
communications biology Article

https://doi.org/10.1038/s42003-024-05871-w

Amachine learning toolbox for the
analysis of sharp-wave ripples reveals
common waveform features across
species

Check for updates

Andrea Navas-Olive 1,4 , Adrian Rubio 1,4, Saman Abbaspoor 2, Kari L. Hoffman 2,3 &
Liset M. de la Prida 1

The study of sharp-wave ripples has advanced our understanding of memory function, and their
alteration in neurological conditions suchas epilepsy is considered abiomarker of dysfunction. Sharp-
wave ripples exhibit diverse waveforms and properties that cannot be fully characterized by spectral
methods alone. Here, we describe a toolbox of machine-learning models for automatic detection and
analysis of these events. The machine-learning architectures, which resulted from a crowdsourced
hackathon, are able to capture a wealth of ripple features recorded in the dorsal hippocampus of mice
across awake and sleep conditions. When applied to data from the macaque hippocampus, these
models are able to generalize detection and reveal shared properties across species. We hereby
provideauser-friendlyopen-source toolbox formodel useandextension,which canhelp toaccelerate
and standardize analysis of sharp-wave ripples, lowering the threshold for its adoption in biomedical
applications.

The study of brain rhythms has bolstered our understanding of the neural
basis of cognition. Because these signals emerge from the coordinated
activity of multiple neurons, they can be used as biomarkers of the under-
lying cognitive process1. For example, hippocampal sharp-wave ripples
(SWRs) represent the most synchronous pattern in the mammalian brain
and are widely considered to contribute to the consolidation of memories2.
SWRs consist of brief high-frequency oscillations or ‘ripples’ (100–250Hz),
which can be detected around the hippocampalCA1 cell layer during rest or
sleep. An avalanche of excitatory inputs from the CA3 region, typically
visible as a slower sharp-wave component, triggers ripples locally in CA13,4.
Within the ripple event, neural firing patterns that occurred during
exploratory behavior are reactivated outside of the experience5,6, leading the
SWR to be used as an index of consolidation-associated reactivation or
replay7–10.

Although SWRs can be detected across an array of recordingmethods,
subfield locations and species2,11, their underlying mechanisms and con-
sequent local field potential (LFP) features are understood almost exclu-
sively frommeasurements in rat andmouse dorsal hippocampal CA1. Even

within this region, SWRs exhibit a large diversity of waveforms that pre-
sumably reflect the myriad combinations of reactivating ensembles12–14.
Using spectral methods, their characteristics are shown to vary along the
long (septotemporal) CA1 axis within animals15 and most notably with
phylogenetic distance across species, e.g., when measured in rodents vs
human and non-human primates11,16,17. Furthermore, in diseases affecting
hippocampal function, such as Temporal Lobe Epilepsy (TLE), pathological
forms of ripples have been reported18–21, as well as along aging22,23. However,
spectral properties alone are suboptimal to separate these events from other
types of faster oscillations11,24,25.

To address this challenge, many researchers have developed feature-
based strategies for detecting LFP oscillations usingmachine learning (ML)
tools16,26–31. These novel strategies have accelerated our understanding of the
underlying mechanisms of SWRs and the improvement of closed-loop
interventions beyond those using spectral features alone30,32. Yet these
methods have been focused on a single detection method optimized for a
single target application typically in the mouse dorsal CA1, or within lab-
specific approaches to detection in the brains of humans with epilepsy. As

1Instituto Cajal, CSIC, Madrid 28002, Spain. 2Psychological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA. 3Biomedical Engi-
neering, Vanderbilt University, Nashville, TN, USA. 4These authors contributed equally: Andrea Navas-Olive, Adrian Rubio. e-mail: acnavasolive@gmail.com;
lmprida@cajal.csic.es

Communications Biology | (2024) 7:211 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-05871-w&domain=pdf
http://orcid.org/0000-0002-9280-8597
http://orcid.org/0000-0002-9280-8597
http://orcid.org/0000-0002-9280-8597
http://orcid.org/0000-0002-9280-8597
http://orcid.org/0000-0002-9280-8597
http://orcid.org/0009-0009-2165-0954
http://orcid.org/0009-0009-2165-0954
http://orcid.org/0009-0009-2165-0954
http://orcid.org/0009-0009-2165-0954
http://orcid.org/0009-0009-2165-0954
http://orcid.org/0000-0002-3550-0617
http://orcid.org/0000-0002-3550-0617
http://orcid.org/0000-0002-3550-0617
http://orcid.org/0000-0002-3550-0617
http://orcid.org/0000-0002-3550-0617
http://orcid.org/0000-0003-0560-8157
http://orcid.org/0000-0003-0560-8157
http://orcid.org/0000-0003-0560-8157
http://orcid.org/0000-0003-0560-8157
http://orcid.org/0000-0003-0560-8157
http://orcid.org/0000-0002-0160-6472
http://orcid.org/0000-0002-0160-6472
http://orcid.org/0000-0002-0160-6472
http://orcid.org/0000-0002-0160-6472
http://orcid.org/0000-0002-0160-6472
mailto:acnavasolive@gmail.com
mailto:lmprida@cajal.csic.es

LFP recordings are increasingly common in the clinic, the need to scale
analysis from small laboratory animals to the human brain is pressing10,33–38.
Developing these new tools will provide the community with straightfor-
ward methods to identify SWRs from pathological oscillations across the
range of recording technologies, sampled regions, and background
pathologies. Therefore, there is a broad demand for a consolidated toolbox
of ML methods for LFP feature analysis that can be easily applied across
species to aid in understanding brain function, but also advance biomedical
applications.

Here, we develop and analyze a set of ML architectures applied to the
problem of SWR identification, and compiled in an open toolbox: https://
github.com/PridaLab/rippl-AI39. To favor an unbiased screening of poten-
tial ML solutions, we ran a hackathon with the mission of detecting SWR
using algorithms in a supervised manner. Using community-based solu-
tions in neuroscience is gaining traction due to their ability to foster inter-
disciplinary anddiverse perspectives, and topromote collaboration anddata
sharing40–43. We selected the most promising architectures from the
hackathon and standardized them for fair comparisons. We show how the
different ML models could bias SWR detection and identify conditions for
their optimal performance and stability in the mouse hippocampus (Mus
musculus). We then extend the analysis to SWRs recorded in the macaque
hippocampus (Macaca mulatta), to demonstrate the generalizability of
SWRs detection methods to the primate order. This proof of principle will
foster the development of feature-based detection algorithms for future
applications to a range of models and approaches, including the
human brain.

Results
Community-based proposal of ML models of SWR
To create a diversity of ML-supervised models of SWRs, we organized a
hackathon that promoted unbiased community-based solutions from sci-
entists unfamiliar with neuroscience research and SWRs in particular (see
Methods). The hackathon challenge was to propose an ML model that
successfully identifies SWRs in a dataset of high-density LFP recordings
from the CA1 dorsal hippocampus of awake mice, used before for similar
purposes30. Preparatory courses introduced participants to the main topics
required for the challenge (Fig. 1a). To standardize the differentMLmodels,
they were given access to Python functions for loading the data, evaluating
model performance, and writing results in a common format. Annotated
data consisted of raw LFP signals (8 channels) sampled at 30 kHz and
containing SWR events manually tagged by an expert (training set: 1794
events, two sessions from 2 mice; validation set: 1275 events; two sessions
from 2 mice; Fig. 1b; Supplementary Table 1).

Participants submitted eighteen different solutions (Fig. 1c). The most
used architecture was the extreme gradient boosting (XGBoost; 4 propo-
sals), a decision tree-based algorithm very popular for its balance between
flexibility, accuracy and speed44 (Fig. 1c). Some other popular architectures
were one and two-dimensional convolutional neural networks (1D-CNN,
2D-CNN; 3 and 3 solutions, respectively), deep neural networks (DNN,
3 solutions)45, and recurrent neural networks (RNN; 2 solutions)45 (Fig. 1c).
RNNwere presented in both their standard feed-forward version, and as the
long-short term memory (LSTM) version that includes feedback connec-
tions, more suited for processing time series data46. Although these NN
architectures are typically used for pattern recognition, theway they process
and learn fromdata is remarkably different: for example, whereasCNNs are
based on kernels specialized in spotting particular spatially contiguous
features of the input, LSTMs usememory cells that look for time-dependent
relationships in the data (Fig. 1d). Two other algorithms were also sub-
mitted: a support vectormachine (SVM; 1 solution; Fig. 1c) and a clustering
solution based on dimensionality reduction by principal component ana-
lysis (PCA), followed by k-nearest neighbors (kNN) clustering (1 solution;
Fig. 1c). From the 18 solutions submitted, 5 were not functional and could
not be scored (Fig. 1c, bottom). Analysis of the hackathon experience in
relationship to the submitted solutions is summarized in Supplementary
Fig. 1 (see Methods for details).

We sought to identify the more promising architectures for a sub-
sequent in-depth analysis. The performance of submitted ML models was
measured using the F1-score (see next section). The best performanceswere
achieved by the 2D-CNN, one of the XGBoost models, and the SVM
algorithm. Since 1D-CNNs and RNNs were submitted by several groups,
and given their previously successful application to SWR detection27,30, we
decided to include them as well, resulting in five different machine learning
architectures (Fig. 1c; dark arrowheads).

The goal of theMLmodels is to identify the presence of a SWR (or part
of it) in a given analysis window (Fig. 1d, left). The selectedMLarchitectures
covered a range of processing strategies (Fig. 1d, right). XGBoost is a very
popular ML algorithm that uses many decision trees in a parallel fashion,
making it one of the fastest algorithms47. SVM regression lies within the
statistical learning framework, and its objective is to find a new space where
samples from different categories (SWRs vs no-SWRs) are maximally
separated,making it one of themost robust classificationmethods48. LSTMs
are especially suited for regression and classification of temporal series, like
in natural language processing, using a memory-based strategy to extract
relationships betweennon-continuous time points46. CNNs represent a very
common approach for many detection and classification tasks applied to
different datamodalities (1D for signals, 2D for images, and 3D for video or
volumetric reconstructions) and can approach human performance on
many tasks49.While 2D-CNNs process input data by considering adjacency
on both dimensions (spatial and temporal, in our case), the 1D-CNN
solution treats each channel independently and only considers time adja-
cency, making them two distinct processing algorithms.

This community-based ML architecture bank that was produced by
participants who were unfamiliar with SWR studies can be used to evaluate
the problemof SWRautomatic detection in experimental contexts.Wenext
focused on standardizing processing and retraining the different models.

