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Associations between datasets can be discovered through multivariate methods like Canonical
Correlation Analysis (CCA) or Partial Least Squares (PLS). A requisite property for interpretability and
generalizability of CCA/PLS associations is stability of their feature patterns. However, stability of
CCA/PLS in high-dimensional datasets is questionable, as found in empirical characterizations. To
study these issues systematically, we developed a generative modeling framework to simulate
synthetic datasets. We found that when sample size is relatively small, but comparable to typical
studies, CCA/PLS associations are highly unstable and inaccurate; both in their magnitude and
importantly in the feature pattern underlying the association. We confirmed these trends across two
neuroimaging modalities and in independent datasets with n = 1000 and n = 20,000, and found that
only the latter comprised sufficient observations for stable mappings between imaging-derived and
behavioral features. We further developed a power calculator to provide sample sizes required for
stability and reliability of multivariate analyses. Collectively, we characterize how to limit detrimental

effects of overfitting on CCA/PLS stability, and provide recommendations for future studies.

Discovery of associations between high-dimensional datasets is a topic of
growing importance across scientific disciplines. For instance, large initia-
tives in human neuroimaging collect, across thousands of subjects, rich
multivariate brain imaging measures paired with psychometric and
demographic measures™”. A major goal is to determine the existence of an
association linking individual variation in behavioral features to variation in
brain imaging features and to characterize the dominant latent patterns of
features that underlie this association™. One widely employed statistical
approach to map multivariate associations is to define linearly weighted
composites of features in both datasets (e.g., brain imaging and psycho-
metric) with the sets of weights—which correspond to axes of variation—
selected to maximize between-dataset association strength (Fig. 1). The
resulting profiles of weights for each dataset can be examined for how the
features form the association. Depending on whether association strength is
measured by correlation or covariance, the method is called canonical
correlation analysis (CCA)’® or partial least squares (PLS)*", respectively.

CCA and PLS are commonly employed across scientific fields, including
genomics'” and neuroimaging”*'*'*.

Analysis of such high-dimensional datasets is challenging due to
inherent measurement noise and the often small sample sizes in comparison
to the dimensionality of the data. Although the utility of CCA/PLS is well
established, open challenges exist regarding stability in characteristic
regimes of dataset properties. Stability implies that elements of CCA/PLS
solutions, such as association strength and weight profiles, are reliably
estimated across independent collections of observations from the same
population. Instability or overfitting can occur if an insufficient sample size
isavailable to properly constrain the model. Manifestations of instability and
overfitting in CCA/PLS include inflated association strengths"™", out-of-
sample association strengths markedly lower than in-sample'®*, and feature
profiles/patterns that vary substantially across studies'>'**. Also, while
some theoretical results for the sampling properties of CCA are available
under normality assumptions™, one generally needs to resort to resampling

"Department of Psychiatry, Yale School of of Medicine, New Haven, CT 06511, USA. 2Manifest Technologies, New Haven, CT 06510, USA. ®Sir Peter Mansfield

Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom. “National

Institute for Health Research (NIHR) Nottingham Biomedical Research Ctr, Queens Medical Ctr, Nottingham, United Kingdom. °Interdepartmental Neuroscience

Program, Yale University School of Medicine, New Haven, CT 06511, USA. ®Department of Physics, Yale University, New Haven, CT 06511, USA. "Department of

Psychology, Yale University, New Haven, CT 06511, USA. ®Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
e-mail: stamatios.sotiropoulos@nottingham.ac.uk; john.d.murray@dartmouth.edu

Communications Biology | (2024)7:217


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-05869-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-05869-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-024-05869-4&domain=pdf
http://orcid.org/0000-0001-9680-0595
http://orcid.org/0000-0001-9680-0595
http://orcid.org/0000-0001-9680-0595
http://orcid.org/0000-0001-9680-0595
http://orcid.org/0000-0001-9680-0595
http://orcid.org/0000-0002-7198-8162
http://orcid.org/0000-0002-7198-8162
http://orcid.org/0000-0002-7198-8162
http://orcid.org/0000-0002-7198-8162
http://orcid.org/0000-0002-7198-8162
http://orcid.org/0000-0003-4735-5776
http://orcid.org/0000-0003-4735-5776
http://orcid.org/0000-0003-4735-5776
http://orcid.org/0000-0003-4735-5776
http://orcid.org/0000-0003-4735-5776
http://orcid.org/0000-0003-4115-8181
http://orcid.org/0000-0003-4115-8181
http://orcid.org/0000-0003-4115-8181
http://orcid.org/0000-0003-4115-8181
http://orcid.org/0000-0003-4115-8181
mailto:stamatios.sotiropoulos@nottingham.ac.uk
mailto:john.d.murray@dartmouth.edu

https://doi.org/10.1038/s42003-024-05869-4

Article

a association?
Dataset X <«———> Dataset Y
PLS
X-weight
Scores: ¢ vector
o projections " o
o on welghts. ( o # A
2 ) I = ’ﬁ\ lﬁ\ © :
3 ! 2 M
< > Y-weight
‘ Individual o vector
.. sample #
N
feature 1 X Y feature 1

Projections based on PLS weights maximize covariance between sets

E Variances along PCs d Generative model:
3 normal distribution with
S joint covariance matrix
5 PLS '
e h
g Within x : Between

log (PC number) covariance ! variance
c Association between sets  [.__________ R
%) .- - 1

- [ ) ! e
o .-7e Between + within v
Q e h 'covariance
(2] - [
oo variance :
X scores

Fig. 1 | Overview of CCA, PLS and the generative model used to investigate their
properties. a Two multivariate datasets, X and Y, are projected separately onto
respective weight vectors, resulting in univariate scores for each dataset. The weight
vectors are chosen such that the correlation (for CCA) or covariance (for PLS)
between X and Y scores is maximized. b In the principal component coordinate
system, the variance structure within each dataset can be summarized by its principal
component spectrum. For simplicity, we assume that these spectra can be modeled
as power-laws. CCA, uncovering between-set correlations, disregards the variance
structure and can be seen as effectively using whitened data (cf. Methods). ¢ The
association between sets is encoded in the association strength of X and Y scores.
d Datasets X and Y are jointly modeled as a multivariate normal distribution. The
within-set variance structure (b) corresponds to the blocks on the diagonal, and the
associations between datasets (c) are encoded in the off-diagonal blocks.

approaches to calculate uncertainty estimates like confidence intervals.
Stability of models is essential for replicability, generalizability, and
interpretability”’. Therefore, it is important to understand how stability of
CCA/PLS solutions depends on dataset properties.

In neuroimaging, it has recently been suggested that thousands
of subjects are required to achieve reproducible results when per-
forming multivariate “brain-wide association studies” as effect sizes
are typically small®. This claim generated recent debate in the
field” . A number of papers argue that larger effect sizes can be
expected””, that sample-size requirements can be reduced via
focused designs and cohorts’’, and that cross-validation avoids
inflated associations®. Yet, all previous studies and comments are
mostly based on empirical findings and focus primarily on effect
sizes. In the context of CCA/PLS, it remains unclear how elements of
solutions differentially depend on dataset properties, and how CCA
vs. PLS as distinct methods exhibit differential robustness across
dataset regimes.

To investigate these issues systematically and go beyond empirical
findings, we developed a generative statistical model to simulate synthetic
datasets with known latent axes of association. Sampling from the generative
model allows quantification of deviations between estimated and true CCA/

PLS solutions. We found that stability of CCA/PLS solutions requires more
samples (per feature) than are commonly used in published neuroimaging
studies. With too few individual observations, estimated association
strengths were too high, and estimated weights could be unreliable and non-
generalizable for interpretation. CCA and PLS differed in their dependen-
cies and robustness, in part due to PLS weights exhibiting an increased
similarity towards dominant principal component axes compared to CCA
weights. We analyzed two large state-of-the-art neuroimaging-
psychometric datasets, the Human Connectome Project' and the UK
Biobank?, which followed similar trends as our model. We also observed
similar trends when considering features from two neuroimaging mod-
alities, functional and diffusion MRI. These model and empirical findings, in
conjunction with a meta-analysis of estimated stability in the brain-behavior
CCA literature, suggest that discovered association patterns through typical
CCA/PLS studies in neuroimaging are prone to instability. Finally, we
applied the generative model to develop algorithms and a software package
for calculation of estimation errors and required sample sizes for CCA/PLS.
We end with practical recommendations for application and interpretation
of CCA/PLS in future studies.

