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The parieto-occipital cortex is a candidate neural
substrate for the human ability to approximate
Bayesian inference
Nicholas M. Singletary 1,2,3,4✉, Jacqueline Gottlieb 2,3,5,7✉ & Guillermo Horga 4,6,7✉

Adaptive decision-making often requires one to infer unobservable states based on incom-

plete information. Bayesian logic prescribes that individuals should do so by estimating the

posterior probability by integrating the prior probability with new information, but the neural

basis of this integration is incompletely understood. We record fMRI during a task in which

participants infer the posterior probability of a hidden state while we independently modulate

the prior probability and likelihood of evidence regarding the state; the task incentivizes

participants to make accurate inferences and dissociates expected value from posterior

probability. Here we show that activation in a region of left parieto-occipital cortex inde-

pendently tracks the subjective posterior probability, combining its subcomponents of prior

probability and evidence likelihood, and reflecting the individual participants’ systematic

deviations from objective probabilities. The parieto-occipital cortex is thus a candidate neural

substrate for humans’ ability to approximate Bayesian inference by integrating prior beliefs

with new information.
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Making adaptive decisions often requires us to infer
unobservable, or hidden, states based on probabilistic
information. For example, when making a diagnosis, a

physician infers an underlying illness based on observable
symptoms that provide imperfect evidence for the illness. Fur-
thermore, while probabilistic information can be learned by trial
and error, in many situations, inferences rely primarily on
described information—such as when the physician relies on
reports of the probability of a specific disease or the reliability of a
diagnostic test. Probabilistic inference supports a variety of
adaptive behaviors in humans and other animals, and alterations
in probabilistic inference have been linked to psychopathology1–4,
underscoring the importance of understanding its neural
mechanisms.

According to Bayesian logic, optimal probabilistic inference
requires individuals to estimate the posterior probability of a
hypothesis by integrating two quantities: the prior probability of
the hypothesis and the likelihood of new information conditional
on this hypothesis. Although abundant evidence shows that
people approximate posterior probabilities consistent with
Bayesian principles5–13, major questions remain about the
mechanisms by which they do so.

A central open question concerns the neural mechanisms
supporting not only the encoding, but the integration of prior and
likelihood. Previous imaging studies have examined processes
that imply Bayesian inference, like change-point detection14,
information demand15, and the neural representations of prior
and likelihood uncertainty16, but did not ask participants to
report the posterior probabilities or examine how the neural
representations of these probabilities depend on the prior and
likelihood. Other studies did elicit probability estimates, but
parametrically manipulated only the prior probability17 or only
the likelihood18–22 while holding the other quantity constant; this
practice confounds the posterior probability with the (single)
manipulated quantity, eschewing the question of prior–likelihood
integration. Finally, Ting et al. 11 did independently manipulate
prior probability and likelihood, but required participants to
choose the option that had higher probability of reward, con-
founding the integration of these quantities with a representation
of expected value (EV).

In the present investigation, we examined this question using
fMRI in conjunction with a behavioral task that we developed in
which we independently manipulated the prior probability of a
hidden state and the likelihood of the evidence conditional on the
state. We used a one-shot probability estimation design based on
described (numerical) probabilities building on a large behavioral
economics literature5–7,9,13 showing that this behavior is well
captured by Bayesian inference models, avoids complex sequen-
tial processes, and reflects many real-life judgments (e.g., from
financial investments to legal verdicts). We required participants
to estimate the posterior probability of a state based on the prior
probability and likelihood, and we used a well-validated incen-
tive-compatible scoring rule23 to incentivize accurate estimates
and decorrelate posterior probability from EV. We show that a
cluster of BOLD activation encompassing the left posterior par-
ietal and anterolateral occipital cortices tracked subjective pos-
terior probability and its subcomponents of prior probability and
evidence likelihood and, moreover, correlated with inter-
individual variability in estimation strategies, identifying this
area as a candidate neural substrate for Bayesian integration.

Results
Museum Inference Task. The Museum Inference Task was a
modified bookbag-and-poker-chip5–7,9,13 (or beads15,24–27) task
that examined probabilistic inference from discrete samples of

information. On each trial, participants estimated the posterior
probability of being in one of two states—a portrait gallery that
contained more pictures of faces than places or a landscape gal-
lery that contained more pictures of places than faces. To make
this estimate, participants were shown the prior probability of
being in a state, a sample picture providing evidence with variable
likelihood regarding the state, and the potential penalty for esti-
mation inaccuracy (Fig. 1a). After viewing this information,
participants were questioned about the posterior probability of
being in one gallery (the questioned gallery) and reported their
estimate—henceforth, “subjective posterior probability”—by
moving a slider on a probability scale (Fig. 1a).

To determine how the prior and likelihood probabilities are
integrated and individually contribute to the subjective posterior,
we independently randomized each quantity. To this end, we
created a set of 120 trials that tiled the joint probability space and
ensured that the prior probabilities and likelihoods were
uncorrelated (Fig. 1b; Pearson correlations, probabilities:
r= 0.085, p= 0.359; logits: r= 0.104, p= 0.258). In individual
trials, the prior probability was displayed as a percentage (e.g.,
90% and 10% chance of being in the portrait and landscape
galleries, respectively), while the likelihood was indicated by a
majority–minority ratio25,27 (Fig. 1a). A more balanced
majority–minority ratio (e.g., 60:40) indicated that the hidden
gallery contained a relatively even mixture of images, and thus the
sample picture provided weak evidence of the hidden gallery’s
identity. In contrast, a more biased ratio (e.g., 90:10) indicated
that the sample provided strong evidence about the hidden
gallery. We interleaved 10 additional catch trials on which the
sample picture and majority–minority ratio were omitted, and
participants were to only report the prior probability. Catch trials
were analyzed separately to verify that participants attended to
the prior probability, but were not included in the fMRI analyses
as they did not require Bayesian integration.

Moreover, to minimize value confounds, we used an incentive-
compatible procedure inducing participants to provide accurate
Bayesian estimates. First, to prevent serial trial effects, we did not
provide participants with feedback on individual trials7,9,28;
instead, participants were truthfully informed that trials were
independent and their payment at the end of the session would
depend on their accuracy on a randomly selected trial. Second,
the payment for the selected trial was equal to a $30 endowment
from which the trial’s inaccuracy penalty ($10 or $20) was
deducted probabilistically, with the probability of a penalty being
equal to the squared error between the true gallery and the
participants’ posterior estimate. This scoring rule23 caused
the expected value (EV) of a trial to be a U-shaped function of
the objective posterior probability, removing linear correlations
between the two variables (Fig. 1c; Pearson correlation coefficient:
−0.007, p= 0.943). In addition, the scoring rule causing EV to
increase as the subjective posterior approached the objective
posterior (Fig. 1d, Supplementary Fig. 1), incentivizing partici-
pants to provide precise estimates. Note that this reward scheme
is not intended to produce effects of the penalty on the
participants’ probability estimates; instead, it incentivizes parti-
cipants to veridically report the objective posterior at all levels of
the posterior or penalty. The reward scheme and its implications
were carefully explained to participants during the initial testing
day (see the “Methods” section).

Participants first completed the task outside of the scanner
(prescan session) and, if they met performance-based exclusion
criteria (see the “Methods” section), were invited to return for a
scan session in which they completed the task with a different set
of trials under simultaneous fMRI. The scan session was divided
evenly into four runs, with the questioned gallery alternating by
run (Supplementary Data 1). At the start of each trial, the slider
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was reset to a random position to rule out confounds related to
the motor report and to discourage participants from anchoring
to any one reported probability. This decoupled the subjective
posterior probability from the initial slider position and reduced
its correlation with slider displacement to 0.55, well within the
range that can be controlled for by linear models29.

Probability estimates conform to approximate Bayesian
inference. Twenty-three participants passed the exclusion criteria
and were scanned using fMRI (see the “Methods” section). The
subjective posterior probabilities that participants reported in the
scanner increased monotonically with the objective posterior
probability, suggesting that participants approximated Bayesian
inference (Fig. 2a). A mixed-effects regression analysis (Eq. (5))
showed that the subjective posterior probability had a negative
quadratic (i.e., inverse U-shaped) relationship with reaction time
(after controlling for slider movement and the difference between
prior and likelihood; fixed-effects coefficient of squared reaction
time: −5.88, 95% confidence interval (CI): [−7.55, −4.21],
f2= 0.05, N= 23 participants, T(27.06)=−7.24, SE= 0.81,

p < 0.001, Fig. 2c, degrees of freedom calculated with Sat-
terthwaite approximation, see the subsection “Overview of
behavioral modeling” of the “Methods” section). This suggests
that reaction time increased as participants became more
uncertain (i.e., subjective posterior approached 0.5), consistent
with theory and experimental evidence that reaction time
increases with decision difficulty30,31.

To examine our key hypothesis that participants integrated the prior
and likelihood terms, we relied on the fact that Bayes’ theorem can be
expressed as a sum of logits (log odds) of the prior and likelihoods—
i.e., logit posterior

� � ¼ β1logit prior
� �þ β2logit likelihoodð Þ, with

β1 ¼ β2 ¼ 1 for perfect integration (Eqs. (7) and (8)). We thus
modeled the subjective logit posterior as a weighted sum of the logit
prior and logit likelihood (Eq. (10)) and analyzed the fitted coefficients
β1and β2 as measures of the weights that participants afforded to each
term. Each term produced significant positive coefficients at the group
level (Fig. 2d; fixed-effect logit prior weight: 0.66, 95% CI: [0.56, 0.76],
f2= 2.06, N= 23 participants, T(22.99)= 14.17, SE= 0.05, p< 0.001;
logit likelihood weight: 0.50, 95% CI: [0.40, 0.60], f2= 2.43, N= 23
participants, T(22.81)= 10.30, SE: 0.05, p < 0.001; Supplementary

