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A genome-wide association study reveals the
relationship between human genetic variation and
the nasal microbiome
Xiaomin Liu 1,2,9, Xin Tong1,9, Leying Zou1,9, Yanmei Ju1,2,9, Mingliang Liu1, Mo Han 1, Haorong Lu3,

Huanming Yang 1,4, Jian Wang1,4, Yang Zong1, Weibin Liu1, Xun Xu 1, Xin Jin 1, Liang Xiao1,5,

Huijue Jia 6,7✉, Ruijin Guo 1✉ & Tao Zhang 8✉

The nasal cavity harbors diverse microbiota that contributes to human health and respiratory

diseases. However, whether and to what extent the host genome shapes the nasal micro-

biome remains largely unknown. Here, by dissecting the human genome and nasal meta-

genome data from 1401 healthy individuals, we demonstrated that the top three host genetic

principal components strongly correlated with the nasal microbiota diversity and composi-

tion. The genetic association analyses identified 63 genome-wide significant loci affecting the

nasal microbial taxa and functions, of which 2 loci reached study-wide significance

(p < 1.7 × 10-10): rs73268759 within CAMK2A associated with genus Actinomyces and family

Actinomycetaceae; and rs35211877 near POM121L12 with Gemella asaccharolytica. In addition

to respiratory-related diseases, the associated loci are mainly implicated in cardiometabolic

or neuropsychiatric diseases. Functional analysis showed the associated genes were most

significantly expressed in the nasal airway epithelium tissue and enriched in the calcium

signaling and hippo signaling pathway. Further observational correlation and Mendelian

randomization analyses consistently suggested the causal effects of Serratia grimesii and

Yokenella regensburgei on cardiometabolic biomarkers (cystine, glutamic acid, and creatine).

This study suggested that the host genome plays an important role in shaping the nasal

microbiome.
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Bacteria in the nasal cavity have been primarily studied in the
context of infection1–9. Staphylococcus aureus is a key
pathogenic bacterium in chronic rhinosinusitis with nasal

polyps1, and its presence increases the risk of infection2. Reduced
bacterial diversity in the nasal cavity has been linked to asthma,
allergic rhinitis (AR), and asthma with AR comorbidity3,4. The
nasal microbiota also affected host susceptibility to acute
respiratory tract infections (ARTI)5,6 and correlated with the
clinical outcome of COVID-197. Moraxella catarrhalis, Haemo-
philus influenzae, and Streptococcus pneumoniae have been
shown to increase the risk of otitis media8 and ARTI9. The nasal
epithelium is being actively explored for drug delivery10, espe-
cially given the olfactory defects seen for neurodegenerative dis-
eases. In a murine model of influenza infection, intranasal
administration of Bifidobacterium longum protected against
lethal infections11. The outbreak of the SARS-CoV-2 pandemic
has brought greater attention to understanding the significance of
the respiratory tract microbiota. However, there have been fewer
studies focusing on characterizing the microbiome profile of the
upper respiratory tract, particularly the nostrils12. Therefore, it is
now more important than ever to gain a comprehensive under-
standing of the nasal microbiome as an ecological community,
including investigating the extent to which host genetics and
other factors influence its composition.

Given the emerging evidence of human genetic influences on the
faecal microbiome13–19 and the oral microbiome20,21, here we first
aim to investigate whether human genetics also contribute to the
nasal microbiome. Previous analysis using 16 S rRNA gene ampli-
con sequencing on twins did not find monozygotic twins to harbour
a more similar nasal microbiota than dizygotic twins or unrelated
pairs but reported twins concordance in the copy number per
swab22. Another study focusing on 144 European adults identified
very limited host genetic variations influencing upper airway
microbial composition23. These two studies were investigated in
individuals with a small sample size. Hence, the contribution of
human genes to the composition and functions of the nasal
microbiome remains largely unclear. Gaining insight into the fac-
tors including genetic and non-genetic that influence and char-
acterize the nasal microbiome within a meticulously designed
cohort is essential for comprehending both upper respiratory health
and its broader implications for systemic well-being.

The 4D-SZ cohort is a carefully designed multi-omics
cohort19,20,24–27, comprising shotgun data of the metagenome
from multiple body sites including the nasal cavity and host
genome. It also incorporates information on metabolic traits,
extensive questionnaires, and comprehensive clinical data. Based
on the nasal metagenome and host genome data of 1401 healthy
adults from the 4D-SZ cohort, we first estimated the impact of
host genome on the nasal microbial community and demon-
strated the great influence of host genetics principal components
on the diversity and composition of the nasal microbiome. Then,
we identified genome-wide and study-wide significant associa-
tions of host genetic loci with microbial taxa and functional
pathways by performing metagenome-genome-wide association
study (M-GWAS). We investigated the functional, tissue, and
disease enrichments of the nasal microbiome-associated loci.
Furthermore, using multi-omics data from the same 4D-SZ
cohort, we compared the influence of host genetics and other host
factors on shaping the nasal microbiome. Finally, we illustrated
the impact of host metabolites such as cysteine on the nasal
microbiome through the use of Mendelian randomization (MR).

Results
Host genetics correlated with the nasal microbiota diversity
and composition. We set out by examining the correlation

between host genetic variations and the overall diversity of the
nasal microbiome in 1401 individuals (63% females; a mean age
of 30 years old) with high-depth metagenome data as well as
integrated host genome data (a mean depth of 30× for host
genome and an average sequencing data of 77.31 ± 23.00 Gb for
nasal samples; Supplementary Data 1; Supplementary Fig. 1;
Methods). The host genetic principal components (PCs) were
examined, and the results revealed strong associations between
the top three PCs and microbial α-diversity (p < 0.05 for both
Shannon and Simpson indices based on species-level abundances,
multivariable linear model; Fig. 1). Specifically, PC1 (r=−0.07,
p= 8.7 × 10−3), PC2 (r=−0.14, p= 1.39 × 10−7), and PC3
(r=−0.08, p= 1.8 × 10−3) were markedly correlated with the
Shannon index. This is consistent with previous analyses of low-
depth human genome sequences from 93 individuals in the
Human Microbiome Project (HMP), which reported PC1 to
associate with α-diversity in the anterior nares13. We verify that
the top two host genetic PCs in our cohort are strongly associated
with self-reported ancestry, namely the geographical origin of
their ancestry (commonly before and including grandfather) from
northern or southern China (p < 2.2 × 10−16 for PC1 and
p= 1.78 × 10−11 for PC2, Wilcoxon rank-sum test; Fig. 1b, c). We
further confirmed that the individuals originating from northern
China exhibited a higher nasal microbial α-diversity than those
who originated from southern China (mean Shannon index of
1.35 vs 1.28; Wilcoxon Rank-Sum test; p= 9.22 × 10−3; Supple-
mentary Fig. 2), despite the individuals themselves currently
living in the same city. Also, the host genetic PC1 exhibited a
correlation with the abundances of 14 nasal genera, including
Micrococcus, Anaerococcus, Elizabethkingia, Campylobacter,
Finegoldia, Yokenella, Serratia, Streptococcus, Gemella, Staphylo-
coccus, Actinomyces, Malassezia, Veillonella, and Prevotella
(Supplementary Data 2; Spearman test; False Discovery Rate
(FDR) p < 0.05). Nine of these 14 PC1-associated genera also
displayed differential abundances between the individuals deriv-
ing from China’s northern and southern regions (Supplementary
Data 2; p < 0.05).

