birth weight PGSs associate with disease risk in the whole
FinnGen dataset
The connections between birth weight and several diseases are well estab-
lished at both the epidemiological and genetic levels, also in Finnish
datasets1,4–7,12,15,26,27. For the FinnGen participants, measured birth weight
data are available only for participants born after 1987. These participants
are too young to manifest, e.g., cardiac symptoms, making it unfeasible to
study epidemiological patterns in this subset. However, echoing the epi-
demiological observations,we detectedmany associations between the birth
weight PGSs computed from a person’s own genotypes and the disease
outcomes in the whole FinnGen dataset (N = 412,176; Supplementary
Data 2). While these population-level analyses indicate clear relationships
between lower birth weight and higher risk, e.g., for cardiovascular disease,
they do not allow the assessment of DOHaD as the underlying causal
mechanism, as the influence of the birth weight variants are examined in
one’s own genome.

Mother’sPGS formaternal effects onchild birthweight showsno
association to child’s disease risk after taking into account the
child’s PGS
To address the potential causality of DOHaD, we therefore focused on
understanding how the PGSs specific formaternal effects on birthweight, as
a proxy for intrauterine growth, associate with disease risk in the 36,211
mother-child pairs in FinnGen. A key component of the MR framework
applied here is to include both the mother’s and the child’s PGS in the
analyses to account for the 50% correlation between these PGSs (Fig. 1 and
Supplementary Fig. 1d)12. Failure to adjust the analyses with the child’s own
PGS can lead to a spurious association between maternal PGS and child’s
diseases, as shown by our simulations (Supplementary Data 3 and Sup-
plementary Fig. 2). Instead, in case of true intrauterine effects, any asso-
ciation between amother’s PGS and child’s disease risk remains unchanged
when adding information from the child’s PGS to the model (Supplemen-
tary Data 3).

When analyzing the effects of themother’s and child’s PGS separately,
(i.e., including only one of the PGSs into the model) both the maternal and
child’s own PGS showed several statistically significant associations with
diseases (P < 0.05). For example, higher mother’s M-SPECIFIC PGS was
associated with a reduced risk for CHD (OR = 0.92, [95% CI 0.86–0.97],
P = 0.0089) and statin use, (OR = 0.96 [95% CI 0.93–0.99], P = 0.016), and
increased risk for cancer (1.04 [95% CI 1.00–1.08], P = 0.049). Child’s own
PGSwas similarly associatedwith these disease outcomes (forM-SPECIFIC
OR = 0.87 [95% CI 0.81–0.92], P = 1.5e-05 (CHD); OR = 0.96, [95% CI
0.93–0.99] P = 0.024 (Hypertension); OR = 0.97, [95% CI 0.94–0.99],
P = 0.022 (Statin use) and OR = 1.05, [95% CI 1.01–1.09], P = 0.015 (Can-
cer; Fig. 2 and Supplementary Data 4).

However, when taking into account both the mother’s and the child’s
PGS simultaneously, thematernal PGS,which explained child’s birthweight
irrespective of child’s PGS, no longer displayed associations with child’s
disease risks (P > 0.05; Fig. 2 and Supplementary Data 4). Here, matching
the expectations from simulations, in two instances, the effect sizes of the
maternal M-SPECIFIC PGS were reduced compared to the unadjusted
models (from0.97 to 0.99 for hypertension, and 0.92 to 0.98 for CHD; Fig. 2
and Supplementary Data 4). Instead, in the same analyses child’s own
M-SPECIFIC PGS remained statistically significantly associated with both
diseases, with comparable effect sizes as in the unadjusted analyses OR=
0.87 [95% CI 0.81–0.94], P = 0.00047 for CHD and OR = 0.96 [95% CI
0.92–0.99], P = 0.032 for hypertension).

While the results for CHD and hypertension aligned with the expec-
tations of exclusive fetal effects (Fig. 2 and Supplementary Fig. 2), for the
three other traits the patterns of associations were more complex, though

non-significant in models including both maternal and child PGSs (Fig. 2
and Supplementary Data 4). In case of statin use and cancer we observed
significant associations (P < 0.05) in the models including only one PGS.
Yet, these becamenon-significant in the combinedmodel,whichmay reflect
reduced statistical power or joint maternal and fetal effects on these out-
comes. ForT2D, thematernal and fetal point estimates from the jointmodel
were to the opposite directions, thoughwith large standard errors (Fig. 2 and
Supplementary Data 4).