Fig. 1 The trial structure and incentivization scheme of the Museum Inference Task. a Trial structure. Participants see the prior probability of being in a
landscape or portrait gallery, one sample picture drawn from the gallery (indicated by the arrow above it); and the evidence strength, represented by the
ratio of majority to minority pictures in the gallery. A decoy picture from the opposite category is shown to control for visual activations. Together, the
sample and its strength determine the likelihood. The penalty reveals how much participants could lose from their endowment due to inaccuracy in their
estimate. These trial elements could appear on screen in a variety of spatial or temporal orders. The face drawing (OpenCripart-Vectors via Pixaby, free to
use under content license) is for visualization only. The actual face stimuli were photographs of human faces (see subsection “Image sets” in the
“Methods” section). b The objective posterior probability of the questioned gallery conditional on the sample picture (colored grid) as a function of the
prior probability of the questioned gallery (y-axis) and the likelihood of the sample conditional on the questioned gallery (x-axis), with points at
prior–likelihood combinations that were used on trials during the scan session (non-catch trials: black circles, catch trials: gray circles). The catch trials’
likelihoods are plotted at 0.5 because catch trials omitted likelihood information, which, on this task, is equivalent to the likelihood equaling 0.5. c The
expected value (EV) of a trial and the objective posterior probability of the questioned gallery are virtually uncorrelated on the task (trials with $10 penalty:
gray circles, trials with $20 penalty: black circles). Thus, the incentivization scheme does not confound EV with posterior probability. d Curves depicting the
relationship between trial EV and participants’ response (subjective posterior probability) when objective posterior probability is 0.3 (blue), 0.5 (orange),
and 0.7 (yellow) and when penalty is $10 (dotted lines) and $20 (solid lines). The reward procedure incentivizes accuracy because EV increases as
subjective posterior probability approaches the objective posterior probability. While EV decreases with penalty, submitting the objective posterior
probability maximizes EV regardless of penalty.
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Table 1) and in each individual participant (Fig. 2d), indicating that the
prior probability and likelihoods contributed independently to the
subjective posterior. Further establishing the independent contributions
of each term, the weights for logit prior and logit likelihood were
uncorrelated across participants (Pearson correlation coefficient:
−0.16, p= 0.46). Finally, models that contained only individual terms
(i.e., logit prior, logit likelihood, or objective logit posterior) were
inferior to those that contained terms for both logit prior and logit
likelihood (Supplementary Fig. 2). The results were robust across the
prescan and scan sessions, several methods of normalizing the data,
and controlling for nuisance variables of penalty and initial slider
position (Supplementary Table 1). Together, the findings confirm that
participants did not rely solely on the prior or on the likelihood but
integrated both terms to estimate the subjective posterior.

Although the subjective posterior estimates were consistent
with Bayesian predictions, participants exhibited several systema-
tic deviations from these predictions. First, participants showed a

positive intercept, suggesting that they tended to overestimate the
posterior probability of the questioned gallery (Fig. 2d; fixed-
effect intercept: 0.07, 95% CI: [0.01, 0.13], N= 23 participants,
T(23.82)= 2.59, SE= 0.03, p= 0.016, Supplementary Table 1).
Additionally, the penalty coefficient was very small but
significantly positive, indicating that participants noticed the
penalty and reported slightly higher posterior probability
estimates for the questioned gallery under a higher penalty
(Fig. 2d, fixed-effect penalty coefficient: 0.01, 95% CI: [0.003,
0.013], f2= 0.007, N= 23 participants, T(67.16)= 3.20, SE=
0.002, p= 0.002, Supplementary Table 1). However, consistent
with an ideal observer’s response to our incentivization mechan-
ism (Fig. 1d), the penalty did not significantly affect the accuracy
of the subjective posterior (as calculated by the absolute deviation
of the subjective from the objective posterior probability by
participant; median difference between the deviations in the $20
versus $10 penalty conditions: −0.002, bootstrapped 95% CI:

Fig. 2 People closely estimate posterior probability by integrating described prior probabilities and likelihoods. a The subjective posterior probability
(reported estimates) is monotonically associated with the objective posterior probability of the questioned gallery across all participants (N= 23) across all
completed non-catch trials (gray squares). However, the subjective posterior is conservative (biased toward 0.5) compared to the objective posterior. For
visualization, the median subjective posterior probability is binned by the objective posterior probability (black circles). The black curve is the regression
line from b transformed into probability space. Error bars represent the interquartile range. The gray diagonal line represents unity. b a transformed into
logit space. Subjective logit posterior is strongly associated with the objective logit posterior (R2= 0.77, group-wise slope of objective logit
posterior= 0.56, p < 0.001, linear mixed-effects model, Eq. (9)). Corresponding to the bias in subjective posterior probability in a, subjective logit posterior
is conservative (biased toward 0) compared to the objective logit posterior. The black diagonal line is the least-squares regression line for the group while
the thin, gray lines are the least-squares lines for each participant. For visualization, group median subjective logit posteriors are binned by objective logit
posterior (black circles); however, the regression was carried out on the raw logits, not the binned medians. Error bars represent interquartile range. The
long, thick, gray diagonal represents unity. In the inset is the distribution of objective logit posterior weights (slopes) across individual participants.
c Reaction time peaks at intermediate subjective posterior probabilities and declines as subjective posterior approaches 0 or 1. Subjective posterior
probability has a negative quadratic effect on reaction time after controlling for nuisance variables (i.e., the absolute value of slider displacement and the
absolute difference between prior and likelihood) across all completed non-catch trials (gray squares). The black curve is the least-squares line for the
individual trials. For visualization, median reaction time across all non-catch trials is binned by subjective posterior probability (black circles); however, the
regression was carried out on the raw reaction times and probabilities, not the binned trials or trial medians. Error bars represent interquartile range.
d Participants incorporate prior and likelihood into their subjective posteriors, but compared to simulated ideal observers (N= 23), they underweight both.
Regression weights for individual participants (gray circles), at the group level over all participants (black circles), and at the group level over all simulated
ideal observers (blue triangles). Error bars represent 95% confidence intervals. While all terms are statistically significant at the group level according to a
linear mixed-effects model, penalty and initial slider position have negligible effects compared to logit prior and logit likelihood (Supplementary Table 1).
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[−0.009, 0.015], N= 23 participants, sign statistic= 11, p= 1,
paired sign test).

Finally, the most important departure from Bayesian integra-
tion was that, although the logit weights were significantly
positive, they were significantly lower than those of the Bayesian
ideal observers (Fig. 2d; difference in regression weights between
individual participants and their corresponding simulated ideal
observer, logit prior: −0.29, 95% CI: [−0.39, −0.20], Cohen’s
d=−1.29, N= 23 participants, T(22)=−6.19, SD= 0.23,
p < 0.001; logit likelihood: −0.48, 95% CI: [−0.58, −0.38];
Cohen’s d=−2.01, N= 23 participants, T(22)=−9.64, SD=
0.24, p < 0.001; paired T-test). The weights were strongly
correlated between the prescan and scan sessions, suggesting that
they were stable across our experiment (logit prior r across
sessions= 0.77, p < 0.001; logit likelihood r across sessions= 0.76,
p < 0.001; Pearson correlation).

Given these systematic departures from Bayesian integration,
we considered whether participants may have used a non-
Bayesian strategy to make their estimates—perhaps simply
reporting the mean of the prior probability and the likelihood.
To examine this possibility, we tested an additional group of
participants on a control task (the Museum Averaging Task) that
was identical in all respects to the Museum Inference Task but in
which participants were asked to report the mean of two
probabilities. The two sets of instructions elicited distinct
strategies, as shown by quantitative model comparisons and
model-free analyses of the numerical reports (Supplementary
Fig. 3 and Supplementary Note 1); moreover, RTs peaked for
intermediate probability estimates on the Inference but not on the
Averaging Task (Supplementary Fig. 3). Together, these results
provide converging evidence against the hypothesis that partici-
pants simply averaged the prior and likelihood probabilities
strategy on the Museum Inference Task.

We further considered the possibility that, in the Museum
Inference Task, participants performed a weighted average of the
prior and likelihood (i.e., were better described by a weighted
linear model of the two quantities) or a weighted average that
considered the interaction between the two terms (i.e., were
better described by a weighted linear model with interactions).
We noted that the predictions of the latter model are very similar
to those of Bayesian integration, as both models capture the
integration of prior probability and likelihood (the linear
model through the interaction term, and the Bayesian model
by transforming the probabilities to log odds). Therefore, we
partitioned the model space into two model families—the
Bayesian and linear-interaction models on one hand, and
the weighted average without interactions on the other—and
calculated the family-wise exceedance probability, which relies on
Bayes’ theorem to correct for the number of models within a
family rather than simply adding the exceedance probabilities of
the family’s constituent models32. The former model family had a
much greater exceedance probability than the latter (0.83 vs. 0.17,
respectively), showing that the participants’ strategy was better
described by an interaction between prior and likelihood that is
characteristic of approximate Bayesian inference.

Together, these findings argue against the hypotheses that
participants used non-Bayesian strategies involving weighted or
unweighted averaging of the probabilities. Thus, our finding that
participants underweighted the logit prior and logit likelihood
weights is consistent with previous findings showing that people
approximate Bayesian integration by underweighting
probabilities28,33–35, including priors13 and likelihoods13, parti-
cularly when the probabilities are conveyed through description
as was the case in our task.

As a parsimonious measure of this underweighting, we thus
computed the slope of the relationship between subjective and

objective logit posterior (Eq. (9), Fig. 2b). This slope, which we
refer to as the objective logit posterior weight, is equivalent to the
probability weighting parameter from Prospect Theory33. The
objective logit posterior weight was significantly > 0 (Fig. 2b,
fixed-effect weight [group-level coefficient]: 0.56, 95% CI: [0.49,
0.63], f2= 3.37, N= 23 participants, T(23.15)= 17.09, SE= 0.03,
p < 0.001) but significantly lower than 1 (Fig. 2b, N= 23
participants, T(23.15)=−13.44, SE= 0.03, p < 0.001). Moreover,
the slope was stable between the prescan and scan sessions
(Pearson correlation coefficient: 0.81, N= 23 participants,
p < 0.001), suggesting that it reliably captured inter-individual
variability in the tendency to underweight the probabilities
(Fig. 2b, gray lines and inset). Thus, we use the objective logit
posterior weight as a measure of inter-individual variability in
approximate Bayesian integration in our subsequent fMRI
analyses.

A region in left parieto-occipital cortex encodes subjective
posterior probability. To search for candidate neural substrates
of Bayesian integration, we modeled the fMRI signal during the
decision period starting at the onset of the slider and ending at
the participant’s response (Fig. 1a), and consistent with the
behavioral analysis, we searched for BOLD responses to the
probabilities in logit space. Note that the Bayesian prediction that
the posterior probability is correlated with the prior and like-
lihoods precludes us from including all three terms into a single
GLM model, as this would introduce severe multicollinearity.
Given this strong constraint inherent to Bayesian logic, we
adopted an alternative strategy of first searching for regions where
the BOLD signals scaled positively with the subjective logit pos-
terior, and then analyzing if these regions separately encoded both
the logit prior and logit likelihood consistent with Bayesian
integration.