Results

CCA/PLS describe statistical associations between multivariate data-
sets by analyzing their between-set covariance matrix (Fig. 1, Sup-
plementary Note 1). A weighted combination of features called scores
is formed for each of the two datasets, and the association strength
between these score vectors is optimized by defining the weight vec-
tors. CCA and PLS use Pearson correlation and covariance as their
objective functions, respectively. (PLS is also referred to as PLS cor-
relation [PLSC] or PLS-SVD*''.) We call the corresponding optimized
value between-set correlation and between-set covariance, respec-
tively. We also calculate loadings, which we define as the univariate
Pearson correlations (across observations) between CCA/PLS scores
and each original variable in the dataset. We note that alternative
terminologies exist**'*****, CCA/PLS scores (as described above)
could also be called variates; weights (as described above) could also be
called vectors; and loadings (as described above) could also be called
parameters. For CCA, the correlation between the score vectors, i.e.
the between-set correlations, are also called inter-set correlations or
canonical correlations.

A generative model for cross-dataset multivariate associations
To analyze dependencies of stability for CCA and PLS, we need to generate
synthetic datasets of stochastic observations with known, controlled prop-
erties. We therefore developed a generative statistical modeling framework,
GEMMR (Generative Modeling of Multivariate Relationships), which
allows us to design and generate synthetic datasets, investigate the depen-
dence of CCA/PLS solutions on dataset size and assumed covariances,
estimate weight errors in CCAs reported in the literature, and calculate
sample sizes required to bound estimation errors (see Methods).

To describe GEMMR, first note that data for CCA/PLS consist of two
datasets, given as data matrices X and Y, each with multiple features and an
equal number 7 of observations. We model the within-set covariance with
power-law decay in the variance spectrum, which we constrain to empiri-
cally consistent ranges (Supplementary Fig. 1). GEMMR then embeds
between-set associations by defining associated weight axes in each set.
Finally, the joint covariance matrix for X and Y is composed using the
within- and between-set covariances (Fig. 1d) and the normal distribution
associated with this joint covariance matrix constitutes our gen-
erative model.

We systematically investigated the downstream effects on CCA/PLS
stability of generative model parameters for dataset properties: number of
features, assumed population (or true) value of between-set correlation,
power-laws describing the within-set variances, and sample size. Weight
vectors were chosen randomly and constrained such that the X and Y scores
explain at least half as much variance as an average principal component in
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their respective sets. For simplicity, we restrict our present analyses to a
single between-set association mode. We use the term “number of features”
to denote the total number across both X and Y.

Sample-size dependence of estimation error

Using surrogate datasets from our generative model, we characterized
estimation error in multiple elements of CCA/PLS solutions. Here we
use samples per feature as an effective sample-size measurement, which
accounts for widely varying dimensionalities across empirical datasets.
A typical sample size in the brain-behavior CCA/PLS literature is about

Fig. 2 | Sample-size dependence of CCA and PLS. a, b For sufficiently large sample
sizes, statistical power to detect a non-zero between-set association strength con-
verges to 1. Shaded areas show 95% confidence intervals across 25 covariance
matrices representing distributions with the indicated ry,, but different (true)
weight vectors. ¢, d In-sample (solid) estimates of the between-set correlations
approach their assumed true (population) value (dashed). e, f Weight errors
(quantified as the “1—absolute cosine similarity” between the true weights of the
generative model and estimated weights from CCA/PLS on a collection of samples,
separately for X and Y and taking the greater of the two), g, h score errors (measured
as “1—absolute Pearson correlation” between estimated and true scores, which, in
turn, are obtained by applying estimated and true weights to common test data) i, j as
well as loading errors (measured as “1—absolute Pearson correlation” between
estimated and true loadings) become close to 0 for sufficiently large sample sizes.
Original data features are generally different from principal component scores, but
as the relation between these two data representations cannot be constrained, we
calculate all loadings here with respect to principal component scores. Moreover, to
compare loadings across repeated datasets we calculate loadings for a common test
set, as for CCA/PLS scores. Left and right columns show results for CCA and PLS,
respectively. For all metrics, convergence depends on the true (population) between-
set correlation 7 and is slower if 7, is low. Note that the color code indicates true
(population) between-set correlation and corresponds to the dashed horizontal lines
in c-d. Curves show mean and 95% confidence intervals of CCA/PLS estimates
across 100 draws of collections of observations with a given sample size from 25
different generative models with the indicated ., but varying true (population)
weight vectors (see Methods). X and Y feature space dimensionality was 8.

5 samples per feature (Supplementary Fig. 2a). A key parameter of the
generative model is the population value, or true value, of the asso-
ciation strength, i.e., the value one would obtain, both through in-
sample and out-of-sample estimation, as the sample size grows toward
infinity. Importantly, like the mean of a normal distribution the
population value of the association strength, ry,,, is independent of the
collection of samples and the sample size used to estimate it, but con-
stitutes instead a parameter of the distribution from which observations
are drawn. As such 7. is a well-defined free parameter that can be
varied independently of sample size.

We assessed, first, whether a significant association can robustly be
detected, quantified by statistical power, and found relatively low power at
typical sample sizes and population effect sizes (Fig. 2a, b). Second, we
evaluated convergence of association strength (Fig. 2¢, d). We calculated the
(with-)in sample association strength by performing CCA/PLS with a given
collection of samples, and out-of-sample association strength through cross-
validation (see Methods). The observed between-set correlation converges
to its assumed true (population) value for sufficiently large sample sizes
(Fig. 2¢, d). In-sample estimates of the association strength overestimate
their true value (Fig. 2¢, Supplementary Figs. 3 and 4). A sufficient sample
size, depending on other covariance matrix properties, is needed to bound
the error in the association strength. Cross-validated estimates under-
estimate the true value to a similar degree as in-sample estimates over-
estimate it"® (Supplementary Fig. 5).

In addition to association strengths, CCA/PLS solutions provide
weights that encode the nature of the association in each dataset, as well as
scores which represent a latent value assigned to each individual observation
(e.g. subject). Finally, some studies report loadings, i. e. the correlations
between original data features and CCA/PLS scores (Supplementary Fig. 6a,
b). We found that estimation errors for weights, scores, and loadings
decrease monotonically with sample size and more quickly for stronger
population effect sizes (Fig. 2e—j).

We used “samples per feature” as an effective sample size parameter to
account for the fact that datasets in practice have very different dimen-
sionalities. Others have previously explored the effect of varying samples
and features™. Figure 3 and Supplementary Note 2 show that power and
error metrics for CCA are parameterized well in terms of samples per
feature, whereas for PLS it is only approximate. Nonetheless, as samples per
feature is arguably most straightforward to interpret, we presented results in
terms of samples per feature for both CCA and PLS”.
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can be observed, albeit the overlap between curves of the same hue (i. e. with same
Tirue DUt different number of features) is worse. When “samples / (number of
features)'*” is used instead (third column), the curves overlap more. The same trends
can be seen in the right 3 columns, where px # py. Curves in the first row are means
across 25 covariance matrices representing distributions with the indicated 7y, but
different weight vectors. Curves in all other rows are averaged across the same

25 covariance matrices and 100 draws of collections of observations of the sample
size indicated on the x-axis. Panels a-f, g-1, m-r, s-x and y-ad show, respectively,
power relative association strength error, weight error, score error and loading error.

Weight error and stability

Figure 2 quantifies how sample size affects CCA/PLS summary statistics.
We next focused on error and stability of the weights, due to their centrality
in CCA/PLS analyses in describing which features carry between-set
associations’. Figure 4a, b illustrates an example of how CCA/PLS weight
vectors exhibit high error when typical sample-to-feature ratios are used.
We systematically measured weight stability, i.e., the consistency of esti-
mated weights across independent collection of samples, as a function of
sample size. At small sample sizes, the average weight stability was close to 0
for CCA and eventually converged towards 1 (i. e. perfect similarity) with
more observations (Fig. 4c). PLS exhibited striking differences from CCA:
mean weight stability had a relatively high value with high variability across
population models even at low sample sizes (Fig. 4d), where weight error is
very high (Fig. 2f).

