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SIMPEL:usingstable isotopes toelucidate
dynamics of context specific metabolism
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The capacity to leverage high resolution mass spectrometry (HRMS) with transient isotope labeling
experiments is an untapped opportunity to derive insights on context-specific metabolism, that is
difficult to assess quantitatively. Tools are needed to comprehensivelymine isotopologue information
in an automated, high-throughput way without errors. We describe a tool, Stable Isotope-assisted
Metabolomics for Pathway Elucidation (SIMPEL), to simplify analysis and interpretation of isotope-
enriched HRMS datasets. The efficacy of SIMPEL is demonstrated through examples of central
carbon and lipid metabolism. In the first description, a dual-isotope labeling experiment is paired with
SIMPEL and isotopically nonstationary metabolic flux analysis (INST-MFA) to resolve fluxes in central
metabolism that would be otherwise challenging to quantify. In the second example, SIMPEL was
paired with HRMS-based lipidomics data to describe lipid metabolism based on a single labeling
experiment. Available as an R package, SIMPEL extends metabolomics analyses to include
isotopologue signatures necessary to quantify metabolic flux.

Cellular metabolism is defined by fluxes through biochemical pathways
that can be quantified with isotope tracers. Bond rearrangements quan-
tified through a single 13C tracer provide considerable information for
hetero- or mixotrophic plant systems with steady state isotopic labeling1–8

and, when transient labeling is considered, provide insights on
autotrophic9–17 or heterotrophic metabolism18–20. Using targeted approa-
ches, gas chromatography mass spectrometry (GC-MS)21,22, and liquid
chromatography tandem mass spectrometry (LC-MS/MS) can provide
rigorous quantification of compounds and their isotopologues23–25 to
analyze metabolic network function and may consider spatial attributes
through imaging-based MS techniques26–29. The attention given to
developing differentmethods reflects the complexity ofmetabolism that is
difficult to assess and can benefit frommore than one labeling experiment
with different 13C substrates4,6–8,19,30–34 or 2H, 15N or 18O-based labeling to
resolve pathway use35–43.

Technological advances now allow monitoring and quantification of
large numbers of metabolites through untargeted approaches44–46 and can
linkwithmulti-omics platforms to assess the operational stateof ametabolic
network, but these newmeasurement capabilities present several challenges

and directions47–53 that could partially be addressed through incorporation
of tracer studies. Though the acquisition of additional data is not a bottle-
neck for such studies, manual curation and integration of isotopologues is
time consuming and not always compatible with the extensive number of
replicates needed for statistically meaningful results. Further, isotopologue
monitoring can result in overlapping signals. For example, dual-labeled
tracers (e.g., 13C15N-glutamine) produce changes inmass to charge ratio (i.e.,
m/z) in labeled metabolites that indicate the addition of a single neutron
from either heavy element and is nominally the same for heavy isotopes
from different elements (Fig. 1a). Thus, the capacity to resolve additional
fluxes fromcombining information frommultiple heavy isotopeswithin the
same experiment is limited when nominalm/z values are recorded.

High resolution mass spectrometry (HRMS) can distinguish metabo-
lites (and isotopologues of heteroatoms) through accurate measurement of
m/z values that differ by <0.01 Da (Fig. 1a) providing a largely untapped
framework to extend isotopic studies and metabolic flux analyses38,54. The
inclusion of a second heavy isotope in the experimental design increases
mass balancing constraints and improves the sensitivity of flux estimates
beyond the enhanced data richness associated with additional isotopologue
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measurements. HRMS instruments scan and quantify thousands of m/z
values per second and can easily distinguish isotopologues and composi-
tional changes in mass, for example, the nominal change in m/z of two
Daltons that results from either inclusion of two carbon-13 atoms or
alternatively a bond saturation or other chemical modifications38,54. Because
HRMS can measure m/z values quickly, many metabolites actively incor-
porating isotopes can be identified through an unsupervised, unbiased
approach with untargeted data acquisition that is blind to the metabolic

network. The enumerating and quantification of metabolomic features
detected in samples enriched with multiple stable isotopes remains an
analytical bottleneck55,56, as the number of multivariate isotopologues35 of a
given compound (I) increases exponentially with the number of labeled
atoms (N) for each element (e) of the molecular formula, following Eq. (1).

I ¼
Y

ðNe þ 1Þ ð1Þ
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Computational tools compatiblewithHRMS isotopologue datasets57–64

offer technical advances in workflows, address changes in instrumental
capabilities and technology, and have started to confront bottlenecks in the
analyses of isotope enriched HRMS data and their biological implications.
Here a new tool is described, Stable Isotope-assisted Metabolomics for
Pathway ELucidation (SIMPEL) that capitalizes on HRMS data collected
from transient stable isotope labeling experiments. SIMPEL automates post-
processing data analyses of isotope enriched metabolomics datasets, gen-
erates isotopologue distributions, performs natural abundance corrections
along with some global analyses to streamline biological interpretations.
Two case studies are presented,where the utility of SIMPEL is highlighted to
understand central carbon and lipid metabolism. In the first description, a
dual-isotope labeling experiment processed with SIMPEL was used for
isotopically nonstationary metabolic flux analysis, to resolve challenging
fluxes that traditionally require data from multiple labeling experiments.
Providing network-constraining information by tracking two elements in a
single labeling experiment enabled more precise flux estimates. In the sec-
ond example, HRMS-based lipidomics data were processed using SIMPEL
to describe dynamic lipid metabolism. Following metabolite precursor-
product relationships, the role of PC and DAG in acyl editing was con-
sidered within oilseeds.