To identify regions encoding the subjective logit posterior, we
used a whole-brain general linear model (WB-GLM 1) that
contained subjective logit posterior as a predictor and controlled
for subjective posterior certainty (the absolute value of the
subjective logit posterior), motor preparation for hand or eye
movements (initial slider position), and reward expectation
(penalty and EV based on subjective posterior probability; Eq.
(4)). This analysis revealed one cluster tracking subjective logit
posterior that spanned parts of the superior parietal lobule (SPL)
and intraparietal sulcus (IPS) in the left posterior parietal cortex
and extended partially into left anterolateral occipital cortex
(Fig. 3a, b, Supplementary Tables 2 and 3, cluster-level familywise
error–corrected p= 0.003, permutation test). The signal in this
cluster increased monotonically as a function of subjective
posterior probability (Fig. 3c; data binned for visualization).
Additional analyses ruled out non-monotonic patterns, by
showing that the effect of subjective logit posterior was still
significantly positive after excluding trials in the highest bin (see
subsection “fROI analyses for the Museum Inference Task” in the
“Methods” section; parameter estimate: 0.16, 95% CI: [0.02, 0.29],
f2= 0.05, N= 23 participants, T(66.01)= 2.30, SE= 0.07,
p= 0.024), and a quadratic effect of subjective logit posterior
was not statistically significant (parameter estimate: 0.15, boot-
strapped 95% CI: [0.09, 0.21], signed rank= 199, N= 23
participants, Z= 1.86, p= 0.064; Wilcoxon signed rank test used
since parameter estimates for subjective logit posterior were not
normally distributed). We found subthreshold activation but no
significant clusters when we tested the objective (WB-GLM 2)
instead of the subjective posterior (Supplementary Fig. 4).

To verify if the activity in the parieto-occipital cluster explained
individual differences in approximate Bayesian integration, we
used the weight (slope) of the subjective versus the objective logit
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posterior as noted above (Fig. 2b; Eq. (9)). To obtain an analogous
measure of neural probability weighting, we re-analyzed the
activity in the ROI using a GLM with a term for the objective logit
posterior while controlling for the nuisance regressors of penalty
and slider displacement (fROI-GLM 1). The behavioral weights
and neural parameter estimates for objective logit posterior were
positively correlated across participants (Spearman ρ= 0.439,
bootstrapped 95% CI: [0.070, 0.714], p= 0.037; Fig. 3f). Thus,
deviations in the cluster’s activation with respect to the objective
posterior probability predicted the degree of systematic distortion
(conservatism) of participants’ reported estimates (Fig. 2a).

In the second analysis step, we examined if the cluster encoding
the subjective posterior had independent responses to the prior
and likelihood. This analysis is crucial for excluding the null
hypothesis that the encoding of subjective posterior reflects
tracking of only one quantity (either the prior or likelihood),
rather than independently tracking both as required for Bayesian
integration. Consistent with the latter hypothesis, analysis of the

cluster’s activity with a GLM that had separate terms for logit
prior and logit likelihood (fROI-GLM 2) produced significant and
positive parameter estimates for each term (logit prior parameter
estimate: 0.159, 95% CI: [0.035, 0.283], f2= 0.07, N= 23
participants, N= 23 participants, T(92)= 2.55, SE= 0.06,
p= 0.013; logit likelihood: 0.310, 95% CI: [0.187, 0.434],
f2= 0.27, N= 23 participants, N= 23 participants, T(92)= 4.98,
SE= 0.06, p < 0.001; Fig. 3d, e; Supplementary Table 4). We
further asked whether this analysis may have been biased to
detect significant effects of both terms given the cluster’s scaling
with subjective posterior probability. To rule out this hypothesis,
we conducted a permutation analysis in which we randomized
the labels of the logit prior and logit-likelihood terms (Supple-
mentary Note 2, Supplementary Fig. 5). This procedure holds the
logit posterior constant, and provides a null distribution of the
GLM parameters that are expected only from an encoding of the
logit posterior without a true encoding of the logit prior and logit
likelihood terms. The true (non-randomized) GLM parameters
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for the prior and likelihood were entirely outside their respective
null distributions, ruling out the hypothesis that they were merely
epiphenomena of a representation of the posterior (Supplemen-
tary Fig. 5).

Additional analyses confirmed this conclusion. Because the
subjective posterior was equivalent with the final slider position,
the above analyses rule out a mere encoding of the final slider
position. Moreover, slider displacement and penalty were
included as nuisance parameters in the GLM and produced
nonsignificant parameter estimates (slider displacement: 0.04,
95% CI: [−0.08, 0.16], f2= 0.004, N= 23 participants,
T(92)= 0.63, SE= 0.06, p= 0.53; penalty: −0.06, 95% CI:
[−0.18, 0.07], f2= 0.009, N= 23 participants, T(92)=−0.921,
SE= 0.06, p= 0.360), ruling out reward or sensorimotor
confounds. A separate conjunction analysis showed that the
parieto-occipital cluster overlapped with a significant cluster
showing a conjunction of logit prior and logit-likelihood effects
(Supplementary Fig. 6; Supplementary Table 5). Finally, the
cluster showed positive effects of both prior and likelihood (T-
stats > 0 for both terms) in a majority of individual participants
(15 of 23), ruling out the possibility that the two quantities were
encoded in different participant groups. Together, these findings
suggest that the parieto-occipital cluster provided independent
encoding of both the prior and the likelihood, consistent with
Bayesian integration.

Lack of consistent category-specific representations of prob-
ability. Previous studies suggest that, when probabilistic out-
comes are yoked to category-specific visual inputs (e.g., face or
place images as probabilistic evidence), probabilistic reasoning
engages category-specific areas36 or immediately adjacent
regions19. To determine if this were the case on our task, we used
an independent face–place localizer (see the subsection
“Face–Place Localizer” in the “Methods” section) to identify

participant-specific face- and place-selective fROIs (Fig. 4a).
Neither fROI showed significant encoding of the category-
concordant subjective logit posterior when all runs were con-
sidered together (Fig. 4b; Supplementary Fig. 7a; Supplementary
Table 6, fROI-GLM 3 in the “Methods” section), or when they
were separated according to the concordance between the ques-
tioned gallery and the fROI’s preferred category (Fig. 4c; test
statistic for interaction between cluster and fMRI contrast in
ANOVA: F(3)= 0.84, η2= 0.01, p= 0.47; see also Supplementary
Fig. 7d; Supplementary Table 8). Analyses of prior and likelihood
activations (fROI-GLM 2) found a significant response only to
the logit likelihood of the portrait gallery in the face fROI
(parameter estimate: 0.170, 95% CI: [0.050, 0.290], f2= 0.028,
N= 23 participants, T(276)= 2.78, SE= 0.06, p= 0.006), but no
other significant responses in the face or place fROIs (Supple-
mentary Fig. 7b, c, e, f, Supplementary Tables 7 and 9). Likewise,
category-specific whole-brain analyses showed no consistent
results, with no significant clusters tracking probabilities with
respect to the portrait or landscape gallery except one tracking the
subjective logit posterior (Supplementary Fig. 8, Supplementary
Table 10) and another tracking the logit prior (Supplementary
Fig. 9; Supplementary Table 11). Together, these findings suggest
that responses to category-specific probabilistic information were
not pronounced in our task.

Discussion
To elucidate neural substrates for Bayesian integration, we
designed a task in which participants were incentivized to report
accurate estimates of the posterior probability of one of two
hidden states, based on the integration of the prior probability
and likelihood of the evidence regarding the state. fMRI analyses
revealed a cluster that straddled the left posterior parietal and
anterolateral occipital cortex and tracked the subjective posterior
probability, and crucially, both of its components of prior

Fig. 3 A left-hemisphere cluster mostly within posterior parietal cortex (PPC) and extending into anterolateral occipital cortex encodes subjective
posterior beliefs about the questioned gallery. a Activation in one cluster spanning superior parietal lobule (SPL) and intraparietal sulcus (IPS) in left PPC
and left anterolateral occipital cortex tracks the subjective logit posterior of the questioned gallery, making it a candidate posterior belief–encoding region.
Cluster-level familywise error (FWER)-corrected p= 0.003 (permutation test based on cluster-defining height threshold of p= 0.001, N= 23
participants). The anatomical template was smoothed at a full width at half maximum (FWHM) of 5 × 5 × 5mm for visualization purposes89. b Surface
rendering of the cluster in a shows that it overlaps candidate human homologs to the lateral intraparietal (LIP) area, a region in monkey PPC that has been
implicated in Bayesian integration of probabilistic information46,47,49,52. The purple outline corresponds to the human homolog to ventral LIP90. Points
represent candidate human homologs of LIP according to task-based fMRI studies in humans43,91–93. Rendered in Connectome Workbench94.
c Corroborating results in a, mean activation of the cluster visually increases with binned subjective posterior probability (binned in fifths). The black circles
represent the mean of participants’ parameter estimates for subjective posterior probability within the cluster; error bars represent standard error. The gray
circles represent the individual participants’ parameter estimates. The least-squares line of individual participants’ binned parameter estimates is shown to
visualize the increase in activation with subjective posterior, but neither this plot nor this analysis was used to test for any effect. Despite the impression of
a slight nonlinearity, the effect of subjective posterior was still significantly positive after excluding trials in the highest bin (p= 0.024), and a quadratic
effect of subjective logit posterior was not statistically significant (p= 0.064). d Post-hoc analyses of the cluster in a show it is significantly positively
associated with both the logit prior of the questioned gallery and the logit likelihood of the sample picture conditional on the questioned gallery, after
accounting for the inaccuracy penalty and slider displacement on the trial (gray circles: individual participants, black circles: group-level results). Error bars
represent standard error. *p < 0.05, ***p < 0.001. Even though the distribution of parameter estimates for the logit prior was not significantly different from
normal (N= 23 participants, p= 0.098, Lilliefors test), a nonparametric analysis also supported the positive group-level effects of the logit prior (signed
rank= 208, N= 23 participants, p= 0.033). e Corroborating the results in d, activation of the cluster visually increases with binned prior probability
(yellow circles) and likelihood (purple triangles). The darker points represent the mean of participants’ parameter estimates for prior probability and
likelihood, respectively; error bars represent standard error. The translucent points represent the individual participants’ parameter estimates. The least-
squares lines of individual participants’ binned parameter estimates are shown to visualize the increase in activation with prior (yellow line) and likelihood
(purple line), but they were not used to test for an effect. Prior and likelihood were binned into the same groups by which they had been binned when the
session parameters were set (marginal histograms in Fig. 1b, see also the “Methods” section). Three individual points are not shown for clarity of
visualization. The data points for likelihood have been shifted to the right by 0.02 to reduce the visual overlap with the data points for prior probability.
f Parameter estimate for BOLD signal tracking objective logit posterior within the cluster is positively correlated with behavioral objective logit posterior
weight across all participants (Spearman correlation: 0.439, N= 23 participants, p= 0.037), suggesting that distortions in neural representations of
posterior probability in the cluster contribute to the degree of distortion in participants’ subjective posterior probabilities. Each point represents one
participant. The gray line is the least-squares line.
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probability and likelihood, independently of sensorimotor con-
founds or expected value. The sensitivity to subjective posterior
probability in the parietal–occipital cluster correlated with indi-
vidual behavioral sensitivity, suggesting that the cluster modulates
inter-individual variability in probability weighting. These results
add to our understanding of the neural mechanisms of prob-
abilistic inference and highlight a region of the human parieto-
occipital cortex as a candidate substrate for the integration of
prior and likelihood into a subjective representation of posterior
probability.

