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Macroscale intrinsic dynamics are associated with
microcircuit function in focal and generalized
epilepsies
Siqi Yang1,2,3✉, Yimin Zhou1, Chengzong Peng1, Yao Meng2, Huafu Chen 2, Shaoshi Zhang3, Xiaolu Kong3,

Ru Kong3, B. T. Thomas Yeo3, Wei Liao 2✉ & Zhiqiang Zhang 4✉

Epilepsies are a group of neurological disorders characterized by abnormal spontaneous brain

activity, involving multiscale changes in brain functional organizations. However, it is not clear

to what extent the epilepsy-related perturbations of spontaneous brain activity affect mac-

roscale intrinsic dynamics and microcircuit organizations, that supports their pathological

relevance. We collect a sample of patients with temporal lobe epilepsy (TLE) and genetic

generalized epilepsy with tonic-clonic seizure (GTCS), as well as healthy controls. We extract

massive temporal features of fMRI BOLD time-series to characterize macroscale intrinsic

dynamics, and simulate microcircuit neuronal dynamics used a large-scale biological model.

Here we show whether macroscale intrinsic dynamics and microcircuit dysfunction are dif-

fered in epilepsies, and how these changes are linked. Differences in macroscale gradient of

time-series features are prominent in the primary network and default mode network in TLE

and GTCS. Biophysical simulations indicate reduced recurrent connection within somato-

motor microcircuits in both subtypes, and even more reduced in GTCS. We further

demonstrate strong spatial correlations between differences in the gradient of macroscale

intrinsic dynamics and microcircuit dysfunction in epilepsies. These results emphasize the

impact of abnormal neuronal activity on primary network and high-order networks, sug-

gesting a systematic abnormality of brain hierarchical organization.
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The brain is a complex connectome that is organized hier-
archically. Cortical areas are anatomically connected and
synaptically interacted with each other by neuronal

populations1. Converging evidence suggests that multiscale brain
organizations follow sensory-association gradient, including gene
expression2, cortical myelin3, and layer characteristics4, as well as
functional connectivity5. Nevertheless, the impact of brain dys-
function caused by abnormal neuronal activity is not fully
understood. How this dysfunction affects the spatial arrangement
of cortical gradient and macroscale spontaneous brain activity
remains unknown.

Epilepsy is a powerful model for studying the influence of
neuronal activities on the spontaneous brain function. The Sys-
tem Epilepsies hypothesis6 proposes that the enduring suscept-
ibility to generate seizures7 in some epilepsies is due to the
specific vulnerability of a system as a whole, emphasizing the
importance to understanding the pathology from a systematic
perspective. Abnormal firing of neurons causes local circuit
dysfunction, leading to alterations of macroscale functional
activities during seizure propagation8. The Virtual Brain model
has demonstrated that a combination of a global shift in the
brain’s dynamic equilibrium and locally hyperexcitable network
nodes provides a mechanistic explanation for the epileptic brain
during interictal resting state9. The spontaneous brain activity
during the resting state provides a specific and multifaceted fin-
gerprint of brain function10, as different metrics represent multi-
dimensional features of neuronal activity. Altered static and
dynamic amplitude of low-frequency fluctuations reflect the
intensity of spontaneous fluctuations in BOLD functional mag-
netic imaging (fMRI) in epileptic brains11,12, and are related to
interictal epileptiform discharges13. Abnormal regional homo-
geneity reveals functional integration of epileptic lesions with
neighboring regions14, and further network analyses extend the
impact of local lesions to widespread distributed changes15–17.
The network communication analysis revealed that the enhanced
structure-function correlation may be related to the smaller
functional repertoire in TLE, while sparing the central core of the
brain, which may represent a pathway that promotes the spread
of seizures18. One limitation is that these conventional functional
metrics are based on specific and selected features of time-series.
Therefore, multi-dimensional features of time-series can help
comprehensively characterize spontaneous brain activity in epi-
leptic brain.

Large-scale biophysical models of coupled brain regions can
bridge microscale and macroscale brain organizations19–21. These
models describe the collective action of neuronal populations, and
have been successful in modeling brain activity during seizures22,
sleep23, and the resting-state24,25. Previous studies on epileptic
brain using the relaxed mean field model found increased external
input in generalized epilepsy, and decreased external input and
increased recurrent connection in temporal lobe epilepsy, sug-
gesting a dissociation between focal and generalized epilepsies
derived by different microcircuit function26. However, the relaxed
mean field model27 has not been shown to recapitulate functional
connectivity dynamics. The parametric mean field model
(pMFM) can simulate more realistic static and dynamic func-
tional connectivity by parameterizing local neuronal properties
with anatomical and functional gradients28. This model could
help to understand how brain structure shapes intrinsic brain
dynamics in epilepsy.

In the current study, we included two epileptic subtypes:
patients with temporal lobe epilepsy (TLE, n= 75) and patients
with genetic generalized epilepsy with tonic-clonic seizures
(GTCS, n= 79), as well as sex-, age-matched healthy controls
(HC, n= 108). We extracted massive features of time-series to
comprehensively describe the spontaneous brain activity. We

then performed principal component analysis to capture the
macroscale cortical gradient of brain intrinsic dynamics. In
addition, we used a parametric mean field model to simulate
microcircuit function, including recurrent connections and
external input. We then analyzed the association between these
multiscale brain function in epilepsies.