Results and discussion
SIMPELwas designed as a data analysis tool to compare labeling and exact
mass information enabling determination of the elemental composition of
isotopically enriched compounds and application of correlation-based
approaches to cluster metabolite peaks with similar patterns of isotopic
enrichment from transient labeling experiments. SIMPEL eliminates chal-
lenges indata analysis byprovidingaplatformtocompatibly linkuntargeted
metabolomics from HRMS with isotopologue labeling from multi-tracer
transient labeling experiments. The software combines pre-processed
metabolomics feature-lists from contemporary untargeted metabolomics
data analysis software such as XCMS65 or MZmine266 with comprehensive
lists of compounds of interest including molecular formulae and retention
time to search for and identify target metabolites and their isotopologues.
Post-processing data-analyses that can be performed with SIMPEL include:
1. Enumeration of isotopologues for a given chemical formula through

m/z tolerances,
2. Identification of isotopologues from libraries of chemical formulae and

retention times,
3. Calculation of isotopologue distribution and average labeling per

compound from intensities,
4. Correction for natural abundance (NA) with IsoCorrectoR67,

Fig. 1 | Demonstration of the use of high-resolution mass spectrometry (HRMS)
to distinguish dual labeled isotopologues and establish fluxes with confidence.
a HRMS has the capacity to resolve dual labeled isotopologues that are indis-
tinguishable using nominal resolution MS, a schematic example with expected
separation is shown. M0, M1,M2,….Mn represent the isotopologues that differ by a
unit mass, resulting from labeling. b Ten-day old Arabidopsis seedlings, transferred
to medium contained [13C5,

15N2] glutamine and collected after time course labeling,
were used for HRMS data acquisition. Acquired data were first pre-processed using
XCMS, and post-processing data analysis was performed using SIMPEL. Data tables
exported from SIMPEL were used for INST-MFA with INCA. c. Network repre-
senting the biochemical reactionsmodeled with INCA to estimate fluxes. Flux values
(nmol g−1 h−1) for each reaction are shown next to the arrows along with CIs in
parentheses. Color coding is as follows: yellow represents fluxes established from a
single 13C experiment, green reflects a map with parallel 13C and 15N experiments,
and the orange fluxes resulted from a dual labeled 13C15N experiment.Measurements
for isotope enrichment within metabolites for all three models were obtained from
the same [13C5,

15N2] glutamine labeling experiment, by using different combinations
of isotopologues that represent a single (13C), multiple parallel (13C and 15N) or dual

labeled (13C15N) experiments (Supplementary data 1, table 1). dAs an example of the
comparative information for modeling, glutamine that has 5 carbons and 2 nitrogen
atoms is provided. In the 13C stand-alone experiment there are 6 isotopologue
measurements (M0-M5) (used for modeling the single 13C labeling experiment). For
the 15N stand-alone experiment there are 3 isotopologue measurements (M0-M2).
Thus, as two separate experiments there are 9 measurements (used for modeling the
parallel labeling experiment). When a single 13C15N experiment is made, a nominal
mass instrument would not be able to distinguish whether the increase in m/z was
due toN or C, thus only the additional m/z values (i.e., M0-M7 isotopologues, a total
of 8 measurements) were modeled. Complete HRMS analysis provides fine detail
and distinguishes each elemental isotopologue such that 18 measurements can be
made and used in principle (data from these measurements were summed to obtain
the 13C15N isotopologues (M0-M7), the 13C isotopologues (M0-M5), and the 15N
isotopologues (M0-M2) from a single dual labeling experiment). In general, the
number of measurements will be dependent on the number of experiments and
tracers, however, for theHRMS case the 18measurements from soft ESI-MSwithout
fragmentation to the backbone can be generalized using Eq. (1). Abbreviations are
listed within Supplementary Data 1, Supplementary Tables 2 and 3.

Fig. 2 | Comparison of active vs inactive pool determination between single,
parallel and dual-labeled MFA. a Hypothetical inactive pool description for
aspartate that is a consequence of unlabeled sucrose in the medium and labeling
from 13C15N glutamine. b 95% confidence intervals (CIs) for active pool estimates

using 13C-based INST-MFA, compared to parallel 13C and 15N-based MFA and a
dual labeled 13C15N-based MFA for key metabolites in the model, plotted as a range.
Abbreviations are listed within Supplementary Data 1, Supplementary Table 3.
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5. Visualization and export of isotopologue distributions and average
labeling for all compounds,

6. Global analyses such as principal component analysis (PCA), hier-
archical or k-means clustering of compounds based on label
enrichment over time.