Results from the other birth weight PGSs support exclusive fetal
effects on disease risk
After the main analyses, we ran additional tests to probe the robustness of
our findings. Although our focus was on the effect of an unweighed lead-
SNP-based PGS specifically tagging maternal effects on birth weight (M-
SPECIFIC), results from the other PGSs with a maternal component (M-
GW, M-ALL, and MF-ALL) supported the concept that birth
weight–disease associations are largely driven by the effects of genetic var-
iants in the child’s genome (Supplementary Fig. 3a–d and Supplementary
Data 4). None of the mother’s PGSs were associated with disease risk in the
children after considering the child’s own PGS (P > 0.05), and the maternal
effect sizeswereusually reduced, as expectedbasedon the simulationswhere
the child’s owngenomeconferred the risk (Supplementary Figs. 2 and3, and
SupplementaryData 3 and4).Also, the fetal PGSs (F-SPECIFICandF-GW)
showed association to disease only through the child’s own genome. The
effects ofmaternal and fetal birthweight PGSs in the childrenwere generally
similar in direction, with higher birth weight protecting from CHD,
hypertension, and statin use. However, for T2D, the effect directions were
the opposite between the maternal and fetal PGSs, with a higher fetal PGS
protecting from, and a higher PGSs formaternal effects increasing T2D risk
(Supplementary Fig. 3 and Supplementary Data 4).

Sensitivity analyses in the mother-child pairs support the lack of
maternal effects on child disease risk
As the FinnGen mother-child data contains mothers (N = 5483) that have
more than one child included in the dataset, we tested how excluding such
non-independent pairs affects the detection of the maternal effects on dis-
ease. We noted that the lack of significant maternal effects remained true
regardless of whether we limited our dataset to include only one child per
mother (N = 28,582, Supplementary Data 5). Similarly, using a stringently
filtered dataset where only a maximum of 4th degree relatives from both
mothers and children were included (N = 22,454), or adjusting the results
with a PGS for gestational duration did not support presence of maternal
effects (SupplementaryData 5). The only exception to the rulewas statin use
for which we detected nominal support for maternal effects in the strin-
gently unrelated mother-child pairs (Supplementary Data 5). Importantly,
we detected that the effect size for a mother’s PGSs did not change in a
statistically significant manner in any of these sensitivity analyses (Supple-
mentary Fig. 4a).

Data from the father-child pairs supports predominantly fetal
effects on disease risks
Wenext followedupon thesefindings in the 31,775 father–childpairs (child
mean age 47.6 years [SD 13.8]) available in FinnGen. Here, similarly as in
the birth weight prediction (see Supplementary Data 1), the association of a
father’s PGS with child’s disease risks is unexpected, as no intrauterine
mechanisms are in play, and any association would thus point to effects
from the postnatal environment or confounding by assortativemating. Yet,
we would expect any effects of the fetal genome to be present also in the
father-child pairs. In line with these expectations, we detected little evidence
for paternal effects for the PGSs tagging maternal effects on birth weight.
The exception was paternal M-GW associating with statin use (OR 1.06
[95% CI 1.02–1.10], P = 0.0021), raising the possibility of a postnatal con-
tribution to this phenotype or reflecting the more complex nature of a
genome-wide PGSs in terms of tagging genetic pleiotropy (Supplementary
Fig. 5b and Supplementary Data 6). Instead, we repeatedly observed an
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association between the child’s own genetic scores for maternal effects on
birth weight (M-SPECIFIC) and disease risk also in the father-child pairs,
with comparable effect estimates as in themother-childpairs, e.g.,OR = 0.91
[95% CI 0.84–0.99], P = 0.021 for CHD and OR = 0.95 [95% CI 0.91–0.99],
P = 0.012 for hypertension (Supplementary Fig. 5a and Supplemen-
tary Data 6).