Standardization and retraining of selected algorithms
After careful examination of the submitted solutions, we noticed that data
pre-processing and training strategies were very different between groups.
Data characteristics, like the sampling frequency or the number of channels
used for detection, can influence operation. To standardize analysis, we
chose to down sample to 1250Hz and normalize input data using z-scores,
which account for differences inmean values and standard deviation across
experimental sessions.

We then retrained the submitted ML architectures using the same
training set of the hackathon.We randomly divided the training dataset into
a set for training (70%) and a set to validate performance (30%) in unseen
data prior to a more thorough validation (Fig. 2a, Supplementary Table 1).
We explored a wide range of hyper-parameters for each architecture, which
included the number of LFP channels (1, 3, or 8), the size of the analysis
window (from less than 1 ms up to 50ms), and model-specific parameters
like maximum tree depth for XGBoost, bidirectionality for LSTM or kernel
factor for CNNs (Fig. 2a). A trained ML architecture set with a particular
combination of its hyper-parameters gives rise to a particular trainedmodel
(Fig. 2a). Because each architecture had different numbers of hyper-para-
meters, we ended up with different numbers of trained models for each
architecture (1944 for XGBoost, 72 for SVM, 2160 for LSTM, 60 for 2D-
CNN, and 576 for 1D-CNN).We then used the validation set to choose the
50 best models from each architecture and further tested their performance
using a new test dataset (7586 SWR events; 21 sessions from 8 mice; Sup-
plementary Table 1), previously used for the 1D-CNN model30

(Fig. 2a, right).
The goal of training is to make the model output as similar as possible

to the ground truth (GT). Because model outputs are continuous numbers
between 0 and 1 representing the probability of the presence of the event in
the window of analysis, choosing the detection threshold can affect per-
formance (Fig. 2b). Lower thresholds would result in more detections
(Fig. 2b, light-graydiscontinuous threshold line), normally implying a larger
number of both true and false positives, while higher thresholds are more
conservative at the expenses of False Negatives (Fig. 2b, dark-gray threshold

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 2

https://github.com/PridaLab/rippl-AI
https://github.com/PridaLab/rippl-AI

line). An ideal model would performwell regardless of the threshold, but in
practice, selecting the threshold that optimizes the true positive-false posi-
tive trade-off is unavoidable but crucial for experiments. A performance
score that takes into account this trade-off is the F1-score, computed as the
harmonic mean between Precision (percentage of good detections) and
Recall (percentage of detected GT events) (Fig. 2c). F1 values of 1.0 would
reflect a perfect match between detections and GT, whereas 0.0 reflects a
perfect mismatch. Note this was the same score used to rank models in the
hackathon.

After training all architectures by optimizing F1 scores over the
validation set, we assessed generalization and performance using the test
dataset (Supplementary Table 1). We inspected what parametric com-
binations gave rise to optimal MLmodels and found a remarkable variety
of distributions (Supplementary Fig. 2a, 50-best models, ranked by best
test F1). All architectures showed a great deal of variability, with almost
all available parameter combinations covered. However, some

parameters showed biases that depended on the ML architectures,
pointing to the necessary requirements for a good performance. For
example, all of the 50 best XGBoost models used 8 channels, and in
general, more than 3 channel was used across successful architectures
(Supplementary Fig. 2a). When we focused on the 10 best models
(colored lines), we could further see how different architectures had
distinct ranges of parameter values. XGBoost models required longer
time windows (9/10 models had the highest F1 for 25ms windows),
whereas most SVMmodels employed shorter windows (<3.2 ms). LSTM,
2D-CNN, and 1D-CNNs with variable window sizes all showed very
strong performance for >12.8 ms. LSTMmodels were allowed to use both
uni- and bi-directional input flow, but all of the 10 best models were
found to be bidirectional, consistent with previous reports50. This sup-
ports the idea that the present and future characteristics of an ongoing
SWR are interdependent and predetermined by circuit mechanisms (e.g.,
there is a preceding buildup period followed by replay sequences51,52).

Fig. 1 | Unbiased community-based proposals of ML models for SWR detection. a Organization of the hackathon. A preparatory phase (Prep) established the basic
grounds of the challenge in terms of minimal knowledge about SWRs, Python programming, andMachine Learning (ML) models. It also looked to standardize scripts and
data management. The second phase consisted of the hackathon, which lasted over 53 h during three days, with participants having access to the annotated training dataset
and some Python scripts. During the last evaluation phase, a new validation set was released to participants 3 h before the end of the hackathon. Solutions were ranked using
the F1-score (see methods). b Example of the training data consisting of 8 channels of raw LFP (black) sampled at 30 kHz, with the manually tagged ground truth (GT),
corresponding to SWR events. cResults from the hackathon. Solutions were ranked by the F1 score. F1 represents the harmonicmean between Precision (percentage of good
detections) andRecall (percentage of detectedGT events). DeepNeuralNetworks (DNN), ConvolutionalNeuralNetworks (CNN), RecurrentNeuralNetworks (RNN)with/
without Long-Short Term Memory (LSTM); Random Forest decision trees (Rand Forest), Extreme Gradient Boosting (XGBoost), Support Vector Machines (SVM),
k-Nearest Neighbors (kNN). Chosen solutions are marked with arrowheads. Darker arrows point to the group that got the highest score of each particular architecture; light
arrows point to repeated architectures. d Schematic representation of the SWR detection strategy and the 5ML models used in this work.

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 3

Finally, to assess if there was over-fitting, we evaluated how prediction
errors (logarithmic-loss) evolved along training epochs using both training
(Supplementary Fig. 2b) and validation datasets (Supplementary Fig. 2c).
All of the 10-best models showed decreasing or stabilized evolution of
prediction errors in the validation dataset (Supplementary Fig. 2c), except
for one LSTM model, which even showing a transient increase in the vali-
dation prediction error (indicating over-fitting), it ended up having the 9th
best test F1 (indicating good generalization capabilities).

A plug-and-play toolbox to use any of the best five models of each
architecture for SWR detection is available: https://github.com/PridaLab/
rippl-AI39.

Influence of the temporal and spatial sampling on training
performance
Next, we sought to evaluate the relationship between model performance,
parameters, and LFP input characteristics. Given the relevance of the
temporal and spatial LFP sampling in the definition of SWRs30, we started
evaluating how the size of the analyzed window and the number of
recording channels influenced performance. In order to have as much data
as possible, we used the F1-scores of all the trained models over the
validation set.

We found that XGBoost and LSTM were very stable, with perfor-
mances changing very little for any combination of window size and the

number of channels used, suggesting that these architectures can capture
SWR features that are relatively invariant across temporal/spatial windows
in the input data (Fig. 3a, b). Interestingly, the training parameter that most
influenced these two architectures was the number of LFP channels, with 3
and 8 channels providing better performances (Fig. 3a).

Spatial information was also important for the SVM and LSTMmod-
els, which scored poorly using a single vs several channels (Fig. 3a;
magenta and orange, respectively). As mentioned above, temporal resolu-
tion was also critical for SVM, which required smaller time windows of
<3.2ms to succeed in detecting SWR (Fig. 3b). For analysis windows
>6.4ms (i.e., the temporal scale of one 150Hz-ripple oscillation) perfor-
mance dropped significantly, indicating that a single SWR cycle and its
particular waveform across channels are optimal input information for the
SVM architecture to detect events. This effect could be due to the low
number of trainable parameters used for SVM (ranging from 1 to 100; see
Methods), which requires less but more informative data to achieve good
performances.

Finally, both the 2D- and 1D-CNN models had similar performance
for any number of channels, although there was also a trend for higher
spatial sampling (Fig. 3b, yellow and aqua). Interestingly, bothCNNmodels
presented a large F1 dispersion because their performance was very
dependent on the window size (Fig. 3b). The 2D-CNN model exhibited
maximal F1-score for 32ms, while most 1D-CNN models best scored for

Fig. 2 | Training design and performance of ML models. a Training and selection
criteria scheme. The training dataset used in the hackathon was z-scored and down-
sampled to 1250 Hz. Training data were shuffled and distributed into train and
validation subsets (70–30%, respectively). Each architecture was trained to optimize
the F1 of the validation set using several parameters. The 50 best models were tested
over a new test data set (7586 events; 21 sessions from 8 animals), generating an F1 vs
threshold curve permodel/ architecture. Among these 50, themodel with the highest
mean F1 was selected for between-models comparison (right panel). b LFP example
of the new test set and the corresponding model outputs per window of analysis.
Note different durations of true events. Setting a threshold allows defining the

windows containing detected events. Colored ticks represent detections by the dif-
ferent models. Two different thresholds (dark and light gray) can influence what
events are detected. Note how detections marked with arrows are dismissed when
the threshold increases. Since SWRs constitute about 1–4% of the total recording
duration, performance is computed using positive detections; that is, windows
without GT or detected events are not computed for performance. c Schematic
illustration of Precision (percentage of good detections), Recall (percentage of
ground truth events that have been detected), and F1-score (harmonic mean
between Precision and Recall).

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 4

https://github.com/PridaLab/rippl-AI
https://github.com/PridaLab/rippl-AI

>40ms (Fig. 3b). This may be related to the number of training parameters:
the more parameters, the more complex tasks these algorithms can solve,
provided the amount of training data is representative enough of the
expected variance. This supports accurate detection in longer LFPwindows.
Examination of the remaining parameters suggested additional differences
across architectures (Supplementary Fig. 3a–e). Interestingly, evaluating
their impact on F1-scores confirmed the effect of channels and window size
onmodel behavior (Supplementary Fig. 3f). ForCNNmodels, the batch size
(1D-CNN) and the number of kernels (2D-CNN) were also critical.

Comparison between optimized models
The analysis above provided insights on how input characteristics and
processing parameters can influence detection performance in differentML
models. Understanding how each architecture learns to identify ripple-like
events cannotonly aid thedevelopmentof new tools, butunveilwhat are the
key LFP features used for detection. We thus evaluated conditions for their
best performance.

For a fair comparison between architectures, we selected the 10-best
models from the test set. Remarkably, our previously published 1D-
CNN model30 was among the 10-best 1D-CNN, outperforming other
configurations. In order to compare their performancewith state-of-the-
art spectralmethods, we tested filters with the optimal parametric setting
and took the 10-best (see Methods). Plotting F1-scores of all models
across a range of thresholds allowed visualization of their performance
stability (Fig. 4a). We analyzed ML models along a range of character-
istics (performance, robustness, and threshold dependency) to better
inform their selection depending on research applications. Five of the 10
best trained models are available at https://github.com/PridaLab/rippl-
AI/blob/main/optimized_models/.