Two case studies are provided involving SIMPEL. In the first investi-
gation, ten-day-old Arabidopsis roots were grown on a predefined carbon
and nitrogen rich medium68 supplemented with [13C5

15N2] glutamine
(Fig. 1a) and sampled over time (0–8 h) prior to SIMPEL-based data
extraction andmetabolic flux analysis. An untargetedmetabolomics dataset
generated by a qExactive Orbitrap MS and pre-processed with XCMS was
imported into SIMPEL (Fig. 1b) resulting in a post-processed data table
containing isotopologue distributions formetabolic intermediates that were
used to perform isotopically non-stationary metabolic flux analysis (INST-
MFA)with INCA69 (Fig. 1c).Metabolic networks that included either 13C or
13C15N atom transitions were modeled with labeling information from a
single 13C experiment, parallel 13C and 15N experiments, or with the addition
of 13C15N isotopologues that represent information obtained from a single
dual-labeling experiment (Fig. 1d). Without HRMS, three independent
tracer experiments would be required to obtain these datasets (i.e., one with
13C, one with 15N, and one with combined 13C/15N labeling). However, all
three datasets could be derived from a single 13C15N-glutamine labeling
experiment by summing isotopologue abundances contained in the com-
prehensiveHRMSdataset (Fig. 1d).As noted in Fig. 1d, combining the three
nominalmass resolution 13C15Ndatasets provides fewermeasurements than
modeling the completeHRMS isotoplogue distribution, but INCAdoes not
currently have the capability to model HRMS data directly.

The inclusion of a second isotope (i.e., 15N) enabled active metabolite
pool assignments and identification of differences that were a consequence
of active pools that incorporated unlabeled carbon from sucrose, versus
pools that were inactive or not turned over during the time frame of the
experiment (Fig. 2a). The inability to distinguish these descriptions nor-
mally confounds labeling interpretations and subsequent flux analyses70.

Here,MFAbased on parallel or dual labeling with 15N reduced inactive pool
estimates and recast the associated confidence intervals (Fig. 2b). The
reactions that usenitrogendiffer fromthose that exclusively use carbon (e.g.,
aminotransferase reactions relative to carbon shuttling through central
metabolism for organic building blocks), thus, pairing isotopes from mul-
tiple elements that trace different aspects ofmetabolismand achieve isotopic
equilibrium in metabolites at different rates can help define more realistic
metabolic networks. The confidence intervals for the active pool estimates
were significantly reduced for the model including dual labeling compared
to parallel 13C and 15N labeling experiments (Fig. 2b), likely due to the
additional paired 13C15N isotopologues that describe concomitant use of
labeled precursors within a metabolite pool.

Compared to conventional flux studies involving multiple parallel
labeling experiments6,7,9,33, a single, dual-labeled experiment can potentially
provide additional information71 from the heavy isotopologue connections
that can be quantified through HRMS with SIMPEL resulting in more
sensitively determined fluxes and smaller confidence intervals (CIs)
(Fig. 1c). Fluxes through organelle transport steps that do not involve
metabolite interconversions (e.g., OAA transport between mitochondria
and cytosol) are difficult to determine with certainty but could be deter-
mined by the software through adjacent reactions and thus can benefit from
a second elemental isotope signature. Nitrogen label transfer in addition to
the 13C movement during the conversion of OAA to aspartate enables a
better determination of the OAA transfer flux. Bifurcated pathways such as
glutamate dehydrogenase (GDH) or glutamine oxoglutarate amino-
transferase (GOGAT) could also be resolved based on the nitrogen transfer
through coordinationwith aspartate aminotransferase (ASPAT).While two
parallel labeling experiments with 13C-glutamine and 15N-glutamine, sepa-
rately, resolved active pool sizes and reliably determined transport fluxes
with improved precision compared to a single 13C experiment, the dual-
labeled substrate in combination with HRMS and SIMPEL established
tighter CIs for all fluxes likely due to the provision of additional labeling
information tracking two elements that were complementary in con-
straining the flux solution. On average, the 13C and 15N parallel labeling-

Fig. 3 | 13C labeled lipidomic data extraction,
plotting, and analyses from pre-processed data
using SIMPEL. a Isotopologue distribution plot,
where the abundances of each of the isotopologues
as a proportion of the sumwere plotted on the y-axis
and the duration of 13C labeling (in hours) is shown
on x-axis. Both the uncorrected and natural abun-
dance corrected plots generated with SIMPEL are
shown for PC(36:4) as an example (Supplementary
Data 1, Supplementary Table 5). b Average labeling
calculated using the isotopologue distributions and
nmol of 13C product formed, the latter of which
incorporates accurate quantification data for lipids
(Supplementary Data 1, Supplementary Table 7). c.
k-means clustering plot with clusters represented as
nmol of 13C product formed on the y-axis (lines
represent the mean enrichment and shaded regions
represent standard deviation) and duration of 13C
label incorporation on the x-axis. A 2D representa-
tion (1st and 2nd principal components) of the same
clusters with time collapsed to highlight the com-
pounds present in each cluster is shown on the right
(data presented in Supplementary Data 1, Supple-
mentary Table 7).
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based MFA and 13C15N dual labeled MFA reduced the CIs by 71 and 84%,
respectively, compared to the single 13C-basedMFA(SupplementaryData 1,
Supplementary Table 3).