Analysis of FinnGen full sibling pairs strengthens the conclusions
from parent–child data
We finally sought validation of these findings using the 63,428 full sibling
pairs (mean age 63.9 years [SD 16.4]) from FinnGen. Leveraging sibling
pairs discordant for the outcomes of interest enables another nuanced way
to determine whether a PGS for maternal effects on birth weight affects
disease risk through the maternal or fetal genome. As siblings share their
maternal genetic effects onbirthweight, any associationof thematernalPGS
withdisease risk seen in these sibling analyses should solely reflect the child’s
own genetic effects. To test this, we assessed associations of the birth weight
PGSs in a matched case-control setting using same-sex sibling pairs,

discordant fordisease status (casenumbers ranging from6016CHDcases to
11,505 statin users in the final datasets). Applying a conditional logistic
regression model, we found that one’s own PGSs for maternal effects on
birthweightwas associatedwith a reduced risk of CHDandhypertension in
the full sibling pairs (M-SPECIFIC OR= 0.93 [95%CI 0.89–0.98],
P = 0.0049 and OR = 0.94 [95% CI 0.89–0.99], P = 0.017, for CHD and
hypertension, respectively; Supplementary Data 7 and Supplementary
Fig. 6). Similarly, fetal-specific birth weight variants displayed an effect on
CHD through one’s own genome (OR= 0.95 [95%CI 0.89–0.99], P = 0.011
for F-SPECIFIC). In contrast, besides the fetal genome-wide PGS (F-GW)
association to statins (OR = 0.92 [95% CI 0.89–0.96], P = 5.0e-05), none of
the PGSs containing variants with maternal effects on birth weight were
associated with statin use or cancer risk in siblings. However, we observed
distinct connections for the birth weight PGSs to T2D, with the direction of
the effect again depending on whether the PGS tagsmaternal or fetal effects
(OR = 1.06 [95% CI 1.01–1.11], P = 0.023 for M-GW and OR = 0.89 [95%
CI 0.85–0.93], P = 1.6e-06 for F-GW; Supplementary Data 7 and Supple-
mentary Fig. 6). Overall, these sibling comparisons further support the
interpretation that the effects of birth weight PGSs on disease are primarily
mediated by genetic pleiotropy of the birth weight variants in the child’s
genome.

Power calculations
We conducted simulations to assess the magnitude of maternal and fetal
effects we were sufficiently powered to detect in the 36,211 mother–child
pairs for each endpoint (see Methods; Supplementary Data 3). These ana-
lyses indicated that when including both maternal and child PGSs in the
analysis we had adequate power (≥80%) to detect true maternal effects (OR
per 1 SD change in PGS) ranging from>1.11 forCHD to >1.05 for statin use
(Supplementary Data 3 and Supplementary Fig. 7). These analyses estimate
the power given the case frequencies in the available mother-child dataset.
We, however, note that althoughmany of the children included in the study
are old enough tomanifest, e.g., cardiac symptoms, a quarter of the children
from the mother–child pairs were less than 34.4 years old at the end of
follow-up, which is a limiting factor in the dataset. In addition, our power
calculations do not consider how much variance a PGS explains of birth
weight, and hence direct translation of our estimates to clinical effects is
more challenging.

Discussion
The relationship between birthweight and disease risks has been intensively
studied for several decades, andmany different theories have been proposed
to explain their connections. In this study, we set out to examine the causal
mechanisms between lower birth weight and later-life health using large-
scale genetic data. Inparticular,we aimedtounderstand theproposed role of
intrauterine growth, i.e., the mechanism of the DOHaD hypothesis, as a
determinant of the child’s disease risks. To this end, we used a specifically
designed Mendelian randomization (MR) framework in a large sample of
Finnish genotyped mother-child pairs. This framework overcomes many
limitations of regular MR related to assessing maternal influences, allowing
for a more accurate estimation of potential causal effects of intrauterine
growth on a child’s risk for diseases12. Here intrauterine conditions are
proxied using genetic markers with strict maternal effects on a child’s birth
weight, and the independent contribution of the maternal genome is
assessed by blocking the direct transmission of alleles by adjusting the
analysis using the child’s genetic score at the same loci.

Taking advantage of a unique data set of 36,211 genotyped mother-
child pairs available within the FinnGen study, we applied the MR frame-
work on five health registry endpoints epidemiologically associated with
birth weight. Overall, we did not find support for a strong connection
between maternally influenced intrauterine growth and offspring later life
disease. Rather, it seems that the same genetic variants that, when present in
mothers affect a child’s birth weight, once inherited by the child, have
independed effects on the child’s disease risks.Ourfindings thus point to the
links of lower birth weight and diseases occuring largely due to genetic
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pleiotropy in the child’s genome. This main conclusion was supported by
the numerous sensitivity analyses, including using different birth weight
PGSs, data from father-child pairs, and data from outcome discordant
sibling pairs.