Furthermore, the top three host genetic PCs showed correla-
tions with four of the top ten microbiome β-diversity principal
coordinates (PCos; computed based on species-level Bray–Curtis
dissimilarity; p < 0.05 for pairwise associations, Spearman corre-
lation; Fig. 1). Additionally, the top eight host genetic PCs (PC1-
PC8) showed at least one correlation with any of the microbiome
PCos among PCo2 to PCo8. These results suggested host genetics
greatly influence nasal bacterial diversity and composition.

We also investigated associations between host genetic variants
and nasal microbiome α-diversity and β-diversity (namely the top
ten PCos). This analysis found two loci with marginal genome-wide
significance (p < 5 × 10-8, Fig. 1e, Supplementary Data 3). The SNP
rs77221359, located in the intronic region of CACNB2, was
significantly associated with the Shannon index representing the
α-diversity of nasal samples (p= 2.6 × 10-8; Supplementary Fig. 3).
Notably, CACNB2, which encodes a subunit of a voltage-dependent
calcium channel protein that is critical for mediating intracellular
Ca2+ influx, has been established as a risk gene for psychiatric
disorders such as schizophrenia and bipolar disorder28,29. Addition-
ally, the SNP rs77221359 has been linked to multiple phenotypes or
diseases, including chronic heart failure (p= 0.007), asthma
(p= 0.012), and chronic sinusitis (p= 0.015), as reported in the
biobank Japan (BBJ) database30. The second identified significant
association was for SNP rs79409173, located in the intronic region of
WNK1, with PCo6 (p= 2.4 × 10-8; Supplementary Data 3). The
serine-threonine kinase WNK1 functioning as a Cl− sensor plays an
important role in mature neuron development31,32. These are
interesting associations, given the involvement of nasal microbiome
in asthma, chronic sinusitis, and neurological diseases33.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-024-05822-5

2 COMMUNICATIONS BIOLOGY |           (2024) 7:139 | https://doi.org/10.1038/s42003-024-05822-5 | www.nature.com/commsbio

www.nature.com/commsbio


Fig. 1 Host genetic principal components (PCs) associated with the nasal microbial diversity and compositions. a Correlation (R2) estimates of ten host
PCs (PC1-PC10) with the nasal microbial diversity (Shannon and Simpson indices) and compositions (PCo1-PCo10), evaluated using a linear model. Red
colours denoted the positive correlation and blue denotes the negative correlation. *p < 0.05, **p < 0.01 and ***p < 0.001. b, c indicate the correlations
between the host genetic PC1 and the nasal microbial Shannon index (b) and Simpson index (c), respectively. d, e indicate the correlations between the
host genetic PC2 and the nasal microbial Shannon index (d) and Simpson index (e), respectively. The individuals whose ancestry lived in the northern or
the southern China were marked in red and blue, respectively. Grey dots represented individuals with the unknown (“NA”) ancestry information.
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Host genetics strongly associated with nasal bacterial or fungal
taxa and functions. With this large cohort of both whole genome
and whole metagenome data, we next conducted M-GWAS on
the nasal microbiome. The microbial taxonomy and function
profiles were determined by aligning metagenomic reads to
marker genes according to metaphlan3 and humann3, respec-
tively (Supplementary Fig. 3a-b). After filtering highly correlated
features, we obtained 293 independent nasal microbial features
(Supplementary Data 4; 86 taxa and 207 functions; r2 < 0.995
using a greedy algorithm,Methods). The M-GWAS analyses were
performed on 7 million human genetic variants (minor allele
frequency (MAF) ≥ 1%) by adjusting for age, gender, body mass
index (BMI), sequencing read counts, and the top ten host PCs.
Our GWAS analyses did not demonstrate any evidence of an
excess false positive rate (genomic inflation factors λGC ranged
from 0.979 to 1.054, with a median of 1.012; Supplementary
Fig. 4).

In total, we identified 180 independent associations involving
63 independent loci (distance < 1Mb and r2 < 0.2) and 46
independent taxa/functions reaching genome-wide significance
(p < 5 × 10−8; Fig. 2 and Supplementary Data 5). Out of the 63
loci we identified, 17 were associated with 14 microbial taxa and
47 were associated with 32 bacterial functions. Specifically, seven
of the 63 loci were associated with at least two independent taxa
or functions (Fig. 2 and Supplementary Data 5). All genome-wide
significant associations were listed in Supplementary Data 5. The
63 genome-wide loci explained a higher average fraction of
variance (R2) for microbial functions (mean R2 of 8.7%; ranging
from 2.49% for PWY-5138: unsaturated, even numbered fatty
acid β-oxidation to 19.01% for ANAGLYCOLYSIS-PWY: glyco-
lysis III (from glucose); Supplementary Data 6) compared to
microbial taxa (mean R2 of 5.6%; ranging from 2.35% for species
Malassezia globosa to 12.48% for class Actinobacteria).

With a more conservative Bonferroni-corrected study-wide
significant p-value of 1.71 × 10−10 (= 5 × 10−8/293 for 293
M-GWAS tests), we identified 2 genomic loci associated with 3
nasal microbial taxa (Fig. 2).

The strongest association was observed for SNP rs73268759
located in the intronic region of the CAMK2A gene, with minor
allele C (MAF= 0.021) positively associated with the presence/
absence phenotype of genus Actinomyces (Fig. 3a-b;
p= 7.75 × 10−13) and family Actinomycetaceae (p= 2.06 × 10−12;

spearman r= 0.970 with Actinomyces). When further testing for the
association of rs73268759 with the relative abundance of Actino-
myces presented in 162 individuals, this association was more
significant (Fig. 3c; p= 9.69 × 10-15). The association was also
replicated in the gut, with rs73268759 associated with the relative
abundances of the gut-derived Actinomyces (Fig. 3d; p= 0.014).
CAMK2A encodes a protein belonging to the Calcium/calmodulin-
dependent protein kinase II (CAMKII), and its oxidation promotes
asthma through the activation of mast cells34. The CAMK2A-
associated two taxa, Actinomycetaceae and its main genus
Actinomyces, are abundant commensals of the human oropharynx
and have been increasingly associated with infections at many body
sites35. We found these two taxa were also positively correlated with
an increased risk of oral diseases (e.g., oral ulcers and caries), upper
respiratory tract infection and urinary system infection (Fig. 3f;
multivariable linear regression p < 0.05), when checking the
correlation between the two taxa and phenotypic traits in this
cohort. Collectively, these results supported a link between the
genetic variation in the CAMK2A gene, abundances of the two taxa,
and the inflammatory response to the upper respiratory tract.

The second strongest association was seen on rs35211877,
which is a deletion of allele T (MAF= 0.057) located 163 kb
downstream of the POM121L12 gene. This deletion was
negatively associated with Gemella asaccharolytica (Fig. 2;
p= 1.13 × 10−10). Furthermore, this deletion was also found to
be associated with increased risks of asthma (p= 0.005), epilepsy
(p= 0.005), and gastroesophageal reflux disease (p= 0.012) when
searching the BBJ database. We also found that Gemella
asaccharolytica had a positive correlation with stress sources
(p= 1.07 × 10−4), frequently allergic sub-health status
(p= 0.003), and gastritis (p= 0.023), but a negative correlation
with vitamin D and D2 levels in this cohort (Supplementary
Fig. 5).