To assess the dependence of weight error on the assumed true between-
set correlation and the number of features, we estimated the number of
observations required to obtain <10% weight error (Supplementary Fig. 7).
The required sample size is higher for increasing number of features, and

lower for increasing true between-set correlation. We also observe that, by
this metric, required sample sizes can be much larger than typical sample
sizes in CCA/PLS studies.

Weight PC1 similarity in PLS

At low sample sizes, PLS weights exhibit, on average, high error (Fig. 2f)
yet also relatively high stability (Fig. 4d). This suggests a systematic bias in
PLS weights toward an axis different than toward the true latent axis of
association (Fig. 4b). We quantified the PC similarity as the cosine similarity
between estimated weight vectors and principal component axes. We found
that, for a range of different number of features and true between-set cor-
relations, weight similarity to PC1 was strong for PLS (but not CCA), with
PLS weight vectors exhibiting strong bias toward PC1 especially for low
sample sizes (Fig. 4e, f).

Comparison of loadings and weights
In addition to weights, loadings provide a measure of importance for each
considered variable’™”. We found that for CCA, stability and error of
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Fig. 4 | Large number of observations required to obtain good weight estimates.
a, b Realistic example where the true between-set correlation was set to e = 0.3.
Estimated weights are close to the assumed true (population) weights, as long as
the sample size is large enough. b For PLS even more observations were neces-
sary. ¢, d Weight stability, i. e. the average cosine-similarity between weights
across all pairs formed from 100 repetitions, increases towards 1 (identical
weights) with more observations. For PLS, weight stability can be high, even with
few observations. The true between-set correlation was set to 7. = 0.3. Each of
the 100 dashed lines represents a different covariance matrix with different
assumed weight vectors. The solid line shows the average across the dashed lines.
e, f PC1 similarity was stronger for PLS (f) than for CCA (e) also for datasets with
varying number of features and true between-set correlations 7. Shown is
relative PC1 similarity across synthetic datasets with varying number of features,
relative to the expected PC1 similarity of a randomly chosen vector with
dimension matched to each synthetic dataset. Shaded areas denote 95% con-
fidence intervals across 6 feature space dimensionalities, 10 covariance matrices
and 100 draws of collections of observations with the indicated sample size (x-
axis) from the multivariate normal distribution associated with these covariance
matrices.

loadings followed a similar sample size dependence as weights. In
contrast, PLS loadings were extremely stable even at low sample sizes
where error is high, indicating a strong bias (Supplementary Fig. 8a, b).
For both CCA and PLS, a steeper power-law describing the within-set
varijance produced more stable loadings (Supplementary Fig. 8c, d). We
next evaluated whether loadings exhibit bias toward principal com-
ponent axes (Supplementary Fig. 8e, f). At small sample sizes, PLS
loadings and weights, as well as CCA loadings, strongly resembled more
dominant principal component axes. Thus, the within-set variance can
have strong biases on CCA/PLS results, irrespective of true between-set
associations (Supplementary Fig. 9).

Empirical brain-behavior CCA/PLS

Do these phenomena from our generative modeling framework hold in
empirical data? We focused on two state-of-the-art population neuroima-
ging datasets: Human Connectome Project (HCP)' and UK Biobank
(UKB). Both provide multi-modal neuroimaging along with a wide range
of behavioral and demographic measures, and both have been used for
CCA-based brain-behavior mapping™*”’~*. HCP data is widely used and of
cutting-edge quality, and the UKB is one of the largest publicly available
population-level neuroimaging datasets.

We analyzed two modalities from the HCP, resting-state functional
MRI (fMRI) (N=948) and diffusion MRI (dMRI) (N= 1,020, Supple-
mentary Fig. 10a-d), and fMRI from the UKB (N = 20,000). Functional and
structural connectivity features were extracted from fMRI and dMRI,
respectively. After modality-specific preprocessing (see Methods), datasets
were deconfounded and reduced to 100 principal components (Supple-
mentary Fig. 11), following prior CCA studies™”*’. We repeatedly formed
two non-overlapping subsamples of subjects, varying sizes up to 50 % of the
subjects, and assessed CCA/PLS solutions (Fig. 5, Supplementary Figs. 12
and 13).

In-sample association strength decreased with increasing size of the
subsamples, but converged to cross-validated association strength clearly
only for the UKB at large sample size (Fig. 5a, ¢, e, f). Figure 5a overlays
reported CCA results from prior publications that used 100 features per set
with HCP data, which further confirms the substantially decreasing asso-
ciation strengths as a function of sample size. HCP weight stabilities (Eq. 17)
remained at low and intermediate values for CCA and PLS, respectively
(Fig. 5b, d, f, h). In contrast, UKB weight stabilities reached values close to 1
(perfect stability). Moreover, for all datasets, PC1 similarity (Eq. 18) was
close to 0 for CCA but markedly higher for PLS weights (Fig. 5b, d, f, h).
Finally, loadings exhibited similar dependencies as weights, with higher
PC1 similarity (Supplementary Fig. 14). Very similar behavior is observed
when using very different features extracted from diffusion MRI (Supple-
mentary Fig. 10a-d).

All these empirical results are in agreement with analyses of synthetic
data discussed above (Figs. 2 and 4). The overall similarities between CCA/
PLS analyses of different neuroimaging modalities and features (Fig. 5,
Supplementary Fig. 10) suggest that sampling error is a major determinant
in CCA/PLS solutions in typical data regimes. These results also show that
stable CCA/PLS solutions with a large number of features can be obtained
with UKB-size datasets.

We also explored reducing the data to different numbers of PCs than
100. Multiple methods have been proposed to determine an optimal
number of PCs (see Discussion). Here, as an example, we used the max-min-
detector from™. This method suggested 68 brain imaging and 32 behavioral
dimensions for HCP*, which yielded higher cross-validated association
strengths and higher stabilities of weights. In UKB, we separately varied the
number of retained neuroimaging and behavioral principal components
and calculated CCA/PLS association strengths (Supplementary Fig. 15). We
found that estimated association strengths rose strongly when retaining an
increasing number of behavioral PCs, but only up to about 10. The situation
for neuroimaging PCs differed between the methods, however. For CCA,
retaining more neuroimaging PCs improved the association strength up to
about 20-40 before plateauing. For PLS, on the other hand, the top PCs
(=5-10) were enough for the association strength to plateau. Altogether,
these results demonstrate the potential benefits of careful, modality-specific
dimensionality reduction strategies to enhance CCA/PLS stability.

Samples per feature alone predicts published CCA strengths

We next examined stability and association strengths in CCA analyses of
empirical datasets more generally, through analysis of the published neu-
roimaging literature using CCA for brain-behavior associations. From 100
CCAs that were reported in 31 publications (see Methods), we extracted the
number of observations, number of features, and association strengths.
Most studies used <10 samples per feature (Fig. 6a and Supplementary
Fig. 2a). Overlaying reported between-set correlations as a function of
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confidence interval obtained from permuted data. In (a) we also overlaid reported
between-set correlations from other studies that used HCP data reduced to 100 prin-
cipal components. Cross-validated association strengths are shown in red (column 1)
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and blue (column 3), cross-validated estimation strengths of permuted datasets in gray
with red and blue outlines in columns 1 and 3, respectively. A triangle indicates the
cross-validated association strength using all data and the vertical bar in the same color
below it denotes the corresponding 95 % confidence interval obtained from permuted
data. Cross-validated association strengths were always lower than in-sample estimates
and increased with sample size. For UKB (but not yet for HCP) cross-validated asso-
ciation strengths converged to the same value as the in-sample estimate. In the second
and fourth columns (panels b, d, f and h), weight stabilities (calculated according to Eq.
(17)) increased with sample size for UKB and slightly for the PLS analyses of HCP
datasets, while they remained low for the CCA analyses of HCP datasets. PC1 weight
similarity (calculated according to Eq. (18)) was low for CCA but high for PLS. All
analyses were performed with 100 randomly drawn subsamples of varying sizes (x-axis).
For each subsample size and repetition, we created two non-overlapping sets of subjects
and calculated weight stability using these non-overlapping pairs.
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Fig. 6 | CCAs reported in the population neuroimaging literature might often be
unstable. a Between-set correlations and the number of samples per features are
extracted from the literature and overlaid on predictions from the generative model
for various true between-set correlations . The reported between-set correlation
can be predicted from the used number of samples per feature alone using linear
regression (R’ = 0.83). We also estimated the weight error (encoded in the colorbar)
for each reported CCA (details in Supplementary Fig. 16). b The distribution of
estimated weight errors for each reported CCA is shown along the y-axis. For many
studies weight errors could be quite large, suggesting that conclusions drawn from
interpreting weights might not be robust. See Supplementary Fig. 16 for the pro-
cedure for estimation of weight errors.

