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Snowprint: a predictive tool for genetic
biosensor discovery
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Bioengineers increasingly rely on ligand-inducible transcription regulators for chemical-responsive
control of gene expression, yet the number of regulators available is limited. Novel regulators can be
mined from genomes, but an inadequate understanding of their DNA specificity complicates genetic
design. Here we present Snowprint, a simple yet powerful bioinformatic tool for predicting
regulator:operator interactions. Benchmarking results demonstrate that Snowprint predictions are
significantly similar for >45% of experimentally validated regulator:operator pairs from organisms
across ninephyla and for regulators that span fivedistinct structural families.We thenuseSnowprint to
design promoters for 33 previously uncharacterized regulators sourced from diverse phylogenies, of
which 28are shown to influencegeneexpression and24producea>20-fold dynamic range. Apanel of
the newly repurposed regulators are then screened for response to biomanufacturing-relevant
compounds, yielding new sensors for a polyketide (olivetolic acid), terpene (geraniol), steroid
(ursodiol), and alkaloid (tetrahydropapaverine) with induction ratios up to 10.7-fold. Snowprint
represents a unique, protein-agnostic tool that greatly facilitates the discovery of ligand-inducible
transcriptional regulators for bioengineering applications. A web-accessible version of Snowprint is
available at https://snowprint.groov.bio.

Ligand-inducible transcriptional regulators are becoming indispensable
biosensors for synthetic biology and bioengineering applications, such as
high-throughput screening, dynamic regulatory circuits, and diagnostics1–4.
Such applications typically repurpose regulators mined from diverse
microbial genomes in a process called “biosensor domestication”, whereby
the regulator protein and the regulator-binding sequence, or operator, are
retrofitted in a genetic circuit to express a heterologous gene, often in a
model organism such as Escherichia coli5,6.

One major challenge with this process is the identification of the reg-
ulator’s cognate operator. Without knowing the precise DNA sequence a
regulator binds to, bioengineers would typically resort to using a large
genomic fragment hypothesized to contain the operator to drive expression
of a reporter gene6. In consequence, this approachprovides littleflexibility to
tune sensor performance, since cryptic promoters or inhibitory noncoding
regions may produce high basal signals or dampen a sensor’s
responsiveness7. To determine minimal operator sequences for improved
promoter design, widely adopted methods including electromobility shift
assays (EMSA), DNase footprinting, and surface plasmon resonance (SPR)
are employed8–10. These techniques can be used to accurately identify
protein-DNA interactions with high sensitivity and resolution, but require

laborious protein purification and generally cannot be performed at scale.
High-throughput alternatives have been developed that leverage next-
generation sequencing, such asDNAaffinitypurification sequencing (DAP-
seq), but these methods often require specialized infrastructure that is not
easily adopted by many labs11. Some of these approaches do not actually
delimit the relative importance of each base within the operator sequence,
possibly leading to further dissection of the binding site.

By comparison, computational methods for predicting protein-DNA
interactions can potentially identify binding sites. These programs typically
rely on phylogenetic footprinting: aligning several homologous response
elements and extracting conserved motifs that represent hypothesized
operator sequences12. This method is embodied in tools such as Micro-
footprinter, BoBro 2.0, MP3, and DMINDA 2.0, but these implementations
are oftentimes limited to a constrained set of genomes, have low predictive
accuracy, and may require extensive input from the user to create a
prediction13–16. Alternatively, statistical learning and structural information
has alsobeenused to createmodels capable ofpredicting transcription factor
binding sites, but these models cannot generalize across diverse protein
families17. As over 71 transcription factor structural families have been
reported to date18, a generalizable tool for predicting binding sequences
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would enable biotechnologists to identify and repurpose many more tran-
scription factors.