The consistency of F1-threshold curves depended on the model
architectures (Fig. 4a). Most models reached their maximal F1-score at
relatively low threshold values of 0.3-0.4 and remained stable until a
probability of around 0.5–0.7. Such behavior indicates robust performance
since even low probability (i.e., relatively uncertain) output predictions
overlapped with the ground truth. This property is very useful for online
experimental applications when choosing different thresholds is not man-
ageable, making detection more robust. Interestingly, we found that
XGBoost models exhibited good performance at two threshold ranges
(0.2–0.4 and 0.6–0.8), depending on how trained models penalized False
negative predictions. Similarly, for both CNN architectures, we found sev-
eral models operating sharply at low thresholds, while others exhibited a
relatively stable operation in the 0.4–0.6 range, especially for 1D-CNN
models. We confirmed the variability of different models within a given
architecture by looking at their Precision vs Recall curves for the entire
threshold range (Supplementary Fig. 4a). The filter showed good stability,
but it performedunreliably across sessions, leading to overall lowermeanF1
scores (Fig. 4a, gray). This variability suggests that even when arising from
the same architecture, algorithmic processes and detection strategies SWR
events could differ. This may provide a range of models for different
applications.

Next,we selected themodel that reached thehighest F1value fromeach
architecture (Fig. 4a, best models, arrowheads), and compared their scores
using all test sessions (Fig. 4b).We found that the LSTM and 1D-CNNbest
models outperformed other architectures, with mean F1-scores over 0.6 (as
a reference, the inter-expert F1-score in our lab is ∼0.730). Precision-Recall
curves from these two models clearly stood out from the other solutions
(Supplementary Fig. 4b). In order to further test performance, we tested
these models under new contexts. First, we evaluated detection biases by

Fig. 3 | Influence of a number of channels and analysis window on training
performance. a Final validation F1-score of all trained models depending on the
number of input channels: one (pyramidal channel; see methods), three (the pyr-
amidal channel, and extreme channels above and below it), or eight (all channels of
the probe). Kruskal–Wallis tests with repeated measures for every architecture:
XGBOOST, Chi2(2) = 1282.2, p < 0.0001; SVM, Chi2(2) = 33.1, p < 0.0001; LSTM,
Chi2(2) = 964.4, p < 0.0001; 2D-CNN, not significant; 1D-CNN, Chi2(2) = 14.6,
p = 0.0007. Post hoc tests: *, p < 0.05; **, p < 0.01, ***, p < 0.001. Violin plots

represent the median (white dot), thick lines indicate the 25th/75th percentiles and
the thin line extends until the most extreme data points are not considered outliers.
b Same as panel a, but depending on the time window used for analysis. Kruskal-
Wallis tests with repeated measures for every architecture: XGBOOST, Chi2(2) =
369.5, p < 0.0001; SVM, Chi2(7) = 48.8, p < 0.0001; LSTM, Chi2(5) = 48.0,
p < 0.0001; 2D-CNN, Chi2(4) = 16.5, p = 0.0024; 1D-CNN, Chi2(3) = 126.5,
p < 0.0001. Post hoc tests: *, p < 0.05; **, p < 0.01, ***, p < 0.001. Equal meaning of
violin plot measures.

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 5

https://github.com/PridaLab/rippl-AI/blob/main/optimized_models/
https://github.com/PridaLab/rippl-AI/blob/main/optimized_models/

using a different ground truth, manually tagged by a second expert. Per-
formance did not significantly change for any ML model or filter (Supple-
mentary Fig. 4d), suggesting that detectors were not biased by the first
expert’s labeling criteria. Second, we evaluated generalization to other
behavioral contexts by detecting SWRs in freely moving animals during
awake and sleep conditions. We found that the performance of MLmodels
remained consistent, with better performance during sleep recordings
(Supplementary Fig. 4e).

Given the importance of consistent threshold performance for prac-
tical applications, we also quantified the robustness of F1-threshold curves
for the best models using a stability index in the test dataset (see Methods).
Models with a stability index of 1.0 provide at least 90% of their maximal
performance for any threshold value, a property especially suitable for
experimental applications. While the best 2D-CNN model exhibited sta-
bility in some test sessions, the best LSTM and especially the best 1D-CNN
models exhibitedmore consistent behavior (Fig. 4c, bottom; Supplementary
Fig. 4c). The filter also showed generally high stability, but it was very

dependent on the session, leading to a high dispersion (Fig. 4b). We con-
firmed this result by plotting the stability index vs F1, where both the best
LSTM and 1D-CNN best models clearly segregated (Fig. 4c, top;
arrowhead).

To evaluate if the different models were targeting similar or dif-
ferent subsets of SWR events, we compared how overlapping their set
of detections was. To quantify this similarity, we computed the F1
between both groups of detections, using one of them as the ground
truth (Fig. 4d). Interestingly, the 1D-CNN and LSTM showed a high
level of similarity, in line with their consistent and accurate behavior
(Fig. 4d, white *), while 1D-CNN and the filter showed the least
overlapping. XGBoost scored a high similarity with all other archi-
tectures except for the 2D-CNN (Fig. 4d, white +). Possibly, this
reflects the fact that very few of the XGBoost detections were also
predicted by 2D-CNN, leading to a very low Precision (Supplementary
Fig. 4f). In general, high similarities did not seem to be caused by a
particularly high Precision or Recall (model A detects so few events

Fig. 4 | Comparison between best-performing ML models. a F1 against threshold
from the 10-best models of each architecture as evaluated in the test set and the 10-
best filters of all possible parametric combinations. Each line represents the per-
formance of one trained model, colored by its maximal F1. Data was reported as a
mean ±95% confidence interval for test sessions. Arrows indicate the best model of
each architecture. b F1-scores for the best model of panel a and ensemble model of
panel e. The thresholds used are 0.4 for XGBoost, 0.5 for SVM, 0.4 for LSTM, 0.1 for
2D-CNN, 0.5 for 1D-CNN, and 4.5 SD for Filter. Boxplots show the median (white
line), percentile 25% and 75% (box size), and SD (error bars); each dot represents a
session of the test set (n = 21 sessions; 8 mice). Kruskal–Wallis, Chi(6) = 23.03,
p < 0.001. Post hoc tests: *, p < 0.05; **, p < 0.01. c Stability index for the samemodels
as in panel b (bottom), and the stability index vs the F1 (top). Same boxplot
representation as in (b). Kruskal–Wallis, Chi(6) = 21.29, p = 0.002. Post hoc tests. **,

p < 0.01. d Similarity between predicted events of different architectures. Models are
the same as in panels (b, c). To measure the similarity, the mean F1 across test
sessions has been computed, using detected events in the y-axis as detections and
detected events in the x-axis as ground truth. Note the similarity between LSTM and
1D-CNN (white *), and that by XGBoost against SVM, LSTM, and 1D-CNN (white
+). e Ensemble model, trained using the output of the best models of the machine
learning architectures. Weights were: w1 =−0.11 (XGBOOST); w2 =−1.56 (SVM);
w3 = 5.33 (LSTM); w4 = 2.03 (2D-CNN); w5 = 4.07 (1D-CNN); bias =−4.97. On
the right, the mean F1 score (line) ±95% confidence interval (shadow) for test
sessions. Maximum F1-score and stability index for test sessions have been included
in panels b and c to facilitate comparison with the rest of the methods.

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 6

that all coincide with detections of model B), but by a good balance
between both (events of model A and B highly overlap) (Supple-
mentary Fig. 4f).

Such a variety of detections could be the result of internal data pro-
cessing particularities of individual ML models. We wondered if we could
take advantage of this heterogeneity by building an ensemble model. The
ensemblemodelwasdesigned touse theoutputof thebestMLmodelof each
architecture as an input (Fig. 4e, left; seeMethods).We trained the ensemble
model with the training set and tested it using the test set (Fig. 4e, right).We
found an increment of both performance and stability (Fig. 4b, c; purple
arrow). As expected, the higher weighted models were the ones with higher
performance: LSTM (w3 =+5.33) and 1D-CNN (w5 =+4.07). Interest-
ingly, XGBoost and SVM were weighted negatively (w1 =−0.11,
w2 =−1.56, respectively).

Effect of different MLmodels on the features of detected SWRs
The results above suggest that different ML models may be relying on
different strategies for recognizing SWRs. We thus wondered whether
models could be biased towards SWRs with different features (frequency,
amplitude, etc…) and whether these biases could also be reflected over
different ranges of output probabilities.

In order to evaluate these issues, we resorted to a low-dimensional
analysis of SWRs, which allows for their unbiased topological
characterization14. In this strategy, SWR events are considered points in an
N-dimensional space, where each dimension X (dimX) represents the LFP
value sampled at a given timestamp X (Fig. 5a). In our case, as events were
GT ripples of 50ms sampled at 1250Hz (i.e., 63 timestamps), the original
space was 63 dimensions. To align SWRwaveforms, we centered the 50ms
window on the SWR trough closest to the highest SWR spectral power.

Fig. 5 | Effect of ML models and thresholds on the type of detected SWR. a Low-
dimensional analysis of SWR features14. GT ripples are represented in a high-
dimensional space by mapping each timestamp to a particular dimension. Since the
sampling rate is 1250 Hz, and windows around SWRs were cut to 50 ms, there are 63
timestamps per event, and so the original space has 63 dimensions. The SWRcloud is
embedded in a low-dimensional space using UMAP. bUMAP embedding projected
into the two first axes. Each dot represents a GT ripple, and its color reflects its
frequency (left) and power (right). Note how ripples in the cloud are distributed
according to frequency and power, meaning that in the original space, ripples with
similar features are close together. c Colored dots superimposed over gray GT data
represent the top 1% of detected events for every given architecture, i.e., True
Positive events with an output SWR probability above 99% of the maximum

probability for that given model. Note that different distributions of events in the
cloud reflect biases of theMLmodel used for detection. d Frequency of True Positive
SWR detected by each architecture for different thresholds. In gray, frequency of all
GT events. Boxplots show the median (white line), percentile 25% and 75% (box
size), and SD (error bars); each dot represents themean frequency of detected ripples
of one test session (21 sessions from 8 animals). Kruskal–Wallis tests for every
architecture: XGBOOST, not significant; SVM, Chi2(5) = 11.1, p = 0.049; LSTM,
Chi2(5) = 29.9, p < 0.0001; 2D-CNN, Chi2(5) = 13.8, p = 0.017; 1D-CNN, not sig-
nificant. Post hoc tests: *, p < 0.05; ***, p < 0.001. e Spectral power of True
Positive events detected by each architecture. Same boxplot representation as in (d).
Kruskal–Wallis tests for every architecture: XGBOOST, SVM, 2D-CNN, and 1D-
CNN are not significant; LSTM, Chi2(5) = 14.0, p = 0.016. Post hoc tests: *, p < 0.05.