Cutibacterium was the most abundant genus in the nose
(Supplementary Fig. 6), and it was linked to the SNP rs186899741
located in the intergenic region of OCSTAMP and SLC13A3
(p= 2.62 × 10−8). This SNP was associated with 25-
hydroxyvitamin-D3 (p= 0.001) in this cohort and type 2 diabetes
(p= 0.006) in the BBJ. The second most abundant genus
Corynebacterium (Supplementary Fig. 6) was linked to the SNP
rs117538984 located in the intronic region of BARD1
(p= 1.44 × 10−9), which was associated with colorectal cancer

0

genus Actinomyces,family Actinomycetaceae
CAMK2A

speices Gemella asaccharolytica
POM121L12,LINC01446

taxa

function

Fig. 2 Host genetic signals associated with nasal microbial taxa and functions. Manhattan plot shows the genetic variants associated with the nasal
microbial taxa (n= 86) and functions (n= 207). The horizontal grey and black lines represent the genome-wide (p= 5 × 10−8) and study-wide
(p= 1.71 × 10−10 for 293 independent M-GWAS tests) significance levels, respectively. Seventeen loci associated with taxa and 46 loci associated with
functions reaching genome-wide significance were marked in orange and blue, respectively. The top two loci, their located genes, and associated nasal taxa
that reached study-wide significance were also listed.
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(p= 0.002) and pulmonary tuberculosis (p= 0.01) in the BBJ.
Interestingly, BARD1 is also known to interact with BRCA136,
and has been reported to be elevated in the urine of breast cancer
patients compared to controls37. In addition, we found several
associations involving bacteria commonly detected in other body
sites, for example, rs139288082 in UST with Streptococcus oralis
(an oral commensal, belongs to the mitis group of streptococci
and occasionally causes opportunistic infections such as bacter-
emia and endocarditis38), rs2716569 in the intergenic region of
LINC01568 - LOC101928035 with Malassezia globosa (a tradi-
tionally known fungus for the skin microbiome, implicated in
conditions such as inflammatory bowel diseases39, lung infec-
tions, and breast cancer40).

In addition to the associations with nasal microbial taxa, 46
host genetic loci were linked to nasal functions. For example,
ANAGLYCOLYSIS-PWY: glycolysis III (from glucose) was
linked to three gene loci, including PUM3, NELL1, and
LINC02580. Both PUM341 and NELL142 exhibited the ability to
regulate cell proliferation. COLANSYN-PWY: colonic acid
building blocks biosynthesis was linked to multiple SNPs in the
MEIS1 gene (p= 5.70 × 10−10; associated with monocyte
count43). PWY-5686: UMP biosynthesis was linked to LMF1
(p= 7.36 × 10−10), which harbours variants associated with
extreme respiratory outcomes following preterm birth44. Com-
pared with the taxa associations, the interpretation of associated
functional pathways as a single factor pointing to a specific

biological mechanism is challenging due to their complexity.
These associations and their underlying interaction mechanisms
called for further verification and investigation in future studies.

PheWAS and gene expression analysis for 63 microbiome-
associated loci. To better understand the potential biological
mechanism of the 63 nasal microbiome-associated variants
(MAVs), we first explore their associations with diseases and
traits. The phenome-wide association study (PheWAS) conducted
on this cohort and the BBJ revealed that these 63 MAVs were
enriched in 24 host-related traits and diseases: five diseases
(asthma, type 2 diabetes(T2D), colorectal cancer, atopic derma-
titis, abortion), glucose and low-density lipoprotein (LDL) from
the BBJ cohort; six metabolic-related traits including chromium,
phenylalanine, triglyceride, vitamin A, lymphocytes count and
diastolic pressure; as well as health conditions (sleep quality, sub-
health status) and lifestyles in this cohort (fisher exact test
p < 0.05; Fig. 4).

As the 63 MAVs are mostly located in the intronic or
intergenic region, we annotated their associations with gene
expression in a recently published nasal airway epithelium
transcriptome data45 and across the 49 tissues in the Genotype-
Tissue Expression (GTEx) database46. 26 of the 63 MAVs were
mapped to 33 genes (intronic or <5 KB upstream/downstream).
We investigated the expressions of the 33 top genes across 50
tissues and found that over half (>16) of the genes significantly

Fig. 3 The links among human CAMK2A locus (rs73268759), the nasal genus Actinomyces, and host traits in this cohort. a The regional plot presented
the strongest association of CAMK2A variation with the genus Actinomyces (presence/absence status; p= 7.75 × 10−13). b The prevalences of the genus
Actinomyces were compared between different genotyped individuals (CC vs CT/TT) according to CAMK2A (rs73268759) variation. The p-value in b was
obtained using a logistic model based on the presence/absence status of the genus Actinomyces. c, d The mean relative abundances of the genus
Actinomyces from the nasal (c) and gut (d) sites, compared between different genotyped individuals (CC vs CT/TT) according to CAMK2A (rs73268759)
variation. The statistical comparisons in (c) and (d) denote the p-values of the linear regression analysis on log-transformed relative abundances. All
analyses were performed by adjusting sex, age, BMI, sequencing reads, and the top ten PCs. e The bar plot showed associations of the CAMK2A
(rs73268759) variation with host traits in this cohort. f The correlations of the genus Actinomyces with host traits in this cohort. In e, f, only associations or
correlations with p < 0.05 were shown. Significant code: 0.05 * 0.01 ** 0.001. The source data for e-f was available in Supplementary Data 15.
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demonstrated expression in seven of the 50 tissues (Fig. 5a). As
expected, the nasal airway epithelium exhibited the strongest
enrichment, with 23 of the 33 genes showing significantly
expressed (p < 10−4; Supplementary Data 7). The tissues such as
thyroid, muscle skeletal, lung, testis, nerve tibial, and oesophagus
muscularis, which are also enriched tissues shared by the gut
MAV eQTL target genes47, also showed enrichment. BARD1
(associated with the abundance of genus Corynebacterium) and
LMF1 (associated with the abundance of PWY-5686: UMP
biosynthesis) were the top two most expressed genes because of
cumulative representation across 50 tissues (Supplementary
Fig. 7). The strongest M-GWAS signal gene CAMK2A is enriched
in 17 tissues. The hierarchical clustering showed several MAV top

genes (ALMS1, ESD, ARHGAP10, MBP) were more significantly
expressed in the nasal airway epithelium than the other tissues
(Fig. 5b).