In a second study, SIMPEL was used to probe stable isotope labeled
lipidomics data obtained with HRMS. HRMS distinguished the

incorporation of two 13Cmolecules (Δm/z = 2.00671) from a degree of fatty
acid unsaturation (Δm/z = 2.01565) based onm/z difference of 0.009 Da38.
DevelopingCamelina sativa seeds, which represent stages corresponding to
oil biosynthesis and accumulation, were labeled with [U-13C6] glucose in a
time-course experiment (0–32 h). Embryos were excised from pods, and

a

b

c

Fig. 4 | Determination of acyl-chain labeling within lipidmolecular species using
MS2 at high resolution. aTandemMS spectra of PC(36:4) and its isotopologues that
co-elute in chromatography.HRMS resolves the different isotopologues, highlighted
in gray, M0 (840.5760), and orange, M6 (846.5961), in theMS1 scan. MS2 spectra for
the unlabeled isotopologue shows 18:1, 18:2 and 18:3 FAs, while theM6 isotopologue
shows combinations of labeled FAs that can further be resolved using HRMS.
b Relative intensities of the isotopologues of PC(36:4) were plotted for each time
point (0, 2, 4 and 8 h of 13C glucose labeling) using theMS1 data analyzed by SIMPEL.

MS2 spectra for each of the isotopologues were used to determine the distribution of
FA labeling within the acyl chains of PC(36:4). Data at MS2 represents isotopologue
distribution that is adjusted for pool size and the proportions of FAs that constitute
PC(36:4) (see methods, Supplemental File 2). c 13C enrichment in acyl chains of
PC(36:x) and DAG(36:x) represented as natom equivalents of 13C (see methods,
Supplementary Data 1, Supplementary Tables 8 and 9 for detailed description and
calculation) using MS2 data obtained upon fragmentation of isotopologues.
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cotyledons were separated and assessed to gain insights into fatty acid
biosynthesis and lipid metabolic pathways in plants. Untargeted lipidomic
datasets generated using a Thermo Fusion Lumos Tribrid MS were pre-
processed using XCMS and automatically analyzed by SIMPEL (Fig. 3a)
resulting in average labeling descriptions for diacylglycerol (DAG) and
phosphatidylcholine (PC) that are central to triacylglycerol assembly and
polyunsaturation in plantswhich utilize acyl editingmechanisms72–74.Much
ofwhat is knownabout plant lipid biosynthesis has been and continues to be
established through inspection of 14C labeled lipids72,75–77; however, HRMS
and SIMPEL provide a complementary technique to elucidate the
precursor-product relationships and rates of labeling of pathway inter-
mediates in living systems when stable isotope investigations are
appropriate.

To enable direct comparison of 13C enrichment between different lipid
species, pool size (nmol) was accounted for (see Supplementary Data 1,
Supplementary Tables 4–7) to obtain the quantity of 13C labeled molecules
formed16,78 (Fig. 3b). A k-means clustering analysis of the quantities of 13C
PC andDAG species formed over the time course of labeling revealed three
distinct clusters (Fig. 3c). Cluster 1 consisted only of two PCs and was the
fastest labeled group, whereas clusters 2 and 3 contained a mixture of other
PC andDAGmolecular species (Fig. 2c). The results, obtained from a single
untargeted assessment of 13C-labeled lipids, confirmed previous 14C labeling
results that PC is the most rapidly labeled lipid in seed oil production72,75.
Further, the identification of rapidly labeled PC(36:4) and PC(36:5) species
suggested the role of these lipids in connecting fatty acid biosynthesis in the
chloroplast with lipid assembly in the endoplasmic reticulum. Membrane
lipids suchasPCmaybea conduit for thedirect shuttlingof acyl chains from
the chloroplast to the ER38,75,79 through contact sites or to extend channeling
mechanisms80–83. PC comprises a significant percentage of the lipids present
at the chloroplast envelope84 at around 40%75. Tandem MS analysis of 13C
enrichmentwithin the fatty acids of PC andDAGmolecular species at 2-, 4-
and 8-hour time points (Fig. 4a, b, Supplementary Data 1, Supplementary
Tables 8 and 9) indicated highest labeling in 18:1 followed by 18:2 acyl
chains at the earliest time point, which represented most of the label
enrichment (Fig. 4c). By 4 h, acyl chains within PC(36:5), i.e., FA(18:2) and
FA(18:3), were enriched, consistent with desaturation over time. DAGs
presented a similar trend, but were delayed relative to PC, with FA(18:1) of
DAG(36:4) being the most labeled at both 2 and 4 h while FA(18:2) and
FA(18:3) accumulated higher 13C enrichments by 8 h. The comparable FA
enrichment in PC and DAG molecular ions provided a semi-quantitative
assessment of the important role of enzymes that interconvert DAGandPC
through head group (choline) exchange such as PC:DAG choline phos-
photransferase (PDCT)85 and CDP-choline:DAG choline phospho-
transferase (DAG-CPT)86. Our contemporary understanding of seed oil

