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thickness mapping of sub-cellular biology at the
diffraction limit
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Mapping the cellular refractive index (RI) is a central task for research involving the com-

position of microorganisms and the development of models providing automated medical

screenings with accuracy beyond 95%. These models require significantly enhancing the

state-of-the-art RI mapping capabilities to provide large amounts of accurate RI data at high

throughput. Here, we present a machine-learning-based technique that obtains a biological

specimen’s real-time RI and thickness maps from a single image acquired with a conventional

color camera. This technology leverages a suitably engineered nanostructured membrane

that stretches a biological analyte over its surface and absorbs transmitted light, generating

complex reflection spectra from each sample point. The technique does not need pre-existing

sample knowledge. It achieves 10−4 RI sensitivity and sub-nanometer thickness resolution on

diffraction-limited spatial areas. We illustrate practical application by performing sub-cellular

segmentation of HCT-116 colorectal cancer cells, obtaining complete three-dimensional

reconstruction of the cellular regions with a characteristic length of 30 μm. These results can

facilitate the development of real-time label-free technologies for biomedical studies on

microscopic multicellular dynamics.
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The study of cellular refractive index (RI) attracts broad
interest as it enables a fundamental understanding of cellular
growth, differentiation, and mutations1–4, the development

of pharmaceuticals5,6, and the identification of severe diseases7,8,
including early signs of cancer9,10. Traditional research focused on
mapping the refractive index to elementary observables such as
density or protein concentration11–13. More recent pioneering
works combine RI measurements and machine learning (ML) to
develop automated bio-imaging workflows for label-free imaging
and medical diagnosis14–16.

This trend exploits the ability of artificial neural networks to
identify sparse patterns encoded in RI raw data, learning key bio-
logical traits for enhanced screening applications17. Machine
learning models trained on RI data reported accuracy as high as
95% in the classification of cells, showing great potential in stain-
free digital pathology and drug development18. Similarly, RI-trained
deep learning models demonstrated the ability to label unstained
cells digitally, enabling non-invasive analysis of sensitive specimens
for in vitro fertilization19.

Today, progress in this field requires developing technologies
capable of producing training data with high-throughput8,16,17.
Currently, state-of-the-art RI mapping compromises between
accuracy and speed. The most accurate RI mapping method, plas-
monic probe scanning, provides RI measurements with 10−5RIU
resolution, but requires tens of minutes to scan a single line of a
sample’s RI map20. Single-shot quantitative phase microscopy
(QPM) provides faster estimations but requires pre-existing
knowledge of the cell thickness21. However, the unavoidable
uncertainty in estimating the cell geometry is a source of significant
errors in QPM-based RI estimation, leading to measurements that
vary between 10−2RIU and 10−4RIU in resolution 22–25.

A technology providing fast and accurate RI mapping in real-
time while enhancing present methods could also open new
opportunities, including the real-time study of pharmacological
effects on cells or the subcellular dynamics occurring during
pathological bacteria replication26.

In this work, we implement a machine learning technique that
recovers point-to-point and segments in real-time a biological
specimen’s RI and thickness. This approach employs a single
image collected by a conventional color camera and a suitably
engineered nanostructured membrane. It does not require pre-
existing knowledge of the sample. We demonstrate sub-cellular
segmentation in real-time without staining or manual labeling
using an off-the-shelf digital camera and a traditional bright-field
microscope.

Results
Figure 1 illustrates the main idea of the proposed RI measuring
technology. It leverages a suitably engineered ultra-dark hydro-
philic surface of palladium (Pd). When a specimen carried inside a
droplet of phosphate buffer solution (PBS) deposits on the Pd
surface, it anchors itself to the surface at multiple points. The
hydrophilic nature of the Pd surface causes the PBS to spread over
the sample, resulting in the evaporation of the liquid within one
minute of the deposition. The lack of liquid produces progressive
dehydration of the specimen, causing it to flatten and stretch on the
surface, forming a suspended, thin biological film. When a white
light source illuminates this structure, the reflection spectrum
shows complex frequency modulations based on interference-
generated structural colors (Fig. 1b). A conventional red, green, and
blue (RGB) camera converts every pixel’s input spectral power
distribution (SPD) into a triplet of RGB values.