Our experimental design was inspired by axiomatic approaches
to identify the representations of distinct quantities that comprise
reward prediction errors37,38 and is distinguished from the pre-
vious literature by its focus on the neural substrates of prior and
likelihood integration. While many studies of decision-making
involve probabilistic inference, these studies have typically
focused on economic or information sampling decisions that rely
on the results of the inference process rather than on the
mechanisms of inferential computations per se (e.g., the Beads
Task15,25,26). Several neuroimaging studies did focus on prob-
abilistic inference and reported activations in subcortical17,
frontal17,19–21, temporal19,22, and parietal regions20–22; however,
these studies parametrically manipulated either the prior prob-
ability or the likelihood while holding the other quantity constant,
precluding them from identifying areas involved in Bayesian
integration. An elegant study by Vilares et al. 16 factorially

modulated prior and likelihood uncertainty but focused more on
the distinct encoding of these quantities rather than their inte-
gration into posterior probability. In contrast with our approach
of conveying prior and likelihood using a common numerical
format to facilitate analysis of their neural integration, Vilares
et al.’s design required different strategies to glean the prior and
the likelihood uncertainties (experience-based learning and
visual, respectively), which may have contributed to their findings
of mainly distinct neural representations of these two quantities.

Ting et al. 11 also parametrically modulated prior and like-
lihood; however, they required participants to decide which of
two options was more likely to be rewarded, equating neural
representations of posterior probability with EV. In contrast, in
our study, participants reported the probability of one of two
states that were not defined by the prospect of reward, and they
were incentivized to maximize accuracy at all levels of posterior
probability, ensuring that neural representations of posterior
probability did not reflect EV. Our goal to localize neural
representations of posterior probability irrespective of EV thus
differed from that of previous authors who studied how reward
and probability are combined to make decisions15,39. Our results
are consistent with imaging studies in humans20 and neural
recordings in monkeys40–42 showing that areas of the parietal
cortex can encode probabilistic information irrespective of
reward. In particular, the section of the parieto-occipital cluster in
IPS overlaps with the human homolog to monkey lateral

Fig. 4 Lack of evidence that face- and place-selective functional regions of interest (fROIs) encode subjective posterior beliefs about category-
concordant galleries (i.e., the galleries corresponding to the preferred stimuli of that region: portrait gallery corresponding to face fROI and landscape
gallery corresponding to place fROI). a Participant-wise (N= 23 participants) overlap of face- (brown) and place- (yellow) selective fROIs from an
independent functional localizer task, normalized to MNI space for visualization. Within participants, voxels were thresholded in native space at an
uncorrected p-value of 0.001 for the respective contrasts (Face > Place or Place > Face). Face-selective fROIs encompass the fusiform face area and place-
selective fROIs encompass the parahippocampal place area. The anatomical template was smoothed at a FWHM of 5 × 5 × 5mm for visualization
purposes89. b Neither the face-selective nor the place-selective regions show significant effects of the subjective logit posterior of their concordant
galleries. Because there were only two galleries (portrait and landscape), their posterior probabilities were complementary. Group-level statistics are in
black; participant-level statistics are in gray. c After dividing trials by their questioned galleries (portrait or landscape), neither fROI showed preferential
activation tracking the posterior probability of its concordant gallery and neither posterior probability had a higher parameter estimate in its concordant
fROI. Group-level statistics are in saturated colors while participant-level statistics are in pastel colors. Statistics for concordant galleries are green circles
while statistics for discordant galleries are red triangles. Between-participant error bars are the standard error of the mean of the participants’ parameter
estimates. On most points, the error bars are too small to be visible. NS not significant.
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intraparietal (LIP) area43–45, which has been further associated
with probabilistic inference in support of decision-making46,47

and was recently shown to contain separate representations of
likelihood40 and prior uncertainty41. Together with this literature,
our results thus point to parieto-occipital cortex as an important
neural substrate for inferential reasoning and probabilistic
sophistication, the ability to reason about probability indepen-
dently of value20,48.

In previous studies in humans and monkeys, sensory evidence
for categorical decisions indicated by a property of a sensory
stimulus—e.g., the coherence of a random-dot motion
stimulus46,49—was encoded in sensory areas selective for the
relevant stimulus, such as motion-selective areas. More relevant
to our study, Philiastides et al. 19 associated different likelihoods
with specific images of faces or houses and found that these
likelihoods were encoded in the ventral temporal lobe near face-
selective and place-selective visual regions, respectively. In our
experiment, in contrast, the likelihood was described numerically
while images of faces and places merely cued a stimulus category.
Rather than activating areas selective to faces or places, this more
abstract presentation modality—which has been intensely studied
behaviorally5–7,9,13,33,34,50,51 but less so with neuroimaging18—
elicited consistent representations of the probability of the
questioned gallery only in the parieto-occipital cluster. Together
with evidence that monkey parietal neurons are sensitive to
probabilistic information even when probabilistic information is
conveyed through learned cues40,41,47,52, these findings suggest a
domain-general involvement of parietal-occipital areas in prob-
abilistic inference, regardless of whether concrete sensory evi-
dence is conveyed from sensory regions (during perceptual
decisions) or whether more abstract—e.g., numeric—information
is directly encoded in higher-order parieto-occipital regions (as in
our current task).

Notably, participants systematically overestimated the poster-
ior probability of the questioned gallery when it was close to 0
and underestimated it when it was close to 1. This behavior,
described by a phenomenon called probability weighting, or
approximate Bayesian inference (Eq. (10))13, is typically observed
in humans’ judgments from described probabilities13,28,33–35.
Recent studies suggested that inter-individual variations in
probability weighting represent optimal adaptations to variable
levels of cognitive imprecision in the representation of prob-
abilistic quantities53–56, although this hypothesis requires vali-
dation in future studies with larger participant samples. Whatever
the explanation, however, we show that participants’ posterior
probability weighting was positively correlated with their neural
parameter estimates for posterior probability within the parieto-
occipital cluster, suggesting that the parieto-occipital cortex at
least partially mediates the mechanisms of posterior probability
weighting.

These findings, in turn, raise questions about the relationship
of our results and human parietal activations when people solve
arithmetic problems through (explicit) mental calculation57,58.
The findings from the control Museum Averaging Task strongly
suggest that participants did not merely adopt an averaging
heuristic on the Inference Task. Moreover, while arithmetic-
related parietal activation increases with problem complexity or
difficulty58–61, in the Inference Task, decision difficulty (as
indexed by reaction times) covaried with subjective posterior
certainty, which was orthogonal to the subjective posterior
probability tracked by parieto-occipital activations.

While these results rule out a simple explanation based on
averaging, an important question for future research is how the
parietal-occipital cortex may integrate numeric quantities of prior
and likelihood. Based on single-neuron recordings in the monkey
LIP40,41 and findings of distinct encodings of probabilistic

quantities in this area40,41, we hypothesize that prior probability
and likelihood can be encoded by distinct populations of cells and
integrated into a representation of posterior probability by the
local parietal circuitry when all relevant information is conveyed
in an abstract format. A recent study by Luyckx et al. 62 found
that representational patterns for numbers are used in a bandit-
learning task, suggesting that abstract stimuli conveying prob-
abilistic information may be mapped onto a magnitude scale that
is normally used to represent numbers. Yet this mechanism
involved a multidimensional representation in principle incon-
sistent with our univariate results. Nevertheless, the broader
hypothesis that the brain approximates Bayesian inference using a
relational magnitude representation remains worthy of future
investigation.

Methods
Participants. For the Museum Inference Task, 44 healthy, right-
handed participants (17 females) were recruited through fliers
posted on the Columbia University campus and through the
recruitment system for the Columbia Business School Behavioral
Research Lab. This pool consisted of Columbia University stu-
dents, other Columbia affiliates, and affiliates of other universities
in the New York Metropolitan Area, and they did not report any
psychiatric or neurological disorders. Participants first completed
a session outside of the scanner (prescan session); 14 participants
were not allowed to advance to the scan session because their
responses during the prescan session reflected disengagement or
lack of comprehension (see the subsection “Performance-based
exclusion criteria”). Another participant was excluded because of
excessive motion inside the MRI scanner, and six participants
withdrew from the study. As a result, the final sample consisted of
23 participants (8 females).

For the Museum Averaging Task, 22 healthy, right-handed
participants (13 females) were recruited through social media and
email, including current students at Columbia University Medical
Center. Participants did not report any psychiatric or neurological
disorders. Participants completed one session of the Museum
Averaging Task at a computer just as the other cohort had
completed the prescan session of the Museum Inference Task;
there was no scan session. Three participants’ data were excluded
from the analysis because their responses reflected disengagement
or lack of comprehension as indicated by our performance-based
exclusion criteria, leaving 19 remaining participants (11 females).
Performance-based exclusion criteria for the Averaging Task were
the same as those for the Inference Task except they were adapted
to the Averaging Task: the comprehension quiz was tailored to
the Averaging Task, minimal sensitivity to the Gallery 1
Probability was tested instead of minimal sensitivity to prior
probability, minimal sensitivity to the mean of the Gallery 1 and
Gallery 2 probabilities was tested instead of minimal sensitivity to
objective posterior probability, and no information-sampling task
was administered (see the subsection “Performance-based exclu-
sion criteria”).

All relevant ethical regulations were followed, and all
participants provided signed informed consent. Experimental
procedures for the Inference and Averaging tasks were approved
by the Institutional Review Boards at Columbia University and
the New York State Psychiatric Institute, respectively.

Statistics and reproducibility. The final sample consisted of 23
participants. Data were analyzed in MATLAB (versions R2018b,
R2021a, and R2022a). In behavioral analyses, wherever possible,
we implemented linear mixed-effects regression to properly
account for between-participant (fixed-effects) variance and
within-participant (random-effects) variance, using the MATLAB
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function fitlme with maximum-likelihood estimation. To acquire
first-level (participant-level) fMRI data, we used the general linear
model (GLM) framework implemented in SPM12, Version 7487
(https://www.fil.ion.ucl.ac.uk/spm). To produce second-level
(group-level) whole-brain maps, we used SnPM13.1.08 (http://
nisox.org/Software/SnPM13/)63 applying a cluster-wise correc-
tion for multiple comparisons using non-parametric permutation
tests. All reported p-values are two-sided except the cluster-level,
familywise error–corrected p-value of the parieto-occipital cluster
(Fig. 3a, b). Further detail is provided below, especially in the
subsections “Overview of behavioral modeling” and “fMRI data
analysis overview”.