Our study builds upon previous research investigating the DOHaD
mechanisms using mother-child and biomarker data from biobanks,
including the UK Biobank (N = 3886)15 and the HUNT cohort
(N = 26,057)12. In this study,we expandupon these analyses byusing a larger
number of mother-child pairs and examining the associations between
maternal effects on birth weight and five binary disease outcomes sourced
from nationwide health registries. Our decision to focus on binary out-
comes, while potentially reducing statistical power, uniquely positions us to
directly explore the link between genetically determinedmaternal effects on
birth weight and disease manifestations, moving beyond the previous
investigations of disease risk factors.

Given the lack of statistically significant maternal contribution to
child’s disease risks, our results suggest that modest changes in intrauterine
growthmay have limited effects on diseases such as CHD and hypertension
compared to the effects of the child’s own genome. Echoing the findings
fromMoen et al. 12, our data shows that the same SNPs that associate with a
child’s birth weight in mothers exert independent genetic effects on disease
risks when transmitted to children. Reflecting this genetic pleiotropy, the
disease risks associated with the birth weight scores were consistently more
closely linked to the effects from the fetal rather than the maternal genome.
Clear examples of such cases were CHD and hypertension risks, for which
there was consistently very little evidence of any intrauterine effects in play
after taking into account the child PGSs. This finding was further
strengthened by sibling analyses, where we found that the sibling with a
higher PGS formaternal effects on birth weight had a reduced risk for CHD
and hypertension, despite the maternal genetic effect for birth weight being
shared between the siblings. Our findings thus support the idea that blood
pressure and birth weight are connected through the alleles that first reduce
the child’s birth weight when present in the mother, and then increase the
child’s blood pressure when present in the child, as previously suggested in
smaller samples15. Based on our findings, a similar mechanism appears to
hold for CHD risk.

Althoughour data allows us to conclude that the effects ondisease risks
mediatedby thebirthweightPGSs act principally through the child genome,
we detected a couple of instances where the results were less clear-cut. In
several instances, we associated the birth weight PGSs with one’s own or
child’s risk of receiving statin medication yet could not always confidently
exclude potential maternal or paternal contributions to these associations.
This was especially true in case of the genome-wide PGSs for birth weight
(M-GW and F-GW). It thus remains possible that some genetic factors
affecting birth weight may be related to statin use through a postnatal, e.g.,
behavioral, component. Alternatively, the mixed resultsmight partly reflect
the complex pleiotropy tagged especially by the genome-wide PGSs.
However, the result should be followed up and validated in additional
datasets.

Finally, our data highlight associations between birth weight and the
risk of T2D, with previous studies backing both intrauterine and genetic
mechanisms behind this connection13,15,28. Results from those PGSs that
were based on alleles with predominantly fetal effects on birth weight (MF-
ALL, F-SPECIFIC, andF-GW) strongly support the fetal insulin hypothesis,
stating that the same genetic factors that increase birth weight in the fetal
genome also protect against T2D6,7. However, in contrast, a higher genome-
wide PGS for maternal effects in birth weight (M-GW) was consistently
associated with an increased T2D risk, both in mother–child pairs and in
sibling analyses. It thus seems that the genetic variants influencing birth
weight can have rather complex effects on lifetime T2D risk, depending on
their means of action.

Despite the many benefits of using biobank data to explore the con-
nections between maternal traits and child’s disease outcomes, our study
and datasets have limitations. In this study, we used genetic variants asso-
ciatedwith birthweight as quantitative traits to proxy intrauterine growth in

a population-based sample. The birth weight PGSs that were used as
instrumental variables in our analyses showed clear effects on birth weight
and disease risk at population level. Hence, we posit that these are valid
instruments to explore the known epidemiological connections between
birth weight and disease risks later in life under the MR setting. We none-
theless stress that all the PGSs were based on common genetic variants and
explain only a proportion of the total variance in birth weight in FinnGen
(1 SD change in our genetic instrument (M-SPECIFIC) corresponded to
~41 g change in birth weight). We thus acknowledge that in this study we
maynot explicitlymodel, for example, severe intrauterine growth restriction
resulting from external factors.