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 7

Plotting all SWR events will result in a point cloud, with events sharing
similar LFP features lying close to each other, while those of different
characteristics distribute separately (Fig. 5a). To ease visualization, the
SWRs were embedded in a low-dimensional representation using uniform
manifold approximation and projection (UMAP)14,53.

First, we analyzed how ripple frequency and power were distributed
in the UMAP embedding by coloring each dot (i.e., each SWR) based on
their frequency (Fig. 5b, left) and power (Fig. 5b, right). As expected from
our previous work14, these features followed different distributions, seg-
regating high-frequencies towards the bottom of the cloud and high-
power events radially out (Fig. 5b). We then inspected events detected by
the best model of each architecture by plotting the top 1% detections,
defined as True Positive events for which the model output probability
was >99% of its maximum probability (Fig. 5c). Interestingly, each model
showed different distributions of preferred SWRs. For example, XGBoost
was biased towards a subset of high-power and fast SWR events (Fig. 5c,
green arrowhead), whereas the SVM model exhibited a more hetero-
geneous distribution. In turn, LSTM and both CNNs assigned higher
probabilities to events that had a good frequency-power balance (Fig. 5c,
orange, yellow, and blue arrowheads). Note how these models have more
colored events, consistent with their higher stability indices reported
above (Fig. 4c).

To quantify detection biases in each ML model, we analyzed the fre-
quency and power of their True Positive events and compared them against
those in the GT. Consistent with the UMAP distributions, SWR frequency

was highly dependent on the threshold for SVM, LSTM, and 2D-CNN
algorithms (Fig. 5d). The case of LSTM was particularly striking, with dif-
ferences accumulating for all thresholds. Instead, for the SVMand2D-CNN
biases were significant only when thresholds differed ±0.2 from the optimal
value (Fig. 5d). As previously reported30, the 1D-CNN exhibited roughly
consistent behavior with SWR features not statistically different from GT
events. SWRpower exhibited nomajor dependency on the threshold in any
of the models but the LSTM, especially at higher detection thresh-
olds (Fig. 5e).

Altogether, this analysis suggests that the different ML models can be
exploited to detect a wide range of SWRs with different characteristics.

Using the toolbox to identify SWRs in non-human primates
A major motivation of our study is to develop methods that can be gen-
eralizable for awider rangeof detection contexts, including a greater rangeof
species and biomedical applications. Thus, we applied our ML models to
LFP recordings from the hippocampus of themacaque, which shares a high
level of genetic,morphological, andphysiological characteristicswith that of
its fellow primate, the human, while enabling precise localization of signals
roughly comparable to those used for the algorithm development. To
accomplish this,we recordedhippocampalLFP signals froma freelymoving
macaque using a multichannel linear probe54 (Fig. 6a). Unlike the original
high-density probes (20 µm), recordings were obtained every 90/60 µm and
spanned CA1 layers (Fig. 6a). As in mice, SWRs were manually identified
(4133 events) to generate the annotated ground truth (Fig. 6b). Consistent

Fig. 6 | Extending sharp-wave ripple detection to non-human primates. a Linear
multichannel probes were used to obtain LFP recordings from the anterior hippo-
campus of a freely moving monkey. b SWR events were manually tagged (4133
events) as in mouse data. c Significant differences between SWR recorded in mice
and monkeys. Boxplots show the median (white line), percentile 25% and 75% (box
size), and SD (error bars). Kruskal–Wallis Chi2 = 1649, p < 0.0001 for frequency;
Kruskal–Wallis Chi2 = 407, p < 0.0001 for power. Post hoc tests: ***, p < 0.001. Data
from the GT in both cases. d The best model of each architecture trained in mouse
data and the best filter configuration for mouse data were applied to detect SWRs on

the macaque data. Input data consisted of 5 LFP channels of SO, SP, and SR, and 3
interpolated channels (see Methods for details). We evaluated all models by com-
puting the F1-score against the ground truth (GT). Note relatively good results from
non-retrained ML models and filters. e Results of model re-training using macaque
data. Data were split into a training and validation dataset (50% and 20%, respec-
tively), used to train theMLmodels; and a test set (30%), used to compute the F1 (left
panel). The filter was not re-trained. f F1-scores for the maximal performance of
each model before and after re-training. Same boxplot representation as in (c).
Kruskal-Wallis test, Chi2(2) = 8.06, p = 0.018. Post hoc tests: *, p < 0.05.

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 8

with the literature16,17, macaque SWRs had lower frequencies and higher
power as compared to mouse ripples (Fig. 6c).

We applied the best model of each architecture trained in head-fixed
mice to macaque recordings and evaluated their performance. For a fair
comparison, we flipped laminar LFP signals upside down and sampled the
channel combination that bestmatched the characteristicmouseLFPprofile
(see Methods and layer orientation in Fig. 6a). Strikingly, 4/5 models
reached a maximum F1 of ~0.5 (Fig. 6d), close to their maximal perfor-
mance on mice data (~0.6). SVM, 1D-CNN, and LSTM exhibited the best
performance, as compared toXGBoost and2D-CNN(Fig. 6d). Importantly,
the fact that both LSTM and 1D-CNN have relatively good generalization
capability in raw data, even when compared to a ground truth from a
different expert (Supplementary Fig. 5a), suggests that they successfully
capture shared features of SWRs from mice and macaques. The filter also
proved to generalize to non-human primate data using both ground truths
(Fig. 6d, Supplementary Fig. 5a; gray trace).However, it was very sensitive to
noise, decreasing its F1-score from 0.51 (removing noise and artifacts) to
0.16 (raw signal). This did not happen in the MLmodels, where changes in
the F1-score were all ≤0.06 (XGBoost: 0.02; SVM: 0.01; LSTM: 0.05; 2D-
CNN: 0.01; 1D-CNN: 0.06).

We next chose to re-train the 5 MLmodels with the macaque dataset,
using 50% for training and 20% for validation. The remaining 30%was used
as the test dataset to compute the final F1. We used the best model of each
architecture as the starting point of the re-training and let the internal
weights evolve to adjust to the new dataset features (a process commonly
known as transfer learning; Supplementary Fig. 5b), which made the re-
training very fast (<2min, Table 1). Performances improved after retraining
for 4/5 models, reaching an F1 increase of+0.3 for 2D-CNN (Fig. 6e). The
best model was LSTM, followed by 1D-CNN and XGBoost. Furthermore,
the performance of macaque SWR detection after re-training reached the
mouse level (Fig. 6e), suggesting that these models identified similar key
features in both species and could readily be trained to similar levels of
accuracy across mice and monkeys. Similar results were observed when
using the new ground truth to re-train the models (Supplementary Fig. 5c),
where even SVM improved. A user-friendly open Python notebook to re-
train any of the 5models and use it for event detection is available at https://
github.com/PridaLab/rippl-AI/blob/main/examples_retraining.ipynb.

Discussion
Here, we provide a pool of models for automatic SWR detection based on
different ML architectures. These include some of the most used ML
solutions, such as XGBoost, SVM, 1D- and 2D-CNN and LSTM. The
models,which resulted fromunbiased community-basedproposals, are able
to capture a wealth of SWR features recorded in the dorsal hippocampus of
head-fixed mice. When applied to LFP recordings from a freely moving
macaque, these models were able to generalize detection. Moreover, anML
ensemble model exhibited more stable performance and accuracy even
when compared to standard filter approaches, further supporting AI-based
solutions to the analysis of LFP events.

The need for detecting and classifying high-frequency oscillations such
as SWRs has accelerated over recent years for advanced biomedical

applications27,32,34,41,55. Identification of these events can help to delineate
normal from pathological epileptogenic territories18,56,57, and to develop
closed-loop intervention strategies for boosting memory function32,34.
However, spectral-based methods have proved suboptimal, especially to
differentiate between normal and pathological oscillations58,59. Moreover,
while using spectral filters online can provide reasonable good detection
levels, experimental artifacts and noise compromise reliability. Therefore,
the community is actively seeking novel LFP feature-based strategies.
Recently, solutions based in ML methods have started to emerge25,27,30,56.
Although their performance is not increasing beyond the expert’s limit or
spectral methods, they provide opportunities for advanced analysis, espe-
cially when dealing with high-density recording channels. Using these tools
will drive advances not only in the online detection of SWRs but also in their
unbiased categorization for better mechanistic understanding11,13,21,30,60,
including their functional links to visuospatial and episodic
memory10,11,16,33,37,38.

Amongst the 5ML architectures examined here, we found the LSTM
and 1D-CNN to provide the best performance and reliability using rodent
data. Theothermodels exhibited roughly similar behavior dependingon the
input parameter selection (recording channels and analysis windows).
While, in general, we found that all of them performed better with high-
density multi-channel recordings (8 channels), some of them (e.g., 2D-
CNN) exhibited similar results while operating over data sampled with 1–3
channels. This suggests they may be able to identify characteristic features
with reduced spatial information, which could facilitate applications to
human recordings19,36.

Detection of SWR candidates with ML models is based on using a
probability threshold.We found that the differentmodels exhibited a degree
of sensitivity to threshold selection, with LSTM, XGBoost, and 1D-CNN
providing a wider range of operational stability. Thus, there is a large range
of thresholds in thesemodels, which provide relatively similar performance.
This is very important for online applications when threshold selection can
affect experimental results in real time25.

The different ML models are biased toward SWRs with slightly dif-
ferent properties, probably reflecting their internal representations of the
characteristic LFP features30. During training, each model learns to identify
specific LFP features, making ripples distinguishable from background LFP
signals so that during SWR detection, the presence of those features raises
their output probability. The fact that the properties of detected SWR
dependon theprobability threshold forSVM,LSTM, and2D-CNNsuggests
they rely more on frequency and relative power features. On the contrary,
XGBoost and 1D-CNNmodels showed less bias. Such behavior is critical to
make detection more generalizable across physiological states (e.g., sleep vs
awake), species (e.g., macaque), and cognitive demands (e.g., learning),
known to significantly influence SWR features14,38.

We found that this behavior of ML models is also consistent with
their reliable performance using ground truth data from different experts.
Previously, we found about 0.7 inter-expert F1 for SWR in mice and
suggested the importance of considering community-tagging strategies30.
By aggregating data from multiple laboratories and using the ensemble
ML model presented here, we hope our work permits advancing in more
inclusive and sharable solutions for detecting sharp wave ripples from
diverse datasets.

