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The exocyst complex and intracellular vesicles
mediate soluble protein trafficking to the
primary cilium
S. M. Niedziółka1,2, S. Datta1, T. Uśpieński1,2, B. Baran1,2, W. Skarżyńska1, E. W. Humke3,5, R. Rohatgi 3,4 &

P. Niewiadomski 1✉

The efficient transport of proteins into the primary cilium is a crucial step for many signaling

pathways. Dysfunction of this process can lead to the disruption of signaling cascades or

cilium assembly, resulting in developmental disorders and cancer. Previous studies on the

protein delivery to the cilium were mostly focused on the membrane-embedded receptors. In

contrast, how soluble proteins are delivered into the cilium is poorly understood. In our work,

we identify the exocyst complex as a key player in the ciliary trafficking of soluble Gli

transcription factors. In line with the known function of the exocyst in intracellular vesicle

transport, we demonstrate that soluble proteins, including Gli2/3 and Lkb1, can use the

endosome recycling machinery for their delivery to the primary cilium. Finally, we identify

GTPases: Rab14, Rab18, Rab23, and Arf4 that are involved in vesicle-mediated Gli protein

ciliary trafficking. Our data pave the way for a better understanding of ciliary transport and

uncover transport mechanisms inside the cell.
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Hedgehog (Hh) signaling is essential for embryonic pat-
terning and organ morphogenesis1. Malfunctions of this
pathway can lead to developmental disorders and cancer.

The expression of Hh target genes is controlled by Gli tran-
scription factors: Gli1 which acts as an activator, and Gli2/Gli3,
which displays both activator and repressor functions2.

Processing of Gli transcription factors to activator and
repressor forms requires their efficient transport to the primary
cilium, which integrates proteins necessary to a variety of Gli
modifications3–8. Cilia are indispensable for the transduction of
the Hh signal and the translocation of Gli activators into the
nucleus9. In humans, defects in the ciliary function and the
trafficking of ciliary proteins often result in developmental defects
associated with the dysfunction of the Hh/Gli cascade.

Gli proteins are large and slowly diffusing proteins, so it is
puzzling how they accumulate at the cilium within a mere few
minutes upon signal reception10. This accumulation is a result of
a three-step process: (1) targeted transport to the cilium base, (2)
gated entry through a diffusion barrier, and (3) active trafficking
along the cilium. The mechanisms of Gli transition across the
diffusion barrier and the model of transport from the base to
the tip are relatively well-described11–13. Specifically, inside the
cilium the Gli proteins appear to utilize the conserved intra-
flagellar transport (IFT) system for the delivery from the base of
the cilium to the tip and back to the base10,14–18. At the base of
the cilium, Gli proteins must pass the diffusion barrier reminis-
cent of the nuclear pore with the help of some of the same
molecular players as those involved in nucleocytoplasmic shut-
tling: Ran, importins, and exportins12,19,20. However, it is still
unclear how Gli proteins are delivered from the cytoplasm to the
cilium base in the first place.

Most previous studies on protein delivery to the ciliary base
were focused on membrane proteins. Three different transport
routes have been described for their delivery from the Golgi
complex to the primary cilium21. Some ciliary proteins first reach
the plasma membrane and then move to the ciliary membrane by
lateral transport22. Others reach the base of the cilium using
regulated vesicular transport, either directly or through the
recycling trafficking pathway23.

The process of protein trafficking to the primary cilium is
supported by many players involved in endocytosis and the
vesicle transport machinery24–26. Prominent among them are
small GTPases, which act as molecular switches that allow for the
guidance of their associated vesicles27–29. In addition to GTPases,
the protein ciliary trafficking depends on several multiprotein
complexes, such as the BBsome30,31 and the exocyst32,33. The
exocyst, in particular, is a conserved protein complex that med-
iates the tethering of secretory vesicles to the plasma
membrane34. Many protein trafficking routes depend on the
exocyst, including those for protein delivery to the cell junctions
and protein endocytosis and recycling35,36. The transport func-
tion of the exocyst relies on its interaction with membrane
phospholipids37,38, polarity proteins39,40 and small GTPases40–43.
Importantly, the exocyst interacts with the ciliary transport
machinery, and has been implicated in the transport of trans-
membrane proteins necessary for ciliogenesis and
signaling23,42,44–47, but its role in the trafficking of soluble ciliary
proteins has not been demonstrated.