We further expanded the genetic associations with suggestive
p < 10−6 (Supplementary Data 8) and performed gene expression
analysis in the tissues, followed by gene functional mapping and
disease enrichment analysis with the FUMA48 platform (Methods).
Those nasal MAVs of suggestive significance were mapped to 413
genes (<5 Kb for associated genetic loci). These genes exhibited
enrichment for differentially expressed in multiple tissues including
the most significant enrichment in the nasal airway epithelium and
thyroid (Supplementary Fig. 8), in agreement with the findings
using the genome-wide significant MAVs.
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Fig. 4 A phenome-wide association study presented the enrichment results of top MAVs in traits or diseases. The heatmap plot showed associations of
index SNPs of the top 63 loci with traits in this cohort or diseases in the BBJ cohort. 56 of the top 63 SNPs showed enrichments and were listed, and only
traits or diseases with significantly enriched p < 0.05 are shown. The enriched p-value was calculated using the fisher exacted test. The red indicted the
positive association and the blue indicted the negative association between SNP and corresponding trait.
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Gene functional mapping with FUMA found that the gene sets
of suggestive MAVs were mainly enriched in calcium signaling
and regulating hippo signaling pathways, by using the KEGG,
Wikipathways, and GO databases (Supplementary Fig. 9). The
disease-enriched analysis in the GWAS catalogue using FUMA
showed that the MAVs were enriched in 75 traits (pbon < 0.01;
Supplementary Fig. 10), with the strongest link to cardiometa-
bolic related traits such as obesity-related traits, systolic blood
pressure, diastolic blood pressure, body mass index, platelet
count. It was also found that MAVs were involved in
neuropsychiatric symptoms such as cognitive decline rate in late
mild cognitive impairment, general cognitive ability, schizophre-
nia, dementia and core Alzheimer’s disease neuropathologic
changes (Supplementary Fig. 10). Correlations between MAVs
with asthma, T2D, and colorectal cancer were confirmed through
both the PheWAS analysis of BBJ and the bigger GWAS dataset
using FUMA. Links between MAVs and diastolic pressure and
sleep phenotypes were also replicated in this study and that of in
GWAS catalogue studies using FUMA tool. Interestingly, MAVs
showed correlations with smoking phenotypes (smoking status
and smoking initiation), which have been reported to be key
determinants of the airway microbiome49,50. This result suggests
individual genes may influence the nasal microbes by making an
individual genetically more likely to smoke or not, which needs to
further validate in other cohorts due to the rarity of smokers in
this current cohort.

Host genetics and other factors contributed comparably to the
nasal microbiome. The above-identified 63 genome-wide sig-
nificant loci could infer 9.51% of the variance in the nasal
microbiome β-diversity. Applying association analysis for host
genetic variants and microbiome β-diversity, we identified 21 loci
with suggestive significance (p < 10−5; Supplementary Data 9).
Among the top index variants, eight were associated with Sta-
phylococcus epidermidis (n= 4) or Corynebacterium accolens
(n= 4), which were among the most abundant commensal in the
nose (Supplementary Data 4) and might possess antimicrobial
activity against pathogens51,52. The 21 top index variants that
were most closely associated with β-diversity, while not reaching
genome-wide significance, could explain 10.59% of the variance
in the community structure, with each of them contributing from
0.34% to 0.70% of the variation (Supplementary Fig. 11). This
observed R2 (10.5%) under the real data was significantly greater
than the average R2 (7.4%) of 100 permutations (P < 2.2 × 10−26,
t-test, this p represented the fraction of permutations in which the
fraction of inferred variance was greater than observed). This
fraction was lower than the proportion of host genetics influen-
cing the gut microbiome (~20%) but close to that of the oral
microbiome (10.14% ~ 14.14%), as previously inferred in the
same cohort19,20. This is expected as the nasal cavity is more open
compared to the half-closed oral and fully closed gut
environments.

After establishing the contribution of host genetics to nasal
microbiome composition and functions, we investigated the
extent to which environmental factors influence the nasal
microbiome compared to genetics. Among the 340 host traits
(age, gender, BMI, dietary, lifestyle, health status questions, and
blood measurements), 45 were significantly associated with
β-diversity (BH-adjusted FDR < 0.05), via PERMANOVA

analysis (Supplementary Data 10). The five strongest associated
factors observed were sex, serum testosterone and estradiol,
serum iron concentration, and muscle mass, each explaining a
variance of 0.65% to 1.47%. In total, the 45 significant host
factors could infer 10.76% of the variance in the nasal
microbiome β-diversity. This analysis showed that the contribu-
tion of host genetics to the nasal microbiome may be comparable
to the other host factors. Host genetics together with other host
factors collectively explained 19.19% of the variance in the nasal
microbiome community.

From observational correlation to Mendelian randomization
for the nasal microbiome and host traits. Host factors greatly
influenced the nasal microbiome composition, we further inves-
tigated the correlation of trait-microbiota pairs for the 293 unique
nasal microbial features and 340 host traits using multivariate
linear regression. After adjustment for gender, age, BMI, depth,
and the top four PCs, we observed 402 significant associations
(Benjamini–Hochberg (BH)-adjusted P < 0.05, Supplementary
Data 11). The genus Elizabethkingia and its species E. miricola,
E. bruuniana, as well as genus Serratia and its species S. grimesii,
showed the most links to the host traits (n= 40, 34, 33, 27 and 30,
respectively, Supplementary Fig. 12). In return, creatine, cystine,
aspartic acid, chromium, magnesium, and cystathionine were
among the metabolites associated with the largest number of
microbial features (n= 42, 33, 22, 20, 20 and 17, respectively,
Supplementary Fig. 12).

Since top associated genetics variants showed strong power as
instrumental variables (Supplementary Fig. 13) and well
explained for both the nasal microbiome and host traits
(Supplementary Fig. 14, Methods), as well as the strong
correlations between them, we next performed bidirectional
one-sample Mendelian randomization analysis for the 402
observationally significant associations, aiming to reveal the
potential causal relationships between the nasal microbial features
and host traits. In total, we identified 128 suggestive causal effects
with p < 0.05, of which 4 were significant after Bonferroni
correction (p < 1.24 × 10-4= 0.05/402; Fig. 6, Supplementary
Data 12). The strongest MR evidence lies in Serratia grimesii
that was causally associated with an increased cystine level
(β= 0.42, p= 1.34 × 10-5). Cystine is formed from the jointing of
two cysteine molecules, and cysteine metabolism genes have been
reported to be widely present in the S. grimesii BXF153. Moreover,
the growth of Serratia grimesii could be well predicted under a
given cysteine environment in simulations that used the gapseq
model54 (Supplementary Fig. 15). Compared to Serratia grimesii,
Streptococcus oralis that showed no correlation with the cystine
level in the observational and MR analysis was not influenced by
adding the cystine in the simulation (Supplementary Fig. 15). In
addition, Yokenella regensburgei was inferred to causally reduced
glutamic acid and creatine concentrations. Further investigation
of the genomics functional modules55 confirmed Serratia grimesii
was widely involved in cysteine and Yokenella regensburgei was
widely involved in glutamic acid (glutamate) metabolic related
pathways (Supplementary Fig. 16), supporting the MR inferences.
The microbial superpathway of guanosine nucleotides de novo
biosynthesis II was negatively associated with the dental
condition of loss of tooth.