biosynthesis involves de novo synthesis of saturated or monounsaturated
fatty acids in the chloroplast, whichare then converted to acyl-CoAs that are
incorporated intoPC fordesaturationwith acyl chains either released aspart
of acyl editing, passed toDAGthrough lipid headgroup exchange (Fig. 5), or
used as the third acyl chain in TAG biosynthesis by phospholipid: dia-
cylglycerol acyltransferase (PDAT)87.As PCand lysoPC(LPC) canbe found
on the surface of the outer chloroplast membrane75,84, and a significant
percentage (30% or more) of lyso-phosphatidylcholine acyltransferase,
LPCAT, activity is associated with chloroplasts88, the labeled FA(18:1) and
FA(18:2) of PC is consistent with PC serving as a carrier of acyl chains that
are channeled to the ER38,75.

Further, the analyses revealed significant labeling in 16:3/18:3 mono-
galactosyldiacylglycerol (MGDG) (Supplementary Fig. S1) that suggest
chloroplast Kennedy pathwayflux of 16:3 in plants not generally considered
in green seeds of oil producing crops. Such examples highlight the oppor-
tunity for untargeted metabolomics to elucidate undescribed aspects of
metabolism with stable isotope labeling and HRMS.

Conclusions
SIMPEL provides high throughput identification and quantification of
isotopologues from untargeted HRMS datasets arising from transient iso-
tope labeling studies, presenting an opportunity to discover and describe
novelmetabolic activities.Withdual labels (13C, 15N), SIMPEL enabledmore
precise flux estimations of central metabolism from a single experiment.
Similarly, stable isotope labelingof anoilseed indicatedPCandDAGroles in
acyl editing that were consistent with channeling of acyl chains through PC
to the ER, and MGDG labeling that support the presence of an active
chloroplastKennedypathway in a green oilseed. SIMPEL is available as anR
package for comparative analysis of any pulse labeled stable isotope
enrichment datasets generated using traditional metabolomic data
acquisition.

Methods
Plant growth and experimental conditions
For the metabolomics study using dual-isotope labeling, wildtype Arabi-
dopsis ecotype Columbia seeds were grown on vertical plates at 22 °C under
continuous light (ca. 70 µmol m−2 s−1), on a defined nutrient medium
previously described68 for metabolomics with dual-isotopic labeling. The
medium consisted of 10mM potassium phosphate (pH 6.5), 5mMKNO3,
2mMMgSO4, 1 mM CaCl2, 0.1 mM FeNaEDTA, micronutrients (50mM
H3BO3, 12mM MnSO4, 1mM ZnCl2, 1mM CuSO4 and 0.2mM
Na2MoO4), 1% sucrose and 1%agar. Ten-dayold seedlingswere transferred
to plates containing the same medium, except the nitrogen source was
replaced with 10mM [13C5,

15N2]glutamine. Root tissue was excised after
exposure to medium containing labeled glutamine for 2, 4, 6 and 8 h to
represent time course incorporation of carbon and nitrogen into metabo-
lism. Untreated roots were used as unlabeled (0 h) controls. Each plate
yielded ~100mg of root tissue and served as a single replicate. Four repli-
cates per sample typewere collectedandflash frozenusing liquidN2 for total
metabolite extraction.

Stable isotope labeled lipidomics was performed with developing
embryos of Camelina sativa. Plants were grown in greenhouses with day/
night temperature maintained at 22/20 °C, 40–50% relative humidity, and
16 hday/8 hnight photoperiod. Intact siliques during the seedfilling growth
stage (15 days after fertilization) were excised and placed in sterile media
containing a modified Linsmaier and Skoog medium89,90 with Gamborg’s
vitamins (Sigma) and 5mM MES buffer adjusted to pH 5.8. Fifty mM
[U-13C6]glucose was used as labeled substrate

91, and the composition of the
remaining carbon and nitrogen sources represented maternal phloem
composition to minimize metabolic perturbation and to maintain pseudo
in vivo conditions. Silique culturing was performed in a 96-well plate with
0.3mL of medium and a single silique per well, under continuous light
(250 µmolm−2 s−1)9. Tissuewas collected andflash frozen immediately after
each time point (2, 4, 8, 16 and 32 h). Uncultured siliques excised from the
maternal plant were used as unlabeled (0 h) controls. Frozen tissue was

Fig. 5 | Simplified description of seed oil biosynthesis and the central role
played by PC. Seed oil biosynthesis based on 13C glucose labeling involves the
movement of acyl chains onto and off PC for desaturation, known as acyl editing72–74

and the PC may additionally serve as the shuttling mechanism for the acyl chain
export from the chloroplast to the ER38,75,79. FAS Fatty acid synthesis, LPC Lyso
phosphatidylcholine, PC Phosphatidylcholine, DAG Diacylglycerol, TAG
Triacylglycerol.
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sectioned, on top of dry ice, to excise embryo from the siliques and to
separate cotyledons from the embryo axis. Cotyledon samples were
extracted and analyzed for lipids in triplicates.