Results
Macroscale intrinsic dynamics and microcircuit function. To
describe the macroscale intrinsic dynamics, we first comprehen-
sively described summary features of intrinsic BOLD fMRI sig-
nals across the cerebral cortex. We used the Desikan–Killiany
anatomical parcellation29 with 68 cortical regions to extract time-
series. Using highly comparative time-series analysis, the hctsa
toolbox30, we extracted massive temporal features, yielding over
7,000 features in each regional time-series. To investigate the
macroscale topographic organization of time-series features, we
sought to identify the embedding axis that explained maximal
variance. We therefore performed principal component analysis,
capturing spatial gradients of shared time-series features matrix
(5,360 × 68) across three groups. From the perspective of
dimensionality reduction method, gradient more focused on the
relationship between brain regions regard to their similarity of
5,000 shared temporal features, which representing the finger-
prints of regional intrinsic dynamics. We therefore emphasized
the gradient of temporal features rather than temporal correlation
of time-series. These gradients reflected macroscale intrinsic
dynamics across the cerebral cortex (Fig. 1a).

To estimate the microcircuit function across the cerebral cortex,
we used the parameter mean field model (pMFM)28 to simulate
local synaptic properties, the recurrent connectivity (RC) and the
external input (I) (Fig. 1b). We computed the group-averaged
functional connectivity (FC) and structural connectivity with
Desikan–Killiany atlas in each set, and computed functional
connectivity dynamics (FCD) for each participant. In the pMFM,
the neural dynamics of each brain region are driven by four
components, (i) intra-regional input, (2) external input, (3) inter-
regional input, and (4) neuronal noise. In the model, the parameters
RC, I, and σ are set as a linear combination of the FC gradient,
resulting 7 unknown coefficients. The 7 unknown coefficients were
estimated by minimizing disagreement (1 – Pearson’s correlation r
+ Kolmogorov-Smirnov) between the empirical and simulated FC
and FCD matrices (details see Methods).

Macroscale intrinsic dynamics in epilepsies. Macroscale
intrinsic dynamics were reflected by the gradients of time-series
features. The spatial distribution of the top two components
(PC1 and PC2) in epilepsies and control group is shown in
Fig. 2a and b, and the variance explained by the sorted first ten
components is shown in Fig. 2c. The PC1 after Procrustes
alignment shows a ventromedial-lateral gradient, and the PC2
captures the sensory-association gradient. To directly observe
the perturbation in embedding space in epilepsies, we charted
the three groups in a coordinate system spanned by the top two
gradients (Fig. 2d). We found different perturbations in TLE
and GTCS compared to HC, reflecting functional dynamics
heterogeneity in two epileptic subtypes.

We then localized parcel-wise and network-wise alterations of
macroscale intrinsic dynamics in TLE and GTCS. We performed
group comparisons in gradients between epilepsies with HC with
5,000 permutations (P < 0.05, family-wise error correction), after
Procrustes alignment with control. For the PC1, both TLE and
GTCS groups showed similar spatial alterations, with increased
intrinsic dynamics in somatomotor and visual cortices, and
decreased in cingulate cortices. For the PC2, the two epileptic
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Fig. 1 Computing macroscale intrinsic dynamics and microcircuit function. a Using the Desikan–Killiany atlas to extract the fMRI BOLD across the
cerebral cortex, then performing the highly comparative time-series analysis (hctsa) toolbox to extract massive time-series features, and applying principal
component analysis to capture the spatial gradients of time-series features. b In the pMFM, group-averaged structural connectivity was the input, and
parameters RC, I, and σ were set as a linear combination of the FC gradient. The covariance matrix adaption evolution strategy algorithm was applied to
estimate the model by minimizing the minimizing disagreement between the empirical and simulated FC and FCD matrices. The agreement between
empirical and simulated FC was maximize the Pearson correlation r, the agreement between empirical and simulated FCD was minimize the Kolmogorov-
Smirnov distance between the upper triangular entries of the two FCD matrices.
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subtypes showed different spatial alterations. In TLE, increased
intrinsic dynamics were observed in bilateral insula and anterior
cingulate cortex, while decreased intrinsic dynamics were
observed in left medial temporal gyrus and right precuneus. In
GTCS, increased intrinsic dynamics were observed in bilateral
insula, supramarginal gyrus, anterior cingulate cortex and
superior frontal cortex, while decreased intrinsic dynamics were
observed in visual cortex (Fig. 3a).

Next, we sought to determine which features contributed most
to these alterations in intrinsic dynamics. To do this, we assessed
the spatial correlation between each feature (named “loading” in
the hctsa toolbox) and statistical comparison map of epileptic
subtypes with the HC group. Each feature described a specific
temporal property of a given time-series, including distributional
properties, entropy and variability, autocorrelation, and nonlinear
properties. The top contributing features were selected based on
the highest Pearson correlation and were visualized in word
clouds. For PC1, the top contributing features described the
stability of time-series in TLE and described the model prediction

of time-series in GTCS. For PC2, the contributing features were
sensitive to Fourier frequency characteristics and the stability of
time-series in TLE, and sensitive to model predicted stability in
GTCS (Fig. 3a).