samples per feature on top of predictions from our generative model shows
that most published CCAs are compatible with a range of true between-set
correlations, from about 0.5 down to 0 (Fig. 6a). Remarkably, despite the
variety of datasets and modalities used in these studies, the reported
between-set correlation could be well predicted simply by the number of
samples per feature alone (R*=0.83) (cf. Supplementary Note 2 and Sup-
plementary Fig. 22 for a corresponding scaling law). We also note that
reported CCAs might be biased upwards to some degree due to the fact that
researchers might have explored a number of different analyses and
reported the one with the highest between-set correlation.

We next asked to what degree weight errors could be estimated from
published CCAs. As these are unknown in principle, we estimated them
using our generative modeling framework. We did this by (i) generating
synthetic datasets of the same size as a given empirical dataset, and sweeping
through assumed true between-set correlations between 0 and 1, (ii)
selecting those synthetic datasets for which the estimated between-set cor-
relation matches the empirically observed one, and (iii) using the weight
errors in these matched synthetic datasets as estimates for weight error in the
empirical dataset (Supplementary Fig. 16). This resulted in a distribution of
weight errors across the matching synthetic datasets for each published
CCA study that we considered. The mean of these distributions is shown in
color overlay in Fig. 6a and the range of the distributions is shown in Fig. 6b
(see also Supplementary Fig. 2b). These analyses suggest that many pub-
lished CCA studies likely have unstable feature weights due to an insufficient
sample size.

Calculator for required sample size

How many observations are required for stable CCA/PLS results, given
particular dataset properties? One can base this decision on a combi-
nation of criteria, by bounding statistical power as well as relative error
inassociation strength, weight error, score error and loading error at the
same time. Requiring at least 90 % power and admitting at most 10 %
error for other metrics, we determined the corresponding sample sizes
in synthetic datasets by interpolating the curves in Fig. 2 (see Supple-
mentary Fig. 17a and Methods). The results are shown in Fig. 7 (see also
Supplementary Figs. 18, 19, and 20). For example, when the true
between-set correlation is 0.3, several hundreds to thousands of
observations are necessary to achieve the indicated power and error
bounds (Fig. 7a). The required sample size per feature as a function of
the true between-set correlation roughly follows a power-law depen-
dence, with a strong increase in required sample size when the true
between-set correlation is low (Fig. 7b). We also evaluated required
sample sizes for a commonly used sparse CCA method (Supplementary
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Fig. 7 | Required sample sizes. Sample sizes to obtain at least 90 % power and at most
10 % error for the association strength, weight, scores and loadings. Shown estimates
are constrained by the within-set variance spectrum (here ax + ay = — 2, cf. Sup-
plementary Fig. 19 for other values). a Assuming a true between-set correlation of
Ttrue = 0.3 (see Supplementary Fig. 18a-d for other values) 100s to 1000s of obser-
vations are required to reach target power and error levels. Shaded areas show 95 %
confidence intervals across 25 covariance matrices encoding CCA/PLS solutions
with ryye = 0.3, but varying weight vectors. b The required number of observations
divided by the total number of features in X and Y scales with . For e = 0.3
about 50 samples per feature are necessary to reach target power and error levels in
CCA, which is much more than typically used (cf. Supplementary Fig. 2a). Every
point for a given ry,, represents a different number of features and is slightly jittered
for visibility. Values for a given dimensionality px are only shown here if simulations
were available for both CCA and PLS. Horizontal lines for each 7y, represent the
mean across the available number of features.

Fig. 21, Supplementary Note 3); however, an in-depth analysis of sparse
CCA is beyond the scope of this study.

Finally, we formulated a concise, easy-to-use description of the rela-
tionship between model parameters and required sample size. To that end,
we fitted a linear model to the logarithm of the required sample size, using
logarithms of total number of features and true between-set correlation as
predictors (Supplementary Fig. 17). We additionally included a predictor for
the decay constant of the within-set variance spectrum, |ax + ay|. We found
that a simple linear model approach yielded good predictive power for CCA
and PLS, which we validated using split-half predictions (Supplementary
Fig. 17¢, d).

Discussion

We have used a generative modeling framework to reveal how stability of
CCA/PLS solutions depends on dataset properties. Our findings underscore
that CCA/PLS stability and statistical significance do not need to coincide
(see also™). Moreover, for small sample sizes in-sample association strengths
severely over-estimate their true value, out-of-sample estimates on the other
hand are more conservative. In-sample estimates of association strenghts
should also not be taken as evidence of predictive validity of a CCA/PLS
model. Importantly, estimated weight vectors, which govern the latent
feature patterns that underlie an association, do not typically resemble the
true weights when the number of observations is low (Fig. 4), which pre-
cludes generalizability and interpretability. PLS weights also show a con-
sistent similarity to the first principal component axis (Fig. 4e, f), and
therefore PLS weight stability is not sufficient to establish convergence to a
true between-set relationship. The same pitfalls appear in state-of-the-art
empirical datasets for brain-behavior associations.

CCA/PLS have become popular methods to reveal associations
between neuroimaging and behavioral measures™*'*>********". The main
interest lies in interpreting weights or loadings to understand the profiles of
brain imaging and behavioral features carrying the brain-behavior asso-
ciation. We have shown, however, that stability of weights and loadings are
contingent on a sufficient sample size which, in turn, depends on the true
between-set correlation. How strong are true between-set correlations for
typical brain-behavior association studies? While this depends on the
dataset at hand and is in principle unknown a priori, Ref. 28 reports average
cross-validated (out-of-sample) between-set correlations of 0.17, whereas™

argue that higher (r>0.2) out-of-sample between-set correlations are
achievable with targeted methods. Our analyses provide insight to this
question and highlight the importance of dataset dimensionality. We found
in UKB convergence of between-set correlations to ~0.5. As the included
behavioral measures comprised a wide assortment of categories, this
between-set correlation is likely at upper end of expected ranges. Moreover,
we found that most published brain-behavior CCA studies with sub-
stantially >10 samples per feature appeared to be compatible only with
between-set correlations of <0.3, which is at the upper range suggested by
recent empirical explorations™.

Assuming a relatively large between-set correlation of 0.3, our gen-
erative model still implies that ~50 samples per feature are required for
stability of CCA solutions. For designs with hundreds of features, this
necessitates many thousands of subjects, in agreement with*. Many pub-
lished brain-behavior CCAs do not meet this criterion. Moreover, in HCP
data we saw clear signs that the available sample size was too small to obtain
stable solutions—despite that the HCP is one of the largest and highest-
quality neuroimaging datasets available to date. On the other hand, in the
UKB, where we used 20,000 subjects, CCA and PLS results converged with
stability. As UKB-level sample sizes are well beyond what can be feasibly
collected in typical neuroimaging studies, these findings support calls for
aggregation of datasets that are shared widely*.

