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Sensor extended imaging workflow for creating fit
for purpose models in basic and applied cell biology
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While various engineering disciplines spent years on developing methods and workflows to

increase their R&D efficiency, the field of cell biology has seen limited evolution in the

fundamental approaches to interact with living cells. Perturbations are mostly of chemical

nature, and physiologically relevant contexts and stimuli are left with limited attention,

resulting in a solution space constrained within the boundaries of presently manageable

perturbations. To predict in the laboratory how a drug will work in a human patient, cell

biology must have a closer look at life and strive to mimic the human being in all his

complexity. By implementing an iterative process from perturbation to measurement and vice

versa, the authors suggest using a sensor-extended imaging workflow to implement product

development practices to cell biology, opening a physiologically relevant solution space for

the development of truly translational and predictive fit for purpose in vitro cell models.

The recently passed FDA Modernization Act aims to integrate advanced in vitro models of
different diseases into the drug development process. This legislation opens the door for
alternative animal-free testing grounds not only in efficacy but also in toxicity studies1.

The implementation of this legal framework mirrors the development in the field to mimic
human disease not any longer in animals, mostly rodents, but rather develop in vitro systems
aiming to reflect human disease more realistically using primary human tissue in sophisticated
culture systems. With the first models successfully being commercialized, the question is when,
not if these advanced disease models will broaden their application from basic research toward
drug development. This development has several implications: (a) it is getting more and more
cumbersome to make an informed decision on which model to use for what kind of application
since, (b) an increasing number of read-outs and therefore data have to be aggregated, annotated,
analyzed and set into the biological context, (c) the development of a bespoke assay needs to be a
multidisciplinary approach as combined input from biology, data science, and engineering is
critical for success.

This perspective is not trying to touch the technical aspects of integrated sensors for advanced
cell models, such as Fuchs et al.2 have already done, but it aims to outline how the adoption of
workflows already successfully implemented in other scientific areas has the potential to unleash
the full power of the innovative technologies currently evolving in the field of advanced 3D
in vitro assays and beyond.

It is our ambition to kick off the discussion on the current workflow of product development
in cell biology. At present, many research groups are stating that their work is translational and
predictive, while the success rates of new drug programs remain below 20%3. Based on this, the
authors argue that it is time for biology to expand the traditional approach where one observes
the truth with an engineering approach that transforms the nature of the underlying experiments
to interactive context-dependent design problems. Further borrowing from design science, when
a task is too complex to plan everything in advance, we need to proceed iteratively toward the
end goal. Based on the multidisciplinary background of the authors, this article summarizes how
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other disciplines tackled similar crossroads in the development
path and proposes to apply similar tactics for developing future
advanced in vitro cell models.

The promise and the crossroads of in vitro cell models. Since
the first experiments involving animal cells in isolation approxi-
mately 100 years ago, the medical need especially in virology and
oncology has initiated the development of a plethora of different
in vitro technologies that aim to mimic the human diseased or
healthy phenotype4. The main applications as of today are disease
modeling, precision medicine, and regenerative medicine. The
advantage of in vitro models is the possibility to identify critical
cellular and molecular contributors to the disease by permitting
manipulation of each cell type in isolation5. There are several
research areas to which cell culture systems are important con-
tributors, such as (a) modeling specific diseases to expand our
knowledge of the disease and ultimately develop a cure, (b) to
understand the physiological requirements of bespoken cell types
and along those lines be able to determine negative and positive
effects of perturbations on those cells, (c) as basis of manu-
facturing systems for therapeutic proteins, cell, and gene
therapies6–9.

At each step of designing the actual assay, the scientist has
multiple options for the workflow. Not only the cell source but as
well the culture conditions, the nature of the perturbation, and
the choice of read-out(s) influence the requirements. With the
possibility to follow biological processes in a time-resolved
manner the complexity and size of the data generated per
experiment increased once more making a bioinformatic-
supported analysis an inevitable necessity. This additional layer
of complexity can be handled with the support of machine
learning and artificial intelligence tools10. These enable the
interpretation of the actual data but as well put the results into a
larger context by integrating publicly available datasets (Fig. 1).