Experimental sessions. The full study took place over a prescan
and a scan session scheduled on different days. Both sessions
included the Museum Inference Task (the primary behavioral
task in this study; Fig. 1a) while the scan session additionally
included a Face–Place Localizer Task. We wrote all tasks in
MATLAB using the Psychtoolbox extensions64,65.

The prescan session was administered on a computer outside
of the scanner. Participants first viewed a narrated slideshow on
the instructions for the Museum Inference Task. They were also
administered comprehension quizzes on the instructions, which
they had to pass before proceeding (see the subsection
“Performance-based exclusion criteria”). After passing the
instructions quiz, participants completed 10 practice trials of
the Museum Inference Task to familiarize themselves with the
relationship between response accuracy and the probability of
being penalized while avoiding overtraining. Each practice trial
was followed by a corresponding mock payout trial to show
participants what they could have earned from that trial in the
main task based on their submitted estimate if the trial had been
chosen for payout; however, these practice trials did not affect the
participants’ earnings. Then, participants completed the Museum
Inference Task, after which their performance was evaluated to
determine if they met the remaining performance criteria to
advance to the scan session; if not, they were removed from
the study.

In the scan session, participants watched a summarized version
of the instructions slideshows before completing the Museum
Inference Task and the Face–Place Localizer in the MRI scanner.
Participants were debriefed at the end of the session.

Estimation Stage of the Museum Inference Task. The Museum
Inference Task consisted of an Estimation Stage followed by a
Payout Stage. To encourage participants to remain engaged with
the task, we designed the task so that participants’ estimation
accuracy influenced their earnings. During the Estimation Stage,
participants estimated the posterior probability of a hidden state
depicted as a museum gallery. During the Payout Stage, one trial
was drawn at random to determine the participant’s payout. At
the beginning of each session, the participant was given a $30
endowment from which a penalty of $10 or $20 would be with-
drawn during the Payout Stage depending on the deviation of the
participant’s estimate from the eventual outcome. We based
participants’ earnings on a single estimation trial instead of
averaging potential earnings across all estimation trials to dis-
courage participants from allowing their accuracy to decline
during later trials if they had believed their performance on
earlier trials had been sufficient to make high earnings.

The Estimation Stage of the Museum Inference Task consisted
of 130 trials divided into 4 runs of 32, 33, 32, and 33 trials,
respectively. On each trial, participants had to estimate the
posterior probability of being in either a portrait gallery that
contained more pictures of faces than places or a landscape

gallery that contained more pictures of places than faces.
Participants viewed the prior probability of being in each gallery
and possibly also the likelihood of the sample picture. On 10
catch trials distributed randomly through the Estimation Stage,
the sample picture and likelihood were absent, so participants
would have to estimate the posterior probability with the prior
probability only (Fig. 1b). We inserted these catch trials to ensure
that participants paid attention to the prior probability (see the
subsection “Performance-based exclusion criteria”), and they
were not included in the behavioral or fMRI analyses.

The prior probability was displayed as a percentage (e.g., 90%).
The likelihood information consisted of one face picture66, one
place picture67, and potentially the majority-to-minority ratio of
pictures in the hidden gallery (e.g., 60:40). One face picture and
one place picture were always shown on each trial to control for
the fMRI activation by the appearance of faces and places, as we
were instead interested in the degree of potential face- and place-
selective activation by probabilistic information. During non-
catch trials, the likelihood would consist of a majority–minority
ratio of picture types in the hidden gallery, one sample picture
randomly drawn from the hidden gallery, and one decoy
picture which signaled the opposite category from the sample
picture (i.e., if the sample picture were a face, the decoy would
be a place and vice versa) (Fig. 1a). An arrow appeared over the
true sample picture so that participants could distinguish it from
the decoy picture (Fig. 1a). During catch trials, in place of the
likelihood, there were two decoy pictures and no
majority–minority ratio. Participants were also shown the penalty
that they could lose from the endowment if the trial was chosen
for payout (see “Payout trial”).

A trial began with the prior probability, likelihood information,
or penalty appearing (trial components) over a gray background
(Fig. 1a). The prior probability, likelihood (or likelihood decoy),
and penalty appeared one at a time with the first component
appearing at the instant of trial start and each succeeding
component following the previous component by 1 s (Fig. 1a).
The trial components’ spatial order of appearance was stable
throughout the prescan and scan sessions but counterbalanced by
participant so that participants could expect the information to be
in the same place while allowing us to control for potential effects
of spatial order. The trial components’ temporal order of
appearance was randomized by trial to control for potential
primacy and recency effects. Effects of temporal order on
reported probability estimates (subjective posterior) were negli-
gible and are not discussed further.

Participants completed a trial by reporting their estimate of the
posterior probability of the questioned gallery (the gallery in the
prompt below the slider) by using a trackball to move a slider that
appeared at the bottom of the screen 1 s after the last trial
component. The initial slider position was randomized on each
trial to reduce the correlation between slider movement and
reported posterior—facilitating the separation of the potentially
confounding effect of slider movement from the task variables of
interest—and to discourage participants from anchoring to any
one reported probability. (Randomizing the initial slider position
reduces the correlation between slider displacement and reported
posterior from nearly 1 to 0.55 across all completed trials in the
scan session.) The slider remained on screen for 15 s (“response
window,” Fig. 1a). We chose a response window of 15 s because it
was the shortest response window that captured approximately
80% of responses from 80% of participants during piloting. The
selected posterior probability estimate was indicated by the
amount of the slider from left to right that was highlighted in
orange and by an explicit percentage below the slider. Both these
indicators were updated in real-time. To account for potential
framing effects induced by the prompt, the questioned gallery was
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the portrait gallery on the first and third runs while it was the
landscape gallery on the second and fourth runs. The slider was
divided into 33 discrete posterior probability bins, increasing in
steps of 3% from 2% on the left to 98% on the right. We chose
these increments to discourage participants from anchoring to
“round” numbers (e.g., multiples of 10% or 25%) and so that
submitted posterior estimates could not be 0% or 100%, which
would make the behavioral model inestimable (see the subsection
“Modeling subjective posterior probability”). The participant
confirmed their response by clicking a button on the trackball,
after which the highlighted section of the slider would change
colors from orange to green to indicate that the response had
been recorded. The screen remained unchanged until the end of
the response window plus 0.5 s. If the participant did not submit a
posterior probability estimate within the 15-s response window,
instead, the slider would freeze for 0.5 s and the percentage below
the slider would be replaced by text reading, “Estimate not
submitted.” To encourage participants to respond within the
response window, participants were truthfully warned that if a
response was missing from a trial that happened to be chosen for
payout, they would automatically lose that trial’s penalty. Across
all participants during the scan session, only 10 trials had omitted
responses (all of which were non-catch trials), with 3 participants
missing one trial, 2 participants missing two trials, and 1
participant missing three trials.

Each estimate trial was followed by an intertrial interval during
which a small, black fixation cross appeared over the gray
background (Fig. 1a). To maximize the efficiency of parameter
estimation for the general linear models in the fMRI analysis, the
duration of each intertrial interval was drawn from an
exponential distribution with mean 3.5 s, truncated with a lower
bound of 1 s and an upper bound of 10 s68.

Since the task was designed to investigate prior–likelihood
integration after receiving only one sample, we sought to prevent
behavioral artifacts from serial trial effects such as the gambler’s
fallacy. Therefore, we truthfully told participants that each
estimation trial was independent of all other estimation trials,
and the identity of a trial’s hidden gallery was never revealed
during the Estimation Stage.

To determine the set of prior probabilities and
majority–minority ratios used for the non-catch trials in each
session, we randomly sampled 60 trials from discrete bins that we
established for prior probability (0.1, 0.4, 0.5, 0.6, and 0.9,
arbitrarily chosen as the prior of the portrait gallery) and
majority–minority ratio (60:40, 80:20, and 90:10).
Majority–minority ratios represented evidence strength θ, which
was defined on the interval 0:5<θ ≤ 1 and corresponded to the
numerator of the majority–minority ratio divided by 100. A
random jitter (−0.03, −0.02, −0.01, 0, 0.01, 0.02, or 0.03) was
then added to each prior probability and evidence strength with
equal probability. A “true” hidden gallery was assigned to each
trial based on the prior probability of the portrait gallery (e.g., if
the prior probability was 0.6, there was a 60% chance the trial’s
hidden gallery would be a portrait gallery and a 40% chance it
would be a landscape gallery). A trial’s sample picture was
assigned to signal the hidden gallery with a probability equal to
the trial’s evidence strength (e.g., there was a 60% chance that the
sample would be a face on a trial on which the hidden gallery was
the portrait gallery and the evidence strength was 0.6). These 60
trials were duplicated for each condition of inaccuracy penalty
($10 or $20). The parameters for the remaining 10 catch trials
were assigned by assigning two trials to each of the five prior
probability bins (one trial for each penalty condition) and
jittering the prior probabilities by the aforementioned jittering
method. The order of the trials was then randomly permuted, and
the session was separated into four runs, with 32 trials in the first

and third runs and 33 trials in the second and fourth runs.
Supplementary Data 1 contains a list of parameters for each
estimation trial in the scan session. Figure 1b displays the
prior–likelihood combinations for the scan session, with
the result of the binning and jittering process visible as peaks
on the kernel density plots against each axis.

Payout Stage of the Museum Task. After the Estimation Stage
was complete, one estimation trial was chosen at random with
equal probability to determine the participant’s payment. This
trial was displayed along with its reported posterior probability
estimate from the Estimation Stage. If the participant had failed to
report a posterior probability estimate on that trial, the partici-
pant was notified that the inaccuracy penalty would be auto-
matically subtracted from their endowment, and the session
would end. Otherwise, the trial’s hidden gallery was revealed, and
the participant was told whether they would keep all their
endowment or if they had lost the error penalty, depending on the
posterior probability estimate that they had submitted during the
Estimation Stage.

Binarized scoring rule. We used a binarized scoring rule with a
quadratic loss function23 to determine ploss, the probability that
the participant would lose the penalty on each trial. Specifically,
ploss was given by Eq. (1),

ploss ¼ I � π Qjxð Þð Þ2 ð1Þ
where πðQjxÞ is the participant’s report of the posterior prob-
ability and I is an indicator of whether the “true” hidden gallery
was the questioned gallery on that trial (1 if yes, 0 if no).
Therefore, the quantity I � π Qjxð Þð Þ2 is a measure of the parti-
cipant’s error—the difference between the hidden gallery and the
participant’s estimate of the probability of being in that gallery.
Thus, ploss is minimized when πðQjxÞ is the objective posterior
probability of the questioned gallery according to Bayes’ theorem
because the probability that the hidden gallery is the questioned
gallery is expressed by this objective posterior probability Pr Qjxð Þ
(Eq. (6)). Manipulating the probability of the loss (instead of
using a deterministic loss proportional to the size of the error)
makes the scoring rule insensitive to differing risk preferences
among participants23.