For simplicity and tractability it was necessary to make a number of
assumptions in our study. For convenience, we have chosen to represent all
data generated by the generative model in each set’s principal component
coordinate system. This does not affect the validity of the simulations.
Moreover, our synthetic data were normally distributed, which is typically
not the case in practice. We have assumed a power-law decay model for the
within-set variances in each dataset, which we confirmed in a number of
empirical datasets (Supplementary Fig. 1), although this might not hold in
general. We then assumed the existence of a single cross-modality axis of
association, whereas in practice several might be present. In that latter case,
theoretical considerations suggest that even larger sample sizes are needed”.
Additionally, we assumed that the axis of cross-modal association for both
the X and Y sets also explains a notable amount of variance within each
respective set. While this need not be the case in general, an axis that explains
little variance in a set would often not be considered relevant and might not
be distinguishable from noise. Importantly, despite these assumptions,
empirical brain-behavior datasets yielded similar sample-size dependencies
as synthetic datasets.

The numbers of features are important determinants for stability. In
our empirical data analysis we have reduced the data to 100 principal
components. To be clear, here our goal was to illustrate the behavior of CCA
and PLS on a given empirical dataset (i. e. the dataset consisting of the 100
PCs). We do not advocate that taking the first 100 (or any other fixed
number, for that matter) of principal components, is an approach that
should be taken in practice. Instead, the trade-off between dimensionality-
reduction for the purpose of reducing the number of samples required for a
stable estimate, and, on the other hand, the effect of a lower canonical
correlation as a result of dimensionality reduction requiring, in turn, a
higher sample size for stability, needs to be considered. A variety of methods
have been proposed to determine an appropriate number of components for
PCA and CCA*****. Applying one of these methods to HCP data yielded
slightly better convergence (Supplementary Fig. 10e-h). Alternatively, prior
domain-specific knowledge could be used to preselect features hypothesized
to be relevant for the question at hand.

Several related methods have been proposed to potentially circumvent
shortcomings of standard CCA/PLS'". There exist a number of different PLS
variants™ in addition to the one considered here, which is called PLS-SVD or
PLS correlation'’. They all result in the same first between-set component™,
although note that one variant, PLS regression, is sometimes implemented
using an unnormalized first Y-weight vector”. Higher-order between-set
components differ between the PLS variants. Throughout the manuscript
we have only considered the first between-set component, which is the one
with the highest possible between-set covariance for the given data. Note
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that, as required sample sizes for stable estimates depend on the (true)
between-set covariance, we expect even higher sample size requirements for
all higher-order between-set components than for the first, independent of
the PLS variant. Regularized or sparse CCA methods (Supplementary
Note 3) apply penalities to weight vectors to mitigate overfitting®. We
observed that its relative merit might depend on the true weight profile
(Supplementary Fig. 21). We also provide an analysis of reduced rank
regression in Supplementary Note 4 which suggests it behaves similarly to
CCA and PLS (Supplementary Fig. 23). We note that a complete char-
acterization of sparse CCA, reduced rank regression and other methods
such as non-linear extensions, was beyond the scope the present study.

In summary, we have presented a parameterized generative modeling
framework for CCA and PLS. It allows analysis of the stability of CCA and
PLS estimates, prospectively and retrospectively. We end by providing 9
recommendations for using CCA or PLS in practice (Supplementary
Table 1).

Methods

Experimental design

The goal of this work was to determine requirements for stability of CCA
and PLS solutions, both in simulated and empirical data. To do so, we first
developed a generative model that allowed us to generate synthetic data with
known CCA/PLS solutions. This made it possible to systematically study
deviations of estimated from true solutions. Second, we used large state-of-
the-art neuroimaging datasets with associated behavioral measurements to
confirm the trends that we saw in synthetic data. Specifically, we used data
from the Human Connectome Project (HCP) (n = 1000) and UK Biobank
(UKB) (n=20,000). Third, we analyzed published CCA results of brain-
behavior relationships to investigate sample-size dependence of CCA results
in the literature.

Human Connectome Project (HCP) data

We used resting-state fMRI (rs-fMRI) from 951 subjects from the HCP
1200-subject data release (03/01/2017)". The HCP source dataset was col-
lected with ethics approval and informed consent from participants'. The rs-
fMRI data were preprocessed in accordance with the HCP Minimal Pre-
processing Pipeline (MPP). Details of the HCP preprocessing can be found
elsewhere”". Following the HCP MPP, BOLD time-series were denoised
using ICA-FIX**® and registered across subjects using surface-based mul-
timodal inter-subject registration (MSMAIL)*'. Additionally, global signal,
ventricle signal, white matter signal, and subject motion and their first-order
temporal derivatives were regressed out®.

The rs-fMRI time-series of each subject comprised of 2 (69 subjects), 3
(12 subjects), or 4 (870 subjects) sessions. Each rest session was recorded for
15 min with a repetition time (TR) of 0.72 s. We removed the first 100 time
points from each of the BOLD sessions to mitigate any baseline offsets or
signal intensity variation. We subtracted the mean from each session and
then concatenated all rest sessions for each subject into a single time-series.
Voxel-wise time series were parcellated to obtain region-wise time series
using the “RelatedValidation210” atlas from the 1200 release of the HCP*".
Functional connectivity was then computed as the Fisher-z-transformed
Pearson correlation between all pairs of parcels. 3 subjects were excluded
(see below), resulting in a total of 948 subjects with 64620 connectivity
features each.

Diffusion MRI (dMRI) data and structural connectivity patterns were
obtained as described in*“*". In brief, 41 major white matter (WM) bundles
were reconstructed from preprocessed HCP diffusion MRI data® using
FSL’s XTRACT toolbox™. The resultant tracts were vectorised and con-
catenated, giving a WM voxels by tracts matrix. Further, a structural con-
nectivity matrix was computed using FSL’s probtrackx”, by seeding
cortex/white-gray matter boundary (WGB) vertices and counting visita-
tions to the whole white matter, resulting in a WGB x WM matrix. Con-
nectivity “blueprints” were then obtained by multiplying the latter with the
former matrix. This matrix was parcellated (along rows) into 68 regions with

the Desikan-Killany atlas® giving a final set of 68 x 41 = 2788 connectivity
features for each of the 1020 HCP subjects.

The same list of 158 behavioral and demographic data items as in’
was used.

We used the following items as confounds: Weight, Height, BPSystolic,
BPDiastolic, HbA1GC, the third cube of FS_BrainSeg Vol, the third cube of
FS_IntraCanial_Vol, the average of the absolute as well as the relative value
of the root mean square of the head motion, squares of all of the above, and
an indicator variable for whether an earlier of later software version was used
for MRI preprocessing. Head motion and software version were only
included in the analysis of fMRI vs behavioral data, not in the analysis of
dMRI vs behavioral data. Confounds were inverse-normal-transformed
(ignoring missing values) such that each had mean 0. Subsequently, missing
values were set to 0. 3% and 5% of confound values were missing in the fMRI
vs. behavior, and dMRI vs behavior analysis, respectively. All resulting
confounds were z-scored once more.

UK Biobank (UKB) data

We utilized pre-processed resting-state fMRI data” from 20,000 subjects,
available from the UK Biobank Imaging study’. The UKB source dataset was
collected with ethics approval and informed consent from participants™.

In brief, EPI unwarping, distortion and motion correction, intensity
normalization and high-pass temporal filtering were applied to each sub-
ject’s functional data using FSL’s Melodic”, data were registered to standard
space (MNI), and structured artifacts are removed using ICA and FSL’s
FIX™7". A set of resting-state networks were identified, common across the
cohort using a subset of subjects (=4000 subjects)”. This was achieved by
extracting the top 1200 components from a group-PCA’* and a subsequent
spatial ICA with 100 resting-state networks’"””. Visual inspection revealed
55 non-artifactual ICA components. Next, these 55 group-ICA networks
were dual regressed onto each subject’s data to derive representative time-
series for each of the ICA components. Following the regression of the
artifactual nodes for all other nodes and the subsequent removal of the
artifactual nodes, the timeseries were used to compute partial correlation
parcellated connectomes with a dimensionality of 55x55. The con-
nectomes were z-score transformed and the upper triangle vectorized to give
1485 functional connectivity features per subject, for each of the
20,000 subjects.