When applied to data from the macaque anterior hippocampus, we
found thatmodels trainedwith LFP signals from the dorsal hippocampus of
mice can perform relatively well, especially considering established differ-
ences in frequency and in LFP shape inmonkeys and human10,16,17. After re-
training, their operation improved significantly, reaching the inter-experts’
performance levels at 0.730. This demonstrates the strong capability of the
MLmodels to generalize and suggests the existence of shared features across
species. This is of particular importance because many human applications
may not have the exact spatial localization or the same electrode types, in
some cases even within studies, and so any effective ML applications will
need a high degree of generalizability, potentially boosted by the use of
transfer learning. It alsodemonstrates theproof of principle for applying to a

Table 1 | Re-training computational times

Re-training time (s) Detection time (s)

XGBoost 36.5 0.8

SVM 14.9 4.9

LSTM 130.6 37.4

2D-CNN 29.8 12.9

1D-CNN 24.4 10.7

The first columnshowshow long the re-training lastedwith eachmodel for 5 epochs, using a training
batchof 32 samples (in seconds). The secondcolumnshowshow long the re-trainedmodels took to
process 1 h 55min of session (in seconds).

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 9

https://github.com/PridaLab/rippl-AI/blob/main/examples_retraining.ipynb
https://github.com/PridaLab/rippl-AI/blob/main/examples_retraining.ipynb

wider range of measurements, including other animal models and ripple-
adjacent pathologies such as TLE seizures20,56.

More testing along these lines will identify the extent of generalizability
across different permutations of species, locations, electrode sampling, and
types to find the limits of these ML models. To enable such developments,
we made several of the 10 best trained models and our coding strategies for
detection and retraining openly available to the research community at
https://github.com/PridaLab/rippl-AI39. They can be tested through open-
source notebooks that are ready to use, with enough examples to illustrate
their operation capability. Although the notebooks provide easily readable
code, theymaynot be optimal for further code development. That iswhy the
core functions are written as separate Python modules. Users can test these
models for SWR detection by loading their own data and defining the
channels. The rippl_AI repository has awide variety of SWRdetection tools
that include optional supervised detection curation and a graphical user
interface for a quick visual exploration of detected events depending on the
threshold chosen, as well as the option of retraining a model with the user’s
own data.

This collection of resources joins the many other community-based
approaches for model benchmarking29,41,55. Crowdsourced strategies are
becoming a tool to advance solutions to particularly difficult problems that
require knowledge integration40,43. This provides the field with a set of
platforms for detecting SWR from diverse datasets using traditional and
state-of-the-art algorithms (e.g., our own rippl-AI toolbox andhttps://www.
sharpwaveripples.org/).Our toolbox goesbeyondSWRdetection, easing the
development of personalized ML models to detect other electro-
physiological events of interest31. Thismaybe critical in experimental and/or
clinical cases, where other detection criteria than those maximizing per-
formance,may bemore important. For instance, different experimentsmay
call for avoiding either type I or type II errors, andhence thebalancebetween
PrecisionandRecall. Suchversatility of our toolboxmaybe further exploited
to accelerate our understanding of hippocampal function and to support the
development of biomedical applications.

Methods
The hackathon
In order to explore a wide variety of ML models to the problem of SWR
detection, we organized a hackathon (https://thebraincodegames.github.io/
index_en.html). We specifically targeted people unfamiliar with SWR stu-
dies who could provide unbiased solutions to the challenge. A secondary
goal of the hackathon was to promote their interest and engagement at the
interface between Neuroscience and Artificial Intelligence, especially for
future young scientists.The eventwasheld inMadrid inOctober 2021,using
remotewebplatforms. Someof us (ANO) coordinated the event. Consent to
participate and to share relevant personal data was obtained prior to the
event. All participants were informed of the goal of the hackathon and
agreed that their solutions were subject to subsequent investigation and
modification.

The hackathon comprised 36 teams of 2–5 people (71% males, 29%
female), for 116 participants in total. They represent 45% of undergraduate
students, 38% of master students, 15% of Ph.D. students, and 3% of non-
academic workers (Supplementary Fig. 1a). On average, they were young in
their professional careers, with 77% of participants being research-oriented
(Supplementary Fig. 1a). Previous to the hackathon, we monitored the
participants’ self-declared knowledge level on Neuroscience, Python pro-
gramming, andML, in general, using a survey (Supplementary Fig. 1b). To
provide a homogeneous floor to address the challenge, we organized three
online seminars to cover each of the three topics one month before the
activity. Seminars were recorded and made available for review along with
the experience.

The hackathon was held over one weekend (Friday to Sunday), during
which groups had to design and train anML algorithm to detect SWRs. To
standardize the different algorithms for future comparison, they were given
Python functions to load the data, compute a performance score, and write
results in a common format.Data setswere available fromapublic research-

oriented repository at Figshare (https://figshare.com/projects/cnn-ripple-
data/117897). Participants were given a training set to train their algorithms
and a validation set to run tests.

Data consisted of raw 8-channel LFP signals from the hippocampal
CA1 region, recorded with high-density probes, which were used before for
similar purposes30. SWR was manually tagged to be used as ground truth
(training set: 1794 events, two sessions from two mice; validation set: 1275
events; two sessions from two animals). Since participants had two days to
design and train solutions, groups were allowed to interact with us to ask for
technical questions and clarification.

We monitored participant’s engagement throughout the hackathon
using short questionnaires. This allowed us to check their motivation and
other emotional states (i.e., frustration, interest, etc…). Some people
dropped out during the days of the hackathon (Supplementary Fig. 1d).We
foundmanyparticipants felt confused and frustratedwith the challenge, and
this correlated with their performance, as a posterior analysis suggested
(Supplementary Fig. 1e).

Training, validation, and test datasets, and ground truth
Participants of the hackathon were provided with an annotated dataset
consisting of raw LFP signals recorded from head-fixed mice using high-
density probes (8 channels)30. Awake SWR events were manually tagged by
an expert who identified the start and the end of each event. The start of the
SWR was defined near the first ripple of the sharp-wave onset. The end of
the event was defined at the latest ripple or when the sharp wave resumed.
The training set consisted of two recording sessions from 2 mice30. They
contained 1794 manually tagged SWRs. The validation set consisted of two
recording sessions from another 2 mice and contained 1275 SWR events
(Supplementary Table 1).

For posterior analysis of the results of the hackathon, we used an
additional test dataset consisting of the 2 validation sessions mentioned
before plus another 19 sessions for a total of 21 sessions from 8 different
mice. They all contained a total of 7423 manually tagged SWRs (Supple-
mentary Table 1). In addition, to evaluate the effect of different expert’s
definitions of SWRs, we used the ground-truth dataset tagged by a new
expert (nGT) to compare against the original GT (oGT) used for training.

To test the ability of the trained models to detect SWR in different
physiological conditions, we used data from freely moving mice recor-
ded during awake and sleep conditions, as reported recently14. This data
consisted of LFP signals obtained with linear silicon probes (16 chan-
nels) from 2 mice (Supplementary Table 1). Signals were sampled
around the CA1 cell body layer and expanded by interpolation to meet
the 8-channel input of theMLmodels (Supplementary Fig. 4e). SWRwas
tagged by the original expert.

MLmodels specifications
Five architectures were selected out of the 18 solutions submitted to the
hackathon: XGBoost, SVM, LSTM, 2D-CNN, and 1D-CNN. For the pur-
pose of fair comparisons, theywere retrained and tested using homogenized
pre-processing steps and data management strategies (see below).

We used Python 3.9.13 with libraries Numpy 1.19.5, Pickle 4.0, and
H5Py 3.1.0. To build the different neural networks, we used the Tensorflow
2.5.3 library, with Keras 2.5.0 as the application programming interface.
XGBoost 1.6.1was used to train and test the boosted decision tree classifiers.
Scikit-learn 1.1.2 and Imbalanced-learn 0.9.1 were used to train support
vector machine classifiers. Analysis and training of the models were con-
ducted on a personal computer (i7-11800H Intel processor with 16 GB
RAM and Windows 10).

Data preparation
For subsequent training and analysis of the architectures selected from the
hackathon, all data was pre-processed. From each recording session, two
matrices were extracted: X, with the raw LFP data, shaped (# of timestamps,
of channels), andY, the ground truth generated from the expert tagging (#
of timestamps). A timestamp of Y is 1 if a SWR event is present.

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 10

https://github.com/PridaLab/rippl-AI
https://www.sharpwaveripples.org/
https://www.sharpwaveripples.org/
https://thebraincodegames.github.io/index_en.html
https://thebraincodegames.github.io/index_en.html
https://figshare.com/projects/cnn-ripple-data/117897
https://figshare.com/projects/cnn-ripple-data/117897

Values for matrix X were subsampled at 1250Hz, taking into con-
sideration that SWRs are events that have frequencies in the range of up to
250Hz. Before retraining the algorithms, data was z-scored with the mean
and standard deviation of the whole session.

Training and validation split
For retraining the architectures, the same training dataset provided in the
hackathon was used (2 sessions from 2mice; 1794 SWR events). For initial
testing, these two sessions were split according to a 70/30 train/validation
design. To evaluate the generalization capabilities of the models when
presented with unseen data, we used several test sessions, which provide the
necessary animal-to-animal, as well as within-animal (sessions) variability.
Test sessions included the 2 sessions from the validation dataset provided in
the hackathon and 19 additional sessions (21 sessions from 8 mice, 7423
SWR events).

For re-training, the two training sessions were concatenated and
divided into 60 s epochs. Each epoch was assigned randomly to the train or
validation set, following the desired split proportion. The data was reshaped
to be compatiblewith the required input dimensionality of eacharchitecture
(see below). In order to evaluate model performance, two different datasets
were used: the validation set described above (used for an initial screening of
the 50 best models for each architecture) and the test set (used for gen-
eralization purposes).

Identification of SWR events in the data was implemented using
analysis windows of different sizes. To identify SWR events detected by the
MLmodels, we set a probability threshold to identify windowswith positive
and negative predictions. GT was annotated in the different analysis win-
dows of each session. Accordingly, predictions were classified into four
categories: True Positive (TP), when the prediction was positive and theGT
windowdid contain an SWR event; False Positive (FP), when the prediction
was positive in a window that did not contain any SWR; False Negative
(FN),when the predictionwas negative in awindowwith an SWR; andTrue
Negative (TN) when the prediction was negative and the window did not
contain any SWR event.