Fig. 5 Nasal MAVs were enriched in the nasal airway epithelium and other relevant tissues. a. The barplot showed the enrichment of 33 MAV genes
(intronic or <5KB upstream/downstream) across the 50 tissue groups. b. The heatmap displayed the gene expression values of 33 MAV genes across the
50 tissue groups. The expression values come from a nasal airway epithelium transcriptome dataset and the GTEx v8 datasets. Cells filled in red represent
higher expression compared to cells filled in white across genes and tissues.
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Discussion
In this study, we performed a large-scale M-GWAS for the nasal
microbiome and reported abundant human genetic determinants
for the nasal microbial taxa, functions, diversities, and composi-
tions. The M-GWAS analyses identified a total of 63 genome-
wide and 2 study-wide significant signals associated with the nasal
microbiome, highlighting the power of high-depth metagenomics
data and integrated high-quality host whole genome data in such
a relatively larger nasal sample (N= 1401) compared to previous
related studies22,23. These associations invited more and larger
high-depth genome cohorts for further confirmation in the
future.

Our study observed a high correlation between host PCs and
nasal microbial diversity. This is an interesting and yet puzzling
result because it could be really pointing towards evidence of co-
evolution of the microbiome and their host56,57, but it could also
be yet another proof of unobserved correlation structures specific
to the population. Although one paper indicated possible bias in
the PCA analysis58, it is important to note that the PCA analysis
in this study depicted the Chinese North-South genetic structure
(Fig. 1b,c) and showed Chinese obviously separated from the AFR
and EUR populations (Supplementary Fig. 18). In addition to a
great contribution to the nasal microbial diversity, host genetics
was demonstrated to have impacts on the microbial composition,
which extends a previous study that only reported host genetic
influence on nasal bacterial diversity22. Through our analysis, we
identified two microbiome-associated genes involved in the cal-
cium signaling pathway: CACNB2, which is associated with nasal
microbial alpha diversity, and CAMK2B, which is associated with
the nasal bacteria Actinomyces. CACNB2 has been implicated in
psychiatric disorders28,29. The CamKIIα MD thalamic neurons
(MDCamKIIα) could act and cause arousal in mice from slow-wave
sleep59. These findings suggesting the potential role of nasal
microbiota in neuropsychiatric diseases. Furthermore, our
PheWAS analysis revealed a link between MAVs and

neuropsychiatric traits, further supporting the potential impact of
nasal microbiota in these disorders including the therapeutic
effect and pathogenicity60. Regretfully, due to limited access to
data on neuropsychiatric diseases for the Asian population, we
were only able to observe a suggestive causal effect of Firmicutes
on Schizophrenia through MR analysis (beta= 0.145, p= 0.25).
We also confirmed the nasal microbiome-associated genes
showed the strongest expression enrichment in the nasal airway
epithelium and secondly in the thyroid. The connection between
the nasal cavity and the thyroid has been well-known for a
century61,62.

Although the cohort is not yet very large for GWAS, the
absence and presence of some associations are nonetheless
notable for the nasal community. We identified a limited influ-
ence of host genetics on Staphylococcus spp., in line with previous
studies which reported host genetic factors exhibited only a
modest influence on the S. aureus nasal colonization63,64. Lac-
tobacilli, including those that are commonly attributed to the
vagina, are prominently detectable in this and other respiratory
studies65,66. We, however, have not seen a significant genetic
association for Lactobacilli (Fig. 2 and Supplementary Data 4, 5).
Dolosigranulum pigrum, a common and candidate beneficial
nasal bacterium that inhibited S. aureus in vitro66–68, also showed
no significant genetic associations. In contrast, the other pre-
dominant and benign nasal bacterium Corynebacterium that
inhibited the growth of S. pneumoniae69,70 exhibited a strong host
genetic attribute with genes BARD1 and TENM2. Acinetobacter,
whose abundance in the skin was influenced by host functions71,
presented a positive correlation with gene ZSWIM6 in this nasal
M-GWAS analysis. Likewise, Micrococcus, a taxon found in the
foetal intestine and the upper reproductive tract72–74, also showed
genetic associations in niches of the nasal cavity and skin71.
Corynebacterium, Acinetobacter and Micrococcus were recently
proposed to be inherited in the mother-to-infants microbiota
transmission75.
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Fig. 6 Mendelian randomization analysis identifying 4 causal relationships for the nasal microbial features and host traits (mainly metabolites) that
were significant after Bonferroni correction. Forest plot (in blue) showed the observational phenotypic correlations between the nasal microbial features
and host traits (mainly metabolites), as calculated using the multivariate linear analysis corresponding to Supplementary Data 11. The β coefficient
(95% CI) and BH adjusted p-value were shown. Forest plot (in red) represented the causal effects of microbial features on host traits (mainly metabolites),
as calculated using the one-sample MR analysis corresponding to Supplementary Data 12. The β coefficient (95% CI) and p-value were shown.
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Due to the continued success of dietary and faecal transplant
studies in gnotobiotic mice, the gut microbiome is long believed
to be a dynamic environmental factor. Our study, along with that
of others13–15,17,19,24,76–80, has identified genetic factors for gut
microbiome taxa and functions. Besides the well-known story of
lactose (LCT) and Bifidobacterium, taxa underlying the con-
troversial concept of enterotypes, Prevotella and Bacteroides, also
show human genetic associations15,19. A previous study identified
42 SNPs that together explained 10% of the variance of gut
microbiome β-diversity17. Our prior studies based on the 4D-SZ
cohort indicated host genetics explained great variances in the gut
(R2= 20.6%)19 and oral microbiome (R2= 14.14 and 10.14% for
salivary and tongue dorsum microbiome, respectively)20. With
these high-depth nasal metagenomic sequencing samples and
integrated high-quality host whole genome data also from the
same 4D-SZ cohort, we found that as few as 21 genetic loci
(10.59%) could explain the nearly same fraction of the β-diversity
variance for the nasal microbiome compared to the 45 significant
host factors (10.76%). These results consistently confirmed the
important role of host genes in shaping the human microbiota.
The nasal cavity serves as an entry point and a reservoir for
pathogens, making it an important site to consider when
addressing respiratory infections. By understanding the specific
genetic and host factors that influence the nasal microbiome
composition, we can potentially design interventions that target
and modify these factors to promote a healthier microbiome. This
personalized approach may lead to improved outcomes and more
tailored treatments for individuals. Moreover, by considering the
interplay between host genetics and the nasal microbiome, we can
gain insights into the mechanisms underlying respiratory diseases
and their potential treatments. This knowledge may also help
identify individuals who are more susceptible to certain condi-
tions, allowing for early interventions or preventive measures.

As we were fortunate to have all the data in the same cohort,
we first examined the phenotypic correlations between microbes
and metabolites and then determined the directionality of these
correlations. Observational correlation could be treated as a
prerequisite for strong causality. Observational and MR analyses
consistently identified 4 significant causal relationships after
Bonferroni correction. Specifically, we found that two species,
Serratia grimesii and Yokenella regensburgei, were causally asso-
ciated with three cardiometabolic-related biomarkers. Serratia
grimesii influenced cystine levels, while Yokenella regensburgei
influenced glutamic acid and creatine concentrations. Cystine is
the most heritable amino acid in this Chinese cohort
(h2= 0.41)24, and it is likely important for the redox environment
and the vasodilating effect of released H2S. Glutamic acid has
been reported as a central currency in host and microbiome
metabolism24,25. These findings shed light on the causal rela-
tionships between specific microbes and metabolites related to
cardiometabolic health.