To facilitate the domestication of biosensors for engineering applica-
tions, we developed Snowprint, a protein-agnostic prediction tool that
identifies inverted repeat-containing operator sequences for transcriptional
regulators. Benchmarking results demonstrate that Snowprint predictions
are significantly similar for 67 out of 147 experimentally validated reg-
ulator:operator pairs from diverse organisms that span five distinct reg-
ulator structural families. To demonstrate practical utility for engineering,
Snowprint was used to predict the operators of 33 uncharacterized TetR
regulators across 10 unique phylogenetic classes, of which 28 were able to
effectively repress GFP expression within E. coli and 24 achieved over a 20-
fold dynamic range. The top 24 newly identified regulatory pairs were
screened for response to industrially relevant biosynthetic intermediates,
and novel genetic biosensors for olivetolic acid, geraniol, ursodiol, and tet-
rahydropapaverine were found, achieving induction ratios of 6-, 3.6-, 2.3-,
and 10.7-fold, respectively (see Supplementary Note 1 for definitions). A
simple input (one protein accession ID) and interactive data visualization
interface should facilitate the adoption of Snowprint among synthetic
biologists and biotechnologists.

Results
Workflow for operator prediction
To create a computational tool thatwould be capable of operator prediction,
we designed a bioinformatic algorithm based on logical principles: first, that
transcriptional regulators are often autoregulatory and therefore bind to
DNA sequences within their own promoter19. Second, that transcriptional

regulators often exist as dimers and bind to inverted repeat sequences20.
Third, that operator sequences are much more conserved than non-
regulatory regions21.

To enable operator prediction, we created a workflow that starts with a
regulator accession ID from the NCBI protein database, which is in turn
used to fetch (1) the regulator’s protein sequence and (2) the local genetic
context of the regulator, including upstream and downstream genes that are
predicted to belong to the same operon as the regulator (Fig. 1). We
nominally assume that adjacent genes that share the same orientation are
co-transcribed with the regulator itself and in consequence, their shared
promoter region often contains the regulator’s cognate operator19. A
sequence located between two divergently expressed sets of genes (the inter-
operon region) is extracted, and the algorithm searches for inverted repeat
sequences, using a scoring function that favors longer repeats, yet allows for
imperfect and discontinuous repeats often found in nature22 (seeMethods).
The sequence with the highest inverted repeat score, which we term a “seed
operator”, is then used for the subsequent step.

Since true operators will likely be highly conserved, the seed operator is
compared to inter-operon regions of regulator protein homologs collected
using BLAST, extracted in a similar manner. All inter-operon regions are
aligned, sequences homologous to the seed operator are extracted, and these
sequences are used to create a consensus predicted operator that contains
the most frequently occurring nucleotide over the homologous sequences
for each position in the operator. A corresponding conservation score is
created by averaging the relative levels of enrichment for each nucleotide in
the predicted operator, indicating the degree of conservation along the
whole predicted operator sequence (see Methods). The consensus operator

Fig. 1 | The Snowprint workflow. A RefSeq or
GenBank accession ID is used to fetch the protein
sequence of the regulator and the DNA sequence of
the local genetic context (1). The inter-operon
region, predicted to contain the regulator’s corre-
sponding operator, is then scanned for inverted
repeat sequences (2). BLAST is then used to collect
regulator homologs (3), which are used to collect
homologous inter-operon regions (4) that are also
scanned for inverted repeats similar to that found for
the original regulator (5). The homologous inverted
repeat sequences are then used to create a consensus
sequence, representing the predicted operator, and
associated metrics (6), which are displayed in a
browser (7). The Snowprint logo was designed using
a vector graphics editor.
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and conservation scores are displayed in a browser using an interactive
React webpage (Supplementary Fig. 1), or via a web-accessible version
available at https://snowprint.groov.bio. Altogether, this algorithmdesign is
encoded in a program we call Snowprint, a lightweight computational
method to determine a regulator’s DNA “footprint”.