If a positive prediction had a match with any window containing a
SWR, it was considered a TP, or it was classified as FP otherwise. All true
events that did not have any matching positive prediction were considered
FN. Negative predictions with no matching true events windows were TN.

With predicted and true events classified into those four categories,
there are threemeasures that can be used to evaluate the performance of the
model. Precision (P), which was computed as the total number of TPs
divided by TPs and FPs, represents the percentage of predictions that were
correct.

Precision ¼ TP
TPþ FP

Recall (R), which was calculated as TPs divided by TPs and FNs,
represents the percentage of true events that were correctly predicted.

Recall ¼ TP
TPþ FN

Finally, the F1-score, calculated as the harmonicmeanof Precision and
Recall, represents the network performance, penalizing imbalancedmodels.

F1 ¼ 2 � Precision � Recallð Þ
Precisionþ Recall

To ease subsequent evaluation of ML models for SWR analysis, we
provide open access to codes for retraining strategies39: https://github.com/
PridaLab/rippl-AI.

Parameter fitting
Different combinations of parameters andhyper-parameterswere tested for
each architecture during the training phase (1944 for XGBoost, 72 for SVM,
2160 for LSTM, 60 for 2D-CNN, and 576 for 1D-CNN).

Two parameters were shared across all architectures: the number of
channels and the number of timestamps in the analysis window (referred to
as thewindowsize). Theseparameters define thedimensionality of the input
data (# timesteps × # channels), i.e., the number of input features.

Thenumberof channels to beusedwas set at 1, 3, or 8.When1 channel
was chosen, it was that corresponding to the CA1 pyramidal layer channel,
defined as the channel with the most power in the ripple bandwidth
(150–250Hz). The superficial, pyramidal, and deep channels were used as 3
channels. All the channels in the shank were used for the 8-channel input
configuration.

The number of timestamps defines the window size. The tested values
depended on each architecture and ranged between windows of 0.8–51.2
milliseconds. The rest of the parameters were specific for each architecture
(see below).

TheF1-scoremetric for the training andvalidation setwas calculated to
compare the performance of the models, with the validation F1 serving as a
priori metric of the generalization of the models, allowing for a selection of
models without performing a complete test.

For eachmodel, a test-F1 arraywas calculatedwith different thresholds
(generally, from 0.1 to 0.9 with 0.1 increments), and the highest value for
each model was used for comparison among models of the same archi-
tecture. As a result, the 50-best performing models were selected after the
initial retrained test.

Validation process
Theaimof validation is tofind themodel that generalizesbest tounseendata
for each architecture. With that in mind, defining a metric that takes this
into account is not a straightforward task.

To weigh each validation session (21) independently, an F1 array was
calculated for each individual session, resulting in amatrix of 21 per number
of threshold values (#th). The mean of sessions gives us a #th array that
quantifies the performance/generalization of the model as a function of the
chosen threshold. The maximum value of this array will represent the best
performance that could be achieved with this model if the threshold is
correctly selected. This single value is what will be compared. Using this
strategy, we narrowed down available models to the 10 best of each archi-
tecture before selecting the best model.

XGBoost
Based in the Gradient Boosting Decision Trees algorithm, this architecture
trains a tree with a subset of samples and then calculates its output44. The
misclassified samples are used to train a new tree. The process is repeated
until a predefinednumberof classifiers are trained.Thefinalmodeloutput is
the weighted combination of individual outputs.

In the training process, we worked with quantitative features (LFP
values per channel), and a threshold value for a specific feature was con-
sidered in each training step. If this division correctly classifies some samples
of the subset, two new nodes are generated in the next tree level, where the
operation is repeated until the maximum tree depth is achieved, and a new
tree with the misclassified samples is generated. The input is one dimen-
sional (# of channels × # of timesteps) and produces a single output.

Specific parameters of XGBOOST are the Maximum depth and the
maximum levels for each tree, which may lead to overfitting. Learning rate,
which controls the influence of each individual model in the ensemble of
trees. Gamma is the minimum loss reduction required to make a further
partition on a leaf node, with larger values leading to conservative models.
Parameter λ contributes to the regularization, with larger values preventing
overfitting. Scale is used in imbalanced problems; the larger the more
penalized false negatives are during training.

Trained models had a number of trainable parameters ranging from
1500 to 17,900.

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 11

https://github.com/PridaLab/rippl-AI
https://github.com/PridaLab/rippl-AI

SVM
A support vector machine is a classical classifier that searches for a hyper-
plane in the input dimensionality that maximizes the separation between
different classes. This is only possible in lineal separation problems, so some
misclassifications are permitted in real tasks. Usually, SVM performs a
transformation on the original data using a kernel (linear or otherwise) that
increases the data dimensionality but facilitates classification.

During training, the parameters that define the separation hyperplane
are updated until the maximumnumber of iterations is achieved or the rate
of change in the parameters go below a threshold. The input is one-
dimensional (# of channels × # of timesteps) and produces a single output.

Specific parameters of SVM are the kernel type. Using nonlinear ker-
nels resulted in an explosive growth in training and predicting times due to
the enormous number of training data points. Only the linear kernel pro-
duced manageable times. The under-sample proportion rules out negative
samples (windows without ripple) until the desired balance is achieved: 1
indicates the same number of positives and negatives.

Trained models had a number of trainable parameters ranging from
1 to 480.

LSTM
Recurrent neural networks (RNNs) are a subtype ofNNsespecially suited to
work with temporal series of data, extracting the hidden relations and
tendencies between non-contiguous instants. Long short-term memory
(LSTMs) are RNNs with modifications that prevent some associated
problems46.

During training, three sets of weights and biases are updated in each
LSTM unit, associated with different gates (Forget, input, and output). To
prevent overfitting, two layers of dropout (DP) and batch normalization
(batchNorm) were inserted between LSTM layers. DP randomly prevents
some outputs from propagating to the next layer. BatchNorm normalizes
the output of the previous layer. The final layer is a dense layer that outputs
the event probability. The input is two-dimensional (# of timesteps, # of
channels) and produces a probability for each timestep. After each window,
the internal weights are reset.

Specific LSTM parameters: bidirectional if the model processes the
windows forwards and backward simultaneously; # of layers is the number
of LSTMlayers; # ofunits is thenumberof LSTMunits in each layer, and#of
epochs, which is the number of times the training data is used to perform
training.

Trained models had a number of trainable parameters ranging from
156 to 52851.

2D-CNN
Convolutional neural networks use convolutional layers consisting of ker-
nels (spatial filters) to extract the relevant features of an image49. Successive
layers use this as inputs to compute general features of the image. This 2D-
CNNmoves the kernels along the two axes, temporal (timesteps) and spatial
(channels). The first half of the architecture includesMaxPooling layers that
reduce the dimensionality and prevent overfitting. A batchNorm layer
follows every convolutional layer. Finally, a dense layer produces the event
probability of the window.

During training, the weights and biases of every kernel are updated to
minimize the loss function, which was taken as the binary cross entropy:

Hp q
� � ¼ �1

N

XN

i¼1

yi � log p yi
� �� �þ 1� yi

� � � log 1� p yi
� �� �

N is the number of windows in the training set, yi is the label of the i
window and p(yi) is the probability of ripple that the model predicts. The
input is # of timesteps and # of channels; and produces a single probability
for each window.

The 2D-CNN was tested with a fixed number of layers and kernel
dimensions. The kernel factor parameter determined the number of kernels
in this structure: 32 × kf (2 × 2), 16 × kf (2 × 2), 8 × kf (3 × 2), 16 × kf (4 × 1),

16 × kf (6 × 1), and 8 × kf (8 × 1). In parenthesis, the size of the kernels in
each layer.

Trained models had a number of trainable parameters ranging from
1713 to 24,513.

1D-CNN
This model is also a convolutional neural network, but the kernels only move
along the temporal axis while processing spatial information. The number of
layers and the kernel size were fixed. The tested models had 7 sets of 1D
convolutional layer, batchNorm, and LeakyRelu layer, followed by a dense
sigmoid activation unit. Thismodel is similar to our previous CNN solution30.

During training, the weights and biases of the layers were also updated
with the objective of minimizing the binary cross entropy. The input is # of
timesteps and # of channels and produces a single probability for each
window.

The specific parameters for 1D-CNN included the kernel factor, which
defined thenumberof kernels in each conv layer.The sizeand stride for each
layer were equal and fixed. The size of the kernels in the first layer was
defined as the length of the input window divided by 8. Structure: 4 × kf (#
timesteps//8 × # timesteps//8), 2 × kf (1 × 1), 8 × kf (2 × 2), 4 × 1 (1 × 1),
16 × kf (2 × 2), 8 × kf (1 × 1), and 32 × kf 2 × 2). Parameters also include # of
epochs, the number of times the training data is used to perform training,
and # of training batch samples, which is the number of windows that are
processed before parameter updating.

Trained models had a number of trainable parameters ranging from
342 to 4253.

Filter
WeusedaButterworthfilter,which is considered the gold standard for SWR
detection25. The parameters that we varied were the high-cut frequency, the
low-cut frequency, and the filter order. No training was run, but instead, all
combinations between parameters were tested, and the best 10models were
kept. The 10 best models had the following set of parameters: (1)
100–250Hz and 5th order, (2) 100–250Hz 4th order, (3) 100–250Hz 8th
order, (4) 100–250Hz 7th order, (5) 100–250Hz 6th order, (6) 100–250Hz
3rd order, (7) 100–250Hz 9th order, (8) 100–250Hz 10th order, (9)
100–250Hz 2nd order, (10) 90–250Hz 5th order.

In order to extract the event times using the filter output, the envelope
of the filtered signal is computed. The standard deviation of this signal is
multiplied by a factor used to define a threshold. The intervals where the
filtered signal surpasses said threshold are the detected events.

Threshold alignment to compare F1 curves in Supplementary Fig. 4
was done by selecting 9 standard deviation multiplication factors that
resulted in a similar F1 curve as those in theMLmodels: 2, 2.5, 3, 3.5, 4, 4.5, 5,
5.5, 6, 6.5, and 7.

Ensemble model
Thismodel consists of a single-layer perceptron, with 5 inputs and 1 output,
computed using a sigmoid as the activation function. It takes the predicted
output of the previously trained ML models and combines them in a
weighted probability.

During training, the weights and biases of the layer were updated with
the objective of minimizing the binary cross entropy. The input shape is 5
(the output of the models) and generates a probability for each timestamp.

Parameters tested during training were the number of epochs and the
number of samples per training batch. This trained model had 6 trainable
parameters: 5 weights and 1 bias.