The camera integrates its color-matching functions (CMFs) with
the input SPD during the conversion. The CMFs (Fig. 1c, b(λ), g(λ),
and r(λ) curves) represent the device’s sensitivity to the three

primary color bands. The output RGB value encodes unique
information on the biological properties of the analyte, such as its
thickness and refractive index. After imaging, machine learning
software performs a pixel-by-pixel segmentation by recovering the
thickness and refractive indices from the RGB features encoded by
the camera. Figure 1d shows an example three-dimensional
reconstruction of the thickness map of an HCT-116 colorectal
cancer cell. The layered colors on the panels of Fig. 1e highlight
distinct sub-cellular clustered structures with similar refractive
indexes. This approach does not rely on cell preparation and is free
from chemical alterations. At the same time, it enables automated
measurement of the thickness and refractive index information in a
single parallel acquisition with diffraction-limited spatial resolu-
tion. This technique requires only a conventional camera and a
reflection microscope, opening up the possibility of in-situ inte-
grated setups compatible with equipment for cell culture growth
and development studies.

Figure 2a shows an example of the experimentally fabricated Pd
surface used for the analysis. Surface manufacturing uses electro-
deposition of Pd on a gold-coated glass piece (more details in
Methods). We optimize the deposition potential and time to create
large and prominent tree-like features (Fig. 2a, black area) and
achieve broadband light absorption. The combination of the Pd
surface texture and its low reflectivity produce the cell stretching to
thin film effect while simultaneously allowing the thin film inter-
ference colors to be detectable. Figure 2b, d shows scanning elec-
tron microscope (SEM) images obtained from the top and cross
sections of the sample. The deposited Pd grows on a layer
approximately 30 μm in height and comprises irregularly shaped
pillars, producing a pattern reminiscent of a rainforest canopy.
The insets in panels b and d show that each pillar is further textured
at the nanometer scale, contributing to their hydrophilic nature.
Figure 2c shows a photograph of the Pd surface at ×100 magnifi-
cation under a brightfield reflection microscope. The image high-
lights the highly absorbing nature of the sample, with only minor
light reflection at the tips of the Pd pillars under direct Köhler
illumination. The inset in Fig. 2c reports the region’s reflectivity
across visible wavelengths measured with an integrating sphere,
showing that the nanostructured Pd reflects less than 2% of visible
light relative to a silver mirror. Most of the light scattering from the
pillars occurs at high angles, enabling the detection of thin film
interference components that scatter within the numerical aperture
of the microscope objective.

The RGB color features of a stretched biological specimen depend
on its local thickness and refractive index uniquely. Figure 3a
illustrates this point quantitatively. The figure presents examples of
standard RGB (sRGB) colors generated via thin-film interference at
four representative film thicknesses (see Methods for more detail).
For each thickness, the refractive index varies in the biological range
from 1.33 to 1.55. Figure 3a shows that sRGB features encode unique
combinations of thickness and refractive index that do not intersect,
thus permitting the retrieval of these quantities with no ambiguity.
This feature allows for overcoming the limitation of QPM methods,
which require pre-existing knowledge of the sample thickness.

Figure 3b, c present a theoretical analysis of the resolution limits
of this method. The y-axis of the plots represents the level of var-
iation, in units of bits, that the image file may suffer from due to
thermal, electrical, or illumination fluctuations in the experimental
setup. This value can be estimated by examining the variation in
pixel values between images of the same object taken at different
times. For a given bit variation, each circle marks the thickness or
refractive index resolution below which two distinct biological
structures yield the same RGB triplet. The dotted lines of the image
help visualizing the resolution dependence on bit depth, but the
plots are not continuous as a discrete variation of camera bit depth
yields a discrete variation in the sensitivity of the technique.
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Figure 3b, c shows that this technique achieves state-of-the-art
refractive index resolutions (10−4) for a 16 bit per color channel
camera. Likewise, this method reaches nanometer thickness reso-
lution when employing cameras of 14 bits per channel or higher.