Benchmarking Snowprint performance
To benchmark the performance of Snowprint, we first curated a list of 147
experimentally validated regulator:operator pairs from the literature (Sup-
plementary Data 1). Operators for regulators belonging to the TetR, LacI,
MarR, IclR, and GntR structural families were chosen based on the iden-
tification of an inverted repeat (Fig. 2a). A separate group (“Other”) con-
taining regulators from the ArsR,MerR, TrpR, and ROK structural families
was also included for comparison. Key metrics used for benchmarking
analysis included E-values generated from aligning predicted operators to
known operators, as well as the conservation score, which indicates the level
of sequence conservation within the predicted operator. Operator predic-
tions were considered to be significant if the E-value produced by aligning
the predicted sequence to the known operator was less than 0.01 (see
Supplementary Table 1). The inverted repeat score (see “Methods”) and the
number of homologs used to generate the predicted operator were also
collected and indicate a quality level for each prediction, since the con-
fidence in a prediction is correlated with the number of homologs assessed
and the length of the inverted repeat (Supplementary Data 1).

We found that Snowprint was able to identify operators that
were significantly similar to known, experimentally validated operators

(E-value < 0.01) for 58%, 50%, 44%, 42%, and 35% of regulators across the
TetR, IclR, MarR, LacI, and GntR structural families, respectively (Fig. 2b).
Although many existing tools for predicting transcription factor binding
sites could not be compared to Snowprint due to substantial differences in
the format of the input data (see Supplementary Note 2), we were able to
compare Snowprint to a recently described statistical model train to predict
TetR binding sites17. Our analysis indicates that the predictive accuracy of
Snowprint was similar to the statistical model, with 31/50 operators pro-
ducing an E-value of less than 0.01, compared to 29/50 for Snowprint
(Supplementary Fig. 2, Supplementary Data 2). However, in some cases
Snowprint outperformed the statistical model, even though the latter was
specifically trained on TetR-family members (Supplementary Fig. 2a).
Furthermore, the statistical model failed to return a prediction for proteins
that did not belong to the TetR family, which was not the case for Snow-
print (Fig. 2b).

Importantly, Snowprint was able to generalize across regulators from
divergent phylogenetic spaces. The benchmarking dataset comprised reg-
ulators from nine distinct phylum, with the majority belonging to the
Bacillota,Actinomycetota, and Pseudomonadota phyla (Fig. 2c). Themotifs
generated by Snowprint often showed high conservation in the middle of
half site repeats and tapered off towards the middle and edges of the motif
(Fig. 2d). The inverted repeat score of predicted operators was higher than
that of the corresponding native operator (Supplementary Fig. 3). Since
operators with higher symmetries have been shown to increase regulator
affinity, in some cases Snowprint may prove useful as a tool to reduce
background signal in genetic circuits23,24. Similarly, Snowprint was also able

Fig. 2 | Benchmarking Snowprint. aBenchmarking
workflow. Experimentally validated operator reg-
ulator pairs are collected from the literature, and
regulators for each pair are passed through the
Snowprint workflow. Predicted operators are then
compared to validated operators. The regulator is
colored purple and the operator is colored blue
(b) Similarity scores for predicted operators among
several structural regulator families. The E-value of
0.01 was used as a threshold to indicate significance
(Supplementary Table 1). The “Other” group con-
tains regulators from the MerR, ArsR, PadR, TrpR,
and ROK structural families. c Phylogenetic diver-
sity of the benchmarking dataset. Phylogeny.fr52 and
iTOL53 were used to generate the phylogenetic tree
graphic. Separate phyla are color coded and labeled.
d Representative examples of predicted operator
motifs generated by Snowprint. The Snowprint logo
was designed using a vector graphics editor.
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to identify dual inverted repeats for several regulators, which may reveal
optimal spacing between operator pairs (Fig. 2d, bottom). These con-
servation patterns may be useful in guiding genetic designs by flagging
conserved regions as indispensable and non-conserved regions as
dispensable7,23,25.