To localize network-wise alterations in TLE and GTCS, we
used two parcellations to compare the macroscale intrinsic
dynamics between epilepsies and HC. First, in comparison with
the functional community atlas31, increased PC1 was shown in
the primary network in TLE, while decreased PC1 was found in
default mode network. In GTCS, multi-network alterations were
found. Increased PC2 was shown in the somatomotor network
and ventral attention network in TLE, while decreased PC2 was
found in the default mode network. In GTCS, increased PC2 was
shown in the limbic network and dorsal attention network, while
decreased PC2 was found in the visual network (Fig. 3b).

Microcircuit simulations by the pMFM. We divided the HC,
TLE and GTCS into training, validation, and test sets to optimize
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the pMFM procedure. Demographic and clinical characteristics
were matched in each set (Supplementary Table 1). Following the
optimization of the pMFM, the RC and I were estimated in each
group (Fig. 4a, b). Consistent with previous study28, recurrent
connection gradually varies from sensory-motor to association
cortices, and external input reveals a reverse changing with
association cortices to sensory-motor regions. After group com-
parisons, we examined the changes in RC and I between the
epilepsies and controls. We observed similar pattern of changes in
RC in TLE and GTCS, with lower RC in sensory-motor regions
and higher RC in association cortices. However, a different pat-
tern of changes in I were observed in TLE and GTCS, with TLE
group showing higher I in sensory-motor regions and lower I in
association cortices, and GTCS group showing higher I across the
cerebral cortex (Fig. 4c, d). To determine the regions with

significantly statistical changes, we performed 1,000 permutations
(P < 0.05, false discovery rate correction) by randomly shuffling
the epilepsies and controls within training, validation and test set,
and then repeated the analysis in the pMFM procedure. We
observed significant decreased RC in somatomotor region and
fusiform gyrus in TLE, and more widely decreased RC in GTCS
(Supplementary Fig. 1).

Associations in multiscale brain function. To further examine
the associations between the macroscale intrinsic dynamics and
microcircuit function in epilepsies, we assessed the spatial cor-
relation between the altered gradients of time-series features and
changes of the recurrent connections and external input yielded
from a neural dynamics model. Notably, we focused on the spatial

PC 1 PC 2 PC 1 PC 2

TL
E 

vs
. H

C
G

TC
S 

vs
. H

C
TL

E 
vs

. H
C

G
TC

S 
vs

. H
C

-6.4 6.4t-value

-7.6 7.6t-value

-6.4 6.4t-value

-6.4 6.4t-value

PC 1 PC 2

VN

SMN
ANDANAN

SSN

LNNNN

FPN
DDDMN

VV

MMMSM

DMN

DAN

SMN

VN

FPN

LN

SN

Functional 
community

Cytoarchitectural 
     classes

mmooottor

sociatioassosasso n 1

associataion 2

secondarrr sensorys ysoeny syy s

priimary sensssoorryy

limmbbbbiiiccc
nsulainsunsu

insula

asso 2

asso 1

motor

limbic

pri sens

se sens

bbbbb

represented p < 0.05/7
(Bonferroni correction)

a. Parcel-wise differences between epileptic subtypes and controls

b. Network-wise differences between epileptic subtypes and controls

Fig. 3 Parcel-wise and network-wise comparison of aligned PC1 and PC2 between epilepsies and HC. a Parcel-wise differences in PC1 and PC2 between
TLE/GTCS relative to HC. Red and blue regions indicate significant macroscale intrinsic dynamics in epilepsies relative to controls. The cloud maps indicate
top features that contributed most to the alterations in intrinsic dynamics (PC1 and PC2). Orange color represents positive contribution, and green color
represents negative contribution. b Network-wise differences in PC1 and PC2 were compared using two parcellations, the functional community atlas and
the cytoarchitectural atlas. A radar plot shows the difference in intrinsic dynamics corresponding to the functional community/cytoarchitectural class
between the epilepsies and HC. The star represents significant difference between groups, P < 0.05/7 with Bonferroni correction. VN visual network, SMN
somato-motor network, DAN dorsal attention network, VAN ventral attention network, LN limbic network, FPN fronto-parietal network, DMN default
mode network.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-024-05819-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2024) 7:145 | https://doi.org/10.1038/s42003-024-05819-0 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


correlation of the group differences in both characterizations,
rather than the parameters and gradients in each group. We
corrected for spatial autocorrelation on both hemispheres using
BrainSMASH (Brain Surrogate Maps with Autocorrelated Spatial
Heterogeneity)32. In BrainSMASH, spatial autocorrelation in
brain maps is operationalized through the construction of a
variogram. The variogram quantifies, as a function of distance d,
the variance between all pairs of points spatially separated by d.
Strongly autocorrelated brain maps exhibit less variation in
regions with small d than with large d, and are therefore char-
acterized by positive slopes in their variograms. To generate
spatial autocorrelation-preserving surrogate brain maps, BrainS-
MASH produces random maps whose variograms are approxi-
mately matched to a target brain map’s variogram. We found
significant negative correlation between the differences of PC1
and the changes of RC in TLE (ρ=−0.72, P < 0.001, Spearman
correlation with spatial autocorrelation correction) and GTCS
(ρ=−0.80, P < 0.001, Spearman correlation with spatial auto-
correlation correction) (Fig. 5).