Further, instead of reflecting solely intrauterine growth, the PGSs may
be partly related to normal variation in child’s size, for example, due to
gestational duration, though our results, when adjusting for the PGS for
gestational length, suggest that controlling for this has negligible effect on
the disease associations17,29. In addition, though we used established MR
principles, and therefore could test for evidence of the causality of maternal
effects on birthweight on disease risk, we have not performed formalMR to
provide accurate effect estimates for the effects of birth weight. Also, we
assumea simplemonotonic relationship between the child’s disease risk and
the PGS for birth weight, which for some phenotypes can be suboptimal, as
both lowandhighbirthweight can increase the risk of samedisease3. Finally,
our power analyses also indicate thatwehave likely been limited todetecting
maternal effects that are relatively large. We also note that the inclusion of
children that are below the expected age of onset for some of the included
endpoints such as CHD may affect the power to detect effets in our main
analyses.

The key medical implication from this work is that modest changes in
intrauterine growth during pregnancy are unlikely to have large effects on
child’s disease risk in later life. In contrast to the role of intrauterine con-
ditions, our findings support a model wherein the genetic factors within the
maternal genome that influence the child’s birth weight, contribute to the
child’s disease risks only when transferred to the child’s genome. Overall,
our studydemonstrates howMRingenotypedmother-childpairs is a sound
and powerfulmethod to evaluate howmaternal and fetal exposures relate to
child’s health.Weenvision that large-scale population-basedbiobanks, such
as FinnGen applied here, can enhance the power for such studies and that
they will allow for testing many other hypotheses in the field.

Methods
Ethics statement
All patients and control participants inFinnGenprovided informedconsent
for biobank research, based on the Finnish Biobank Act. Research cohorts
collected prior to the start of FinnGen (inAugust 2017)were collected based
on study-specific consents and later transferred to theFinnishbiobanks after
approval by Valvira, the National Supervisory Authority for Welfare and
Health. Recruitment protocols followed the biobank protocols approved by
Valvira. The Coordinating Ethics Committee of the Hospital District of
Helsinki and Uusimaa (HUS) approved the FinnGen study protocol Nr
HUS/990/2017.

The FinnGen study is approved by Finnish Institute for Health and
Welfare (THL), approval number THL/2031/6.02.00/2017, amendments
THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/6.02.00/2018,
THL/283/6.02.00/2019, THL/1721/5.05.00/2019, Digital and population
data service agency VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/
2019-3 the Social Insurance Institution (KELA) KELA 58/522/2017, KELA
131/522/2018, KELA 70/522/2019, KELA 98/522/2019, and Statistics Fin-
land TK-53-1041-17. The Biobank Access Decisions for FinnGen samples
and data utilized in FinnGen Data Freeze 10 include: THL Biobank
BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67,
BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, BB2021_65,
Finnish Red Cross Blood Service Biobank 7.12.2017, Helsinki Biobank
HUS/359/2017,HUS/248/2020,HUS/150/2022 §12, §13, §14, §15, §16, §17,
§18, and §23, Auria Biobank AB17-5154 and amendment #1 (August 17
2020) and amendments BB_2021-0140, BB_2021-0156 (August 26 2021,

https://doi.org/10.1038/s42003-024-05872-9 Article

Communications Biology |           (2024) 7:175 5



Feb 2 2022), BB_2021-0169, BB_2021-0179, BB_2021-0161, AB20-5926
and amendment #1 (April 23 2020)and it’s modification (Sep 22 2021),
Biobank Borealis of Northern Finland_2017_1013, 2021_5010, 2021_5018,
2021_5015, 2021_5023, 2021_5017, 2022_6001, Biobankof EasternFinland
1186/2018 and amendment 22§/2020, 53§/2021, 13§/2022, 14§/2022, 15§/
2022, Finnish Clinical Biobank Tampere MH0004 and amendments
(21.02.2020 & 06.10.2020), §8/2021, §9/2022, §10/2022, §12/2022, §20/
2022, §21/2022, §22/2022, §23/2022, Central Finland Biobank 1-2017, and
Terveystalo Biobank STB 2018001 and amendment 25thAug 2020, Finnish
Hematological Registry and Clinical Biobank decision 18th June 2021,
Arctic biobank P0844: ARC_2021_1001.