Using Snowprint to domesticate generalist transcription factors
To demonstrate utility for synthetic biology applications, we used Snow-
print to extract and “domesticate” a panel of transcription factors. We
targeted TetR-family transcription factors that regulate multidrug efflux
pumps in particular, since they are likely to promiscuously bind to a wide
range of structurally diverse ligands and may serve as excellent starting
points for directed evolution of effector specificity26–28. To generate designs,

TetR-family regulators were downloaded from the UniRef50 database,
clustered into 30% identity groups usingCD-HIT, andfiltered for regulators
with sequence lengths between 140-260 amino acids, typical for the TetR-
family29 (Supplementary Fig. 4). Regulatorswere furtherfiltered on the basis
that their annotation contained the word “regulator” and that they were
adjacent to genes annotated asmultidrug efflux pumps. Snowprint was then
used to predict operators for the resulting regulators.

Thirty three predicted operators with the highest conservation scores
were used for experimental validation (Fig. 3b, Supplementary Table 2). To
test the ability of the predicted operator:regulator pairs to control gene
expression in vivo, reporter plasmids were designed that put GFP under the
control of the predicted operator, which was in turn placed immediately
downstream from the−10 box of the E. coli sigma 70 promoter, known to

Fig. 3 | Domestication of mined TetR regulators using Snowprint. a Schematic of
genetic circuits used to assess operator predictions. The “Repressed” circuit
expresses the mined regulator and GFP, both under the control of a promoter
containing the operator predicted for that regulator. The “Unrepressed” circuit
differs from the former in that it expresses a control regulator, CamR, in place of the

mined regulator. bOperatormotifs generated by Snowprint for all mined regulators.
Sequence motif logos were generated using LogoJS50 (c) Fluorescence of E. coli cells
expressing either the repressed or unrepressed circuits for each regulator. Data
represents the mean of three biological replicates. Equivalent data displaying indi-
vidual data points and standard deviation is found in Supplementary Fig. 5.
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allow for tight regulation andflexiblepositioning to accommodateoperators
of various lengths30 (Supplementary Fig. 5). The codon-optimized gene for a
given transcription factor was then expressed on a separate plasmid, again
under the control of the predicted operator, creating an autoregulatory
circuit that should avoid potential toxic effects of regulator overexpression.
To measure unrepressed synthetic promoter activity, while controlling for
the cellular response to heterologous regulator expression, a control plasmid
was introduced that expressed the CamR regulator (Fig. 3a); since CamR
should not bind to the predicted operator, it should not repress GFP
production.

Upon testing all 33 predicted operators with their cognate regulators,
28 were able to reduce the level of expressed GFP by at least 50%, and 24
were able to reduce signal by over 20-fold (Fig. 3c, Supplementary Fig. 6).
This ~85% success rate is quite surprising, given that the regulators were
sourced fromwildly divergentmicrobial hosts and that synthetic promoters
were crafted in accord with simple rules. Furthermore, in vivo repression
could fail for reasons other than correct regulator:operator matching, such
as issues relating to heterologous protein production.

Discovering novel biosensors for biomanufacturing-relevant
ligands
While Snowprint provides new potential regulator:operator pairs, the
identification of appropriate ligands to control gene expression remains a
daunting task. That said, the high ligand promiscuity expected by some of
the newly discovered regulators suggested that an untargeted approach
might actually allow the discovery of biosensors responsive to useful ligands
chosen on the basis of their biomanufacturing relevance, rather than on any
putative or predicted natural relevance. The compounds olivetolic acid,
geraniol, sitagliptin, ursodiol, tetrahydropapaverine, and artemisinic acid at
100 uM concentration were used as test ligands, as each one is a pharma-
ceutical, or intermediate thereof, that has been produced from an engi-
neered microbe or enzyme26,31–35. In addition, we chose these compounds
due to their lipophilicity, since highly promiscuous regulators tend to have
large hydrophobic binding cavities36. To our knowledge, natural biosensors
have not been identified for any of these ligands, and in the future it is
unlikely that it will immediately prove possible to regularly identify natural
regulators for any biomanufacturing-relevant compound of interest.