This study has several potential limitations. First, although our
study represents the first large nasal M-GWAS conducted thus
far, the sample size remains relatively small, similar to early
initiated gut M-GWAS studies13,15,18. Unlike host GWAS and
MR studies that benefit from cohorts (UKB81, BBJ82, etc.) with
hundreds of thousands of participants, limited sample size of
microbiome GWAS reduces statistical power and increases the
likelihood of spurious associations. This is an issue in all current
M-GWAS studies and could be improved as more microbiome
data and host genome increased. Second, in addition to the two
study-wide significant associations found in this M-GWAS stu-
dies, we have also reported associations that reach the genome-
wide significance level. Nevertheless, the lack of simultaneous
nasal microbiome and host whole genome data impedes the
replication of most GWAS results and severely hinders the

interpretation of MR results. Furthermore, it is important to note
that the results presented in this study, similar to most previous
gut microbiome studies80,83, lack a clear understanding of the
underlying mechanisms through which the microbiome may
causally influence the outcomes. Therefore, further replications of
results in independent cohorts and explorations of relevant
mechanisms are required in the future. Finally, the use of prin-
cipal components (PCs) and principal coordinate analysis
(PCoA) as markers for population structure and microbiome
structure may introduce biases. While these approaches offer
valuable insights into the genetic and microbial variations among
individuals, they may not capture the full complexity of these
structures. Additionally, we integrated blood-derived host gen-
ome reads and nasal samples-extracted host genome reads to
gather the individual’s host genome data. While the average
genotype concordance between the direct blood WGS data and
integrated WGS data was 98.15%, indicating minimal bias when
using the integrated WGS data as a substitute for blood WGS
data, inherent biases may still exist. However, the high genotype
concordance and absence of population stratification shown in
the PCA analysis demonstrated the feasibility of reconstructing
personal genome information from human genome reads in
metagenome sequencing data84.

In summary, we demonstrated that host genetic attributes play
an important role in shaping the nasal microbiome, not only the
gut and oral microbiome. The identified abundant causal rela-
tionships between the nasal microbiome and host metabolites
suggested the potential clinical application of targeting the nasal
microbiome. The applications with the nasal microbiome are
perhaps more exciting given the link between olfaction and brain
development.

Methods
Study subjects. All the individuals in this study were part of the
‘4D-SZ’ cohort, with blood, oral and nasal samples and extensive
metadata collected for a multi-omics study as previously
reported19,20,24–27,66. In this study, 1,593 nasal samples from the
cohort were collected for whole metagenomic sequencing in 2018
(Supplementary Data 1). 1,457 of the 1,593 individuals also had
blood samples with whole genome sequencing. The protocols for
blood and nasal collection, as well as the whole genome and
metagenomic sequencing, were similar to our previous
literature19,25,26,66. For the blood sample, DNA was extracted
using MagPure Buffy Coat DNA Midi KF Kit (no. D3537-02)
according to the manufacturer’s protocol. For each nasal sample
collected by the anterior nare swab, a 2 ml stabilizing reagent kit
was used and DNA was extracted using MagPure Stool DNA KF
Kit B (no. MD5115-02B). The protocol includes a step of
mechanical cell disruption by bead beating and optimizes the
extraction process of DNA from both bacterial and fungal cells85.
The DNA concentrations from blood and nasal samples were
estimated by Qubit (Invitrogen). 500 ng of input DNA from
blood and nasal samples were used for library preparation and
then processed for paired-end 150 bp sequencing using the
DNBSEQ platform86.

All recruitment and study procedures involving human
subjects were approved by the Institutional Review Boards
(IRB) at BGI-Shenzhen. All participants provided written
informed consent at enrolment.

Nasal metagenomic sequencing, quality control. Metagenomic
sequencing was done on the DNBSEQ platform, with 150 bp of
paired-end reads for all samples, and four libraries were con-
structed for each lane. We generated 80.48 ± 23.94 Gb (average ±
standard deviation) raw bases per sample for nasal samples66.
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The metapi pipeline (https://github.com/ohmeta/metapi) was
used to process the sequencing data. Quality control was first
performed with strict standards for filtering and trimming the
reads (average Phred quality score ≥ 20 and length ≥ 30) using
fastp v0.20.187. After filtering low-quality reads, an average of
77.31 ± 23.00 Gb data was retained with an average of 96.35%
host ratio (Supplementary Data 1). Human reads (human gen-
ome GRCh38) were then removed using Bowtie2 2.4.288.

Integrating host whole genome sequencing data from blood
and nasal samples. 1,457 individuals with blood samples were
sequenced to a mean of 6x for the whole genome. Given that an
average of 74.5 Gb (host ratio: 96.35%) of the nasal metagenomic
sequencing data were derived from the human genome, we then
aggregated the host whole genome sequencing data from blood
and nasal samples together for further analysis. The combined
reads were aligned to the latest reference human genome
GRCh38/hg38 with BWA89 (v0.7.15) with default parameters.
The reads consisting of base quality <5 or containing adaptor
sequences were filtered out. The alignments were indexed in the
BAM format using Samtools90 (v0.1.18) and PCR duplicates were
marked for downstream filtering using Picardtools (v1.62). The
Genome Analysis Toolkit’s (GATK91, v3.8) BaseRecalibrator
created recalibration tables to screen known SNPs and INDELs in
the BAM files from dbSNP (v150). GATKlite (v2.2.15) was used
for subsequent base quality recalibration and removal of read
pairs with improperly aligned segments as determined by Stampy.
GATK’s HaplotypeCaller was used for variant discovery. GVCFs
containing SNVs and INDELs from GATK HaplotypeCaller were
combined (CombineGVCFs), genotyped (GenotypeGVCFs),
variant score recalibrated (VariantRecalibrator), and filtered
(ApplyRecalibration). The sensitivity threshold of 99.9% to SNPs
and 98% to INDELs were applied for variant selection after
optimizing for Transition to Transversion (TiTv) ratios using the
GATK ApplyRecalibration command.

We filtered variants to meet these thresholds: (i) Hardy-
Weinberg equilibrium (HWE) p > 10-6; and (ii) genotype calling
rate >98%. We demanded samples to meet these criteria: (i) mean
sequencing depth >5×; (ii) variant calling rate >98%; (iii) no
population stratification by performing principal components
analysis (PCA) analysis implemented in PLINK92 (v1.9) and (iv)
excluding related individuals by calculating pairwise identity by
descent (IBD, Pi-hat threshold of 0.1875) in PLINK. After variant
and sample quality control, 1,401 individuals with about 7 million
common and low-frequency (MAF ≥ 1%) variants were left for
M-GWAS analyses.

To evaluate the quality of integrated WGS data, we
sequenced 18 blood samples with a high depth of >30X and
then assessed concordance rates (CR) of the blood WGS data
and integrated WGS data of blood and nasal samples. The
average genotype concordance was 98.15% (Supplementary
Data 13). Further, PCA analysis showed no population
stratification between 1,401 integrated WGS samples in this
study and 2002 blood WGS samples as reported previously
(Supplementary Fig. 17). PCA analysis also showed all
individuals in this cohort (Chinese; nasal_wgs) clustered into
the EAS (East Asian) group and obviously separated from the
AFR and EUR population from the 1000genome phase 3 dataset
(Supplementary Fig. 18).