In our quest to identify the molecular machinery that delivers
Gli proteins to the cilium base, we performed a proteomic ana-
lysis of Gli3 interactors. Interestingly, among Gli3-binding pro-
teins, we detected several exocyst subunits34. Loss-of-function
assays show the dependence of Gli2 and Gli3 ciliary localization
on the exocyst. Consistent with the role of this complex in vesicle
trafficking, we show that Gli2 uses intracellular vesicles as traf-
ficking vehicles. In addition, several small GTPases, including

Rab14, Rab18, Rab23, and Arf4, regulate the ciliary transport of
Gli2. Finally, we show that this vesicle-based transport machinery
is used for the ciliary delivery of Lkb1, another soluble protein
that concentrates at cilia. Our study uncovers a vesicle-dependent
transport pathway for soluble ciliary proteins and sheds new light
on the mechanisms of protein delivery to the cilium base.

Results
The exocyst complex interacts with Gli3. To identify proteins
that help guide Gli proteins to the primary cilium, we immuno-
precipitated proteins that interact with Gli3 in cells treated with
the Smoothened (Smo) agonist SAG48. Cells were separated into
“nuclear” and “cytoplasmic” fractions using hypotonic lysis and
low-speed centrifugation, and each fraction was immunopreci-
pitated with anti-Gli3 antibodies. The eluates were separated
using SDS-PAGE, and prominent bands were submitted for MS-
based protein identification (Fig. 1a).

Mascot’s search of the MS spectra yielded a total of 898 unique
proteins. From this dataset, we selected 473 high confidence Gli3
interactors by rejecting proteins that are frequently found as IP/
MS contaminants based on the CRAPome database49. In this
dataset, we found well-known Gli interaction partners, such as
SuFu, Kif7, and Xpo750–53. The dataset was enriched for proteins
involved in intraciliary and vesicle transport, chromatin remodel-
ing, and DNA repair (Fig. 1b) and contained components of
multi-subunit ciliary transport complexes, including
the BBSome and the exocyst (Fig. 1c, Supplementary Data 1).

Because exocyst, a multi-subunit protein complex involved in
vesicle transport and docking54, had previously been implicated
in the trafficking of proteins to primary cilia, we decided to focus
on its components as potential mediators of the Gli proteins
delivery to the cilium base. The exocyst has mostly been studied
in the context of its binding to intracellular vesicles and the
plasma membrane, but the subunits that were specifically
enriched in the Gli3 interactome are positioned away from the
putative lipid-binding surface of the complex, consistent with
Gli3 being a soluble, rather than a lipid-embedded protein
(Fig. 1d).

In agreement with the proteomic data, Gli3, as well as Gli2, co-
immunoprecipitate with Sec5 and Sec3 (Fig. 2a, S1a). Moreover,
Sec5 and Gli2 tightly colocalize in cells, as shown using the
proximity ligation assay (Fig. 2b, Supplementary Fig. S1b).
Similarly, overexpressed Sec3, Sec5, and Sec8 interact with the
constitutively active Gli2 mutants Gli2(P1-6A) (Fig. 2c, d)55. We
decided to use Gli2(P1-6A) in most experiments because it
localizes to cilia in the absence of upstream activation, allowing us
to study its trafficking independently of the transport of
membrane proteins regulating endogenous Gli proteins, such as
Smo and Ptch56,57.

To identify the Gli2 domain responsible for interaction with
the exocyst, we performed co-immunoprecipitation of Sec3/5/8
with the N-terminal domain of Gli2 and a construct lacking the
N-terminus. The exocyst subunits interact with the N-terminus of
Gli2 (HA-Gli2-N) but interact only weakly with Gli2(P1-6A)-ΔN
(Fig. 2e, f).

Trafficking of Gli2 to cilia depends on the exocyst. Because the
exocyst is required for the trafficking of some ciliary proteins, we
hypothesized that the loss-of-function of the exocyst could impair
Gli ciliary localization at the tip of primary cilia. To test this
assertion, we knocked down individual exocyst subunits in cells
expressing Gli2(P1-6A), in which the HA-tagged Gli2 mutant
accumulates at cilia tips (Supplementary Fig. S2a). Both shRNA-
(Fig. 3a) and siRNA-mediated knockdown (Fig. 3b) of exocyst
subunits resulted in a significant reduction of Gli2(P1-6A) ciliary
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localization in NIH/3T3 (Fig. 3c, d) and mIMCD3 cells (Sup-
plementary Fig. S2b). Similarly, the SAG-induced ciliary accu-
mulation of endogenous Gli2 is reduced in NIH/3T3 cells with
Sec3/5/8 knockdown (Supplementary Fig. S2c). Importantly,
exocyst loss of function does not reduce the total number of

ciliated cells, suggesting that it does not have a broad effect on
ciliogenesis under experimental conditions that we used (Sup-
plementary Fig. S2d).