Twenty four of the regulator:operator pairs with the highest dynamic
ranges (>20-fold, average of 64-fold) were screened for de-repression (see
Supplementary Table 2). Significant responses were observed for four of the
six target ligands that occupy diverse structural groups, include the terpene
(geraniol), polyketide (olivetolic acid), steroid (ursodiol), and alkaloid
(tetrahydropapaverine) classes, with seven regulators displaying some
response for at least one ligand (Fig. 4a, Supplementary Fig. 7). While the
initial responses were in the 1.25- to 3-fold range, the fact that any of these
uncharacterized regulators displayed a response was surprising. These
results highlight that an increasing stable of new regulator:operator pairs
supports the identification of biosensors for a diversity of chemical effectors.

To further validate these newly identified interactions, dose-response
measurements were carried out with those pairs that produced the highest
signals with geraniol, olivetolic acid, ursodiol, and tetrahydropapaverine.
Tested ligand concentrations ranged from 10 uM to 5mM, depending on
the ligand’s solubility limit in 1% DMSO. Sigmoidal transfer functions
characteristic of transcriptional regulators were observed (Fig. 4b–e), and
induction ratios reached 10.7-, 6.0-, 3.6-, and 2.3-fold for tetra-
hydropapaverine, olivetolic acid, geraniol, and ursodiol, respectively.

Discussion
Snowprint is a protein-agnostic tool that leverages rapidly growing public
databases of genome and protein sequences to predict transcriptional reg-
ulator:operator interactions. In contrast to existing computational tools for
predicting operators, Snowprint requires minimal user input (just a single
protein identifier) and is generalizable across proteins from diverse organ-
isms and from distinct structural families13,14. Snowprint was able to accu-
rately predict operator sequences for 67 of 147 experimentally-validated

regulator:operator pairs across the TetR, LacI, IclR, MarR, and GntR
structural families. Taken together, these data suggest that Snowprint may
be able to completely bypass traditional laborious methods for determining
a regulator’s operator sequence, such as EMSA and DNase footprinting,
rapidly accelerating the pace of regulator discovery.

Indeed, the benchmarking results may provide a conservative estimate
of predictive accuracy, since many transcriptional regulators have been
shown to semi-specifically bindnumerousDNAsequences andmay control
the expression of several genes20,37. Subsequent experimental validation of
Snowprint predictions indicated that the predictive accuracy of the model
was even higher than benchmarking results indicated. Among the 33 pre-
dictions used to create GFP reporter circuits in E. coli, 28 were able to
modulate gene expression by over 1.5-fold, amongwhich the top 24 circuits
produced a dynamic range over 20-fold. These results were especially sur-
prising, given that the prediction quality metrics, such as number of
homologs used and conservation scores, were generally worse for the
domesticated sensors relative to the validated regulator:operator pairs in the
benchmarking dataset (Supplementary Table 2, Supplementary Data 1).
Among the five regulators that showed no ability to repress transcription, it
is possible that the Snowprint-predicted operator was not bound by the
regulator, or alternatively, the regulator might not have expressed or folded
appropriately in E. coli. Interestingly, one regulator (RBP44292.1) produced
an inverted response, similar to activator proteins. This may be due to
making direct contacts with RNApolymerase or via alteringDNA topology
to promote transcription, which has been observed in related transcription
factor families38,39.