To calculate the expected value (EV) of a trial, we can use
Eq. (1). Consider that the expected value of a trial is the sum of
two products: (1) the product of the endowment N and the
probability of keeping the endowment and (2) the product of the
endowment minus the penalty W and the probability of losing
the penalty from the endowment:

EV ¼ N 1� I � π Qjxð Þð Þ2� �þ N �Wð Þ I � π Qjxð Þð Þ2

Therefore, the expected value of a trial in which the questioned
gallery is the hidden gallery is

EVI¼1 ¼ N 1� 1� π Qjxð Þð Þ2� �þ N �Wð Þ 1� π Qjxð Þð Þ2

And the expected value of a trial in which the questioned
gallery is not the hidden gallery is

EVI¼0 ¼ N 1� π Qjxð Þ2� �þ N �Wð Þπ Qjxð Þ2

Since the probability that the hidden gallery is the questioned
gallery is Pr Qjxð Þ, Pr I ¼ 1ð Þ ¼ Pr Qjxð Þ and PrðI ¼ 0Þ ¼
1� PrðQjxÞ. Therefore, the expected value of a trial after substituting
the indicators for the probabilities of their respective states is

EV ¼Pr Qjxð ÞEVI¼1 þ 1� Pr Qjxð Þð ÞEVI¼0

EV ¼Pr Qjxð Þ N 1� 1� π Qjxð Þð Þ2� �þ N �Wð Þ 1� π Qjxð Þð Þ2� �
þ 1� Pr Qjxð Þð Þ N 1� π Qjxð Þ2� �þ N �Wð Þπ Qjxð Þ2� �
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which simplifies to Eq. (2).

EV ¼ N �W Pr Qjxð Þ � 2 Pr Qjxð Þπ Qjxð Þ þ π Qjxð Þ2� � ð2Þ
For an ideal observer who submits the exact objective posterior

probability, the expected value EVideal of an estimation trial is
given by Eq. (3).

EV ideal ¼ N �W Pr Qjxð Þ 1� Pr Qjxð Þð Þ ð3Þ
Since the Museum Inference Task only accepts reported

probabilities in bins (Fig. 1A), on the real task, ploss is minimized
by reporting a subjective posterior as close as possible to the
objective posterior. Assuming that participants believe that their
reported subjective posteriors are equal to the objective poster-
iors, we can calculate the subjective expected value EV subjective by
replacing the objective posterior probability in Eq. (3) with
the subjective posterior probability π Qjxð Þ (Eq. (4)).

EV subjective ¼ N �Wπ Qjxð Þ 1� π Qjxð Þð Þ ð4Þ

Performance-based exclusion criteria. To ensure participant
comprehension and engagement during the scan session, we
assessed participants’ performance during the prescan session
before we allowed them to advance to the scan session. Partici-
pants had to meet the following criteria pertaining to the Museum
Inference Task to advance to the scan session: (1, comprenhen-
sion) they had to correctly answer at least 80% of the questions on
a comprehension quiz on the task instructions; (2) they could
miss no more than 6 percent of trials; (3, minimal sensitivity to
prior probability) on trials without a sample, the Pearson corre-
lation between reported subjective posterior and the objective
posterior must have been at least 0.89 (α= 0.05) (this high cor-
relation coefficient was attained by the vast majority of partici-
pants, with only 9% (4 of 44) being excluded based on this
criterion alone); and (4, minimal sensitivity to objective posterior
probability) the subjective posterior probability must have been
significantly higher (α= 0.05, two-sample t-test assuming
unknown and unequal variances) on trials with a high objective
posterior probability (Pr(Q | x) ≥ 0.9) than on trials with a low
objective posterior probability (Pr(Q | x) ≤ 0.1).

To measure participants’ intrinsic posterior-estimation strategies
without extensive training, the criteria were designed to be lenient
enough to respect variation in their pre-task strategies while
excluding participants who disengaged from the task or who
adopted strategies clearly consistent with misunderstanding the task.

Face–Place Localizer. To localize face- and place-selective visual
modules, we included a face−place functional localizer during the
scan session. During the localizer task, participants viewed a
picture of a face or a place on a gray background for 1 s, followed
by a fixation cross for 1/3 s. Stimuli were blocked by type (face or
place); each block consisted of 12 presentations of the same
picture category followed by a rest period of 161/3 s. Participants
completed two runs of the Face-Place Localizer. Each run con-
sisted of 10 blocks. The Face-Place Localizer was administered as
a one-back task: participants had to right-click on a trackball if
the picture on screen was the same as the previous picture while
they had to left-click if the picture on screen was different from
the previous picture.

Image sets. The same image sets were used in the Museum
Inference Task, Face−Place Localizer, and Museum Averaging
Task. Images of faces were selected from the CNBC Faces database
by Michael J. Tarr, Center for the Neural Basis of Cognition and
Department of Psychology, Carnegie Mellon University, http://
www.tarrlab.org, funded by NSF award 0339122, used in Righi

et al. 66, and are available under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. Images of
places were selected from the database for Konkle et al. 67, available
from the Computational Perception and Cognition Lab at MIT
(http://olivalab.mit.edu/MM/sceneCategories.html).

Earnings. Compensation for the prescan session was a show-up
fee of $15 on top of their earnings from the payout trial (up to
$30) on the prescan session. Compensation for the scan session
was a show-up fee of $20 on top of their earnings from the payout
trial (up to $30) on the scan session. Participants received an
extra $50 for completing both sessions. Therefore, they could earn
up to $145 for completing the entire study.

Experimental session for the Museum Averaging (Control)
Task. Effectively, the Museum Averaging Task session was the
same as the prescan session of the Museum Inference Task but
with the cover story and instructions modified so that partici-
pants were to estimate the mean of two described probabilities
instead of estimating the posterior probability from a described
prior probability and likelihood (Supplementary Fig. 3a, c). Par-
ticipants completed the Averaging Task at a computer outside of
the scanner; there was no scan session on the Museum
Averaging Task.

There were 130 trials (non-catch trials and 10 catch trials), divided
evenly into four runs (two “face” runs and two “place” runs, with the
category alternating by run). On each non-catch trial, there were two
independent wings of a gallery. Both galleries contained pictures of
faces and places but in different mixtures. On a trial, the face−place
mixture for the first gallery (Gallery 1) was shown as complementary
percentages of faces and places, in place of the prior probabilities of
the portrait and landscape galleries from the Inference Task (Fig. 1).
The face−place mixture for the second gallery (Gallery 2) was shown
as one randomly sampled picture from Gallery 2 along with the ratio
of majority-category pictures to minority-category pictures, analo-
gous to the majority–minority ratio and sample picture from the
Inference Task (Fig. 1a). As with the Inference Task, the true sample
picture was marked by an arrow to differentiate it from a decoy
picture from the opposite category that appeared beside it. Then,
using a slider, the participant submitted their estimate of the mean
mixture across both wings with respect to the “questioned” category;
the prompt was similar to that on the Inference Task except that it
read, “What is the average percentage of FACES?” on face runs and
“What is the average percentage of PLACES?” on place runs.
Therefore, even though the Averaging Task’s solicited response was
different from that of the Inference Task, the Gallery 1 and Gallery 2
probabilities were presented similarly to the prior and likelihood,
respectively, on the Inference Task so that participants would have
the same cognitive demand to switch the probabilities of each
framing with respect to a prompt (Fig. 1a).

Analogous to the Inference Task, on catch trials, Gallery 2 was
closed (i.e., the majority–minority ratio was missing and there
were two decoy pictures), so the participant had to submit the
Gallery 1 Probability instead of a mean. Penalties, intertrial
intervals, and within-trial spatial and temporal presentation
orders were the same as during the prescan session of the
Inference Task. The incentivization scheme was also the same
except that the binarized scoring rule directly incentivized
participants to report the mean of the Gallery 1 and Gallery 2
probabilities instead of indirectly incentivizing them to report a
posterior probability by proxy of a hidden gallery.

Overview of behavioral modeling. Twenty-three participants
each completed 130 trials (including catch trials) of the task,
meaning that each participant was measured repeatedly. To
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account for this, we implemented linear mixed-effects regression
to properly account for between-participant (fixed-effects) var-
iance and within-participant (random-effects) variance, using the
MATLAB function fitlme with maximum-likelihood estimation.
In all mixed-effects models, we used the Satterthwaite approx-
imation to calculate degrees of freedom, which has been shown to
reduce Type 1 error compared to residual degrees of freedom69.
All statistical tests were two-sided.

Modeling reaction time. We used linear mixed-effects regression
to model reaction time (RT) as a function of subjective posterior
probability π Qjxð Þ (Eq. (5)). Considering that slider movement
and the unsigned difference between prior probability and like-
lihood could have affected reaction time (reasoning that the latter
scenario could occur if individuals used a mental arithmetic
strategy), we controlled for the absolute value of slider displace-
ment (the distance between the initial and final slider positions,
Dj j) and the absolute difference between prior probability and
likelihood ( Pr Qð Þ � Pr xjQð Þ

�� ��). In the mixed-effects model, we
used fixed-effects terms for each of these variables and included
random-effects terms for each variable by participant (Eq. (5)).
Results held in analyses not controlling for these covariates.

RT � β0 þ βðπðQjxÞÞ2 ðπðQjxÞÞ2 þ βπðQjxÞπðQjxÞ þ βjDjjDj

þ βjPrðQÞ�PrðxjQÞjjPrðQÞ � PrðxjQÞj þ
�
β0 þ βðπðQjxÞÞ2 ðπðQjxÞÞ2

þ βπðQjxÞπðQjxÞ þ βjDjjDj þ βjPrðQÞ�PrðxjQÞjjPrðQÞ � PrðxjQÞjjparticipant
�
ð5Þ

We also used Eq. (5) to model reaction time on the Museum
Averaging Task, replacing subjective posterior probability with
the reported mean and absolute difference between prior and
likelihood with the absolute difference between the Gallery 1 and
Gallery 2 probabilities.

Modeling subjective posterior probability. The objective of the
Museum Inference Task is to estimate the posterior probability of
the questioned gallery conditional on the sample from the hidden
gallery (Pr Qjxð Þ). According to Bayes’ theorem, this posterior
probability is a function of the prior probability of the questioned
gallery (Pr Qð Þ) and the likelihood of the sample conditional on
the questioned gallery (Pr xjQð Þ) (Eq. (6)).