While the mapping between a spectrum and an RGB triplet is
unique within the expected biological thickness and RI ranges,
in a limited number of cases, the conversion of an SPD to the

bit-limited RGB space of the camera yields very close RGB values,
a phenomenon known as metamerism. Figure 4a shows an
example of this by plotting the theoretical reflection spectra of
two metameric films, S1 and S2. The two spectral curves represent
the response of thin films deposited over a silicon substrate with
RI values of 1.41, 1.49 and thickness values of 588 nm and 356
nm, respectively. These thicknesses and RI values lie within the
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Fig. 1 Technique overview. a Deposition of a biological specimen using a PBS droplet onto a nanostructured Pd surface. b Stretched specimen acting as a
thin film that exhibits interference-based colors when illuminated. Recording of spatially dependent colors by a digital camera. c Camera conversion of
analyte SPD into RGB values. d Recovered thickness map for an HCT-116 colon cancer cell. e Micrographs of an HCT-116 cell. The color overlays indicate
subcellular regions with similar refractive index.
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Fig. 2 Cell–substrate interaction. a Photograph of nanostructured Pd sample. The color squares correspond to the regions imaged in (b–d). b Overhead
SEM micrograph of nanostructured Pd. c Optical micrograph of nanostructured Pd. The inset shows the reflection average reflection spectra of the area.
d Cross-sectional SEM micrograph of nanostructured Pd.
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expected range of biological specimens27. While the two films
have different properties, when integrated through an 8-bit
camera’s CMFs they map to RGB colors that are almost indis-
tinguishable to the human eye: RGB = [149,251,122] (S1) and

RGB = [141,251,134] (S2). We designed and implemented a
machine learning recovery procedure that retrieves thickness and
RI without human bias or intervention for these challenging
metameric scenarios.
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The process starts by accurately characterizing the camera’s
CMFs through supervised learning. In this step, we used a training
and validation experimental dataset of 65 thin films of known
thickness and RI. We manufactured these thin films via the spin
coating of PMMA photoresist on silicon wafer pieces at different
speeds and measured their thickness and RI through spectroscopic
ellipsometry (see Supplementary Figs. 1 and 2a–d). We then
acquired reflection spectra and photograph pairs for each film
sample. Using these samples, we trained a regression model using
non-linear basis functions (see Supplementary Note 1 for imple-
mentation details). This approach yields the CMFs up to the
desired resolution in frequency, controlled by the size of the
regression model. This training process allows the measurement of
any biological thin film imaged by the camera, as the ML algorithm
is agnostic to the type of cell or imaged material, learning only the
relation between the spectral power distribution of the specimen
and the color outputted by the camera.

After estimating the CMFs, the ML recovery algorithm can
extract the thickness and RI values for each pixel of a sample’s
image. However, due to metamerism, working with each pixel as an
isolated element can result in incorrect recoveries. The ML algo-
rithm addresses this by pooling information from pixels with close
RGB values, generating groups of adjacent pixels possessing similar
RGB colors in the image. This process uses an unsupervised
k-means clustering algorithm that labels pixels of similar RGB
colors as belonging to the same cluster. The ML recovery procedure
automatically sets the number of clusters to yield an average var-
iation of less than 2% between the RGB values of the pixels in each
cluster and the cluster centroid RGB value. We set this value as a
threshold found through successive iterations of the algorithm,
with the condition that a lower value would result in the differences
in recovered RI and thickness values for the pixels in a cluster being
below the sensitivity of our setup. Slight RGB differences between
adjacent pixels correspond to nanometer scale fluctuations in the
material’s thickness, which the camera perceives even at the single
nanometer. (see Fig. 3c).

Figure 4b illustrates clustering for an experimental thin film
sample manufactured with the parameters of S2. Running the
clustering process results in two clusters for the image, one cor-
responding to the green area of the thin film and another for the
black edge of the field stop of the microscope used to take the
image. The average difference between the RGB triplets in the
green cluster and the centroid RGB value is 0.86%.