Nasal metagenomic taxonomic and functional profiling. Tax-
onomy assignment and functional prediction were performed
using MetaPhlAn3 version 3.0.7 and HUMAnN3 version
v3.0.0.alpha.3 with default settings93. The marker gene database
used by MetaPhlAn 3 contains ~99,200 fully annotated genomes,

including 9,795 bacterial genomes and 122 eukaryotic genomes,
which would cover a wide range of microbial diversity, including
common nasal cavity fungi such as Malassezia. We constructed
two MetaPhlAn3 profiles, one using bacteria and fungi together
and the other only using bacteria as microbial community,
respectively. We evaluated the difference of two profiles. Spear-
man rank correlation analysis revealed high consistency in the
bacteria taxa quantification between the two profiles (mean
Spearman correlation rho= 0.9997; Supplementary Fig. 19).
Further, we compared the phenotype consistency of bacteria taxa
in the M-GWAS analysis, by using profiled only bacteria and
using profiled bacteria and fungi together, respectively. This
comparison also showed very high consistency between the two
different profiled methods, for both abundance-based and pre-
sence/absence-based microbial taxa phenotype (Supplementary
Fig. 19). All these results suggested that fungi profiled together
with bacteria makes little difference for only using bacteria. Thus,
we used the MetaPhlAn3 profile including bacteria and fungi
together. Finally, we obtained a raw microbial taxonomic dataset
composed of a total of 1138 taxa (11 phyla, 27 classes, 53 orders,
103 families, 222 genera, and 722 species) and a functional dataset
containing a total of 430 pathways or functions.

Correlations of host PCs with microbial α-diversity and PCos.
The microbial α-diversity (Shannon and Simpson indices) and β-
diversity (Bray–Curtis dissimilarities) were generated based on
the species-level abundance data through the ‘diversity’ and
‘vegdist’ functions in the R package ‘vegan’, respectively. Then,
principal coordinates analysis (PCoA) was performed based on
the calculated beta-diversity dissimilarities using the ‘capscale’
function in ‘vegan’. For each of the top 10 PCs, we used a mul-
tivariable linear model to identify its correlation with each α-
diversity indices and each PCo with sex, age, BMI and sequencing
read counts as covariates. For each of the abundant taxa with
abundance over 0.0001, we performed a Wilcoxon rank-sum test
to identify the differences between two groups, namely southern
and northern Chinese. The assignment of the two groups,
southern and northern Chinese, was based on self-reported
ancestry information. The questionnaire included the specific
question: “Where is the geographical origin of your ancestry
(before and including your grandfather)?” The respondents were
provided with a list of all provinces of China as possible answers,
along with an “unknown” option. We categorized the answered
cities into either southern or northern Chinese based on the
Qinling and Huaihe River line, which traditionally serve as Chi-
na’s north-south dividing line.

Association analysis for microbial α-diversity and β-diversity.
GWAS association tests for α-diversity and the top ten PCos were
performed using a linear analysis implemented in PLINK v1.9,
with sex, age, BMI, sequencing read counts as well as the top ten
host genetic principal components (PCs) as covariates. GWAS
associations for β-diversity were run using the function manova()
from the R ‘stats’ package, in a multivariate analysis using the
same covariates stated above and genotype dosages as derived by
PLINK v1.9.

Association analysis for microbial taxa and functions. Given
the power of GWAS tests, we filter the microbial taxa and
functional pathways to keep those with occurrence rates over 10%
(present at least 141 individuals) and average relative abundance
over 1 × 10-4. After filtering, the represented genera of these
microbial taxa covered 99.63% of the whole community in the
cohort. As many nasal microbial taxa and functions are highly
correlated and aim to reduce the number of GWAS tests, we then
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performed many Spearman’s correlation tests to obtain the
independent taxa for M-GWAS analyses. Spearman’s correlations
were calculated pairwise between all taxa, and the correlations
were used to generate an adjacency matrix where correlations of
>0.995 represented an edge between taxa. A graphical repre-
sentation of this matrix was then used for the greedy selection of
representative taxa. Nodes (microbiota taxa) were sorted by
degree and the one with the highest degree was then chosen as a
final taxon (selecting at random in the case of a tie). The taxon
and its connected nodes were then removed from the network
and the process was repeated until a final set of taxa was found
such that each of the discarded taxa was correlated with at least
one taxon. These filterings resulted in a final set of 207 microbial
features (86 taxa and 207 functions) for association analyses.

We tested the associations between host genetics and oral
microbiome using either a linear model based on the relative
abundance (AB) or a logistic model based on the presence/
absence (P/A) of microbial features. There are 8 taxa and 35
pathways entering into linear models, while the remaining 78 taxa
and 172 pathways entered into logistic models (Supplementary
Data 4). Specifically, for the 43 microbial features present in over
95% of individuals, their relative abundances were log-
transformed that performed better than the centred-log trans-
formed (CLR) data (Supplementary Fig. 20). Then, the residuals
were computed using ‘lm’ with the following covariates in R:
(log10(Microbe abundance) _ age + sex + BMI + sequencing
read counts + top ten PCs). The residuals from the model were
extracted utilizing the function residuals() from the stats package
and used in a univariate linear model in the association analysis
with genotypes. However, for the 250 microbial feature that
appears in >10% but less than 95% of individuals, we
dichotomized it into presence/absence patterns to prevent zero
inflation, then the abundance of bacteria could be treated as a
dichotomous trait for logistic regression analysis with adjusting
for the same covariates with above.

We also examined whether other covariates could be an
important confounder of results. Except for sex, BMI, and blood
metabolites, there are 12 potential host factors statistically
associated with nasal microbial beta-diversity (p < 0.05, Supple-
mentary Data 10), of which weight is highly correlated with BMI
(Spearman rho= 0.45, p= 8.4e-70), “Residential area” is highly
correlated with PC1(Spearman rho= 0.41, p= 7.2e-57). By have
been accounting for BMI and PC1 in the GWAS analysis, the
effects of weight and residential area are indirectly considered.
Then, we did sensitivity analyses by adding each of the 10 other
potential confounders for GWAS analysis and observed their
effects on the results. After repeating the GWAS for all microbial
taxa for which we initially had found at least one genome-wide
significantly associated locus, we found that adding any one of the
10 potential cofounders for adjusting had very minor effects on
the GWAS association results (Supplementary Data 14). Adding
any one of the 10 potential cofounders as covariate did not
change the 2 study-wide significant associations and very few of
the 180 genome-wide associations changed slightly over the
P= 5 × 10−8, which is likely by chance given inclusion of any
additional covariate (Supplementary Data 14). In addition, the
beta estimates with and without the adjustment of additional 10
covariates were highly consistent (Pearson r ranging from 0.9945
to 0.99999).

We looked through the 2 study-wide significant association
signals of nasal GWAS in the gut M-GWAS for comparison. The
gut microbiome GWAS data come from our previously published
gut M-GWAS paper24, in which the microbial profile was
constructed by aligning sequencing reads to the integrated gene
catalogue (IGC) of the gut microbiome. In this paper, for
consistency of comparison, we reconstructed the gut microbial

profile using MetaPhlAn3 and did the same M-GWAS analysis as
done for the nasal M-GWAS.