Pr Qjxð Þ ¼ Pr Qð ÞPr xjQð Þ
Pr Qð ÞPr xjQð Þ þ 1� Pr Qð Þð Þ 1� Pr xjQð Þð Þ ð6Þ

On each trial, the prior probabilities of the portrait and
landscape galleries were explicitly stated while the likelihood was
conveyed by the revealed sample picture and the sample’s
evidence strength θ, displayed as the ratio of majority-category to
minority-category pictures (i.e., 60:40; Fig. 1a). For the purposes
of the formulae, this ratio was converted into a probability
(evidence strength, θ) with domain 0:5<θ ≤ 1 (e.g., 60:40 became
0.6). (However, all evidence strengths used on the task were <1).
The relationship between evidence strength and likelihood
PrðxjQÞ depended on the trial’s questioned gallery: Pr xjQð Þ ¼ θ
when the sample signaled the questioned gallery (i.e., when the
sample was a face and the questioned gallery was the portrait
gallery, or when the sample was a place and the questioned gallery
was the landscape gallery), and Pr xjQð Þ ¼ 1� θ when the sample
did not signal the questioned gallery.

To measure the effects of prior probability and likelihood on
participants’ reported subjective posteriors, we parameterized
Bayes’ theorem13,27,47,70. To do so, we first applied the logit
transformation (Eq. (7), where p is the probability to be
transformed) to Bayes’ theorem to express it as a sum of logits

(log odds), allowing us to model subjective posterior linearly.

logit p
� � ¼ ln

p
1� p

� �
; if 0< p< 1 ð7Þ

logit Pr Qjxð Þð Þ ¼ logit Pr Qð Þð Þ þ logit Pr xjQð Þð Þ ð8Þ

Equation (8) simply states that the logit posterior is the sum of
the logit prior and the logit likelihood (log-likelihood ratio). From
here, we parameterized the influence of prior and likelihood on
the subjective posterior probability (π Qjxð Þ) using linear mixed-
effects regression.

To model subjective posterior probability as a function of the
objective posterior probability, we included fixed-effects terms for
the intercept and objective logit posterior along with the
corresponding random-effects terms by participant (Eq. (9)). To
account for the potentially confounding effects of penalty (W)
and initial slider position (S), we also added fixed- and random-
effects terms for these effects as nuisance regressors. The
parameters βlogit PrðQjxÞð Þ and β0 in Eq. (9) are equivalent to the
probability weighting and elevation parameters, respectively,
from Prospect Theory33,34.

logit π Qjxð Þð Þ � β0 þ βlogit PrðQjxÞð Þlogit Pr Qjxð Þð Þ þ βWW þ βSS

þ β0 þ βlogit PrðQjxÞð Þlogit Pr Qjxð Þð Þ þ βWW þ βSSjparticipant
� � ð9Þ

To model subjective posterior probability as a function of prior
and likelihood, we included fixed- and random-effects terms for
the intercept, logit prior, logit likelihood, penalty, and initial slider
position (Eq. (10)).

logitðπðQjxÞÞ � β0 þ βlogitðPrðQÞÞlogitðPrðQÞÞ þ βlogitðPrðxjQÞÞlogitðPrðxjQÞÞ

þ βWW þ βSSþ
�
β0 þ βlogitðPrðQÞÞlogitðPrðQÞÞ

þ βlogitðPrðxjQÞÞlogitðPrðxjQÞÞ þ βWW þ βSSjparticipant
� ð10Þ

Model criterion scores for all tested models are plotted in
Supplementary Fig. 2. Fixed-effects coefficients (weights) from
this model are displayed in Fig. 2d and Supplementary Table 1.
Because participants could only submit a subjective posterior
probability between 0.02 and 0.98, inclusive, there was no risk of a
nonfinite subjective logit posterior (Eq. (7)) that would make the
models inestimable. A corresponding ideal observer was simu-
lated for each participant, submitting a posterior probability
estimate as close to the objective posterior probability as possible
within the limitations of the accepted responses on the slider.

Model comparison between inference and averaging behavior.
To determine whether participants’ probability estimates were
better explained by Bayesian inference or averaging, we applied
two nonlinear models to participants’ estimates to the prescan and
scan sessions of the Inference Task and to the Averaging Task: the
Weighted Bayesian Model and the Mean Model. We applied these
models individually to each participant so that we could compare
the models’ protected exceedance probabilities from their Akaike
Information Criteria (AIC) and Bayesian Information Criteria
(BIC). These models were fit using the MATLAB function fitnlm
with initial values of 0 for all free parameters.

The mean model (Eq. (11)) modeled probability estimates (p̂)
as a function of the mean of the prior probability and likelihood
for the Inference Task or the mean of the Gallery 1 and Gallery 2
probabilities for the Averaging Task with respect to the
questioned category (μ); the penalty (W); and the initial slider
position (S). Its free parameters were an intercept (β0) and
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coefficients for the penalty (βW) and initial slider position (βS).

p̂ � β0 þ μþ βWW þ βSS ð11Þ
The Weighted Bayesian Model was based on the model of

subjective logit posterior used to fit the responses to the scan
session of the Inference Task in the main text (Eq. (10)) but re-
expressed in probability space. We fit this model in probability
space instead of logit space so that the dependent variable would
be in probabilities like the Mean Model, making the AIC and BIC
scores of the two models comparable for the calculation of the
protected exceedance probabilities. We adopted one version of
this model for the Inference Task (Eq. (12)) and the other for the
Averaging Task (Eq. (13)). These versions are analogous to the
Mean Model, but the Inference Task version replaces the mean
with weighted prior probability (Pr Qð Þ) and likelihood (Pr xjQð Þ),
while the Averaging Task version replaces the mean with the
product of the weighted Gallery 1 Probability (Pr G1

� �
) if it had

been a prior probability and the weighted Gallery 2 Probability
(Pr G2

� �
) if it had been a likelihood. The Inference Task version

contains additional free parameters for the prior (βPr Qð Þ) and
likelihood (βPrðxjQÞ) weights, while the Averaging Task version
contains additional free parameters for the Gallery 1 (βPr G1ð Þ) and
Gallery 2 (βPr G2ð Þ) probabilities.

p̂ � 1� 1

Pr Qð Þ
1�Pr Qð Þ

� �βPr Qð Þ Pr xjQð Þ
1�Pr xjQð Þ

� �βPrðxjQÞ
exp β0 þ βWW þ βSS

� �þ 1

ð12Þ

p̂ � 1� 1

Pr G1ð Þ
1�Pr G1ð Þ

� �βPr G1ð Þ Pr G2ð Þ
1�Pr G2ð Þ

� �βPr G2ð Þ
exp β0 þ βWW þ βSS

� �þ 1

ð13Þ

fMRI data acquisition. Whole-brain fMRI data were acquired on
a 3-T Siemens MAGNETOM Prisma scanner with a 64-channel
head coil at the Magnetic Resonance Imaging Center at the
ZuckermanMind Brain Behavior Institute of Columbia University.
Functional images were acquired with a T2*-weighted, two-
dimensional gradient echo spiral in/out pulse sequence (repetition
time (TR)= 1000ms; echo time= 30ms; flip angle= 52°, field of
view= 230mm; 2.4 × 2.4 × 2.4 mm voxels; 56 slices; multiband
factor= 4). To reduce dropout in central frontal regions, slices
were tilted by 10° forward from the AC–PC axis. During the scan
session, the behavioral tasks were projected onto a mirror attached
to the scanner head coil for the participant to see (Hyperion MRI
Digital Projection System); participants made responses with the
right hand through anMRI-compatible trackball (Current Design).
fMRI data were preprocessed using fMRIPrep.

fMRI data analysis overview. Statistical analyses were conducted
using the general linear model (GLM) framework implemented in
SPM12, Version 7487 (https://www.fil.ion.ucl.ac.uk/spm), con-
volving boxcar functions and parametric modulators within the
GLM by the SPM canonical hemodynamic response function.
Statistical maps from functional data were overlaid on an average
of the 23 participants’ individual T1-weighted (T1w) maps nor-
malized to Montreal Neurological Institute (MNI) space. Since
scanning did not occur during the Payout Stage, fMRI activation
was only measured during the Estimation Stage.

fMRI preprocessing. Preprocessing was performed using the
fMRIPrep pipeline, Version 1.5.0rc171 (RRID:SCR_016216).
fMRIPrep uses a combination of tools from well-known software

packages, including FSL, ANTs, FreeSurfer, and AFNI, and is
based on Nipype 1.2.072 (RRID:SCR_002502). For more details of
the pipeline, see the section corresponding to workflows in
fMRIPrep’s documentation at (https://fmriprep.org/en/latest/
workflows.html).

For anatomical data preprocessing, the T1-weighted (T1w)
image was corrected for intensity nonuniformity with
N4BiasFieldCorrection73, distributed with ANTs 2.2.074

(RRID:SCR_004757). The T1w image was then skull-stripped
with a Nipype implementation of the antsBrainExtraction.sh
workflow (from ANTs), using OASIS30ANTs as the target
template. Brain tissue segmentation of cerebrospinal fluid, white
matter, and gray matter was performed on the brain-extracted
T1w using fast75 (FSL 5.0.9, RRID:SCR_002823). Volume-based
spatial normalization to Montreal Neurological Institute (MNI)
space (MNI152NLin2009cAsym) was performed through non-
linear registration with antsRegistration (ANTs 2.2.0)76

(RRID:SCR_008796).
For functional data preprocessing, a skull-stripped suscept-

ibility distortion-corrected BOLD reference was generated using a
custom methodology of fMRIPrep. The BOLD reference was co-
registered to the T1w reference using bbregister (FreeSurfer),
which implements boundary-based registration using six degrees
of freedom77. Head-motion parameters (x, y, z, pitch, roll, and
yaw) with respect to the BOLD reference were estimated before
spatiotemporal filtering using mcflirt (FSL 5.0.9)78. BOLD runs
were slice-time corrected using 3dTshift from AFNI 2016020779

(RRID:SCR_005927).