In each cluster, ML recovery employs a pooling strategy similar
to using pooling layers in convolutional neural networks28. For a
subset of 1000 randomly sampled pixels within the cluster, we
compute a mean square error (MSE) cost map:

MSE ¼ 1
3
X � X̂
�
�

�
�
2 ¼ 1

3
∑
i

Xi � X̂i

� �2
; ð1Þ

where X= [X1,X2,X3]= [R,G, B] is the measured RGB triplet of
the pixel, and X̂ ¼ ½X̂1; X̂2; X̂3� ¼ ½R̂; Ĝ; B̂� a numerically computed
thin film RGB value from a table of RGB values corresponding to
thin films of known RI and thickness values (see Supplementary
Fig. 2e, f). We calculate the RGB table only once, and the cost map
executes in parallel for each cluster. Figure 4c illustrates the cost
maps associated with four random pixels in the cluster, and Fig. 4d
presents an expanded view of the map of pixel ii. Because of
metamerism, the MSE cost map shows two local minima (yellow
areas), one corresponding to the thickness and RI values of S1 and
the other to the values of S2. The ML recovery procedure computes
the probability of each of these RI and the correct thickness values
by slicing the MSE map along each axis and comparing the mini-
mum values (Fig. 4d pink and light blue probability areas). This step
results in a 0.62 probability that the acquired RGB value belongs to
the RI and thickness of S1 for pixel ii.

The algorithm then pools together the cost maps of each pixel
within the same cluster to improve the low-confidence prob-
abilities and correctly identify the thickness and RI values of the
film. This procedure averages out outliers and yields the MSE
map depicted in Fig. 4e. This map presents a single minimum,
which correctly corresponds to the sample’s thickness and RI
values with unitary confidence and no ambiguity.

Figure 5 summarizes validation results for the ML RI and
thickness recovery on synthetic cell-like objects with engineered
thickness and refractive index. These synthetic cells are ≈30 μm
wide squares of cured SU-8 photoresist (see Methods for fabrica-
tion details). We measured the cell’s thickness t using optical and
contact profilometry (see Supplementary Fig. 1), obtaining
t= (567 ± 6) nm, and obtained the ground truth RI from the resist
manufacturer datasheet. Figure 5a shows a photograph of a syn-
thetic cell through a reflection microscope at ×100 magnification.
The blurring on the right side of Fig. 5a does not originate from a
thickness variation but is the result of a slight tilt of the cell, which
places this area outside the depth of field of the ×100, 0.9 NA,
objective we use to acquire the image. The cell is of a near uniform
green color except for two dark spots within its area, which cor-
respond to supporting Pd pillars seen through the cell. Figure 5b
presents a three-dimensional image of the cell positioned on the Pd
substrate, illustrating how the cell is supported at a slight angle by
these two pillars. Figure 5c, d shows the ML calculated thickness
and RI maps of the artificial cell structure. As the cell is uniform in
both thickness and refractive index, the plots present constant
values for both quantities over the cell’s surface, save for the areas
where the Pd pillars are detected. Our algorithm treats the Pd
pillars background as a black thin film during the calculations, and
will not further processes these areas for RI and thickness recovery.
Figure 5e, f presents the absolute uncertainty against the ground
truth values. We calculated the uncertainty as the difference
between the values recovered by our algorithm and ground truth
measurements of the refractive index and thickness. The procedure
yields results with an average discrepancy of 0.6 nm in the thickness
recovery compared to the average cell thickness obtained with the
profilometer measurements and of 3 × 10−3RIU compared to the
datasheet RI over the synthetic cell area.