The UK Biobank contains a wide range of subject measures’*, including
physical measures (e.g., weight, height), food and drink, cognitive pheno-
types, lifestyle, early life factors and sociodemographics. We hand-selected a
subset of 389 cognitive, lifestyle and physical measures, as well as early life
factors. For categorical items, we replaced negative values with 0, as in”. Such
negative values encode mostly “Do not know”/"Prefer not to answer”.
Measures with multiple visits were then averaged across visits, reducing the
number of measures to 226. We then performed a check for measures that
had missing values in >50% of subjects and also for measures that had
identical values in at least 90% of subjects; no measures were removed
through these checks. We then performed a redundancy check. Specifically,
if the correlation between any two measures was >0.98, one of the two items
was randomly chosen and dropped. This procedure further removed 2
measures, resulting in a final set of 224 behavioral measures, available for
each of the 20,000 subjects.

We used the following items as confounds: acquisition protocol phase
(due to slight changes in acquisition protocols over time), scaling of T1
image to MNI atlas, brain volume normalized for head size (sum of gray
matter and white matter), fMRI head motion, fMRI signal-to-noise ratio,
age and sex. In addition, similarly to’, we used the squares of all non-
categorical items (i. e. T1 to MNI scaling, brain volume, fMRI head motion,
fMRI signal-to-noise ratio and age), as well as age x sex and age’ x sex.
Altogether these were 14 confounds. Confounds were inverse-normal-
transformed (ignoring missing values), such that each had mean 0. 6% of
values were missing and set to 0. All resulting confounds were then z-scored
across subjects once more.
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Preprocessing of empirical data for CCA and PLS
We prepared data for CCA/PLS following, for the most part, the pipeline in
ref. 3.

Deconfounding of a matrix X with a matrix of confounds C was per-
formed by subtracting linear predictions, i.e.

Xdeconfounded =X- Cﬁ (1)

where

p=Ctx=(cc)"'C'x @

The confounds used were specific to each dataset and mentioned in the
previous section.

Neuroimaging measures were z-scored. The resulting data matrix was
de-confounded (as described above), decomposed into principle compo-
nents via a singular value decomposition, and the left singular vectors,
multiplied by their respective singular values, were used as data matrix X in
the subsequent CCA or PLS analysis. We retained 100 principal compo-
nents (out of 948, 1020 and 1485 for the HCP-fMRI, HCP-dMRI and UKB
analysis, respectively).

The list of used behavioral items were specific to each dataset and
mentioned in the previous sections. Given this list, separately for each item, a
rank-based inverse normal transformation’ was applied and the result z-
scored. For both of these steps subjects with missing values were dis-
regarded. Next, a subjects x subjects covariance matrix across variables was
computed, considering for each pair of subjects only those variables that
were present for both subjects. Thus, each element of the resulting matrix
could, in general, be computed from a different set of subjects such that it is
not clear whether the resulting matrix is a proper positive definite covariance
matrix. To guarantee a proper covariance matrix for the following, we
therefore computed the nearest positive definite matrix of this matrix using
the function cov_nearest from the Python statsmodels package™.
This procedure has the advantage that subjects can be used without the need
to impute missing values. An eigenvalue decomposition of the resulting
covariance matrix was performed where the eigenvectors, scaled to have
standard deviation 1, are principal component scores. They are then scaled
by the square-roots of their respective eigenvalues (so that their variances
correspond to the eigenvalues) and used as matrix Y'in the subsequent CCA
or PLS analysis. We retained 100 (out of 948, 1020 and 20000 for the HCP-
fMRI, HCP-dMRI and UKB analysis, respectively) principal components
corresponding to the highest eigenvalues.

Generating synthetic data for CCA and PLS

Note that mathematical derivations and additional explanation of termi-
nology related to CCA and PLS are provided in the Supplementary Infor-
mation. We analyzed properties of CCA and PLS with simulated datasets
from a multivariate generative model. These datasets are drawn from a
normal distribution with mean 0 and covariance matrix X that encodes
assumed relationships in the data. To specify X we need to specify rela-
tionships of features within X, i. e. the covariance matrix Xy, € RPx*Px,
relationships of features within Y, i. e. the covariance matrix 2, € RPY*Pr,
and relationships between features in X and Y, ie. the matrix
Ty € RPx™Pr_ Together, these three covariance matrices form the joint
covariance matrix (Fig. 1d)”

Soe 2 )
Yy = (ZEI'CX ZXY) c R(Px+Py) (px+py) (3)
XY YY

for X and Y and this allows us to generate synthetic datasets by sampling
from the associated normal distribution N(0, £). px and py correspond to
the number of features in X and Y respectively.

We next describe the covariance matrices Xxx and Xyy. Given a data
matrix X, the features can be re-expressed in a different coordinate system

through multiplication by an orthogonal matrix O: X = XO. No

information is lost in this process, as it can be reversed: X = XO'. There-
fore, we are free to make a convenient choice. We select the principal
component coordinate system as in this case the covariance matrix becomes
diagonal, i. e. 2y = diag(d'yy). Analogously, for Y we choose the principal
component coordinate system such that £y, = diag(dyy).

For modeling, to obtain a concise description of dyy and G, we
assume a power-law such that oyy ; = ¢y i~ and oyy ; = cyyi™ " with
decay constants axx and ayy (Fig. 1b). Unless a match to a specific dataset is
sought, the scaling factors cxx and cyy can be set to 1 as they would only
rescale all results without affecting conclusions.

We now turn to the cross-covariance matrix Xyy.

For PLS, given a cross-covariance matrix Zxy, PLS solutions can be
derived via a singular value decomposition as

Syy = USVT (4)

where the singular vectors in the columns of U and V are orthonormal
and the matrix S contains the singular values on its diagonal. The col-
umns of Uand V are the weight vectors for X and Y, respectively, and the
singular values give the corresponding between-set association
strengths. Thus, the above equation allows us to compute Xxy given
orthonormal PLS weight vectors U, V and corresponding between-set
association strengths diag(S). This is what we do for PLS. See below for
how we select the specific weights that we use. Singular values here in
the context of PLS are between-set covariances between X scores and Y
scores. Were-express these in terms of a between-set correlation, i.e. the
i-th singular value, s;, is

§; = e/ var (Xi; ) var (Y)) (5)

where 7y is the assumed true (population) between-set correlation for
mode 4, and #; and V; are the i-th columns of U and V, respectively.

For CCA, we know that a whitened version of the between-set cov-
ariance matrix is related to weight vectors and between-set correlations via
the singular value decomposition as

-1/2

s Sy = UsvT (6)

As above, the singular vectors in the columns of U and V are orthonormal
and the matrix S contains the singular values on its diagonal. For CCA, the
singular values directly give the between-set correlations, but the singular
vectors are not identical to the weight vectors. Instead, CCA weights, Wx
and Wy for X and Y, repectively, are given by

Wy =3/°U @)
Wy =3,7/%V. ®)

Thus, given weight vectors as columns of Wy and Wy, as well as population
between-set correlations diag(S), we can calculate the corresponding
between-set covariance matrix for CCA as

Sy = SXEUSVTEY?

T )
i (2w s (2w, ) s
Importantly, we had assumed that the columns of U, as well as V, were
orthonormal. Thus, the columns of Wy and Wy must satisfy the following
constraints: UTU = WISy Wy = Laswellas VIV = WIs,, W, =L
One straightforward way to achieve this, is to restrict our consideration to
one mode, i. e. we assume that Xyy has rank one (or can be approximated
with a rank one matrix) such that U, V, as well as Wx and Wy consist of only
1 column. In this case, whatever weight vector we choose, say Wy
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(analogously for Y), we can normalize it as

L 3 [51¢ 3
Wy = Wy /\/ WiZxx Wy

and wy will satisfy the constraint. See below, for how we select the specific
weight vectors we use in our simulations.

As weight vectors, we choose random unit vectors of the desired
dimension, as long as they satisfy the following two constraints. For the first
constraint, we aim to obtain association modes that explain a relatively large
amount of variance in the data, otherwise the resulting scores could be
strongly affected by noise. The decision is based on the explained variance of
only the first mode and we require that it is >1/2 of the average explained
variance of a principal component in the dataset, i.e. we require that

(10)

R I N 9
W;ZXXWX>E XX

(11)

X

and analogously for Y. The weight vectors impact the joint covariance
matrix ¥ (via Egs. (3), (4) and (9)). For the second constraint, we therefore
require that the chosen weights result in a proper, i. e. positive definite,
covariance matrix X.