In addition to testing the realistic of the model, we examined
the association between the gradients of the empirical BOLD
signal and gradients of simulated BOLD signal derived from the
pMFM. Consistent with the analysis of empirical BOLD signal,
we extract massive time-series features of BOLD fMRI simulated
from the pMFM by hctsa toolbox, and computed the gradients
(PC1 and PC2) of the temporal features using principal
component analysis. The spatial patterns of gradients in HC,

TLE and GTCS were shown in Supplementary Fig. 2. We
observed similar patterns between the simulated gradients and
the empirical gradients in all groups (for PC1, HC: ρ= 0.319,
P= 0.008, TLE: ρ= 0.526, P < 0.001, GTCS: ρ= 0.502, P < 0.001;
for PC2, HC: ρ= 0.794, P < 0.001, TLE: ρ= 0.731, P < 0.001,
GTCS: ρ= 0.726, P < 0.001). Furthermore, the groups compar-
isons showed spatial similarity between simulated PC1 and
empirical PC1 (TLE vs. HC: ρ= 0.39, P= 0.001; GTCS vs. HC:
ρ= 0.59, P < 0.001). Together, these findings reveal a highly
association between the macroscale intrinsic dynamics and
microcircuit function in epilepsies.

Control analyses. We replicated our results with a higher reso-
lution parcellation with 200 cortical regions33. Consistent with
our main results, we found that the PC1 shows a ventromedial-
lateral gradient and the PC2 captures the sensory-association
gradient (Supplementary Fig. 3A), and the RC increased from
sensory-motor to association cortices and the I decreased from
sensory-motor to association cortices (Supplementary Fig. 3B).
For the associations in multiscale brain function, we found
negative correlation between the differences of PC1 and the
changes of RC in TLE (ρ=−0.22, P= 0.0015, Spearman corre-
lation with spatial autocorrelation correction) and GTCS
(ρ=−0.27, P < 0.001, Spearman correlation with spatial auto-
correlation correction) (Supplementary Fig. 3C).

In addition to the analysis of cortical cortex, and considering
that some subcortical regions have been implicated in TLE, like
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the hippocampus, amygdala, piriform cortex, we performed a
supplementary analysis using the masks with subcortices34. The
PC1 after Procrustes alignment showed an anterior-posterior
gradient, and the PC2 changed from the central side to forward
and back (Supplementary Fig. 4A). For the comparison between
patients and controls, TLE and GTCS showed more shared
alterations in PC1, such as the bilateral amygdala and the nucleus
accumbens. The two epileptic subtypes showed specific altera-
tions in PC2, such as the bilateral nucleus accumbens in TLE, and
the right putamen and the left anterior thalamus and the nucleus
accumbens in GTCS (Supplementary Fig. 4B).

Discussion
In the current study, we explored the associations between mac-
roscale intrinsic dynamics and microcircuit function in focal and
generalized epilepsy. Specifically, we found that the differences
were observed in the first gradient of time-series features in the
primary network and default mode network in TLE and GTCS.
Microcircuit recurrent connections were reduced in somatomotor
cortices in TLE and GTCS, and were more widely reduced in the
latter. The somatomotor cortices are integrated into a multimodal
network associated with sensory, motor systems, and cognitive hub
regions35. By leveraging computational simulations that quantify
patterns of information flow across the connectome, TLE showed
altered communication dynamics between the somatomotor cor-
tices and subcortical regions, and TLE also showed slower signal
spreading time in high-order network with impairment in sen-
sorimotor, executive, and memory functions36. More specifically,
GTCS has shown abnormal intrinsic brain activity in the primary
network, as well as in internetwork communication frameworks.
Electroencephalogram–fMRI in patients with idiopathic general-
ized epilepsy demonstrated that increased connectivity with sen-
sorimotor regions before the onset of discharges can trigger
generalized spike wave discharges, involving network changes in
the prefrontal cortex and precuneus37. Together, the somatomotor

cortices are implicated in two epileptic subtypes. From a multi-
scale perspective, our results emphasize the impact of microcircuit
abnormal neuronal activity on the primary network and high-
order networks, suggesting a systematic abnormality of brain
hierarchical organization.

There are differences between intrinsic dynamics gradient
derived from the massive features of time-series and the canonical
functional connectivity gradient5. The functional connectivity
gradient focuses on the correlation between regional time-series
and then projects it onto a low-dimensional space, describing the
hierarchical topography of regional connectivity patterns38. The
intrinsic dynamics gradient focuses on the massive features of the
time-series itself, capturing spatial transitions in regional signal
properties. Despite, we further assessed the correlation between
intrinsic dynamics gradient and functional connectivity gradient,
and found that PC1 did not correlate with the functional con-
nectivity gradient (ρ= 0.018, P= 0.884), but PC2 was negatively
correlated with functional connectivity gradient (ρ=−0.945,
P < 0.001) in health. To compare the intrinsic dynamics gradients
with other simple time series properties, we computed the
amplitude of low-frequency fluctuation (ALFF) which provided
direct characterization of the spontaneous brain activity, and
temporal entropy which provide a simple complexity measure of
regional time series (Supplementary Fig. 5). After dividing by the
global mean ALFF, we found higher mALFF were mainly at the
posterior cingulate cortex, precuneus, and the medial prefrontal
cortex39,40. We then assessed the correlation and found that PC1
(ρ= 0.469, P < 0.001) was significantly correlated with the
mALFF, and PC2 was weakly correlated with mALFF (ρ= 0.240,
P= 0.05). Contrary to the results of mALFF, temporal entropy
did not correlate with the PC1 (ρ=−0.133, P= 0.277), but sig-
nificantly correlated with the PC2 (ρ= 0.639, P < 0.001). Toge-
ther, these time series properties (like the ALFF and entropy)
cannot fully capture all aspects of the temporal features of a time
series. Rather than selecting conventional or specific time-series
properties, the advantage of using hctsa is obtaining massive