Whole-brain localization analyses for the Museum
Inference Task. Functional images normalized to Montreal
Neurological Institute (MNI) space were smoothed with a
Gaussian kernel with a full width at half maximum (FWHM) of
5 × 5 × 5 mm before a whole-brain localization analysis was per-
formed with a summary statistics approach. First, a voxel-wise
contrast map was estimated in a first-level (participant-level)
analysis for every participant from their functional image time
series. All first-level GLMs for whole-brain localization of pre-
dictors used a variable-epoch model to model participants’
responses80: each GLM contained one boxcar function to model
the decision period (the period between the beginning of the
response window and the reaction time on non-catch trials that
received a response (Fig. 1a; henceforth called the response
boxcar) and another boxcar function to model the same period
during catch trials. The response boxcar was parametrically
modulated by a set of predictors that varied by localization GLM
(see below). (SPM orthogonalization was turned off for all
regressors, including parametric modulators81.) If the participant
failed to respond to at least one trial during a run of the Esti-
mation Stage, a third boxcar function was added to model the
entire response window on the trials that they omitted. The
localization GLMs also contained fixed-body motion-realignment
regressors (x, y, z, pitch, roll, and yaw) and their respective first
derivatives. Each participant’s contrast map was submitted to a
second-level t-test at the group level, applying a cluster-wise
correction for multiple comparisons using non-parametric per-
mutation tests in SnPM13.1.08 (http://nisox.org/Software/
SnPM13/)63, which have been shown to be more robust to false
positives82,83. Permutation tests were based on a stringent cluster-
forming threshold of p= 0.001 and considered significant at a
cluster-wise familywise error rate threshold of p < 0.05; we used
10,000 permutations and applied variance smoothing of group-
level images by a Gaussian kernel with a FWHM of 5 × 5 × 5mm,
consistent with recommendations63,84.
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In the GLM to localize subjective logit posterior according to
participants’ reports (WB-GLM 1, our main a priori GLM), the
response boxcar was parametrically modulated by (1) the absolute
value of the subjective logit posterior ( logit π Qjxð Þð Þ

�� ��, a
representation of the subjective posterior certainty), (2) a dummy
variable indicating if the subjective posterior favored the
questioned gallery (yes= 1, no=−1), (3) a dummy variable
indicating the side of the screen on which the sample picture
appeared (sample on right= 1, sample on left=−1), (4) the
penalty, (5) the subjective logit posterior of the questioned gallery
(logit π Qjxð Þð Þ, the product of modulators 1 and 2), (6) the
subjective expected value (Eq. (4)), and (7) the initial slider
position normalized to between 0 and 1.

The GLM to localize objective logit posterior (WB-GLM 2) had
the same response boxcar and parametric modulators as WB-
GLM 1 except that the objective logit posterior of the questioned
gallery (logit Pr Qjxð Þð Þ) and the expected value according to an
ideal observer (Eq. (3)) replaced the subjective logit posterior and
subjective expected value, respectively.

In the GLM to localize logit prior and logit likelihood (WB-
GLM 3), the response boxcar was parametrically modulated by
(1) the absolute value of the logit prior ( logit Pr Qð Þð Þ

�� ��, a
representation of the prior certainty), (2) the absolute value of
the logit likelihood ( logit Pr xjQð Þð Þ

�� ��, a representation of the
likelihood certainty and evidence strength/majority−minority
ratio), (3) a dummy variable indicating if the logit prior favored
the questioned gallery (yes= 1, no=−1), (4) a dummy variable
indicating if the logit likelihood favored the questioned gallery
(yes= 1, no= –1), (5) a dummy variable indicating the side of
the screen on which the sample picture appeared (sample on
right= 1, sample on left=−1), (6) the penalty, (7) the logit prior
of the questioned gallery (logit Pr Qð Þð Þ, the product of modulators
1 and 3), (8) the logit likelihood conditional on the questioned
gallery (logit Pr xjQð Þð Þ, the product of modulators 2 and 4), (9)
the subjective expected value (Eq. (4)), and (10) the initial slider
position normalized to between 0 and 1. In the exploratory
conjunction analysis (Supplementary Fig. 6), we assessed the
contrast between the effects of logit prior (of the questioned
gallery) and logit likelihood (of the sample, conditional on the
questioned gallery) by using a conjunction null, defined as regions
that showed significant activation tracking both effects85.

We also designed a GLM (WB-GLM 4) to localize the model-

fitted subjective logit posterior ( dlogit π Qjxð Þð Þ) as estimated by
Eq. (10). It had the same response boxcar and parametric
modulators as WB-GLM 1 except the model-fitted subjective logit

posterior (j dlogit π Qjxð Þð Þj) and subjective expected value (Eq. (4),
but replacing the subjective posterior probability with its model-
fitted version) replaced the raw subjective logit posterior and
subjective expected value, respectively.

The fact that all the trials within a run had the same questioned
gallery allowed us to apply contrasts to the modulators for any
logit variables (i.e., subjective logit posterior, logit prior, and logit
likelihood) to create contrasts maps of these logits with respect to
the questioned gallery, portrait gallery, or landscape gallery.

fROI analyses for the Museum Inference Task. We used a
functional region of interest (fROI) approach to measure average
activation tracking different predictors within a cluster or region
of interest86. We did so by defining first-level GLMs to create
whole-brain contrast maps showing the response of each voxel to
a particular predictor of interest. All these GLMs were fit to
participants’ normalized but unsmoothed functional time series
from the Museum Inference Task except for the analyses of the
face- and place-selective fROIs, which were fit to functional time

series that were registered to participants’ individual, unnorma-
lized T1w images (following Doll et al. 36). Then, we measured
the average contrast statistic of that variable within the fROI.
These fROI GLMs consisted of the same boxcar functions and
motion regressors as the localization GLMs but varied by the
parametric modulators for the response boxcar function.

In the GLM to measure activation tracking the objective logit
posterior (fROI-GLM 1), the response boxcar was parametrically
modulated by (1) the objective logit posterior (logit Pr Qjxð Þð Þ), (2)
penalty, and (3) slider displacement (the difference between the
initial slider position and the slider position at the submission of
the response). In the GLM testing concurrent activation for prior
and likelihood (fROI-GLM 2), the response boxcar was
parametrically modulated by (1) the logit prior of the questioned
gallery (logit Pr Qð Þð Þ), (2) the logit likelihood conditional on the
questioned gallery (logit Pr xjQð Þð Þ), (3) penalty, and (4) slider
displacement. The GLM to measure activation tracking the
subjective logit posterior (fROI-GLM 3) had the same parametric
modulators as fROI-GLM 1 except that objective logit posterior
was replaced with subjective logit posterior (logit π Qjxð Þð Þ).

The GLM parametric modulators were z-scored in all the
analyses except the analysis comparing behavioral and neural
probability weighting (Fig. 3f), in which we used mean-centered
rather than z-scored predictors. This ensured that parameter
estimates for neural probability weighting were comparable to the
behavioral probability weights (which, in turn, were mean-
centered to keep the resulting parameters commensurate with the
mathematical weights from a parameterized form of Bayes’
theorem like that in Eq. (10). Because we primarily focused on
group level analyses, we performed z-scoring and mean-centering
at the group level (i.e., after pooling the data across participants).
While group-level versus individual-level normalization can
considerably affect the interpretation of the results87, in our
study, the two methods produced identical outcomes. Each
participant experienced the exact same set of logit priors, logit
likelihoods, objective logit posteriors, and penalties (and the same
number of trials) and, thus, these main regressors of interest
had identical z-scores at the group and individual levels (all
correlation coefficients r= 1.0). The nuisance regressor of the
initial slider position was trialwise randomized, but it too was
nearly identical if computed at the group or individual levels
(r= 0.996) as were two regressors derived from it (slider
displacement, r= 0.993 and subjective posterior, r= 0.971).
Thus, the choice of z-scoring method was not a consequential
concern in our task.

We also developed control fROI-GLMs to test for nonlinear
encodings of subjective logit posterior within the parieto-occipital
cluster. In the GLM to measure activation tracking the subjective
logit posterior only on trials where the subjective posterior
probability was less than 0.8, the response boxcar for trials with
subjective posterior probability <0.8 was parametrically modu-
lated by (1) the subjective logit posterior of the questioned gallery
(logit π Qjxð Þð Þ), (2) penalty, and (3) slider displacement (There
was a separate response boxcar for trials with subjective
posteriors ≥0.8 that had no parametric modulators.). In the
GLM to measure activation tracking the quadratic term for
subjective logit posterior, the response boxcar was parametrically
modulated by (1) the subjective logit posterior of the questioned
gallery (logit π Qjxð Þð Þ), (2) the square of this term
(ðlogitðπðQjxÞÞÞ2), (3) penalty, and (4) slider displacement.

Note that the parametric modulator for slider displacement in
the fROI GLMs is different from the parametric modulator for
the initial slider position in the localization voxelwise GLMs.
While initial slider position was included in the latter to control
for eye and hand movement, we did not include slider
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displacement in those GLMs because slider displacement
correlated with the subjective logit posterior. In contrast, in the
fROI GLMs, we sought to introduce a more stringent test to
determine if the variables of interest could survive the nuisance
confound.

We used mixed-effects regression to test the effect of the
predictors in each fROI analysis except the analysis to test
differential activation of the face- and place-selective fROIs sorted
by the questioned gallery. For each mixed-effects regression test,
the dependent variable was a vector of the mean contrast statistic
within each relevant fROI in each participant. In analyses of only
one fROI, the independent variables were dummy variables
indicating the contrast map from which the corresponding mean
contrast statistic was derived, with random-effects intercepts for
each participant. In analyses that included more than one fROI,
the independent variables were dummy variables indicating the
combination of fROI and contrast identity from which the
corresponding mean contrast statistic was derived, with random-
effects intercepts for each participant. We used the fixed-effects
coefficients from these analyses to represent the effect of each
predictor of interest within the fROI. We applied the
Satterthwaite approximation to calculate degrees of freedom69.
Here and in general we used non-parametric tests (e.g., Wilcoxon
signed rank test) when data was not normally distributed
according to a Lilliefors test.

When testing for differential effects by sorting trials by the
questioned gallery (Fig. 4; Supplementary Fig. 7d–f), we only examined
logits with respect to the questioned gallery (e.g., the subjective logit
posterior of the portrait gallery only during runs where the portrait
gallery was the questioned gallery) to account for framing effects
created by the questioned gallery. To do so, we calculated the mean
contrast statistic in each participant’s face- and place-selective fROI,
and we used an ANOVA to test for a significant interaction between
the fROI and the contrast statistics for subjective logit posterior, logit
prior, and logit likelihoods with respect to the gallery categories.

Face–Place Localizer. We defined a GLM to localize face- and
place-selective regions of occipital and temporal cortex during the
Face–Place Localizer Task in each participant. Unlike the whole-brain
search GLMs and the fROI GLMs used to analyze activation in the
parieto-occipital cluster, the Face−Place localizer analysis was applied
to functional volumes in each participant’s native brain space
(without normalization). The first-level GLM consisted of two boxcar
functions: one representing the period during which a face picture
appeared on screen and another representing the period during
which a place picture appeared on screen. Boxcar functions were
convolved with the SPM canonical hemodynamic response function.
Localization analysis was small volume–corrected to include only the
occipital and temporal lobes in each participant. Face-selective
regions were defined with the contrast Face > Place, while place-
selective regions were defined with the contrast Place > Face, both at
an uncorrected p-value threshold of 0.001 at the individual level.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Experimental data, including those used to generate Figs. 2–4, are available at Open Science
Framework (https://osf.io/3vdut/?view_only=d89742283a84454681d59236c1e8b3b8)88.

Code availability
The code used to analyze the data, including those in Figs. 2–4, is available at Open Science
Framework (https://osf.io/3vdut/?view_only=d89742283a84454681d59236c1e8b3b8)88.
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