Total metabolite extraction
Frozen Arabidopsis root tissue was homogenized using a tissue lyser, and
extraction was carried out using 1mL of 4:1 methanol: water (v/v) with
incubation in an ultra-sonication bath for 30min followed by shaking for
30min at 4 °C. Themixture was then centrifuged at 21,000 × g for 10min at
4 °C; supernatantwas transferred into fresh tubes and evaporated to dryness
using a speedvac centrifuge at ambient temperature. Dried residue was re-
suspended in 200 µL of 1:1 methanol: water (v/v), filtered using 0.2 µm
PTFE micro centrifuge filters and transferred to glass vials for HILIC-
HRMS runs.

Frozen cotyledon samples from Camelina were homogenized using a
tissue lyser and the extraction of lipids was carried out using a phase
separation method previously described92. Briefly, 1mL 7:3 methanol:-
chloroform (−20 °C) containing the ultimateSPLASHTM ONE lipid mix
(Avanti Polar lipids, Alabaster, AL) as internal standard (1:20 dilution) was
added to the samples, vortexed vigorously and incubated on a rotary shaker
for 2 h at 4 °C. After incubation, 500 µL of ice-cold water was added to the
samples, vortexed and centrifuged at 14,000 rpm at 4 °C for 10min to
achieve phase separation. The upper aqueous phase was carefully removed,
200 µL of methanol was added to the remaining organic phase containing
lipids and centrifuged at 14,000 rpm for 5min to pellet the debris. The
organic phase (supernatant)was transferred to a glass tube anddried using a
speedvac centrifuge. Samples were re-suspended in 200 µL of 49:49:2 acet-
onitrile: methanol: chloroform, filtered using 0.2 µm PTFEmicrocentrifuge
filters and transferred to a glass vial for RPLC-HRMS analysis.

Metabolomics data acquisition using HILIC-HRMS
Chromatographic separation using HILIC was achieved using an Agilent
1290 Infinity II UHPLC system equipped with a SeQuant® ZIC®-HILIC
(100 ×2.1 ×3.5 µm) column (EMD Millipore, Burlington, MA). Mobile
phases A and B were comprised of 5mM ammonium acetate (pH 4.0) in
water and 90% acetonitrile with 0.1% acetic acid, respectively. A flow rate of
0.3mLmin−1 was used to elute compounds with the following gradient:
87% B for 5minutes, decreased to 55% B over the next 8min and held for
2.5min before returning to 87% and equilibrating the column for 3min.
The heated electrospray ionization (HESI) conditions used were as follows;
spray voltage, 3.9 kV (ESI+), 3.5 kV (ESI−); capillary temperature, 250 °C;
probe heater temperature, 450 °C; sheath gas, 30 arbitrary units; auxiliary
gas, 8 arbitrary units; and S-Lens RF level, 60%. Full MS data were collected
using a Q-Exactive Quadrupole Orbitrap mass spectrometer (Thermo
Fisher Scientific) in both positive and negative ionization mode separately
from mass ranges 75–1100m/z and 65–900m/z, respectively, at 140,000
resolution. The automatic gain control (AGC) was set to 3 ×106 and max-
imum injection time (IT) used was 524ms. Top 12 data dependentMS/MS
(ddMS2) spectra were also collected for a representative pool of unlabeled
samples with MS1 and MS2 data acquired at 35,000 and 17,500 resolution,
respectively. The AGC target and maximum IT in the ddMS2 experiment
were set to 1 ×106, 128ms for MS1 spectra and 1 ×106, 64ms for the
MS2 spectra. A 2.0 Da isolation window and normalized collision energy of
25were used for ddMS2with the underfill ratio set to 1.0% alongwith 10 sec
dynamic exclusion to reduce redundant spectra.

Lipidomics data acquisition using RPLC-HRMS
Separations for lipidomics were achieved using the loading pump of a
Dionex UltiMate 3000 RSLCnano system (Thermo Fisher Scientific)
operating at a flow rate of 40 µLmin−1 equipped with a custom-made C8
column (100 ×0.5 ×5 µm) from Higgins Analytical Inc. (Mountain view,
CA) re-packed from a nucleodur C8 Gravity column (Macherey-Nagel,
Allentown, PA). Mobile phases comprised of 1% 1M ammonium acetate,
0.1% acetic acid in water (A) and 1% 1M ammonium acetate, 0.1% acetic
acid in 7:3 (v/v) acetonitrile: isopropanol (B). The following gradient

modified from a previously described method93 to adapt to micro flow was
used; 0-1min at 55% B, 4min at 75% B, 12min at 89% B, 15min at 99% B,
18min at 99% B and 20min at 55% B followed by equilibration up to
30min.The eluentwas sprayedon to theHESI source of anOrbitrapFusion
Lumos Tribrid MS, operated with sheath gas, 25 arbitrary units; auxiliary
gas, 5 arbitrary units; ion transfer tube temperature, 300 °C; vaporizer
temperature, 100 °C; and S-lens RF level, 60. The spray voltage was 4 kV in
both positive and negative modes. Full MS data were collected for mass
ranges 450–1200m/z at 240,000 resolution from both positive and negative
modes simultaneously, using polarity switch. The AGC target was set to
“Standard” and the maximum IT was set to 100ms.