Stability index
Thismetric, shown in Fig. 4c, quantifies the consistency of the performance
of a model across all possible thresholds. It is calculated as the number of
thresholds whose F1 is above the 90% of the best F1 value of the model
divided by the total number of thresholds.

Possiblemetric values range from 1, from a very consistentmodel, and
0, from a completely inconsistent model.

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 12

Characterization of SWR features
SWR properties (ripple frequency and power) were computed using a
100ms window around the center of the event, measured at the pyramidal
channel of the raw LFP. Preferred frequency was computed first by calcu-
lating the power spectrum of the 100ms interval using the enlarged band-
pass filter 70 and 400Hz, and then looking for the frequency of the
maximum power. In order to account for the exponential power decay in
higher frequencies, we subtracted a fitted exponential curve (‘fitnlm’ from
MATLAB toolbox) before looking for the preferred frequency. To estimate
the ripple power, the spectral contribution was computed as the sum of the
powervalues for all frequencies lower than100Hznormalized by the sumof
all power values for all frequencies (of note, no subtraction was applied to
this power spectrum).

Dimensionality reduction using UMAP
To classify SWR, we used topological approaches14. The UMAP version
0.5.1 (https://umap-learn.readthedocs.io/en/latest/) in Python 3.8.10
Anaconda was used, which is known to properly preserve local and
global distances while embedding data in a lower dimensional space. In
all cases, we used default values for reconstruction parameters. Algo-
rithms were initialized randomly. UMAP provided robust results inde-
pendent of initialization. Events were GT ripples sampled at 1250 Hz,
centered around the SWR trough closest to the highest SWR spectral
power, and taking a 50ms window around that point. As a result, events
were points in a 63 (1+ 0.025*1250) dimensional cloud. The parameters
chosen to fit the cloud were: the metric (metric) was Euclidean; the
number of neighbors (n_neighbors), which controls how UMAP bal-
ances local vs global structure in the data, was set to 20; minimum
distance (min_dist), which controls how tightly UMAP is allowed to
pack points together by setting the minimum distance apart that points
are allowed to be in the low dimensional representation, was set to 0.1;
and the number of components (n_components), that sets the dimen-
sionality of the reduced dimension space we will be embedding the data
into, was set to 4. This goes in accordance with previous studies that had
shown the intrinsic dimension of SWRs is 4D14.

Prediction and re-training of non-human primate data set
To study the generalization capabilities of the different architectures, we
used data from a freely moving macaque targeting similar CA1, as com-
pleted in ourmouse data (methods are described in ref. 54). Recordings were
obtained with a 64-ch linear polymer probe (custom ‘deep array probe’,
Diagnostic Biochips) that recorded across the CA1 layers of the anterior
hippocampus (Fig. 6a) where layers were identifiable relative to the main
pyramidal layer, which contains the greatest unit activity and SWP power.
LFP signals were sampled at 30 kHz using a Freelynx wireless acquisition
system (Neuralynx, Inc.). Data corresponds to periods of immobility for a
duration of almost 2 h and 40min, predominantly comprised of sleep in
overnight housing.

Similar to the procedures used in mice, SWR beginning and ending
times were manually tagged (ground truth). First, the best model of each
architecture, already trained with the mouse data, was used to predict the
output of the primate data with no retraining. For this purpose, we used
recordings of different channels around the CA1 pyramidal channel, mat-
ched to meet the laminar organization of the dorsal mouse hippocampus.
Specifically, we used one CA1 radiatum channel, 720 µm from the pyr-
amidal layer, three channels in the pyramidal layer, at+90 µm,+0 µm and
−90 µm from the pyramidal channel, and a stratum oriens channel 720 µm
from the pyramidal channel. The pyramidal channel was defined at the site
with themaximal ripplepower.Wecomplemented these 5 recordingswith3
more interpolated signals, making a total of 8 input channels [oriens,
interpolated, pyramidal, pyramidal, pyramidal, interpolated, interpolated,
radiatum] using a linear interpolation script available at Github: https://
github.com/PridaLab/rippl-AI/blob/main/aux_fcn.py. The applied pre-
processing was the same as with the mice data: subsampling to 1250Hz
and z-score normalization.

With the aim of studying the effect of retraining with completely dif-
ferent data, we retrained the models. Data was split in three sets (50%
training, 20% validation, 30% test), and used to retrain and validate the
models. For re-training, we reset all trainable parameters (internal weights)
but kept all architectural hyper-parametersfixed (inputnumberof channels,
input window length, number of layers, etc…) as with the mouse data,
making the re-training process much faster than the original training that
required a deep hyper-parametric search (per model re-train: 2min for
XGBoost, 10–30min for SVM, 3–20min for LSTM, 1–10min for 2D-CNN
and 1–15min for 1D-CNN). We used a second expert tagging to evaluate
the generalization capability of retrained models.

Statistics and reproducibility
Statistical analysis was performed with Python and/or MATLAB.
Kruskal–Wallis tests were applied for group analysis. Post hoc comparisons
were evaluated with Tukey–Kramer two-tailed tests with appropriate
adjustments for multiple comparisons. In most cases, values were z-scored
(subtract themean fromeach value and divide the result by the s.d.) tomake
data comparable between experimental sessions and across layers. Repro-
ducibility was tested in several experimental sessions, with the number of
replications specified.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data used in this study are publicly available. In particular, the training and
validation datasets are available at https://figshare.com/projects/cnn-ripple-
data/117897 and listed independently as follows:Mde la Prida, Liset (2021):
Amigo2_2019-07-11_11-57-07. figshare. Dataset. https://doi.org/10.6084/
m9.figshare.16847521.v2 M de la Prida, Liset (2021): Som2_2019-07-
24_12-01-49. figshare. Dataset. https://doi.org/10.6084/m9.figshare.
16856137.v2 M de la Prida, Liset (2021): Dlx1_2021-02-12_12-46-54. fig-
share. Dataset. https://doi.org/10.6084/m9.figshare.14959449.v4 M de la
Prida, Liset (2021): Thy7_2020-11-11_16-05-00. figshare. Dataset. https://
doi.org/10.6084/m9.figshare.14960085.v1 Source data in Figs. 2b, 3, 4a–c, e,
5d, e, 6c–f are available https://figshare.com/projects/rippl-IA/191988.

Code availability
Codes for someof the best-trainedmodels of all architectures are available in
an open-source repository https://github.com/PridaLab/rippl-AI and
documented in open-source notebooks for model retraining https://github.
com/PridaLab/rippl-AI/blob/main/examples_retraining.ipynb and for
SWR detection https://github.com/PridaLab/rippl-AI/blob/main/
examples_detection.ipynb. Additionally, the current version of the code is
available at https://zenodo.org/records/10513183.

Received: 2 July 2023; Accepted: 29 January 2024;

References
1. da Silva, F. L. EEG and MEG: relevance to neuroscience. Neuron 80,

1112–1128 (2013).
2. Buzsáki, G. Hippocampal sharp wave-ripple: a cognitive biomarker

for episodic memory and planning. Hippocampus 25, 1073–1188
(2015).

3. Csicsvari, J., Hirase, H., Mamiya, A. & Buzsáki, G. Ensemble patterns
of hippocampal CA3-CA1 neurons during sharp wave-associated
population events. Neuron 28, 585–594 (2000).

4. Stark, E. et al. Pyramidal cell-interneuron interactions underlie
hippocampal ripple oscillations. Neuron 83, 467–480 (2014).

5. Buzsáki, G., Leung, L. W. & Vanderwolf, C. H. Cellular bases of
hippocampal EEG in the behaving rat. Brain Res. Rev. 6,
139–171 (1983).

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 13

https://umap-learn.readthedocs.io/en/latest/
https://github.com/PridaLab/rippl-AI/blob/main/aux_fcn.py
https://github.com/PridaLab/rippl-AI/blob/main/aux_fcn.py
https://figshare.com/projects/cnn-ripple-data/117897
https://figshare.com/projects/cnn-ripple-data/117897
https://doi.org/10.6084/m9.figshare.16847521.v2
https://doi.org/10.6084/m9.figshare.16847521.v2
https://doi.org/10.6084/m9.figshare.16856137.v2
https://doi.org/10.6084/m9.figshare.16856137.v2
https://doi.org/10.6084/m9.figshare.14959449.v4
https://doi.org/10.6084/m9.figshare.14960085.v1
https://doi.org/10.6084/m9.figshare.14960085.v1
https://figshare.com/projects/rippl-IA/191988
https://github.com/PridaLab/rippl-AI
https://github.com/PridaLab/rippl-AI/blob/main/examples_retraining.ipynb
https://github.com/PridaLab/rippl-AI/blob/main/examples_retraining.ipynb
https://github.com/PridaLab/rippl-AI/blob/main/examples_detection.ipynb
https://github.com/PridaLab/rippl-AI/blob/main/examples_detection.ipynb
https://zenodo.org/records/10513183

6. Kudrimoti, H. S., Barnes, C. A. & McNaughton, B. L. Reactivation of
hippocampal cell assemblies: effects of behavioral state, experience,
and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999).

7. Genzel, L. et al. A consensus statement: defining terms for
reactivation analysis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375,
20200001 (2020).

8. Joo, H. R. & Frank, L. M. The hippocampal sharp wave–ripple in
memory retrieval for immediate use and consolidation. Nat. Rev.
Neurosci. 19, 744–757 (2018).

9. Pfeiffer, B. E. The content of hippocampal ‘replay’. Hippocampus
https://doi.org/10.1002/hipo.22824 (2017).

10. Mil, A. et al. Replay of cortical spiking sequences during human
memory retrieval. Science 367, 1128–1130 (2020).

11. Liu, A. A. et al. A consensus statement on detection of hippocampal
sharpwave ripples anddifferentiation fromother fast oscillations.Nat.
Commun. 13, 1–14 (2022).

12. Reichinnek, S., Künsting, T., Draguhn, A. & Both, M. Field potential
signature of distinct multicellular activity patterns in the mouse
hippocampus. J. Neurosci. 30, 15441–15449 (2010).

13. Ramirez-Villegas, J. F., Logothetis, N. K. & Besserve, M. Diversity of
sharp-wave-ripple LFP signatures reveals differentiated brain-wide
dynamical events. Proc. Natl Acad. Sci. USA 112,
E6379–E6387 (2015).

14. Sebastian, E. R. et al. Topological analysis reveals input mechanisms
behind feature variations of sharp-wave ripples. Nat. Neurosci. 26,
2171–2181 (2023).