FinnGen study
The FinnGen study (https://www.finngen.fi/en) is an on-going research
project that utilizes samples fromanationwidenetwork of Finnish biobanks
and digital health care data from national health registers23. The goal of the
project is to produce genomic data with linkage to health register data for
over 500,000 biobank participants nationwide. The majority of the samples
have been gathered from six university hospital biobanks. In the present
study, we included samples from 430,897 biobank participants with geno-
types available (FinnGen release 10). The samples are linked to national
hospital discharge (available from1968), death (1969–), cancer (1953–) and
medication reimbursement (1964–) registries. Additional registries include
national birth registry (1987-) containing, e.g., data for birthweight, and the
registry on medication purchases (1995-). Currently, after sample pruning
and quality control the release 10 of the dataset contains phenotypes for
412,176 participants (181,869 men and 230,307 women, median age of
62.9 years), representing roughly 8% of the Finnish population. Due to the
sample ascertainment and selection procedures, the cohort has clear
advantages over some other population-based sample collections. For
example, given that most samples are from hospital biobanks, FinnGen
includes an excess of disease cases. However, due to the same reasons
FinnGen should not be considered as an epidemiologically representative
dataset23.

The parent-offspring relationships (totalN = 72,465) used in this study
had been inferred from the genetic data by the FinnGen analysis team with
KING software using the suggested tresholds for calling first-degree
relatives30. After sample pruning, e.g., excluding duplicate samples and
ethnic outliers, and removing suggested parent–child relationships with age
difference between samples <15 years, wewere left with 67,986 parent–child
relationships in the dataset (36,211 mother-child pairs, 31,775 father-child
pairs with phenotype data available for analysis). We identified altogether
28,582 unique mothers. The majority of the parents were born before 1970,
with an average of 1.26 children per parent (Supplementary Fig. 8). The
mean age of the mothers was 70.0 years, the mean age of the fathers
71.2 years, and the mean age of the children 46.3 years, at the end of
the followup period. The mean age of the children from the mother-child
pairs was 45.0 years (SD 14.5). Similarly to the parent-offspring relation-
ships, siblings from the FinnGen data (N = 66,668) were identified through
the KING analysis. After QC we were left with 63,428 full sibling pairs with
an average age of 63.8 years (SD 16.8).

Disease endpoints and phenotype data
Birthweight datawas available for 39,578participants inFinnGenR10, born
after 1987. For ourmain analyses, we included the following five predefined
endpoints from the FinnGen registry team: coronary heart disease
(I9_CHD), hypertension (FG_HYPERTENSION), statin use (RX_STA-
TIN, a proxy for high cholesterol levels), type 2 diabetes
(E4_DM2_STRICT) and cancer (C3_CANCER_EXALLC). The disease
case number in FinnGen R10 ranged from 46,959 CHD cases to
144,672 statin users (~11.3% to 35.1% of the dataset). In the mother-child
pairs, theN case range for children was from 996 CHD cases to 6150 statin
users (corresponding to 2.8% and 16.7% of the dataset), echoing the
observation that many, but not all children are old enough tomanifest, e.g.,
cardiac symptoms. In the sibling analyses, for each studied endpoint we

included a subset of the identified full sibling pairs, matched by sex and
discordant for the disease in question (N cases range 6016 CHD to
11,505 statin users). The exact case numbers for all analyses are available in
Supplementary Data 4-7. More detailed phenotype descriptions and defi-
nitions and summary data for these phenotypes for whole FinnGen R10
dataset are available from risteys.finngen.fi.

Construction of the maternal and fetal polygenic scores for
birth weight
We constructed altogether four different polygenic scores (PGSs) to study
the relationships between child’s birth weight and later life disease risks in
the FinnGen cohort. All PGSs were based on GWAS data from the Early
Growth Genetics (EGG) Consortium15. The EGG Consortium data inclu-
ded summary statistics for GWAS of own (N = 321,223) and child birth
weight (N = 230,069), partitioning the genetic effects intomaternal and fetal
components.

Two genetic scores were designed to capture specifically maternal
effects on birth weight, to proxy intrauterine growth.We first constructed a
similar unweighted lead SNP-based PGS as used in Moen et al.12, by sum-
ming up the number of genome-wide significant birth weight increasing
alleles per individual. The unweighed score for maternal effects on birth
weight (M-SPECIFIC) was built based on 32 SNPs identified in GWASs on
own and offspring birth weight. Upon partitioning genetic effects into
maternal and fetal components using structural equationmodeling, these 32
SNPs were reported to have specifically a maternal effect on birth weight15.
Secondly,we calculated a genome-wide polygenic score (PGSs) formaternal
effects on birth weight (M-GW), based on the summary statistics of a
GWAS on offspring birth weight, adjusting for fetal effects using an
extension of structural equation modeling, and a respective genome-wide
PGS for fetal effects on birth weight (F-GW)15.