We searched the oral microbiome-related SNPs in the
summary statistics data from this cohort as previously reported
to examine their associations with host traits, as well as to
examine their associations with diseases from the Biobank
Japan30,94 database.

Functional and pathway enrichment analysis of significant
signals. The significant genetic variants identified in the asso-
ciation analysis were mapped to genes using ANNOVAR95.
Given that some significant genetic variants were low-frequency
in this Chinese cohort and not reported by the public 1kgenome
database, we thought it was more suitable to input gene lists for
enrichment analysis. We mapped variants to genes based on
physical distance within a 5 kb window and got the gene lists for
enrichment analysis. These genes were calculated expression in a
publicly available nasal airway epithelium transcriptome dataset45

and across the 49 tissues in the GTEx database46. The statistical
p-value < 0.05 was considered statistically significant. In addition,
the mapped genes were further investigated using the GENE2-
FUNC procedure in FUMA48 (http://fuma.ctglab.nl/), which
provides hypergeometric tests for the list of enriched mapping
genes in 53 GTEx tissue-specific gene expression sets, 7,246
MSigDB gene sets, and 2,195 GWAS catalogue gene sets48. Using
the GENE2FUNC procedure, we examined whether the mapped
genes were enriched in specific diseases or traits in the GWAS
catalogue, or enriched in specific GO, KEGG, as well as whether
showed tissue-specific expression. Significant results were selected
if Bonferroni-corrected p < 0.05 was observed.

Environmental factors explained the variance of the oral
microbiome. We next searched for associations between the 340
environmental variables selected above and the oral microbiome
compositions. We performed Bray–Curtis distance-based redun-
dancy analysis (dbRDA) to identify variables that are significantly
associated with β-diversity and measure the fraction of variance
explained by the factors, using the ‘capscale’ function in the vegan
package. The significance of each response variable was con-
firmed with an analysis of variance (ANOVA) for the dbRDA
(anova.cca() function in the vegan package). Only the variables
that were significantly associated (Benjamini–Hochberg FDR <
0.05) with the β-diversity estimates in the univariable models
were included in the multivariable model. The additive explana-
tory value (in %) of significant response variables (e.g. environ-
mental parameters, vitamins, and serum amino acids, etc.) was
assessed with a variation partitioning analysis of the vegan
package (‘adj.r.squared’ value using RsquareAdj option).

Host genetics explained the variance of the oral microbiome.
We performed GWAS associations of 7 million variants with
β-diversity by using the function manova() from the R ‘stats’
package and estimated the variance inferred by top 21 lead SNPs
using the ordiR2step functions in the vegan package in R. We also
performed 100 permutation analyses. In each analysis we (i)
randomly assigned to each individual the species profile of a
randomly selected individual; (ii) selected lead variants of the top
21 loci according to their association with microbiome β-diver-
sity, using the “manova” function; and (iii) estimated the fraction
of β-diversity variance that can be inferred from the top 21 SNPs,
using the ordiR2step function. The resulting p-value was the
fraction of permutations in which the fraction of inferred var-
iance was greater than observed under the real data.
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One-sample MR analysis. To investigate the causal effects
between microbial features and host traits available from this
multi-omics cohort, we first performed a one-sample bidirec-
tional MR analysis. We specified a threshold of p < 1 × 10−6 to
select SNP instruments and a threshold of LD r2 < 0.1 for
clumping analysis to get independent genetic variants as IVs for
MR analysis. The use of a looser p-value threshold is common in
many MR studies, and we additionally calculated F-statistics and
variance explained to directly present the strength of our
instruments (Supplementary Figs. 13 and 14). Then, an
unweighted polygenic risk score (PRS) was calculated for each
individual as implemented in PLINK v1.9. Each independent
genetic variant was coded as 0, 1, and 2, depending on the
number of trait-specific risk-increasing alleles carried by an
individual. We performed Instrumental variable (IV) analyses
employing the two-stage least square regression (TSLS) method.
In the first stage, for each exposure trait, the association between
the GRS and observational phenotype value was assessed using
the linear regression model and predicted fitted values based on
the instrument were obtained. In the second stage, linear
regression was performed with outcome traits and genetically
predicted exposure levels from the first stage. In both stages,
analyses were adjusted for age, sex, sequencing read counts and
the top ten principal components of population structure. For
each trait, TSLS was performed using the ‘ivreg’ command from
the AER package in R. We next attempted to replicate the causal
effects between traits in the replication dataset.

The growth prediction of bacteria. To predict the growth of four
bacteria, S. grimesii, Y. regensburgei, E. bruuniana and E. miricola,
we first downloaded the representative genomes from NCBI. The
genome-based metabolic models were reconstructed using
gapseq54 version 1.2 with default settings respectively. The
combined growth model of these organisms in a shared envir-
onment such as cysteine was performed by R package BacArena96

version 1.8.2.

Statistics and reproducibility. Whole metagenomic sequencing
was performed for 1,593 nasal samples, 1,457 of which also had
blood samples with whole genome sequencing. Taxonomy
assignment and functional prediction were performed using
MetaPhlAn3 version 3.0.7 and HUMAnN3 version v3.0.0.alpha.3
with default settings. The microbial α-diversity and β-diversity
were generated based on the species-level abundance data
through the ‘diversity’ and ‘vegdist’ functions in the R package
‘vegan’, respectively. GWAS association tests for α-diversity and
the top ten PCos were performed using a linear analysis imple-
mented in PLINK v1.9, with sex, age, BMI, sequencing read
counts as well as the top ten PCs as covariates. GWAS associa-
tions for β-diversity were run using the function manova() from
the R ‘stats’ package. The associations between host genetics and
oral microbiome were tested using either a linear model based on
the relative abundance (AB) or a logistic model based on the
presence/absence (P/A) of microbial features. Functional and
pathway enrichment analysis of significant signals were per-
formed using the “FUMA” tool. We inferred the variance
explained by environmental factors and host genetic variants by
using the ordiR2step functions in the vegan package in R. The
one-sample MR analysis was performed using the ‘ivreg’ com-
mand from the AER package in R. The genome-based metabolic
models were reconstructed using gapseq version 1.2 with default
settings respectively. The combined growth model of these
organisms in a shared environment such as cysteine was per-
formed by R package BacArena version 1.8.2.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data in this study have been deposited to GSA with the project id: PRJCA015657. All
GWAS summary statistics data that support the findings of this study including
associations between host genetics and nasal microbiome are publicly available in https://
ngdc.cncb.ac.cn/gvm/getProjectFile?t=9f187d05 (access id: GVP000013). The nasal
metagenomic sequencing data after removing host reads in this study have been
deposited to GSA and available in https://ngdc.cncb.ac.cn/gsa-human/browse/
HRA004206 (access id: HRA004206). The source data for Fig. 3e, f are in Supplementary
Data 15, the source data for Fig. 5a are in Supplementary Data 7, and the source data for
Fig. 6 are provided in Supplementary Data 12. The release of these data was approved by
the Ministry of Science and Technology of China (Project ID: 2023BAT0694). According
to the Human Genetic Resources Administration of China regulation and the
institutional review board of BGI-Shenzhen related to protecting individual privacy, the
human blood sequencing data are controlled-access and are available via an application
on request.
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