Figure 6 presents the results of the recovery process applied to
a natural cell. Figure 6a shows a photograph of an HCT-116 colon
cancer cell after deposition and stretching on the Pd surface.
Spatially varying thin film interference colors are visible across
the specimen. The dark spots in the central part of the cell cor-
respond to debris from a Pd pillar that moved over the cell during
the deposition process. The blurriness on edge results from the
short depth of field of the ×100, 0.9 NA objective used to capture
the image. We set the microscope to focus on the largest possible
cell area as the sample must be in focus to prevent overlap
between neighboring pixels’ RGB values and allow the technique
to obtain sharp RI and thickness maps. Figure 6b, c shows the ML
computed RI and thickness maps of the specimen using 50 color
clusters. This number results in a maximum variation considering
all clusters of 1.98% between the RGB values of the pixels and
their cluster centroid RGB triplet. Consistently with previously
reported RI maps for HCT-116 cells, no sharp nucleous-
cytoplasm boundary is apparent, however, the RI values shown
in Fig. 6b are larger than those reported in the literature for living
HCT-116 cells by approximately 0.1 RIU29,30. This RI increase is
a consequence of cell dehydration, and is consistent with the
previously reported RI increase of up to 0.15 RIU across the
visible wavelength range for dehydrated tissues and isolated cells
undergoing dehydration31,32. The ML algorithm correctly isolates
the Pd background in both results, grouping all pixels with low
RGB values into the background cluster. This clustering step
produces a sharp boundary separating the cell from the Pd
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according to whether the RGB values of the pixels are above the
threshold the algorithm defines as the background. The algorithm
likewise identifies and groups the Pd debris on the cell with the
background pixels. Figure 6d illustrates the ten most significant
clusters, excluding the background, that the algorithm finds for
the photographed cells. The cell’s dark gray interior represents the
remaining smaller clusters. Each cluster corresponds to groups of
pixels the algorithm identifies as having equal RI and thickness
values. Figure 6e is an SEM close-up of the specimen. The panel
shows the thin film nature of the cell and the raised height of the
specimen edges relative to the rest of the body that cause the edge
blurriness of Fig. 6a. We ensured the SEM imaged cell was the
same as the cell shown in Fig. 6a by scratching markings in the Pd
surrounding the cell. We estimated the cell thickness from the
SEM image by measuring the number of pixels in the image
corresponding to the raised border of the cell, and then multi-
plying this value by the size in nanometers of one pixel. The
estimated cell’s thickness from the SEM image lies between 250
nm and 800 nm, in good agreement with reconstructed values in
Fig. 6c. Figure 6f presents a complete 3D reconstruction of the cell
thickness profile with a color overlay that varies according to the
point-to-point RI value.

Discussion
This work introduced a machine-learning-based single measure-
ment platform for recovering thickness and refractive index maps
from cells. This technology uses a conventional color camera and a
nanostructured surface that stretches analytes while absorbing
transmitted light. The technique provides nanometer accuracy for
thickness measurements and up to 10−4RIU for RI measurements.
We validated this approach by showing real-time data acquisition
and measurement of cellular and cellular-like structures.

The proposed platform enhances the capabilities of existing
systems, providing a single automated platform yielding accurate

predictions for the real-time processing of biological data. Mea-
surements leverage standard laboratory equipment in the form of
an epi-illumination microscope, whose footprint can, in the
future, be reduced to a single flat-optical surface, providing a
high-level of integration33. The system requires only minimal
preparation of the cells and employs industrial electrochemical
manufacturing that scales up to any desired area.

Beyond the initial demonstration and proof-of-concept, this
work opens multiple future research avenues. At the software
level, new image routines can automate locating areas where the
cell presents folding effects likely to lead to spurious results and
detect out-of-focus regions for their exclusion from the analysis.
Work in this area can leverage the large body of research devel-
oped in video understanding using deep-learning34–36.

From a more material-oriented perspective, further study can
investigate alternative nanostructuring configurations to stretch
different cell classes better while minimizing light transmission.
Varying the sample illumination by introducing filters on the
microscope light path can also lead to further research to improve
detection accuracy for a given camera bit conversion precision.

While the cell measurement is instantaneous in this technique,
combining this measuring platform with automated pipetting
systems could enhance the setup speed by accelerating the spe-
cimen deposition process. Instruments that accelerate the dehy-
dration process by positioning the substrate in a dehydration
chamber would further reduce the setup to measurement time,
providing options for developing commercial cytometry equip-
ment based on this platform.

The proposed technique could help biological investigations
with a real-time and inexpensive platform for various applications
to automate refractive index measurements. While an exhaustive
analysis goes beyond the scope of this work, we discuss a few
relevant examples next. In the cancer care community, this
method could help by automatically screening refractive index
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correspond to Pd pillars visible through the cell. b 3D model showing the relative positioning of the synthetic cell on the Pd pillars. c, d 3D reconstruction of
the thickness and refractive index maps obtained for the synthetic cell. e, f Uncertainty maps for the thickness and RI of the synthetic cell.
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markers in cells with simple, integrated equipment with massive
deployment. Differentiating between healthy and cancerous cells
can be achieved with a RI resolution of 10−2RIU25,37, which we
demonstrate in this work.