One factor thatmay limit predictive accuracy is the assumption that the
target regulator binds to its own promoter, which is true for the majority of
prokaryotic regulators, but not all37. Nonetheless, this assumption is gen-
erally valid and useful in the context of identifying new regulators and
operators: we compared how well both known and predicted operators
mapped to upstream, inter-operon regions. This analysis revealed a coarse
correlation (Supplementary Fig. 8) suggesting that if the known operator is
found in the upstream, inter-operon region, then the chances of it being
correctly predicted increase.Upon further analysis, themost frequent failure
mode was caused by the operator sequence not being found within the
extracted inter-operon region (48/80), followed by the search algorithm not
identifying the appropriate operator sequence (22/80). The least frequent
failure mode was caused by low quality predictions resulting from too few
homologs being available (10/80) (Supplementary Fig. 9). While not
encounteredduring benchmarking, another possible failuremode is that the
regulator’s genetic context might not be available. In this case a highly
homologous regulator may be used as an input, which will likely produce a
nearly identical operator prediction as the target regulator, since the col-
lection of homologs used to generate the predicted operator motif will be
much the same. To further enhance performance the search algorithm can
potentially be improved by adding the option to search for direct repeats
rather than inverted repeats40. Moreover, as the number of validated
operators expands, “seed sequence motifs” can be used as queries, poten-
tially avoiding the identification of false positives in the form of terminators
or binding sequences of other DNA-binding proteins. As computational
complexity increases, search times can be kept swift (<1min) by fetching
from locally stored databases and using more performant sequence align-
ment tools, such as DIAMOND41.

Successes with Snowprint reveal that it may now be possible to reg-
ularly identify regulators for ligands that otherwise have no natural coun-
terparts.Untargeted screening of our newlydomesticatedpanel of generalist
regulators identified binding partners for the biomanufacturing relevant
compounds olivetolic acid, geraniol, ursodiol, and tetrahydropapaverine.
Since the newly discovered biosensors are proximal to multidrug efflux
pumps, rather thanmolecule-specificmetabolic pathways, traditional guilt-
by-association algorithms would not have been able to predict these
biosensor-ligand interactions42,43. This untargeted discovery model com-
plements a similar approach to biocatalyst identification, whereby panels of
substrate-promiscuous enzymes are screened for a desired activity44.
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In the future, pairing this discovery workflow with directed evolu-
tion to refine the specificities of biosensors identified by screening26–28

provides a new paradigm research and development teams can adopt to
leverage biosensor-enabled screens for a wider diversity of small mole-
cules. In particular, the biosensors already identified herein can be used
as relevant evolutionary starting points for important pharmaceutical
biomanufacturing efforts, as olivetolic acid is a precursor to all
cannabinoids33, geraniol is a precursor to all monoterpene indole

alkaloids45, tetrahydropapaverine is a precursor to three licensed non-
depolarizing muscle relaxants26, and ursodiol is directly used in the clinic
to dissolve gallstones and treat liver diseases35.

Overall, Snowprint represents a unique and, more importantly, gen-
eralizable tool that greatly facilitates the discovery of ligand-inducible
transcriptional regulators. We anticipate that this tool – along with
others42,46,47 -- will be of great utility for synthetic biologists and bioengineers
working to create, improve, or adapt genetic biosensors for applications in

Fig. 4 |Discovery of novel genetic sensors for biomanufacturing-relevant ligands.
a Twenty four newly domesticated regulators were separately induced with 100 uM
of six different ligands dissolved in DMSO in E. coli. Data represents the induction
ratio in fluorescence over E. coli cells bearing the identical plasmids induced with
DMSO only, performed in biological triplicate. Equivalent data displaying indivi-
dual data points and standard deviation can be found in Supplementary Fig. 7.

b–e Dose response measurements for the BAK71752.1, SMC09139, SEE04737, and
SMC09139 regulators with tetrahydropapaverine (THP), geraniol, olivetolic acid,
and ursodiol, respectively. The ligand concentration was chosen based on the
compound’s solubility limit in 1% DMSO. Assays were performed in biological
triplicate and individual data points are shown.
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high-throughput screening, diagnostics, and genetic circuitry48. Snowprint
and derivatives thereof may ultimately prove capable of creating large reg-
ulator:operator datasets that can be used to train machine learning models
as part of expansive efforts for more accurately predicting and generating
functional protein:DNA interactions de novo49.