Similarly, mislocalization of Sec5 using the mitochondrial
trap58 impairs the ciliary trafficking of Gli2(P1-6A). We fused
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Sec5 with the mitochondrial protein Tom20 and mScarlet and co-
expressed the resulting Tom20-mScarlet-Sec5 construct with
Gli2(P1-6A) (Fig. 4a). We observed a reduced Gli2 ciliary level in
cells overexpressing the Tom20-mScarlet-Sec5 mitochondrial
trap, compared to those overexpressing two negative control
constructs—Tom20-mScarlet and mScarlet-Sec5 (Fig. 4b, S2e).

Finally, the exocyst inhibitor endosidin259 reduces Gli2(P1-6A)
ciliary localization in the stable cell line after just two hours of
treatment (Fig. 4c).

Because the exocyst binds to Gli2 mostly via its N-terminal
domain (Fig. 2e, f), we suspected that removing the N-terminus
would impair Gli2 ciliary accumulation. Accordingly, we
observed a strong reduction of the Gli2(P1-6A)-ΔN mutant
localization in the primary cilium compared to the full-length
protein (Fig. 4d).

Having demonstrated that the exocyst is required for the
trafficking of Gli to cilia, we wondered if the localization of the
exocyst is affected by Hh pathway activation. Indeed, the
treatment with SAG increases the amount of Sec3 and Sec5 at
the ciliary base (Fig. 4e).

Gli2 associates with intracellular vesicles. While the best-known
role of the exocyst complex is the transport of vesicle-embedded
membrane proteins, our results suggest that soluble cytoplasmic
Gli proteins may also use the exocyst as a vehicle for intracellular
trafficking. We, therefore, wondered if Gli proteins, like mem-
brane receptors, use vesicles for their transport into the cilium. To
verify this hypothesis, we used super-resolution AiryScan
microscopy to image cells co-expressing HA-Gli2(P1-6A) and
EGFP-Sec5, and surprisingly, we observed Gli2 around Sec5-
positive vesicle-like structures. It suggests that Gli2 could accu-
mulate on the surface of vesicles, where it could interact directly
with the exocyst (Fig. 5a). Similarly, Gli2 associates with distinct
Sec3-positive structures throughout the cell (Fig. 5a).

We also looked at Gli2 localization by immunogold electron
microscopy. In HEK293T cells overexpressing EGFP-Gli2(P1-
6A), we observed EGFP-positive clusters adjacent to membrane
vesicle-like structures (Fig. 5b).

To check if Gli-positive structures represent intracellular
vesicles, we isolated vesicles using cell fractionation. HA-
Gli2(P1-6A), endogenous Gli3, and Sec5 co-fractionated with
the endosome marker EEA1 in the endosomal fraction. ERK was
used as the cytoplasmic control marker. The total abundance of
proteins in fractions we showed by silver staining (Fig. 5c, S3a).

The most likely explanation for our results is that Gli proteins
are transported on the surface of vesicles towards the ciliary base.
We reasoned that the vesicles likely fuse at the base of the primary
cilium60 releasing Gli proteins. Therefore, for continuous
trafficking, new vesicles that would carry Gli proteins would

need to form. The two potential sources of these vesicles are the
Golgi apparatus via the exocytic pathway61,62 and the plasma
membrane by endocytosis63–65. We inhibited endocytosis using
two inhibitors: dynasore66 and pitstop267 in cells expressing
constitutively active Gli2. Surprisingly, after 2h of dynasore
treatment, we observed an almost complete inhibition of Gli2
ciliary accumulation (Fig. 5d). This effect was independent of
Smo because treatment with two Smo inhibitors cyclopamine and
vismodegib did not affect the Gli2(P1-6A) ciliary level (Fig. 5e
and Supplementary Fig. S3b–g).

If the dynasore effects are a consequence of the reduced rate of
new vesicle formation, we would expect these effects to be fully
reversible once the proper formation of vesicles is restored. We
used a pulse-chase assay with 2h vismodegib + dynasore
treatment, and then we washed out dynasore from the media
and collected cells at several time points. We observed a clear
recovery of Gli2 ciliary transport within 1h from the dynasore
washout (Fig. 5d). This effect was present in both NIH/3T3 cells
(Fig. 5d) and in IMCD3 cells (Supplementary Fig. S3f), suggesting
that cells utilizing both the intracellular and extracellular
ciliogenesis pathways (NIH/3T3 and IMCD3, respectively68) use
endocytic vesicles to deliver Gli proteins to cilia.