Fig. 5 Associations in multiscale brain function. a Negative correlations between the differences in PC1 and changes in RC in TLE group (ρ=−0.72,
P < 0.001; n= 68 represented the number of brain parcels) and GTCS (ρ=−0.80, P < 0.001; n= 68 represented the number of brain parcels). For
visualizing, the distribution of observations in each brain parcel used a kernel density estimate method. b Null distributions of Pearson correlations between
changes in RC and 1,000 randomly shuffled (orange) and spatial autocorrection-preserving (purple) surrogate maps, derived from the map of differences
in PC1. Dashed black line indicates the empirically observed correlation.
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temporal features to get a summary characterization. Each feature
captures a specific temporal property of regional time-series, not
just temporal correlation between paired regions (i.e., functional
connectivity). Spontaneous intrinsic dynamics gradient has been
shown to be related to other brain organization, such as the first
component of gene expression, T1-weighted/T2-weighted, and
cortical thickness, suggesting that the macroscale intrinsic
dynamics gradient is constrained by the structure of the under-
lying multiscale organization41. Gradient mapping projects the
high-dimensional connectome into a manifold space, helping us
to understand the pathology of epilepsy from a hierarchical
perspective. For example, previous findings demonstrated an
extended gradient in patients with GTCS, showing a decrease in
the gradient in the somatomotor cortices and an increase in the
default mode network42, which implies the excessive functional
segregation between unimodal and transmodal systems. Another
study found that dysconnectivity of limbic cortices at the top of
the hierarchy was associated with abnormal myelin content and
hippocampal atrophy in TLE, dysconnectivity of sensorimotor
cortices at the bottom of the hierarchy scale with cortical
atrophy43. The microstructural gradient reflected asymmetry and
atrophy of cortical pattern in TLE, providing complementary
insights into the pathology of TLE44.

Intrinsic dynamics is shaped by microscale attributes and
macroscale connectome architecture. The PC1 of time-series
features was associated with the autocorrelation properties of
BOLD signals, and the PC2 of time-series features was associated
with the distribution shape of time-series amplitude41. Auto-
correlation reflects the periodicity of signals, which may explain
the association between the differences in PC1 and the changes in
recurrent connection in epilepsies. Similar differences in PC1 in
TLE and GTCS, showing increased activity in sensory-motor
cortices and decreased in default mode network. The differences
in PC1 in TLE were correlated with the stability of time-series,
and in GTCS were correlated to the model prediction, suggesting
that neuronal activity in the primary network and default mode
network was sensitive to the temporal dependencies of time-series
in epilepsies. Together, the stability and periodicity of brain
activity were abnormal in both epileptic subtypes, but were more
prominent in the default mode network in TLE and visual net-
work in GTCS.

The advantage of the pMFM is that it can simulate the neu-
ronal dynamics parameters by combining functional connectivity
gradient, which allows it to generate more realistic static and
dynamic functional connectivity. The spontaneous activity of the
brain at rest, as well as the task-related activity, depends on the
underlying structural connections and characteristics of intrinsic
dynamics45. We noted that the spatial pattern of the changes in
recurrent connection followed the hierarchical organization of the
brain, from primary network to default mode network in TLE
and GTCS. This implies that brain damage was not constrained
within the seizure lesions, but rather widespread functional
network15. We also found that the significant differences in
recurrent connection were more prominent in GTCS than in
TLE. This is similar to the electroencephalogram pathology of the
two epileptic subtypes, suggesting that generalized discharge has a
greater impact on the stability of intra-regional connections.

A strong correlation was found between the differences in
macroscale intrinsic dynamics gradient and microcircuit changes
in recurrent connection in TLE and GTCS. This further indicates
that the dysfunctions at different scales interact, as the brain is a
multi-scale whole. While intrinsic dynamics gradient and func-
tional connectivity gradient were fundamentally both based on
low dimensional representations of the fMRI data. And we
inform the biophysical model using the functional connectivity
gradient (Fig. 1) to then study how the model parameters of relate

to intrinsic dynamics gradient (Fig. 5). To avoid circular analysis,
we focused on the spatial correlation of the group differences in
intrinsic dynamics gradient and microcircuit parameters, rather
than the parameters and gradient itself in each group. More
interesting, the spatial pattern of changes in intrinsic dynamics
followed the cortical gradient from sensory-motor cortices to
high-order cortices, emphasizing the importance of integration
and segregation of brain connectome46.