Methods
Scoring calculations
The consensus score for an operator prediction was made using the fol-

lowing formula. c ¼
Px

o¼0
b2

x where c = the consensus score, o = the position
along the length of the operator, b = the relative frequency of the dominant
base within the predicted operator, and x = the length of the predicted
operator. The inverted repeat score for an operator sequence was made
using the following formula. s ¼ 2x þ 2y þ p, where s = the inverted repeat
score, x = the number ofmatches within an inverted repeat, y = the number
of mismatches within an inverted repeat, and p = the gap adjustment score,
which adds or removes from the score based on the distance between repeat
half sites as follows (0–4 bases =+4; 5–6 =+2; 7–8 = 0; 9–10 =−2;
11–12 =−4; 13–14 =−6; 15–16 =−8; 17–18 =−10).

Benchmarking
Operator-regulator pairs were collected from the literature for structurally
diverse ligand-inducible transcriptional repressors on the basis that either
EMSA,DNase footprinting, or SPRwere used to determine binding sites, as
these are typically the most common and reliable methods for identifying
transcription factor binding sites. From this dataset, the RefSeq orGenBank
ID for all regulators were used as inputs to the Snowprint program, and
predictions as well as prediction metrics were collected (Supplementary
Data 1). TheNcbiblastnCommandline functionofBiopythonwas thenused
to compare the sequence similarity between the experimentally validated
operator and the Snowprint-predicted operator for each regulator in the
dataset, generating E-values using the Smith-Waterman algorithm with
standard parameters (gap open penalty: 10; gap extend penalty: 0.5). An E-
value below 0.01 was used to indicate a significant match between validated
and predicted operators, since predicted operators with an E-value below
0.01 were found to match well with the corresponding documented
operators (see Supplementary Table 1). The pairwise2 algorithm of Bio-
python was used to generate alignment scores for all other sequence
comparisons.

TetR dataset curation
As outlined in Supplementary Fig. 3, the UniRef50 database was used
to fetch TetR-family regulators using the search query “tetr reg-
ulator”. CD-HIT was subsequently used to cluster the resulting
sequences into 30% identity groups. The Galaxy software suite was
then used to filter out regulators with sequences above 260 amino
acids and below 140 amino acids. Next, a python script was used to
filter out sequences that did not contain the word “regulator” in their
annotation name, and the Entrez API was then used to extract only
the regulators that were located adjacent to proteins annotated as
multidrug efflux pumps. Snowprint predictions were generated for
the remaining regulators, and the top 33 with the best consensus
scores were used for in vivo experimental validation.

Strains, plasmids and media
E. coliDH10B (New England Biolabs) was used for all routine cloning and
directed evolution. All biosensor systems were characterized in E. coli
DH10B. LB Miller (LB) medium (BD) was used for routine cloning,
fluorescence assays, and orthogonality assays unless specifically noted. LB
with 1.5% agar (BD) plates were used for routine cloning. The plasmids
described in this work were constructed using Golden gate assembly and
standard molecular biology techniques. Schematics of the Regulator and
Reporter vector designs used in this study are displayed in Supplementary
Fig. 10. Chemical transformation was performed as follows. Briefly, 5mL of

anovernight culture ofDH10Bcellswasmixedwith 500mlLBandgrownat
37 °C and 250 r.p.m. for 3 h. Resulting cultures were centrifuged (3500 g,
4 °C, 10min), and pellets were washed with 70mL of chemical competence
buffer (10% glycerol, 100mM CaCl2) and centrifuged again (3500 g, 4 °C,
10min). Pellets were then resuspended in 20mL of chemical competence
buffer. After 30min on ice, cells were divided into 250 μL aliquots, flash
frozen in liquid nitrogen, and stored at −80 °C until use. This method has
been described previously26. Synthetic genes, obtained as eBlocks, and pri-
mers were purchased from IDT. Full sequences of reporter and regulator
plasmid are provided in Supplementary Figs. 11, 12.