Future research could use the method introduced here to study
in-vitro cell culture sheets. Placing cellular monolayers on the Pd
substrate would enable the single measurement study of cellular
growth, differentiation, and responses to biophysical or biochemical
cues through the lens of RI mapping for multicellular assemblies1,38.
The technology can also help the detection of other refractive index
markers indicating changing diseases in the human blood, such as
malaria, with a resolution of 10−2RIU in the RI map of
erythrocytes7. The result of this work can also benefit pharmaco-
logical research. It could provide low-cost and easy-to-use equip-
ment that monitors the effect of new antibiotics from changes in the
refractive index of bacterially infected cells, a task that requires a
10−3RIU resolution39, attainable with this technology.

Methods
Nanostructured Pd sample fabrication. Pd samples were fabri-
cated through an electrodeposition process using a three elec-
trodes configuration with an Autolab PGSTAT204 potentiostat.
The working electrode was connected to a gold coated glass
substrate piece (EMF corporation) cut to dimensions of 1 cm ×
2.54 cm. The counter electrode was connected to a 1 cm2 plati-
num sheet electrode, and a Ag/AgCl electrode was used as the
reference. Electrodeposition was performed by submersing half of
the coated glass substrate into a 40 mmol K2PdCl4 in 0.5 mol
HCL solution, and applying a −250 mV bias for 300 s.

Computation of thin film colors. The RGB colors of thin films
were computed by using a python implementation of the transfer
matrix method40. For a given thickness and refractive index the

reflection spectra was obtained by computing the reflected wave
power for normally incident light on a single layer of material
surrounded by air from 400 nm to 800 nm in steps of 1 nm.
Numerical integration of the reflection spectra with each of the
CIE 1931 2∘ observer XYZ color matching functions was then
carried out to obtain the tristimulus values. These values were
converted to a normalized linear RGB space by matrix multi-
plication. RGB triplets with values outside the [0.0–1.0] range
were treated by scaling the triplet so that the maximum value was
1.0 and by clipping negative values to 0.0. Finally, sRGB values
were obtained by applying gamma correction with gamma = 2.2
and rescaling to the [0–255] range.

Synthetic cells fabrication. The synthetic cells were fabricated
using a resist lift-off process. We spin coated the positive resist
AZ1505 (Microchemicals GmbH) on a silicon wafer at 3000
RPM. The wafer was then baked at 100 °C for 60 s and flood
exposed with a 300 mJ cm−2 dose of UV light. A layer of the
negative tone resist SU-8 2000.5 (Kayaku Advanced Materials,
Inc.) was then spin coated on the positive resist layer at 3000
RPM and baked at 100 °C for 60 s. Using a photolitography mask
with 30 μm square openings we exposed the SU-8 to a 60 mJ
cm−2 dose. The wafer was then baked at 95 °C for 60 s. The SU-8
layer was subsequently developed using SU-8 developer (Kayaku
Advanced Materials, Inc.) for 60 s with gentle agitation. Finally,
the wafer was submersed in MIF AZ 726 developer (Micro-
chemicals GmbH) to dissolve the AZ1505 layer and obtain a
solution with suspended SU-8 synthetic cells.

Cell culture and solution preparation. HCT-116 cells were
cultured in a high glucose GlutaMAX DMEM media (Thermo
Fisher Scientific) supplemented with 10% fetal bovine serum and
incubated at 37 °C with 5% CO2. Solutions containing cells were
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Fig. 6 3D reconstruction and segmentation of an HCT-116 cell. a Photograph of an HCT-116 cell stretched on the Pd substrate showing thin film
interference based spatially dependent colors. b, c. ML recovery results for the thickness and RI of the specimen in (a). d Ten largest clusters found for the
cell depicted in (a), the remaining clusters are grouped as the dark gray interior of the cell. e SEM micrograph of the cell on the Pd substrate. f 3D
reconstruction of the thickness map of the cell with overlayed RI information.
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prepared by washing the cultivated cells with warm Dulbecco’s
Phosphate Buffered Saline (Sigma-Aldrich), and fixing them with
4% paraformaldehyde (Sigma-Aldrich).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All data supporting the findings of this study is available via the repository: https://
github.com/burguea/biocolors.

Code availability
All custom algorithms used in this study available at the following GitHub repository:
https://github.com/burguea/biocolors.

Received: 28 April 2023; Accepted: 20 January 2024;

References
1. Cetin, A. E., Topkaya, S. N., Yalcin-Ozuysal, O. & Khademhosseini, A.