In addition, we constructed two additional scores partially reflecting
maternal effects, of which M-ALL was based on 72 SNPs from the birth
weight GWASs, consisting of the 32 SNPs with specifically maternal effects
on birth weight, 27 SNPS with directionally concordant maternal and fetal
effects on birth weight, and 15 SNPs with directionally opposing maternal
and fetal effects15. Finally, we calculated an unweighed score (MF-ALL)
based on the beforementioned 72 SNPs, 64 SNPswith fetal-only effects, and
71 unclassified SNPs15. We finally supplemented these scores with a lead
SNP-based PGS tagging specifically fetal effects (F-SPECIFIC), based on 68
SNPs from the birth weight GWAS classified as having specifically fetal
effects.

The unweighed scores were calculated with plink2 (www.cog-
genomics.org/plink/2.0/)31. For the unweighed maternal scores, in Finn-
Gen, we found data for 29, 68 and 201 SNPs respectively, whereas the fetal
score was based on 62 SNPs (Supplementary Data 8-11). The relationships
of the studied PGSs are illustrated in Supplementary Fig. 1a, b. The use of
unweighed PGSs has been previously argued to be a more valid measure-
ment for maternal effects on birth weight since the exact effect sizes for the
SNPs on the intrauterine growth are unknown12.We chose to also include a
genome-wide score based onmaternal allelic weights in our study since this
had more power to explain variance in birth weight compared to the lead
SNP-based scores (SupplementaryData 1). For comparison,we constructed
a similar genome-wide score based on fetal effects on birth weight. The
genome-wide scores were calculated with PRS-CS32 using the FinnGen PRS
pipeline (https://github.com/FINNGEN/CS-PRS-pipeline), filtering data
fromGWASofmaternal effectsonbirthweight adjusted for child’s effects to
include only HapMap3 SNPs. The downside of using the genome-wide
scores, that take the maternal allele weights for both the mother and the
child, is that we cannot as accurately control for the pleiotropic effects of the
variants in the child’s genome as when using lead SNP-based scores. In
theory, relying only on the genome-wide PGSs thus might lead to an excess
of false positives (PGS of mother associates with child’s disease through
child’s genome rather than throughmaternal effects during the pregnancy).

We standardized all PGSs into z-scores and reported their effects per
SD-unit in our analyses. The EGGConsortium samples based on which the
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PGSs were built are largely independent of the target samples in the Finn-
Gen, although we note that ~4.7% of the EGG Consortium GWAS parti-
cipants are of Finnish ancestry15. We could identify some FinnGen samples
that have been included in calculating the GWAS summary statistics for
EGG, but these overlapping samples make up only ~0.4% of the FinnGen
mother-child cohort (from NFBC66 and NFBC86, N = 146). We consider
their potential effects on the results negligible. The PGSs used in this study
are derived from a trans-ancestral GWAS meta-analysis, primarily com-
posed of individuals of European ancestry, with the variants identified in the
GWASexplaining a substantial proportion of variance in birthweight in the
NorwegianMoBa cohort15. In line of these findings from another Northern
European cohort, we observed that the constructed unweighed and
genome-wide PGSs showed transferability also to the FinnGen cohort,
capturing the desired effects on birth weight (Supplementary Data 1).