MS/MS data were collected for representative pooled unlabeled and
labeled samples using AcquireX Exclusion-Inclusion lipid characterization
template with iterative injections. MS1 data within this experiment were
obtained at 120,000 resolution from a mass range of 450–1200 with AGC
target set to “standard” and maximum IT set to “auto”. MS2 data were also
collected at 120,000 resolution within the orbitrap detector, to achieve
enough mass resolution for distinguishing 13C labeled isotopologues from
acyl chain desaturation. A guide to determining the required resolution to
sufficiently distinguish m/z of interest is provided within supplementary
information (Supplementary text T1). The collision energymode was set to
“assisted” with 25, 30 and 35% collision energies with an activation time of
20ms. TheAGC target andmaximumIT forMS2 experimentswere also set
to “standard” and “auto”, respectively. A 0.5 Da isolation window was used
and a cycle time of 1.5 s was used within the data dependent mode. The
intensity threshold filter, set to 5 ×104, and apex detection were enabled to
prioritize ion isolation at their maximum intensity. Data dependent
acquisitionwas also enabled to obtainMS2 on themost intense ions if target
ions were not detected within a given scan.

Data pre-processing and creation of compound database
Full MS data files in Thermo .RAW format obtained in profile mode were
first centroided by conversion to mzML format using the MSConvert
applicationwithin ProteoWizard94 with peak picking filter applied. For data
collected with polarity switch, the positive and negative mode data were
separated using the subsetfilterwithinMSConvert. Fileswere imported into
R using the XCMS package65, and features were detected using the
centWave95 method and 5 ppmmass tolerance. Pre-filter was set to 6 scans
with aminimum intensity of 5000; signal tonoise ratio and the threshold for
noise were set to 5 and 1 ×106, respectively. Retention time alignment was
performed using the obiwarp96 method, grouping included features present
in at least 25% of all samples, allowable retention time deviation was 10 s,
andm/zwidthwas set to 0.01. The “fillPeaks” functionwasusedwith default
settings, and data was not imputed. All features identified were exported to
Excel for use as an input data table for SIMPEL. MS/MS data collected from
representative unlabeled samples were used within a commercial software,
Compound Discoverer 3.0 (Thermo Scientific), following the “MaxID”
workflow. Only the compounds manually verified to have a positive match
with the mzCloud MS/MS and/or LIPID MAPS database and a valid
chromatographic peak were used to build custom compound databases, for
both HILIC and lipidomic methods, which contained chemical formulae
and retention times to be used as an input for SIMPEL.

Post-processing of stable isotope enriched data using SIMPEL
The XCMS pre-processed data tables and the compound databases
(described above) for both dual-isotope labeled metabolomics and single-
isotope labeled lipidomics datasets were packaged within SIMPEL as
example data for users. All the isotopologues and their m/z values for
compounds within the database were matched against retention time and
identified from the pre-processed data using the function “get_ta-
ble_objects_NA_corrected”. The function also includes user defined toler-
ances for m/z and rt values, which may not be universally applied for all
isotope enrichedmetabolomics datasets, an iterative approach to determine
optimal settings may be necessary. The same function also performs NA
correction, calculates isotopologue distributions and average labeling for
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bothNAcorrected anduncorrecteddata and stores themasdata objects that
are used for plotting based on user preferences. A tutorial describing the
usage of each of the functions within SIMPEL, and equations that SIMPEL
uses for calculations, are provided as Supplementary File 3.

Isotopomer network and determination of fluxes
Areactionnetwork describing glycolysis, TCAcycle, and related amino acid
biosynthesis was constructed using a subset of a previously published
Arabidopsis model11 and by consulting biochemical literature. The model
was adjusted to include carbon and nitrogen atom transitions for the dual-
isotope labeling experiment. A list of reactions, and abbreviations can be
found in supplementary data 1, table 3. Metabolic fluxes and confidence
intervals were estimated using INST-MFA through the MATLAB-based
Isotopomer Network Compartmental Analysis (INCA) package, (Version
2.0)97. Best-fit values for fluxes were obtained by repeating the evaluation a
minimum of 1000 times from random initial values and subjecting the
optimized values to a χ2 goodness of fit test. 95%-confidence intervals were
computed for all estimated parameters by evaluating the sensitivity of the
sum-of-squared residuals to parameter variations98. The MATLAB model
files for the three experimental designs described in the results are also
provided as Supplementary Data 2, 3 and 4 for convenience.