Refractive index sensing for measuring single cell growth. ACS Nano 15,
10710–10721 (2021).

2. Cotte, Y. et al. Marker-free phase nanoscopy. Nat. Photonics 7, 113–117 (2013).
3. Mir, M. et al. Optical measurement of cycle-dependent cell growth. Proc. Natl

Acad. Sci. 108, 13124–13129 (2011).
4. Habaza, M. et al. Rapid 3D refractive-index imaging of live cells in suspension

without labeling using dielectrophoretic cell rotation. Adv. Sci. 4, 1600205
(2017).

5. Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G.
Gradient light interference microscopy for 3D imaging of unlabeled
specimens. Nat. Commun. 8, 210 (2017).

6. Wax, A. et al. In situ detection of neoplastic transformation and
chemopreventive effects in rat esophagus epithelium using angle-resolved low-
coherence interferometry. Cancer Res. 63, 3556–3559 (2003).

7. Park, Y. et al. Refractive index maps and membrane dynamics of human red
blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. USA
105, 13730–13735 (2008).

8. Yoon, J. et al. Identification of non-activated lymphocytes using three-
dimensional refractive index tomography and machine learning. Sci. Rep. 7,
6654 (2017).

9. Backman, V. et al. Detection of preinvasive cancer cells. Nature 406, 35–36
(2000).

10. Majeed, H., Nguyen, T. H., Kandel, M. E., Kajdacsy-Balla, A. & Popescu, G.
Label-free quantitative evaluation of breast tissue using Spatial Light
Interference Microscopy (SLIM). Sci. Rep. 8, 6875 (2018).

11. Phillips, K. G. et al. Optical quantification of cellular mass, volume, and
density of circulating tumor cells identified in an ovarian cancer patient. Front.
Oncol. 2, 72–72 (2012).

12. Barer, R. Interference microscopy and mass determination. Nature 169,
366–367 (1952).

13. Davies, H. G. & Wilkins, M. H. F. Interference microscopy and mass
determination. Nature 169, 541–541 (1952).

14. Christiansen, E. M. et al. In silico labeling: predicting fluorescent labels in
unlabeled images. Cell 173, 792–803.e19 (2018).

15. Marrison, J., Räty, L., Marriott, P. & O’Toole, P. Ptychography—a label free,
high-contrast imaging technique for live cells using quantitative phase
information. Sci. Rep. 3, 2369 (2013).

16. Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6,
21471 (2016).

17. Jo, Y. et al. Holographic deep learning for rapid optical screening of anthrax
spores. Sci. Adv. 3, e1700606 (2017).

18. Hejna, M., Jorapur, A., Song, J. S. & Judson, R. L. High accuracy label-free
classification of single-cell kinetic states from holographic cytometry of
human melanoma cells. Sci. Rep. 7, 11943 (2017).

19. Nygate, Y. N. et al. Holographic virtual staining of individual biological cells.
Proc. Natl Acad. Sci. USA 117, 9223–9231 (2020).

20. Lee, J.-Y., Lee, C.-W., Lin, E.-H. & Wei, P.-K. Single live cell refractometer
using nanoparticle coated fiber tip. Appl. Phys. Lett. 93, 173110 (2008).

21. Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in
biomedicine. Nat. Photonics 12, 578–589 (2018).

22. Zhang, Q. et al. Quantitative refractive index distribution of single cell by
combining phase-shifting interferometry and AFM imaging. Sci. Rep. 7, 2532
(2017).

23. Charrière, F. et al. Cell refractive index tomography by digital holographic
microscopy. Opt. Lett. 31, 178–180 (2006).

24. Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719
(2007).

25. Choi, W. J. et al. Full-field optical coherence microscopy for identifying live
cancer cells by quantitative measurement of refractive index distribution. Opt.
Express 18, 23285–23295 (2010).

26. Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: past,
present and future. Lab Chip 16, 634–644 (2016).

27. Gul, B., Ashraf, S., Khan, S., Nisar, H. & Ahmad, I. Cell refractive index:
Models, insights, applications and future perspectives. Photodiagnosis
Photodyn. Ther. 33, 102096 (2021).

28. Michelucci, U. in Michelucci, U. (ed.) Advanced Applied Deep Learning :
Convolutional Neural Networks and Object Detection, 79–123 (Apress, 2019).
https://doi.org/10.1007/978-1-4842-4976-5_3.