The cellular component of the assay is represented either by
primary human cells or iPSC’s in case the sourcing of the cells is
extremely challenging like in the neuroscience space11,12. The
source of the cells as well as accompanying metadata must be
factored into the interpretation of the study results. The donor
patient’s history, such as response to pre-treatment, age, gender,
ethnicity, and other phenotypical features must be brought into
context with the assay read-outs. The architecture of the tissue is

another crucial component to be mimicked in the in vitro assay.
The invention of 3D models increased the translational value of
in vitro cell models tremendously13. Nevertheless, our under-
standing of spatial dependencies is still fractured and can only be
deconvoluted with the help of image analysis tools that enable the
quantitative analysis of highly complex tissue aggregates14.
Beyond the structural architecture of a tissue, physical and
chemical stimuli do have an impact on the biological status of the
cells. The modulation of these factors leads to different outcomes
and therefore must be closely monitored. The effect of the pH for
example can have a tremendous effect on the predictivity of the
assay and can hamper a drug development pipeline
substantially15. Other stimuli such as temperature and mechan-
ical stress are currently mainly investigated in basic science16–18.
Having said that there are some treatment regimens based on
exposure to extreme temperatures. However, most of these
treatments are evidence-based and lack state-of-the-art pre-
clinical datasets19,20. The understanding of the major impact of
the abovementioned stimuli on the translational value of pre-
clinical data has only increased in the recent past21. As an
example, the paper from Orsenigo et al.22 describes a discovery of
a biological effect based on adjusting an independent variable of
the microenvironment, using the optical read-out as the
dependent variable. By investigating a range of shear stresses,
they were able to identify cellular processes otherwise only
observable in vivo. Beyond the usage of physical or chemical
stimuli as treatment options, they as well must be considered
when it comes to data creation in the pre-clinical space. Similarly,
any measurement in an assay has an impact on the cell’s
phenotype. There are several innovative, mainly imaging-based
techniques that take this into account and display promising
advantages over disruptive or endpoint read-outs23,24. This might
be one of the reasons for the increase in applied imaging
techniques in the field. The deployment of this technology is most
advanced in pathohistological applications, clinical as well as pre-
clinical25,26. The advantage of a truly quantitative analysis of an
image enabling the cross-comparison between different experi-
ments has increased the usage of this tool tremendously in the last
five to ten years. Other advantages are cloud-based data storage,
from which images can be accessed, a fully automated workflow,
and the broad applicability of the existing systems across
therapeutic areas, basic or translational science. The invention

Fig. 1 Overview of an in vitro workflow. the design of an in vitro workflow is defined by the choice of cell source (1), the culture conditions, perturbations,
and read-outs (2). The analysis and interpretation of the data rely on the seamless integration of statistics, data science, and biological expertise (3).
Middle images subtitle from top to bottom: culture conditions: 3D aggregates, 3D organoids, 3D tissue, 2D assays. Perturbation: gene therapy, cell therapy,
vaccines, small & large molecules. Readouts: image analysis, mechanics, chemistry, multi-omics.
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of high-throughput imaging allowed the application of this
technology to living cells. By integrating automation systems that
execute image acquisition and analysis, it was possible to improve
the throughput without the need to reduce resolution. By these
means, imaging became standard in screening assays as well as in
the observation of rare events27. By the broad implementation of
image analysis using deep learning algorithms the value of images
as a read-out in cell biology has increased tremendously28. One
recent example of deep learning in combination with imaging is
sensor-extended imaging flow cytometry, which enables high-
throughput single-cell analysis and compensates for the technical
loss of resolution with a virtual high-resolution image
generator29. Time is another dimension that was relatively
recently added to the cell biology field. Live cell imaging enabled
the deconvolution of biological processes over time as well as the
increase of accuracy of data by getting independent of pre-defined
time points for measurement. The possibility to follow biological
processes in real-time opened a new avenue in basic and
translational research. However, by applying those new technol-
ogies it is important to be aware that also in this case data
acquisition is a perturbation per se which has an influence on the
dataset30.