In summary, to generate simulated data for CCA and PLS, we vary the
assumed between-set correlation strengths gy, setting them to select levels,
while choosing random weights Wy and Wy. The columns of the weight
matrices Wy and Wy must be mutually orthonormal for PLS, while for CCA
they must satisfy Wy Wy = WIS, , W, =1,.

Performed simulations

Sample-per-feature ratios used in some of the parameter sweep simulations
were chosen heuristically, dependent on the given ., with higher maximal
sample-to-feature ratios included the higher 7. For this reason, and as the
compuational expense also grows with the feature space dimensionality,
some simulations did not complete.

For Fig. 2, the left 3 columns of Figs. 3, 7, Supplementary Fig. 3, Sup-
plementary Fig. 6¢—f, Supplementary Fig. 7, and Supplementary Fig. 18, we
ran simulations for m =1 between-set association mode assuming true
between-set correlations of 0.1, 0.3, 0.5, and 0.7, used dimensionalities
px=pyof2,4,8,16,32, and 64 as well as 25 different covariance matrices
(except for PLS with px =64 and r = 0.7 where we only had 10 completed
simulations; for PLS with (px, e) € {(0.5, 64), (0.1, 64), (0.1, 32), (0.1, 16)}
no simulation completed; for CCA no simulation completed for
(Pxo Tirue) € (0.1, 64)}). ax + ay was fixed at -2. 100 synthetic datasets were
drawn from each instantiated normal distribution. Where not specified
otherwise, null distributions were computed with 1000 permutations.

Similar parameters were used for other figures, except for the following
deviations.

For the right 3 columns in Fig. 3, px + py was fixed at 64, for px we used
2,4, 8, 16, 32 and we constructed 40 different covariance matrices.

For Fig. 4a, b, px was 100, e = 0.3, ax=ay= — 1, we used 1 covar-
iance matrix for CCA and PLS, and drew 10 collections of observations for
each sample size.

For Fig. 4c, d, px was 100, 7, = 0.3 and we used 100 different cov-
ariance matrices.

For Fig. 4e, f, we used 2, 4, 8, 16, 32 and 64 for px, 0.1, 0.3 and 0.5 for
Tiruer 10 different covariance matrices for CCA and PLS.

For the colored curves in 6a, we used 2, 4, 8, 16, 32, 64 and 128 for px,
true=0.1, 0.3 and 0.5, generated 10 different covariance matrices and used
10 permutations.

For Fig. 6b, we varied ;e from 0 to 0.99 in steps of 0.01 for each
combination of px and py for which we have a study in our database of
reported CCAs, assumed ax = ay = 0, and generated 1 covariance matrix for
each 7y e

In Supplementary Fig. 4, for px we used 4, 8, 16, 32, 64, we generated 10
different covariance matrices for both CCA and PLS and varied 7. from 0
to 0.99 in steps 0.01.

For Supplementary Fig. 5, we used 2, 4, 8, 16 and 32 for px, and 10
different covariance matrices for both CCA and PLS.

For Supplementary Fig. 8, px was 32, riyye = 0.3, ax = ay was -1.5, -1.0
and -0.5, we used 25 different covariance matrices, and drew 25 collections
of observations for each sample size.

For Supplementary Figs. 17, 19, and 20, we used 25 different covariance
matrices (except for PLS with py=64 and r=0.7 where we only had 21
completed simulations; for PLS with (px, firue) € {(0.5, 64), (0.1, 64),

(0.1,32),(0.1,16)} no simulation completed; for CCA no simulation
completed for (px, 7rue) € {(0.1, 64)}). For each instantiated joint covariance
matrix, ay + ay was chosen uniformly at random between -3 and 0 and ay
was set to a random fraction of the sum, drawn uniformly between 0 and 1.

In Supplementary Fig. 21, we used py = py = 64, e = 0.3, ax =ay =-

1.0. 25 datasets were drawn from the distribution.

Meta-analysis of prior literature

A PubMed search was conducted on December 23, 2019 using the query
("Journal Article" [Publication Type] ) AND (fmri [MeSH
Terms] AND brain[MeSH Terms]) AND ("canonical corre-
lation analysis") with filters requiring full text availability and
studies in humans. In addition, studies known to the authors were con-
sidered. CCA results were included in the meta-analysis if they related
neuroimaging derived measures (e. g. structural or functional MR], ...) to
behavioral or demographic measures (e. g. questionnaires, clinical assess-
ments, ...) across subjects, if they reported the number of subjects and the
number of features of the data entering the CCA analysis, and if they
reported the observed canonical (i.e. between-set) correlation. This resulted
in 100 CCA analyses reported in 31 publications.

The gemmr software package

We provide an open-source Python package, called gemmr, that implements
the generative modeling framework presented in this paper”’. Among other
functionality, it provides estimators for CCA, PLS and sparse CCA,; it can
generate synthetic datasets for use with CCA and PLS using the algorithm
laid out above; it provides convenience functions to perform sweeps of the
parameters on which the generative model depends; and it calculates
required sample sizes to bound power and other error metrics as described
above. For a full description, we refer to the package’s documentation.

Statistics and reproducibility
We use a number of different metrics to evaluate the effects of sampling
error on CCA and PLS analyses.

Power measures the capability to detect an existing association. It is
calculated when the true between-set correlation is >0 as the probability
across 100 repeated draws of synthetic datasets from the same normal
distribution that the observed between-set association strength (i.e., corre-
lation for CCA, covariance for PLS) of a dataset is statistically significant.
Significance is declared if the p-value is below a=0.05. The p-value is
evaluated as the probability that association strengths are greater in the null-
distribution of association strengths. The corresponding null-distribution is
obtained from performing CCA or PLS on 1000 datasets where the rows of Y
were permuted randomly. Power is bounded between 0 and 1 and, unlike for
the other metrics (see below), higher values are better.

The relative error of the between-set association strength is calculated as

(12)

where r is the true between-set association strength and 7 is its estimate in a
given dataset.

Weight error Aw is calculated as 1—absolute value of cosine similarity
between observed (w) and true () weights, separately for datasets X and Y,

Communications Biology | (2024)7:217

10



https://doi.org/10.1038/s42003-024-05869-4

Article

and the greater of the two errors is taken:

Aw = (1_ T )
w Sgl}'g)%} [cossim(w,, W, )| (13)
where
EN—- W, W
cossim(w,, W,) = —=—— (14)
EATEAR

The absolute value of the cosine-similarity is used due to the sign ambiguity
of CCA and PLS. This error metric is bounded between 0 and 1 and
measures the cosine of the angle between the two unit vectors w, and ;.

Score error At is calculated as 1—absolute value of Pearson correlation
between observed and true scores. The absolute value of the correlation is
used due to the sign ambiguity of CCA and PLS. As for weights, the max-
imum over datasets X and Y is selected:

COI‘I‘ ( t(test) tg;est)> ’)

Each element of the score vector represents an individual observation
(e. g. subject). Thus, to be able to compute the correlation between estimated

At = max (1 - (15)

se{X,Y}

(?) and true (7) score vectors, corresponding elements must represent the
same individual observation, despite the fact that in each repetition new data
matrices are drawn in which the observations have completely different
identities. To overcome this problem and to obtain scores, which are

comparable across repetitions (denoted 7 and 7 "), each time a set of
data matrices is drawn from a given distribution (0, 2) and a CCA or PLS
model is estimated, the resulting model (i. e. the resulting weight vectors) is
also applied to a test-set of data matrices, X and Y (of the same size as X
and Y) obtained from (0, 3) and common across repeated dataset draws.
The score error metric At is bounded between 0 and 1.

Loading error A¢ is calculated as (1 — absolute value of Pearson cor-
relation) between observed (i. e. estimated) and true (ie., population)
loadings. The absolute value of the correlation is used due to the sign
ambiguity of CCA and PLS. As for weights, the maximum over datasets X

and Y is selected:
co < é(test)7 [ittesl)) D

True loadings are calculated with SI Eq. 3 (replacing the sample cov-
ariance matrix in the formula with its population value). Estimated loadings
are obtained by correlating data matrices with score vectors (SI Eq. 2). Thus,
the same problem as for scores occurs: the elements of estimated and true
loadings must represent the same individual observations. Therefore, we
calculate loading errors with loadings obtained from test data (X “" and
Y ) and test scores (£ ) and 7)) that were also used to calculate score
erTors.