Statistics and reproducibility
Inourprimaryanalyses,we tested for associationsbetweenmothers’PGSs for
maternal effects on birthweight (M-SPECIFIC) and child’s disease, adjusting
for the same PGS computed for the child. The principles of the MR frame-
work are illustrated in Fig. 1. The analyses were run using logistic regression
(glm functionwith family =”binomial” in R), andwere adjusted for child age,
first 10 principal components of genetic structure and genotyping batch. The
results from these analyses were obtained as logarithm of odds ratio (logOR)
and its standard error (SE) per standard deviation (SD) increase in the PGS.
For ourmain tables we transformed the logOR values and the corresponding
SEs or 95% confidence intervals (95%CI) to odds ratio (OR) scale for more
intuitive interpretation. All analyses were performed using R Statistical
Software (v4.3; R Core Team 2023). Given the overlap between most of the
disease endpoints and the direct relationships between the PGSs, we did not
adjust for multiple testing and we use P < 0.05 as the significance threshold.
We complemented our main analyses by including associations from five
other PGSs (M-GW, M-ALL, MF-ALL, F-SPECIFIC and F-GW) into the
study. As further sensitivity analyses, we a) performed similar analyses using
only one (oldest) child per mother (N= 28,582), b) kept only the oldest
mother and her oldest child from an extended family (N = 22,454 mother-
child pairs with 3th degree relatives and closer for both mothers and children
removed from the analysis) based on relationships identified in the KING
analysis30, or c) adjusted for polygenic scores for maternal effects on gesta-
tional length17. The polygenic scores for gestational length were constructed
based onGWAS results from theEGGConsortium, using summary statistics
from maternal GWAS meta-analysis of gestational duration based on
151,987 women17. The genome-wide PGS for gestational length used in the
analyses was calculated similarly as the genome-wide scores for birth weight,
using PRS-CS and the FinnGen PRS pipeline.

Besides the analyses in themother-child pairs,we utilized the identified
father-child pairs (N = 31,775) to test for the presence of potential postnatal
effects and to further control for potential familial effects. Finally, we fol-
lowed up our findings in FinnGen sibling pairs (N = 63,428), using condi-
tional logistic regression (clogit function from the “survival” package
(https://CRAN.R-project.org/package=survival) in a matched case-control
setup, selecting full sibling duos of same sex but discordant for disease status
into the analyses. Such a setup allows for natural control ofmaternal genetic
effects on birth weight, which are shared between the siblings, permitting
estimation of the fetal effects of the PGSs.

We acknowledge that some associations between birth weight and
disease show a J-shaped curve (both low and very high birthweight increase
disease risk compared to more typical birth weight)3. The associations to
higher birthweight are anyhowvisible onlywithveryhighbirthweights that
are likely outside the variation that our genetic instruments capture, and we
therefore chose to include only monotonic effects in our analyses.

Power calculations
We conducted simulations to estimate the statistical power of our frame-
work to capture maternal effects on child’s endpoints under different

combinations of true effects of mother’s and child’s PGSs (Supplementary
Software 1)33. We ran 1000 simulations for each combination of maternal
and child effects on a given endpoint. In each simulation, we:
1. used the mvtnorm R package (http://mvtnorm.R-forge.R-project.org)

to generate N = 36,211 samples from two-dimensional normal
distribution (means 0, variances 1, correlation 0.5) to reflect the birth
weight PGSs for the FinnGen mother-child pairs,

2. using these distributions, the case number for the studied endpoint,
and chosen maternal and child effects constructed an exponential risk
function, an inverse of logistic regression, where the prevalence of the
disease matched the observed prevalence in the FinnGen data, and the
effect sizes are on a logOR scale.

Risk ¼ exp αþ β child � PGS child þ βmother � PGSmother
� �

1þ exp αþ β child � PGS child þ βmother � PGSmother
� �

3. randomly sampled a case-control status for each child according to the
child’s risk value, and

4. then regressed the sampled case-control vector jointly on the mother’s
and child’s PGSs using logistic regression.

The estimate for power was obtained as the proportion of simulations
where thep-value for the coefficient of interest (mother’s or child’sPGS)was
below the p-value threshold of 0.05. Power calculationswere conducted inR
(version 4.2.3 (2023-03-15)).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Full genetic and clinical data from FinnGen is available for researchers by
application (https://www.finngen.fi/en/access_results). Details of FinnGen
core endpoints can be found at risteys.finngen.fi. The source data for results
figures is available in Supplementary Data: for Fig. 2—Supplementary
Data 4; Supplementary Fig. 2—Supplementary Data 3; Supplementary
Fig. 3—Supplementary Data 4; Supplementary Fig. 4—Supplementary
Data 4–6; Supplementary Fig. 5—Supplementary Data 6; and Supplemen-
tary Fig. 6—Supplementary Data 7.

Code availability
The code for power analyses is available as Supplementary Software 133. The
full genotyping and imputation protocol for FinnGen is described at https://
doi.org/10.17504/protocols.io.nmndc5e.
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