29. Sun, L. et al. Graphene-based confocal refractive index microscopy for label-
free differentiation of living epithelial and mesenchymal cells. ACS Sens. 5,
510–518 (2020).

30. Sun, L. et al. Refractive index mapping of single cells with a graphene-based
optical sensor. Sens. Actuators B: Chem. 242, 41–46 (2017).

31. Oliveira, L., Lage, A., Pais Clemente, M. & Tuchin, V. Optical characterization
and composition of abdominal wall muscle from rat. Opt. Lasers Eng. 47,
667–672 (2009).

32. Beuthan, J., Minet, O., Helfmann, J., Herrig, M. &Müller, G. The spatial variation
of the refractive index in biological cells. Phys. Med. Biol. 41, 369 (1996).

33. Pan, M. et al. Dielectric metalens for miniaturized imaging systems: progress
and challenges. Light.: Sci. Appl. 11, 195 (2022).

34. Esteva, A. et al. Deep learning-enabled medical computer vision. npj Digital
Med. 4, 1–9 (2021).

35. Makarenko, M. et al. In: 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 12682–12692 (2022).

36. Jin, Y. et al. SV-RCNet: workflow recognition from surgical videos using
recurrent convolutional network. IEEE Trans. Med. Imaging 37, 1114–1126
(2018).

37. Liang, X. J., Liu, A. Q., Lim, C. S., Ayi, T. C. & Yap, P. H. Determining
refractive index of single living cell using an integrated microchip. Sens.
Actuators A: Phys. 133, 349–354 (2007).

38. Duval, K. et al. Modeling physiological events in 2D vs. 3D cell culture.
Physiology 32, 266–277 (2017).

39. Ekpenyong, A. E. et al. Bacterial infection of macrophages induces decrease in
refractive index. J. Biophotonics 6, 393–397 (2013).

40. Byrnes, S. J. Multilayer optical calculations. Preprint at https://arxiv.org/abs/
1603.02720 (2016).

Author contributions
A.B.L., M. B., B.N.M.d.O., F.G, Y.T., V.M., and N.L. developed and characterized the Pd
Surface. A.B.L., F.G., and A.F. built the optical setup. B.N.M.d.O., and A.G. prepared the
HCT-116 cells. A.B.L. and F.G. fabricated the synthetic cells. M.B., Y.T, V.M., N.L., and A.F.
conceived the analysis of microorganisms using thin-film interference and performed
preliminary experiments. A.B.L., F.G., and B.N.M.d.O. imaged the cells on the Pd. A.B.L.
and M.M. wrote the code and performed the data analysis. C.L. and A.F. supervised the
project. A.B.L. wrote the paper with editorial inputs from M.M., C.L., and A.F.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-024-05839-w.

Correspondence and requests for materials should be addressed to Andrea Fratalocchi.

Peer review information Communications Biology thanks Arif Engin Cetin and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Primary Handling Editors: Anam Akhtar and Christina Karlsson Rosenthal. A peer
review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-024-05839-w

8 COMMUNICATIONS BIOLOGY |           (2024) 7:154 | https://doi.org/10.1038/s42003-024-05839-w |www.nature.com/commsbio

https://github.com/burguea/biocolors
https://github.com/burguea/biocolors
https://github.com/burguea/biocolors
https://doi.org/10.1007/978-1-4842-4976-5_3
https://arxiv.org/abs/1603.02720
https://arxiv.org/abs/1603.02720
https://doi.org/10.1038/s42003-024-05839-w
http://www.nature.com/reprints
www.nature.com/commsbio


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-024-05839-w ARTICLE

COMMUNICATIONS BIOLOGY |           (2024) 7:154 | https://doi.org/10.1038/s42003-024-05839-w |www.nature.com/commsbio 9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Real-time simultaneous refractive index and thickness mapping of sub-cellular biology at the diffraction�limit
	Results
	Discussion
	Methods
	Nanostructured Pd sample fabrication
	Computation of thin film�colors
	Synthetic cells fabrication
	Cell culture and solution preparation
	Reporting summary

	Data availability
	References
	Code availability
	References
	References
	Author contributions
	Competing interests
	Additional information