Transitioning from static well-based to flow-based cultures,
e.g., microfluidic chips or perfusion models, has further added
translational value as demonstrated by multiple groups across
many different disciplines31–33: the biological advantages of
integrating fluidics into an in vitro cell system such as simulation
of mechanical forces, circumvention of diffusion and providing
controllable culture conditions qualifies this technology for the
use in an innovative cell-based system in basic as well as
translational research. Beyond that, a fluidics system enables self-
referencing sensor readings, realistically displaying the physiolo-
gical status of the cells, as the flow in the system supports a
physiological cell metabolism independent of external stimuli
such as passaging or bulk exchange of nutrient-containing media
(Fig. 2). Combined with live microscopy imaging, this approach is

the only way to control and monitor the microenvironment of the
cultured cells in real-time.

All those technical developments supported by the aim to
reduce the use of animals have led to the deployment of highly
sophisticated in vitro cell models, so-called microphysiological
systems (MPS) that aim to recapitulate human disease. The data
generated using MPS helped to understand basic disease
mechanisms34 and in parallel proved to be more predictive than
current gold standard animal models of toxicology35. MPS
enabled the way how we look at cells today. Going forward, we
can use the increased knowledge to develop next-generation MPS
that will allow us to manipulate and observe the cells
simultaneously in a biologically relevant context. Most of the
parameters mentioned above are included in the different MPS
systems with an emphasis on mimicking organ-specific fluidics
such as blood–brain barrier36, gut37, or lung38. The plethora of
different biological components such as cell source or matrices is
accompanied by an even greater spectrum of biomechanical
features and sensor modules. These different factors that will be
combined in many ways to create more sophisticated MPS
systems. This process needs input from many different disciplines
that must work closely together to lead to a viable, and
biologically relevant MPS prototype2.

Methods
The challenge of unpredictable project outcomes within a rapidly
advancing technology space as described above in biology and
biotechnology is similar to the early days of software develop-
ment. Multiple cell sources, matrices, culture, and measurement
devices are available, all with the promise to be most
translational-relevant. In analogy to cell biology, within the last
80 years, hundreds of new programming languages appeared, new
hardware-enabled novel applications, and displays brought
completely new ways of interacting with software and data.
Today, software and digital interactions are omnipresent and
responsible for some of the biggest recent technological

Fig. 2 Influence of fluidics on cell status. Influence of fluidics on cell status and its measurability: a static culture within a well is always constrained by
diffusion processes that occur due to the cell model consuming nutrients and metabolizing molecules. In a flow-based culture, the concentration gradients
due to diffusion are non-existent. An open system technically enables self-referencing sensors to control and monitor different parameters. This difference
is qualitatively highlighted in the figure: left panel: cultures are either in a static well or in a flow-based setting; middle panel: cell metabolism leads to
concentration gradients along the z-axis in wells, caused by diffusion processes; right panel: passaging abruptly resets the accumulation of metabolites/the
concentration of nutrients. In a flow-based culture, the absolute concentrations of nutrients (cn) and metabolites (cm), respectively, can be measured at
the inlet (cm/n_in) and outlet (cm/n out) of the cell model with respect to the bulk flow direction.
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breakthroughs, including AI-based drug discovery. There is one
major difference to cell biology, though: in software development,
a monumental effort was taken to deploy development methods
that guide programmers as efficiently as possible through the
available solution space. Scrum, lean, agile, V-Model, Waterfall,
and Wayfaring are such methods, to name a few (Fig. 3). While
the technology enables new applications, these new methods
enable applying the technology in the most efficient way to create
the best possible product for the end user. Similarly, in cell
biology, following old pre-software, non-iterative methods of
trying to plan everything before executing anything, hinders our
ability to develop new biology models most efficiently. In this
context, methods describe project management tools that guide
the R&D team. For example, Scrum breaks down the complete
task into small enough subtasks that a team can implement
within a short period of time. This, in return, enables adjusting
the path of the development based on new findings, regulations,
and especially user insights that come up throughout the devel-
opment phase39,40.