The loading error metric A€ is bounded between 0 and 1 and reflects
the idea that loadings measure the contribution of original data variables to
the between-set association mode uncovered by CCA and PLS.

Loadings are calculated by correlating a score vector with a column of a
data matrix (this is a correlation across samples). When a coordinate
transformation (like a PCA) is applied to the original data matrix, the score
vector remains invariant (geometrically, CCA/PLS find a specific optimal
direction in feature space, and this direction remains the same independent
of in which coordinate system it is expressed in). The data matrix, on the
other hand, will be affected by a coordinate transformation. Thus, loadings
depend on whether they are calculated with an original data matrix or a
PCA-transformed data matrix. The generative model we use generates data
in the principal component coordinate system and we do not consider
calculating any of the loadings in a different coordinate system.

Al = max (1 — (16)

se(X.Y)

We quantified weight (or loading) stability, s, as the (absolute value of
the) cosine-similarity between weights (or loadings) estimated from two
independently drawn datasets:

s = |cossim(¥V;, ¥,)| (17)
where v, and v, are the weights (or loadings) estimated from dataset 1 and 2,
respectively. When we have more than one pair of datasets, we average
weight (or loading) stability (calcualted from one pair) across all pairs of
available datasets.

We calculated PC1 similarity, s* of a vector ¥ (e. g a weight or
loading vector) as

sPCY = cossim(¥, 4) (18)
where g represents the first principal component axis for the dataset. I. e., for
instance, if we calculate PC1 similarity of X-weights we use the first principal
components of the data matrix X as 4.

To interpret the distribution of cosine similarities between weights
and the first principal component axis we compare this distribution to a
reference, namely to the distribution of cosine-similarities between a
random n-dimensional unit vector and an arbitrary other unit vector .
This distribution f is given by (https://math.stackexchange.com/
questions/2977867/x-coordinate-distribution-on-the-n-sphere, acces-
sed April 28, 2020):

dP(X <x)

fax) = ax (19)

where P denotes the cumulative distribution function for the probability that
a random unit-vector has cosine-similarity with € (or, equivalently,
projection onto é) <x. For — 1 <x <0, P can be expressed in terms of the
surface area A,(h) of the n-dimensional hyperspherical cap of radius 1 and
height h (i.e. x—h=—1)

A,(h)
P(X<x 20
(X<x) = 05 (20)
where A, (2) is the complete surface area of the hypersphere and
—-11
A,(h) = A (21 (h(Z —hy: 72) e2y)
and I is the regularized incomplete beta function. Thus,
1 1
(=T ()20 (3
2B( 2 ,2
1 n=3
W(l —x)T (24)
where B is a beta function and
f,2E—1) o (2—2%)7 12x%) 7! (25)
n—1n—-1

where f is the probability density function for the beta distribution. Hence,
2X — 1 with X ~ Beta(?s1 2 5 221y js a random variable representing the
cosine similarity between 2 random vectors (or, equivalently, the projection
of a random unit-vector onto another).
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CCA/PLS analysis of empirical data

Permutation-based p-values in Fig. 5 and Supplementary Fig. 10 were cal-
culated as the probability that the CCA or PLS association strength of
permuted datasets was at least as high as in the original, unpermuted data.
Specifically, to obtain the p-value, rows of the behavioral data matrix were
permuted and each resulting permuted data matrix together with the
unpermuted neuroimaging data matrix were subjected to the same analysis
as the original, unpermuted data, in order to obtain a null-distribution of
between-set associations. 1000 permutations were used.

Due to familial relationships between HCP subjects they are not
exchangeable so that not all possible permutations of subjects are
appropriate’”®. To account for that, in the analysis of HCP fMRI vs
behavioral data, we have calculated the permutation-based p-value as
well as the confidence interval for the whole-data (but not the sub-
sampled data) analysis using only permutations that respect familial
relationships. Allowed permutations were calculated using the
functions hpc2blocks and palm quickperms with default
options as described in https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/
ExchangeabilityBlocks(accessed May 18, 2020). No permutation
indices were returned for 3 subjects that were therefore excluded
from the functional connectivity vs behavior analysis.

Subsampled analyses (Fig. 5) were performed for 5 logarithmically
spaced subsample-sizes between 202 and 50% of the total subject number.
For each subsample size 100 pairs of non-overlapping data matrices
were used.

Cross-validated CCA/PLS analyses were performed in the following
way”’: For each fold, we first estimated the CCA / PLS weights from the given
training data. Second we computed CCA/PLS scores for the test data of the
fold by applying these estimated weights to the test data, that is we calculate
the matrix-matrix product between the estimated weights and the test-data
matrix, separately for both X and Y. The between-set association in the test
set is then given by the correlation or covariance of these resulting scores.
We used 5-fold cross-validation.

Principal component spectrum decay constants

The decay constant of a principal component spectrum (Supplementary
Fig. 1a-j) was estimated as the slope of a linear regression (including an
intercept term) of log( explained variance of a principal component ) on
log( principal component number ). For each dataset in Supplementary
Fig. la-j we included as many principal components into the linear
regression as necessary to explain either 30% or 90% of the variance.

Determination of required sample size

As all evaluation metrics change approximately monotonically with the
samples per feature ratio, we fit splines of degree 3 to interpolate and to
determine the number of samples per feature that approximately results
in a given target level for the evaluation metric. For power (higher
values are better) we target 0.9, for all the other metrics (lower values are
better) we target 0.1. Before fitting the splines, all samples per feature are
log-transformed and metrics are averaged across repeated datasets
from the same covariance matrix. Sometimes the evaluation metrics
show non-monotonic behavior and in case the cubic spline results in
multiple roots we filter those for which the spline fluctuates strongly in
the vicinity of the root (suggesting noise), and select the smallest
remaining root 7 for which the interpolated metric remains within the
allowed error margin for all simulated n>n, or discard the synthetic
dataset if all roots are filtered out. In case a metric falls within the
allowed error margin for all simulated 7 (i. e. even the smallest simu-
lated ny) we pick .

We suggest, in particular, a combined criterion to determine an
appropriate sample size. This is obtained by first calculating samples per
feature sizes with the interpolation procedure just described separately for
the metrics power, relative error of association strength, weight error, score
error and loading error. Then, for each parameter set, the maximum is taken
across these five metrics.

Sample-size calculator for CCA and PLS

Estimating an appropriate sample size via the approach described in
the previous section is computationally expensive as multiple poten-
tially large datasets have to be generated and analyzed. To abbreviate
this process (see also Supplementary Fig. 17a) we use the approach
from the previous section to obtain sample-size estimates for
Ferue € {0.1,0.3,0.5,0.7, 0.9}, px € {2, 4, 8, 16, 32, 64, 128}, py = px, and
ay + ay ~U(—=3,0), ax = c(ax + ay), and ¢ ~U(0, 1), where U denotes
a uniform distribution; that is for ax and ay we first draw a random
number to fix their sum, then set ax to be some fraction (c € [0, 1]) of
that sum, and ay to be 1 — ¢ times that sum. We then fit a linear model
to the logarithms of the sample size, with predictors log(ric)s
log(py + py)> lax + ayl, and including an intercept term.

We tested the predictions of linear model using a split-half approach
(Supplementary Fig. 17b-f), i. e. we refitted the model using either only
sample-size estimates for 7. € {0.1, 0.3} and half the values for 7. = 0.5,
or the other half of the data, and tested the resulting refitted model on the
remaining data in each case.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

Human Connectome Project and UK Biobank datasets cannot be made
publicly available due to data use agreements. Human Connectome Project
and UK Biobank are available for researchers to apply for data access. The
outcomes of synthetic datasets that were analyzed with CCA or PLS, as well
as the source data for graphs are available from”.

Code availability

Our open-source Python software package, gemmr, is freely available at
https://github.com/murraylab/gemmr”’. Jupyter notebooks detailing the
analyses and generation of figures presented in the manuscript are available
as part of the package documentation.
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