15. Patel, J., Schomburg, E. W., Berényi, A., Fujisawa, S. & Buzsáki, G.
Local generation and propagation of ripples along the septotemporal
axis of the hippocampus. J. Neurosci. 33, 17029–17041 (2013).

16. Leonard, T. K. et al. Sharpwave ripples during visual exploration in the
primate hippocampus. J. Neurosci. 35, 14771–14782 (2015).

17. Skaggs, W. E. et al. EEG sharp waves and sparse ensemble unit
activity in the macaque hippocampus. J. Neurophysiol. 98,
898–910 (2007).

18. Bragin, A., Engel, J., Wilson, C. L., Fried, I. & Mathern, G. W.
Hippocampal and entorhinal cortex high-frequency oscillations (100-
500 Hz) in human epileptic brain and in kainic acid-treated rats with
chronic seizures. Epilepsia 40, 127–137 (1999).

19. Worrell, G. A. et al. High-frequency oscillations in human temporal
lobe: Simultaneous microwire and clinical macroelectrode
recordings. Brain 131, 928–937 (2008).

20. Alvarado-Rojas, C. et al. Different mechanisms of ripple-like
oscillations in the human epileptic subiculum. Ann. Neurol. 77,
281–290 (2015).

21. Valero, M. et al. Mechanisms for selective single-cell reactivation
during offline sharp-wave ripples and their distortion by fast ripples.
Neuron 94, 1234-1247.e7 (2017).

22. Cowen, S. L., Gray, D. T., Wiegand, J. P. L., Schimanski, L. A. &
Barnes, C. A. Age-associated changes inwaking hippocampal sharp-
wave ripples. Hippocampus 30, 28–38 (2020).

23. Born, H. A. et al. Genetic suppression of transgenic APP rescues
hypersynchronous network activity in a mouse model of Alzeimer’s
disease. J. Neurosci. 34, 3826–3840 (2014).

24. Engel, J., Bragin, A., Staba, R. &Mody, I. High-frequency oscillations:
what is normal and what is not? Epilepsia 50, 598–604 (2009).

25. Sethi, A. & Kemere, C. Real time algorithms for sharp wave ripple
detection. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014,
2637–2640 (2014).

26. Kulkarni, P. M. et al. A deep learning approach for real-time detection
of sleep spindles. J. Neural Eng. 16, 36004 (2019).

27. Hagen, E. et al. RippleNet: a recurrent neural network for sharp wave
ripple (SPW-R) detection. Neuroinformatics 19 (2021).

28. Nadalin, J. K. et al. Application of a convolutional neural network for
fully-automated detection of spike ripples in the scalp
electroencephalogram. J. Neurosci. Methods 360, 109239 (2021).

29. Valenchon, N. et al. The Portiloop: a deep learning-based open
science tool for closed-loop brain stimulation. PLoS ONE 17,
e0270696 (2022).

30. Navas-Olive, A., Amaducci, R., Jurado-Parras, M.-T., Sebastian, E. R.
& de la Prida, L. M. Deep learning based feature extraction for
prediction and interpretation of sharp-wave ripples in the rodent
hippocampus. Elife 11, e77772 (2022).

31. Frey, M. et al. Interpreting wide-band neural activity using
convolutional neural networks. Elife 10, 66551 (2021).

32. Talakoub, O., Gomez Palacio Schjetnan, A., Valiante, T. A., Popovic,
M. R. & Hoffman, K. L. Closed-loop interruption of hippocampal
ripples through fornix stimulation in the non-human primate. Brain
Stimul. 9, 911–918 (2016).

33. Norman, Y. et al. Hippocampal sharp-wave ripples linked to
visual episodic recollection in humans. Science 365, eaax1030
(2019).

34. Geva-Sagiv, M. et al. Augmenting hippocampal-prefrontal neuronal
synchrony during sleep enhances memory consolidation in humans.
Nat. Neurosci. 26, 1100–1110 (2023).

35. Tong, A. P. S., Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A.
Ripples reflect a spectrum of synchronous spiking activity in human
anterior temporal lobe. Elife 10, e68401 (2021).

36. Curot, J. et al. Local neuronal excitation and global inhibition during
epileptic fast ripples in humans. Brain 146, 561–575 (2023).

37. Leonard, T. K. & Hoffman, K. L. Sharp-wave ripples in primates are
enhanced near remembered visual objects. Curr. Biol. 27,
257–262 (2017).

38. Hussin, A. T., Leonard, T. K. & Hoffman, K. L. Sharp-wave ripple
features in macaques depend on behavioral state and cell-type
specific firing. Hippocampus 30, 50–59 (2020).

39. Navas-Olive, A., Rubio, A. & de la Prida, L. M. Machine learning
toolbox codes for the analysis of sharp-wave ripples (v1.0). Zenodo
https://doi.org/10.5281/zenodo.10513183 (2024).

40. Berens, P. et al. Community-based benchmarking improves spike
rate inference from two-photon calcium imaging data.PLoSComput.
Biol. 14, e1006157 (2018).

41. Kuhlmann, L. et al. Epilepsyecosystem.org: crowd-sourcing
reproducible seizure prediction with long-term human intracranial
EEG. Brain 141, 2619–2630 (2018).

42. Wheeler, D. W. et al. Hippocampome.org: a knowledge base of
neuron types in the rodent hippocampus. Elife 4, e09960 (2015).

43. de la Prida, L. M. & Ascoli, G. A. Explorers of the cells: Toward cross-
platform knowledge integration to evaluate neuronal function.Neuron
109, 3535–3537 (2021).

44. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System.
Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 13–17-Aug,
785–794 (2016).

45. Schmidhuber, J. Deep learning in neural networks: an overview.
Neural Netw. 61, 85–117 (2015).

46. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural
Comput. 9, 1735–1780 (1997).

47. Friedman, J. H. Greedy function approximation: a gradient boosting
machine on JSTOR. Ann. Stat. 29, 1189–1232 (2001).

48. Cortes, C., Vapnik, V. & Saitta, L. Support-vector networks.Mach.
Learn. 20, 273–297 (1995).

49. Cun, L. et al. Handwritten digit recognition with a back-propagation
network. Adv. Neural Inf. Process. Syst. 2, 396–404 (1990).

50. Graves, A. & Schmidhuber, J. Framewise phoneme classificationwith
bidirectional LSTM and other neural network architectures. Neural
Netw. 18, 602–610 (2005).

51. de la Prida, L. M. et al. Threshold behavior in the initiation of
hippocampal population bursts. Neuron 49, 131–142 (2006).

52. de la Prida, L. M. Potential factors influencing replay across CA1
during sharp-wave ripples. Philos. Trans. R. Soc. B 375,
20190236 (2020).

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 14

https://doi.org/10.1002/hipo.22824
https://doi.org/10.5281/zenodo.10513183

53. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. (2018).

54. Abbaspoor, S., Hussin, A. T. & Hoffman, K. L. Theta- and gamma-
band oscillatory uncoupling in the macaque hippocampus. Elife 12,
e86548 (2023).

55. Dutta, S., Ackermann, E. & Kemere, C. Analysis of an open source,
closed-loop, realtime system for hippocampal sharp-wave ripple
disruption. J. Neural Eng. 16, 016009 (2019).

56. Blanco, J. A. et al. Unsupervised classification of high-frequency
oscillations in human neocortical epilepsy and control patients. J.
Neurophysiol. 104, 2900–2912 (2010).

57. Kucewicz, M. T. et al. High frequency oscillations are associated with
cognitive processing in human recognition memory. Brain 137,
2231–2244 (2014).

58. Ibarz, J.M., Foffani, G., Cid, E. & Inostroza,M.&Menendezde laPrida,
L. Emergent dynamics of fast ripples in the epileptic hippocampus. J.
Neurosci. 30, 16249–16261 (2010).

59. Menendez De La Prida, L., Staba, R. J. & Dian, J. A. Conundrums of
high-frequency oscillations (80-800 Hz) in the epileptic brain. J. Clin.
Neurophysiol. 32, 207–219 (2015).

60. Liu, X. et al. E-Cannula reveals anatomical diversity in sharp-wave
ripples as a driver for the recruitment of distinct hippocampal
assemblies. Cell Rep. 41 (2022).

Acknowledgements
This work was supported by the Fundación La Caixa (LCF/PR/HR21/
52410030 and LCF/PR/HR22/52420005) to L.M.P. and by the Whitehall
Foundation and BRAIN Initiative NINDS (R01NS127128) to K.L.H. We thank
theSpanishSocietyofNeuroscience (SENC)and theUniversidadAutónoma
de Madrid Doctorate for partially supporting the hackathon. A.N.O. was
supported by PhD fellowships from the Spanish Ministry of Education
(FPU17/03268). ARwas supported by a JAE-Intro Fellowship of the AI-HUB
CSIC program (JAE Intro AI HUB21) and by the CSIC Interdisciplinary The-
maticPlatformNeuro-Aging (PTI+Neuro-Aging).We thank all participantsof
the hackathon. Thanks to Rodrigo Amaducci, Enrique R Sebastian, Daniel
García-Rincón, and Adrián Gollerizo for co-organizing the hackathon.

Author contributions
A.N.O. and L.M.P. designed the project. A.N.O. and A.R. developed the
toolbox and performed the analysis. S.A. and K.L.H. designed and

performedmacaqueexperiments.A.N.O. andL.M.P.wrote thepaper. All the
authors have read and agreed to the published version of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-05871-w.

Correspondence and requests for materials should be addressed to
Andrea Navas-Olive or Liset M. de la Prida.

Peer review information Communications Biology thanks Yusuke
Watanabe, Antonio Fernandez-Ruiz and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work. Primary Handling
Editors: Joao Valente.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s CreativeCommons license and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-05871-w Article

Communications Biology | (2024) 7:211 15

https://doi.org/10.1038/s42003-024-05871-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A machine learning toolbox for the analysis of sharp-wave ripples reveals common waveform features across species
	Results
	Community-based proposal of ML models�of SWR
	Standardization and retraining of selected algorithms
	Influence of the temporal and spatial sampling on training performance
	Comparison between optimized�models
	Effect of different ML models on the features of detected�SWRs
	Using the toolbox to identify SWRs in non-human primates

	Discussion
	Methods
	The hackathon
	Training, validation, and test datasets, and ground�truth
	ML models specifications
	Data preparation
	Training and validation�split
	Parameter fitting
	Validation process
	XGBoost
	SVM
	LSTM
	2D-CNN
	1D-CNN
	Filter
	Ensemble�model
	Stability�index
	Characterization of SWR features
	Dimensionality reduction using�UMAP
	Prediction and re-training of non-human primate data�set
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