Researching the methods in applied projects further brought
forward the now widely accepted understanding that iteratively
generating and testing prototypes—representations of possible
solutions—lead to products that fulfill their purpose more effi-
ciently, are more user-friendly, and overall considered better. The
same approach was subsequently adopted in the development of
hardware products, where the widespread availability of new
tooling, such as 3D printers and laser cutters, reduced the product
iteration time in focused R&D teams from months if not years, to
days41.

First reports from MPS developers applying this methodology
support our hypothesis that rapid prototyping in an iterative
process involving scientists from different disciplines has the
potential to increase the translational value of in vitro cell
models42. Iteration can be applied as a tool at multiple levels:
hardware, software, or biology. As an example of a process of
integrating new sensors for an organ-on-chip device, Fuchs et al.2

describe how they need multiple disciplines other than biology
before they can iterate the biology itself. This is a step in the right
direction. However, the development workflow would be much
faster if the iterations could be applied at multiple levels in par-
allel such as biology, engineering, and data analysis. Bringing in
biology as the user of the MPS earlier in the development process
of the device has the potential to increase speed and efficiency in

cell biology model development. Sensor-extended imaging aims
to enable that process. It allows the application of the above-
described product development methods that in turn can make
the cell biology model development faster and more efficient,
similar to how 3D printing enabled rapid hardware design
iterations. The development of an integrated chamber system for
live cell microscopy followed that development principle by
including multiple prototype-test-iterate rounds, where each
iteration focused on a specific problem that gave guidance for the
next round. Based on that system it was possible to develop a
robust, biocompatible, and easy-to-use device to measure flow-
induced shear stress43.

Sensor-extended imaging. The key to advances in science is the
ability to observe and record controlled events: one will try in
vain to see all the things observed by us in the heavens, as Galileo
Galilei stated44, is as true for astronomy, as it is for particle
physics45. Yet cell biology has the added complexity of dealing
with living organisms that are outside of their physiological
context. The need to model a process that for multiple reasons
cannot be observed in its natural context is partially adding to the
reproducibility crisis in the field46–48: Cells are sensitive to much
more than just chemical stimuli: any perturbation has an impact
on the phenotype of the cell and thereby on the results of the
experiment. The advantage of in vitro cell models, to analyze each
cell type in isolation, comes with the downside of losing the tissue
context without exactly knowing what the influence of this loss
might be.

Given that any microenvironmental factors must be considered
perturbations and therefore significant factors in an in vitro cell
model, there is a clear requirement to control and measure those
perturbations. Keeping track of microenvironmental stimuli
requires the use of suitable sensors, which are ideally placed
outside of the biological specimen to avoid introducing another
perturbation.

These measures, in return, enable quality control of the
experimental setup. The envisaged accuracy by sensor integration
can only be meaningfully achieved by increasing the physical
complexity of how cell experiments are conducted. A prerequisite
to achieving high versatility and high data accuracy is the change
from well- to flow-based assays. In a flow-based assay, the sensor
measurements can be implemented without direct perturbation of
the cells themselves.

Fig. 3 Product development models. Two historically widely applied product development models in software development are the V-model (A) and the
Waterfall model (B). Their benefits and shortcomings triggered the development of more flexible models, such as Agile. Altogether, their applicability for
hardware is well established whereas this yet must be proven for assay development models in biotechnology.
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The various sensor readings, such as a number of metabolites
or oxygen consumption, synchronized with microscopy images
bring a level of detail and understanding to cell biology that can
significantly increase the validity and translatability of in vitro cell
findings to in vivo applications. All these data create a
multidimensional image of a time-dependent process that, by
necessity, is processed with the support of machine learning and
artificial intelligence. Such experimental setups are already used
in a wide range of experiments to develop more sophisticated
in vitro assays49, yet only a few of them are so far suitable for a
digitally integrated, iterative workflow. Fluidic-based systems like
organ-on-a-chip technologies as stand-alone platforms must be
combined with novel sensor technologies to speed-up their
adoption in drug development, basic science, and precision
medicine35. We define the above-described sensor-enhanced,
interactive imaging workflow as sensor-extended imaging,
expanding on previous definitions from high-throughput
workflows27 or AI-supported image analytics14 (Fig. 4).