There are several limitations in the current study. Second, even
though time delays due to axonal propagation can be of crucial
important for the study of the whole-brain dynamics, here we
assumed instantaneous interactions between the brain regions
and assumed that their impact to be encompassed in the neural
masses, and we neglected them9. Second, the pMFM were derived
through a series of major simplifications to arrive at simple, low-
dimensional models of neural dynamics, and the results may
depend on the exact model form. A data-driven approach that
would allow us to avoid choosing a specific neural mass model
and instead extract this model directly from the functional data47.
More important, this data-driven approach can estimate the link
between dynamically relevant parameters and the measurable
from a preexisting patient cohort, and then applied to a single
subject, that might be more helpful for individualized patient
estimation. Third, we did not collect the T2 weight data, so we
could not calculate T1-weighted/T2-weighted as the structural
gradient in the pMFM. Fourth, we used the Desikan–Killiany
parcellations to extract the time-series signal and construct the
structural connectome. Considering the computing efficiency of
the hctsa toolbox and the pMFM, we did not include other atlases
with more numbers of cortical regions for validation analyses.
Fifth, our findings may have been confounded by the effects of
medication on intrinsic dynamics.

In summary, the dynamics changes of brain function at the
macroscale and microcircuit in epilepsies highlight the impor-
tance of the primary network and default mode network in the
cortical hierarchy, and expand our understanding of the neural
mechanisms of disease from the perspective of System Epilepsies
hypothesis.

Methods
Participants. The study included 75 patients with temporal lobe
epilepsy (TLE), 79 patients with genetic generalized epilepsy with
generalized tonic-clonic seizures (GTCS), and 108 healthy con-
trols (HC) (Table 1). All study protocols were performed
according to the Helsinki Declaration of 1975 and approved by
the medical ethics committee of Jinling Hospital, School of
Medicine, Nanjing University. Written informed consent was
obtained from all participants.

Two types of patients had negative presentation on diagnostic
MRI (i.e., no lesion such as cortical dysplasia, benign brain tumor
or hippocampal sclerosis was detected), and none had received
surgical treatment up to time of data preparation for this work.
According to International League against Epilepsy (ILAE)
classifications48, epilepsies were diagnosed by two experienced
neurologists. For patients with TLE, the patients present with (a)
typical symptoms of TLE, such as automatism (hand, oral),
autonomic symptoms, olfactory hallucination, and complex
partial seizures with aura; and (b) specific patterns of electro-
physiological activity recorded by scalp electroencephalogram,
such as epileptic spikes in the bilateral frontotemporal or
temporal lobes. For genetic generalized epilepsy with GTCS, the
patients presented with a) typical seizure semiology of GTCS,
including loss of consciousness during seizures without pre-
cursory symptoms of partial epilepsy and aura, and tonic
extension of the limbs followed by a clonic phase of rhythmic
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jerking, b) generalized spike‐and‐wave discharges on electro-
encephalogram, and c) no other epilepsy associated etiology such
as trauma, tumor, or intracranial infection. All patients had
negative presentation on conventional (structural) magnetic
resonance images (MRI), and a portion of patients had
concordant positron emission tomography or magnetoencepha-
logram examination. Moreover, patients were excluded for i)
progressive diseases, malformations of cortical development,
tumors, or previous neurosurgery, iii) incomplete MR scanning,
or iv) excessive head motion during scanning.

Imaging protocol. Functional and structural images were
acquired on a Siemens Trio 3.0-tesla MRI scanner at Jinling
Hospital. We used foam padding to minimize head motion. All
participants were required to keep their eyes closed and not to fall
asleep. Functional MR images (fMRI) were acquired using an
echo-planar sequence (repetition time = 2000 ms, echo time =
30 ms, and flip angle = 90°). Thirty-three transverse slices (field
of view = 240 × 240 mm2, matrix = 64 × 64, slice thickness =
4 mm, and interslice gap = 0.4 mm) aligned along the anterior
commissure–posterior commissure line was acquired with a total
of 250 volumes. Total scan time was 500 s. T1-weighted MRI were
acquired in a sagittal orientation using a magnetization-prepared
rapid gradient-echo sequence (repetition time/echo time = 2,300/
2.98 ms, flip angle = 9°, field of view = 256 × 256 mm2, matrix
size = 256 × 256, slice thickness = 1 mm, no interslice gap, and
176 slices). Diffusion weighted images were obtained using spin
an echo-based echo planar imaging sequence, including 30
volumes with diffusion gradients applied along 30 non-collinear
directions (b= 1,000 s/mm2) and one volume without diffusion
weighting (b= 0 s/mm2). Each volume consisted of 45 contiguous
axial slices (repetition time/echo time = 6,100 ms/93 ms, flip
angle = 90, field of view = 240 × 240 mm2, matrix size = 256 ×
256). All participants were asked if they had fallen asleep during
the scanning.

Data preprocessing. Functional images were preprocessed using
the DPABI toolbox49 (http://rfmri.org/dpabi) which synthesizes
procedures in SPM12 software50 (http://www.fil.ion.ucl.ac.uk/
spm). The first ten images were discarded, and the remaining
images were corrected for temporal differences and head motion,
spatially normalized to Montreal Neurologic Institute space, and
re-sampled to 3 × 3 × 3 mm3 voxels. The nuisance variables
including the Friston 24-parameter model, ventricular signal, and
white matter signal were regressed out. Frame-wise displacement
was calculated for each time point. Participants were excluded if
any of the following three criteria were satisfied, (i) mean frame-
wise displacement exceeded 0.5 mm, (ii) head motion exceeded

3 mm or 3°, or (iii) more than 20% of all time points had frame-
wise displacement values exceeding 0.5 mm. Functional images
were then spatially smoothed with an 8-mm full-width at half-
maximum isotropic Gaussian kernel. Finally, linear trends were
removed from the signal, and temporal band-pass filtering
(0.01–0.08 Hz) was performed.