Accurate quantification and label enrichment of lipids and their
acyl chains
Unlabeled control samples of Camelina cotyledons, that serves as controls,
were spikedwith nonendogenous, deuterium labeled internal standardmix,
i.e. ultimateSPLASHTMONEandused for accurate quantification of PC and
DAG lipid molecular species. Both PC and DAG standards contained a d5
labeled C17 chain in the sn−1 position and varying chain lengths fromC14
toC22 in the sn−2 position. Each standardwithin themixwas considered a
“bucket”, and the concentration of each analyte was calculated using mul-
tiple buckets based on its acyl chain composition as determined using MS2.
For example, PC(34:x) that contains a C16 and a C18 acyl chain was
quantified once using d5PC(17:0/16:1) as bucket 1 and again using
d5PC(17:0/18:1) as bucket 2. A mean value of the calculated concentration
obtained from all possible buckets was treated as the accurate quantity of
analyte. Steady-state metabolism was assumed with an expectation that the
pool sizes of lipid intermediates such as PCs and DAGs do not change
throughout the course of the labeling experiment. PC and DAG quantities
obtained in nmol amounts were used to convert NA corrected isotopologue
distributions generated for the pulse labeled samples, through SIMPEL, into
nmol abundances of isotopologues. A sum of all the labeled isotopologues
(M1-Mn) in nmol represented the amount of 13C product formed over the
course of the labeling experiment. These data were used to for k-means
clustering analysis to enable comparison of label enrichment between dif-
ferent pools of PCs and DAGs that are otherwise incomparable due to their
differences in pool sizes30.MS2 data collected from the labeled samples were
used to manually assess and integrate the acyl chain composition and
labeling within each of the PC and DAGmolecular species. IsoCorrectoR67

was used to correct for natural abundance, and the corrected isotopologue
distributions were converted to natom equivalents of 13C, modified and
adopted from Arrivault et al.78, using the pool size information.

13C label quantification and data interpretation of acyl chains
within Lipids using MS2 fragments
13C Glucose labeled cotyledons collected from 2, 4 and 8 h time points
along with unlabeled seeds that served as controls were run on a Thermo
Orbitrap Fusion Lumos tribrid MS through an untargeted exclusion-
inclusion lipid characterization template with iterative injections as
described in the methods section and referred to by the manufacturer as
AcquireX. TheMS2 ion fragments containing acyl chains and their labeled
isotopologues were used to calculate the enrichment in the fatty acids of
the lipid molecular species. As an example, negative ion mode fragmen-
tationofm/zof 846.5961 that is the formate adduct of theM6 isotopologue
of PC(36:4) with (18:1/18:3) and (18:2/18:2) acyl chains contains M0-M6

of 18:1, 18:2 and 18:3 fatty acids (Fig. 4a). TheM6 weighting is conserved
through summed pairs (i.e., M0/M6, M1/M5, M2/M4, M3/M3, M4/M2,
M5/M1, M6/M0) of labeling in acyl chains. Intensities of MS2 acyl chain
labeling distributions were averaged for four scans per precursor m/z for
M2, M4, M6 and M8 isotopologues. Labeling distributions for each
labeling time (2, 4 and 8 h) were corrected for NA, using IsoCorrectoR,
and converted into nmols of 13C isotopologue by accounting for pool size
of the lipid and its isomeric proportions (Fig. 4b) (see Supplementary
Data 1, Supplementary Tables 8 and 9 for calculations). As a proxy for
labeling in lipids, even labeled isotopologues offset by factors of two (M0,
M2, M4, M6 and M8) were integrated and analyzed at each time point
representing the total labeling within lipid coming from a uniformly
labeled source of glucose. The 13C enrichment within acyl chains of each
lipid were determined by weighting labeled acyl chains by the number of
carbons and summing precursor isotopologue values at a given time point
to obtain natom equivalents of 13C (Fig. 4c, Supplementary Data 1,
Tables 8 and 9).

Statistics and reproducibility
Both dual-labeling and lipid labeling experiments were performed inde-
pendently and reproduced at least twice to ensure robustness of the results.
A minimum of three (lipid labeling) and four (dual labeling) independent
biological replicates were used. Chi-squared goodness of fit, 95% confidence
intervals or k-means clustering were used as appropriate, for statistical
analyses and were described within the figure legends andmethods section.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw and pre-processed data for stable isotope labeled metabolomics using
Arabidopsis roots and lipidomicsusingCamelina seeds is available at theNIH
Common Fund’s National Metabolomics Data Respository (NMDR) web-
site, the Metabolomics Workbench, https://www.metabolomicsworkbench.
org/, where they have been assigned study IDs ST002240 and ST002239
respectively99. The data formetabolomics and lipidomics experiments can be
accessed directly via their project ID, PR001429 using the https://doi.org/10.
21228/M80X3B.

Code availability
The tool SIMPEL is freely available for public use at https://github.com/
SIMPELmetabolism/SIMPEL, as an R package along with test data and
source code. A tutorial is also included within GitHub with detailed
instructions on SIMPELusage with the test data. The tool is also available at
the metabolomics workbench at https://www.metabolomicsworkbench.
org/data/simpel_load.php, as a web tool.
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