One-way to drive adoption is the design of an experimental
setup with integrated sensors, a fluidics compartment that allows
application as well as retrieval of samples, microscopic imaging,
and a cloud-based software system to process the data in real-
time. The implementation of such a workflow, based on the
learnings from software and hardware product development
processes, is a dynamic, multidisciplinary, and iterative approach.
It enables the user to dynamically induce controlled perturbations
to a cell model and in parallel record the results in real-time.
There are three main advantages to this approach: (a) recording
complete events creates a histogram of what a cell has
experienced, provides valuable information for backtracking
error sources, (b) the dynamic access to the cell model enables
rapid testing and iterating hypothesis-generating experiments and
(c) training of ML-models combining imaging with sensor data in
real-time increases the translational value of the platform. The
sensor-supported real-time control enables precise, programma-
ble perturbations to establish a physiological microenvironment
in the cell compartment. Similarly, the recording of sensor
readings, as well as microscopy images gives real-time feedback of

how the perturbations affect the cell models. This enables the
processing of fundamentally new research questions, not only
when it comes to perturbations as a function of time (instead of
using time indirectly through pre-defined time points for
measurement), but it also allows using new recognizable events
by the sensors or fluorescent images as a trigger for applying
perturbations (i.e., give a drug when certain cell confluence is
reached or a biomarker is recognized). Taken together, the
transition from imaging to sensor-extended imaging can be
characterized by the addition of different measures with
programmable actuation plus the application of machine learning
to set the data into context.

Perspective. The current goal of biology is to observe and
understand as you cannot dissect and manipulate a patient but
must copy one either in an animal or in a petri dish. Due to the
complexity of nature, none of the current systems capture all
aspects of the biology it aims to mimic. The science in the field has
advanced in a way that it is no longer sufficient to manipulate and
measure the effect of this manipulation but to decipher the
environmental changes a cell is exposed to by those measurements.
This tracking can only be feasible with the help of digital sensors
and tools. This fundamental difference of recording and manip-
ulating the cell perturbations in a digital way changes the way we
can start looking at biology experiments—not anymore as a one-
way street of observing the cell, but as a real-time multivariable
interaction between the living and the programmable perturba-
tions. This is described as a sensor-extended imaging workflow that
enables faster iterations of the biology instead of the engineering
part of the MPS. Similar to the invention of 3D printers enabling
innovation in hardware, new tools, in this case, the sensor-
extended imaging, will enable explorative, iterative, and controlled
workflows in cell biology. As in the advent of iPSC, which revo-
lutionized the use of human cells in vitro, it will be possible to
design very rapidly MPS that are fit for purpose and replicate a
specific aspect of (patho)physiological status of an organ or organ
system50. For MPS to transform the applied sciences, there are
practical challenges to be solved, including usability, availability,

Fig. 4 Sensor-extended imaging workflow for in vitro cell models. A sensor-extended imaging workflow allows for generating data from a cell experiment
and using these data in parallel as control parameters for future perturbations. This is enabled by an iterative process adjusting the supply of nutrients and
compounds, programmable perturbations, and sensor-extended imaging measurements to each other.
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standardization, sterilization, to mention a few, also discussed by
Fuchs et al.2. We believe that those challenges can be solved by
developing chips, sensors, imaging solutions, and fluidics interfaces
separately in a modular fashion fit for purpose. Applying the
sensor-extended imaging as the underlying workflow for the
biology cell model development, enables the iterative development
urgently needed while controlling all perturbations. Thereby, truly
fit-for-purpose cell biology models will be made available to the
scientific community.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
We did not analyze or generate any datasets, because our work proceeds within a
theoretical approach.
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