Diffusion weighted images were corrected using a non-
diffusion-weighted B0 image and a filed map for accounting for
the eddy-current-induced distortions and reduced head move-
ments through FSL. Then structural connectomes were generated
from preprocessed diffusion weighted images using MRtrix351.
The T1-weighted images were segmented into different tissue
types, including cortex and subcortical gray matter, white matter,
and cerebrospinal fluid. The T1-weighted was registered to the
diffusion weighted images using the FLIRT, and the transforma-
tion was applied to different tissue types to register them to the
native diffusion weighted images space. We estimated the multi-
organization response function and perform constrained sphe-
rical deconvolution and intensity normalization. All white matter
voxels were taken as seed points, and iFOD2, the default
algorithm of toolkit, was used for streamline tracking. Subse-
quently, spherical deconvolution informed filtering of tracto-
grams (SIFT2) algorithm was used to optimize the cross-sectional
magnification of each streamline to match the whole brain fiber
bundle map. Finally, streamlines were mapped to the
Desikan–Killiany atlas with 68 cortical regions29, and then log
transformation52 was used to construct the structural connections
used as model inputs.

Computation of macroscale intrinsic dynamics. To describe the
macroscale intrinsic dynamics, we comprehensively extracted
massive temporal features of time-series derived from BOLD
fMRI. We first extracted regional time-series across cerebral
cortex for each participant using Desikan–Killiany anatomical
parcellation. We additionally replicated the results with a higher
resolution parcellation with Schaefer 200 cortical regions in
controls analysis (Supplementary Fig. 3). We then used highly
comparative time-series analysis (hctsa) toolbox, a computational
framework for automated time series using massive feature
extraction30, upon which allows to transform each time-series to
a set of over 7,000 features that each encode a different scientific
analysis method. These time-series features described temporal
properties including distributional properties, entropy and
variability, autocorrelation, and nonlinear properties of a given
time-series53. Following the feature extraction procedure, we
removed the errored outputs of the operations, and the remaining
shared features (5,360) among three groups were normalized
across regions using an outlier-robust sigmoidal transform. As a

Table 1 Demographic and clinical characteristics of participants.

Demographics HC TLE GTCS Comparisons

(n= 108) (n= 75) (n= 79) Statistical value P value

Sex (males/females) 59/49 43/34 54/25 χ2= 0.03 (P= 0.87) χ2= 3.59 (P= 0.06)
handedness (left/right) 0/108 0/75 0/79 χ2= 0 (P= 1) χ2= 0 (P= 1)
Age (years) 23.72 ± 4.15 25.72 ± 8.64 24.78 ± 7.84 U= 3889 (P= 0.64) U= 3769 (P= 0.17)
Duration of illness (months) — 111.90 ± 89.25 87.27 ± 93.71 — —
Seizure onset age (years) — 16.51 ± 8.71 17.88 ± 7.65 — —
Treatment (yes/no) — 55/9a 51/19a — —
Seizure frequency (month) — 6.06 ± 19.50 17.46 ± 80.88 — —

HC healthy controls, TLE temporal lobe epilepsy, GTCS genetic generalized epilepsy with generalized tonic-clonic seizures.
Values are mean ± standard deviation (SD).
The χ2 value for gender distribution was obtained by chi-square test.
The U values were obtained by Mann-Whitney tests.
aMissed clinical information
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result, a feature matrix (5360 × 68) was constructed for each
participant, representing the temporal fingerprints of cortical
regions. To investigate the topographic organization of macro-
scale intrinsic dynamics, we identified the spatial gradient of
temporal features. We therefore performed the principal com-
ponent analysis to capture spatial gradients that explained max-
imal variance. We mainly focused on the first component (PC1)
and the second component (PC2) (Fig. 1).

For the analysis of subcortical regions, using the same steps as
in the cortical analysis, we analyzed the macroscopic intrinsic
dynamics in the subcortical regions. To extract the time-series, we
used the Tian subcortical masks34 which contain 16 subcortical
structures. We computed massive temporal features using the
hctsa toolbox. Following the feature extraction procedure, a
shared feature matrix was constructed for each participant,
representing the temporal fingerprinting of subcortical regions.
We then performed the principal component analysis to identify
the spatial gradient, and compared the PC1 and PC2 in patients
with epilepsy to the healthy controls.

Microcircuit simulation by pMFM. To describe the microcircuit
function of neural population, we used a large-scale biophysically
plausible model, the parametric mean field model (pMFM)28, to
simulate local neural dynamics, including the recurrent connec-
tion (RC) and external input (I). In the pMFM, the neural
dynamics of each cortical region are driven by four components,
(1) intra-regional input, (2) external input, (3) inter-regional
input, and (4) neuronal noise. Specifically, intra-regional input
and external input correspond to the free parameters, the RC and
I, respectively. Inter-regional inputs are parameterized by the
structural connectivity and scaled by a global scaling constant G.
Neuronal noise is assumed to be Gaussian with a standard
deviation σ. The nonlinear stochastic differential equations of
neural activity in each cortical region followed the same para-
meter settings as in the previous study28.