Chemicals
Tetrahydropapaverine was purchased from Tokyo Chemical Industry Co.
(N0918).Ursodiolwas purchased fromMPBio (0215825201).Geraniolwas
purchased from Tokyo Chemical Industry (G0027). Sitagliptin was pur-
chased fromAmbeed (654671-77-9). Artemisinic acid was purchased from
Cayman Chemical (25059). Olivetolic acid was purchased from Cayman
Chemical (26282).

Biosensor response assays
Regulator and reporter plasmids were co-transformed into E. coli DH10B
cells, which were subsequently plated on LB agar plates containing appro-
priate antibiotics. Three separate colonies were picked for each transfor-
mation and were grown overnight. The following day, 20 μL of each
overnight culture was then used to inoculate separate wells in a 2-mL 96-
deep-well plate (Corning, P-DW-20-C-S) sealed with an AeraSeal film
(Excel Scientific) containing 900 μL LB medium. After 2 h of growth at
37 °C, cultureswere inducedwith 90 µLLBmediumcontaining either 10 μL
DMSO or the target inducer molecule dissolved in 10 μL DMSO. For dose
response measurements, different concentrations of the target molecule
were prepared in the same format (10 uL of DMSO in 90 uL LB). Cultures
were grown for an additional 4 h at 37 °C and 250 r.p.m. and subsequently
centrifuged (3500 g, 4 °C, 10min). Culture supernatant was removed, and
cell pellets were resuspended in 1mL PBS (137mM NaCl, 2.7mM KCl,
10mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4). One hundred microliters of
the cell resuspension for each condition was transferred to a 96-well
microtiter plate (Corning, 3904), from which the fluorescence (excitation,
485 nm; emission, 509 nm) and absorbance (600 nm) were measured using
the Tecan Infinite M1000 plate reader. This assay format was used to
determine regulator dynamic range (Fig. 3), as well as regulator screening
and dose-response measurements (Fig. 4).

Statistics and reproducibility
All data in the text are displayed as mean ± standard deviation unless spe-
cifically indicated. All experimental assays were performed in biological
triplicate, which represent three individual bacterial colonies picked froman
agar plate. Bar graphs, endpoint fluorescence measurements, and
dose–response functions were all plotted in Python 3.10.6 using Matplotlib
and Seaborn. Dose–response curves and EC50 values were estimated by
fitting to theHill equation y = d+ (a− d)xb(cb+ xb)−1 (where y = output
signal, b =Hill coefficient, x = ligand concentration, d = background signal,
a =maximumsignal and c = EC50), with the scipy.optimize.curve_fit library
in Python.

Building the Snowprint web application
The web application was split into frontend design and backend
data architecture. The frontend was written in Javascript using the React
and Material UI libraries. Sequence logos are generated using LogoJS50.
The backend ported all code from the command line tool used for bench-
marking (https://github.com/simonsnitz/Snowprint) into a docker con-
tainer hosted on AWS Fargate. The only difference between the command
line tool and the web application is that the former uses NCBI’s BLAST to
collect protein homologs while the latter uses DIAMOND, which performs
faster. While results returned from the command line tool and web appli-
cation are similar, they may not be identical.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The relevant data are available from the corresponding author upon request.
The source data for Figs. 2b, 3c, 4a–e are provided in SupplementaryData 3.
NCBIRefSeq identifiers for allminedregulators in this studycanbe found in
Supplementary Table 2. The GenBank ID for the CamR protein used as a
control regulator is BAA03510.1.

Code availability
The source code and detailed instructions for use of Snowprint are main-
tained in the GitHub repository located at https://github.com/simonsnitz/
Snowprint. The Snowprint repositorywasdeposited in51. Snowprint isOpen
Access under anMIT License. Source code for the frontend and backend of
the Snowprint web application (snowprint.groov.bio) aremaintained in the
GitHub repositories located at https://github.com/simonsnitz/snowprint-ui
and https://github.com/simonsnitz/snowprint-backend, respectively. Code
used to generate bar plots, heatmaps, and dose–response functions pre-
sented in this manuscript is accessible in the GitHub repository located at
https://github.com/simonsnitz/plotting.
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