The simulated neural activities were fed to the Balloon-
Windkessel hemodynamics model54,55 to simulate the BOLD
fMRI. To reduce the calculation time, Euler’s integration with a
time step of 50 ms was used to simulate the pMFM and the
hemodynamic model in the training process, but a time step of
10 ms was used in the validation and test process to generate
realistic signals. Since the duration of empirical fMRI data
collected was 8 minutes, the duration of simulated fMRI data was
set to be 10 minutes. Then the first 2 minutes was discarded, and
the time-series is downsampled to 2 seconds to maintain the same
time-interval resolution as our empirical data.

In the pMFM, the parameters RC, I, and σ were set as a linear
combination of the FC gradient, resulting 7 unknown coefficients:
G and aw, bw, aI, bI, aσ, bσ:

RCi ¼ awFCGi þ bw ð1Þ

Ii ¼ aIFCGi þ bI ð2Þ

σ i ¼ aσFCGi þ bσ ð3Þ
Here, RCi; Ii; σi represented the recurrent connection, external

input and neuronal noise of the i cortical region, and the FCG
represented the principal gradient of functional connectivity. We
did not consider the T1-weighted /T2-weighted myelin property
because we did not collect the T2w data.

Our goal was to estimate the microcircuit function, the
recurrent connection and external input. To optimize the pMFM,
we estimated the 7 unknown coefficients by minimizing the
disagreement between the empirical and simulated FC and
functional connectivity dynamics (FCD) matrices. The agreement
between empirical and simulated 68 × 68 FC was estimated by

maximizing the Pearson correlation between the two matrices.
The FCD was generated by computing the correlation between a
sliding window, with 1TR as the stepwise, yielding a 211 × 211
FCD matrix for each participant. The agreement between
empirical and simulated FCD was estimated by minimizing the
Kolmogorov-Smirnov distance between the probability distribu-
tion functions (pdfs) constructed from the upper triangular
entries of the two FCD matrices. The pdf of an FCD matrix was
constructed by collapsing the upper triangular entries of the
matrix into a histogram and normalizing it to have an area of one.
The holistic optimization minimized the cost function, implying a
better fit between empirical and simulated FC and FCD.
According to a previous study28, we applied covariance matrix
adaption evolution strategy algorithm to estimate cost function
(Fig. 2).

The HC, TLE and GTCS groups were divided into three
subsets: training set, validation set and test set. Participants were
demographic and clinical matched in each subset (Supplementary
Table 1). Given a particular random initialization of the 7
unknown coefficients, the covariance matrix adaption evolution
strategy algorithm was applied to the training set. Each algorithm
was iterated 500 times, and this procedure was repeated 10 times,
then generated 5,000 coefficients sets. The 5,000 coefficients sets
were evaluated in the validation dataset, and the top 10
coefficients sets with the lowest cost in validation procedure
were selected to apply to the test dataset. We sought to determine
the top 1 coefficient set that show the lowest cost in test
procedure, and finally confirm the best coefficient set for further
analyses. According to the best coefficient set, we estimated the
neural dynamics (RC and I) in HC, TLE and GTCS groups.

Association analysis in multi-scale dynamics. We aimed to
explore the associations between the macroscale intrinsic
dynamics and microcircuit function. First, we directly assessed
the spatial correlation between the differences of gradients (PC1
and PC2) of time-series features and changes of neural dynamics
(RC and I) in epilepsies. To this end, we computed the Spearman
correlation between these maps, and further corrected the spatial
autocorrelation32 on both hemispheres. We then tested the
similarity of gradients between empirical data and simulated data
generated by the pMFM. Consistent with the analysis of empirical
BOLD signal, we used the hctsa toolbox to extract time-series
features of simulated BOLD fMRI generated by the pMFM, and
computed the gradients (PC1 and PC2) of time-series features.
We also computed the Spearman correlation between the
empirical gradients and simulated gradients in three groups.

Statistics and reproducibility. To determine the differences of
macroscale intrinsic dynamics in epilepsies, we compared the
gradients (PC1 and PC2) of time-series features among indivi-
duals in three groups. First, to align the components among
individuals, we constructed group-level intrinsic dynamics gra-
dients using the data from healthy controls, and then used the
Procrustes method56 to align the individual gradients to the
group-level gradients. To compare the group difference in gra-
dients, we then performed 5,000 permutation tests (P FWE < 0.05)
on the left and right hemispheres respectively through the FSL
toolkit PALM. Age and sex were regressed out.

To examine the microcircuit dysfunction in epilepsies, we
analyzed changes defined by subtracting between patients and
controls, since the RC and I were representative of the group-
average level. Then we performed a total of 1,000 permutation
tests (P FDR < 0.05) to determine the regions with significantly
statistical changes, by randomly shuffling the epilepsies and
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controls within training, validation and test sets, and then
repeated the same analysis in the pMFM procedure.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Processed neuroimaging data from Jinling Hospital have been deposited at Figshare,
https://doi.org/10.6084/m9.figshare.24966507.v1. The raw data that support the findings
of this study are available on request from the corresponding author. The source data
used to plot Figures and Supplementary Figures can be found in the Supplementary
Data 1 and 2 respectively.

Code availability
All the code is openly available at https://github.com/SiqiYang47/Multi-scale-brain-
function. The code of pMFM is avialable at https://github.com/ThomasYeoLab/CBIG/
tree/master/stable_projects/fMRI_dynamics/Kong2021_pMFM.
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