As an alternative to dynasore, we also used another commercial
clathrin-dependent endocytosis inhibitor pitstop2. Because of its
lethal effect on NIH/3T3 fibroblasts in less than 30min, we treated
cells with pitstop2 for 15 min, followed by a 30 min incubation
without the drug. Similar to the dynasore effects, we observed a
decrease of Gli2 ciliary level in pitstop2-treated cells (Fig. 5f).
Importantly, both both dynasore and pitstop2 were effective at
reducing endocytosis at the doses and times used (Supplementary
Fig. S3c) and neither inhibitor induced gross morphological
changes indicative of toxicity under these conditions (Supple-
mentary Fig. S3d, g).

To determine if the vesicle transport from the cis-Golgi was
also important for Gli2 ciliary trafficking, we treated stable HA-
Gli2(P1-6A) cells with brefeldin A, a Golgi-disrupting drug69. We
did not observe changes in Gli2 ciliary localization after 2h
treatment (Fig. 5g).

The stimulation of target gene transcription by Gli2 is
enhanced by its localization at the cilium9,70. We expected that
dynasore would inhibit Hh target gene transcription in cells
stably expressing the Gli2(P1-6A). Indeed, the expression of the
Hh target gene Gli1 was decreased after dynasore treatment,
although the expression of HA-Gli2(P1-6A) was unchanged
(Fig. 5h).

Rab and Arf proteins mediate Gli2 transport. The trafficking of
vesicles in cells is guided by the reversible association of small
GTPases, especially from the Rab and Arf families25,71. Because

Fig. 1 Gli3 interactome is enriched for proteins involved in ciliary transport of vesicles. a NIH/3T3 Flp-In cells were treated with 100nM SAG for 4h,
roughly fractionated into a “cytoplasmic” and “nuclear” fraction, and each fraction was pulled down using magnetic beads coated with the anti-Gli3
antibody. Proteins were resolved on SDS-PAGE, the gel was stained with coomassie brilliant blue and prominent bands were excised for mass
spectrometry-based protein ID. Shown is the image of the coomassie-stained gel with each of the excised bands indicated and numbered. Gli3 is enriched
in bands 1 (“cytoplasmic”) and 2 (“nuclear”). b MS-identified proteins from all bands were pooled and common MS-AP contaminants (>10% FDR from the
CRAPome database49) were removed. PANTHER114 was used to find overrepresented Gene Ontology (GO) terms in the “PANTHER GO—Slim Biological
Process” and “PANTHER GO—Slim Cellular Component” categories. Top-level enriched GO terms are shown with their corresponding −log10(FDR)
values. c High confidence Gli3 interactors identified by MS were connected into a network using the STRING118 plugin in Cytoscape. Shown is the main
protein network with the node color representing the approximate relative abundance of the protein in the Gli3 interactome and the edge thickness
corresponding to the confidence of connection between proteins in the STRING database. Also shown are highly interconnected sub-networks identified
using MCODE clustering, which typically corresponds to protein complexes or multiprotein functional units. d The exocyst complex structure (PDB ID:
5yfp34) was rendered using Illustrate119 with each subunit colored according to its abundance in Gli3 IP/MS as in c Subunits not identified in our
experiment are rendered in white. The red dashed line corresponds to the predicted surface of the exocyst complex that comes into contact with the
plasma membrane lipids34. Each subunit is labeled with its alternative gene names.
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their association with vesicles and associated proteins is transient,
we hypothesized that under the stringent conditions of our initial
co-IP/MS, the Gli-associating GTPases may have been washed
away from the bait protein. Thus, we performed another co-IP/
MS, with less stringent detergents, using HA-Gli2(P1-6A) as bait
in cells that either had normal cilia or were devoid of cilia by
means of overexpression of a dominant-negative mutant Kif3a
motor72. We expected the GTPases promoting Gli ciliary traf-
ficking to be associated with Gli2 in ciliated, but not in unciliated
cells (Fig. 6a).

We identified 200 high-confidence interactors (<10% FDR in
the CRAPome database) including the same well-known
regulators of Gli, such as SuFu, Kif7, Xpo7, and Spop51,53,73,74,
as well as component proteins of the cilium and basal body
(Fig. 6b, Supplementary Data 2). Among proteins associated with
Gli2(P1-6A) in ciliated cells were Rab14, Rab5c, Rab11b, Rab18,
and Arf4 (Fig. 6c). In addition, we tested two other Rab-family
GTPases: the well-known Hh regulator Rab2375–77 and Rab8,
which cooperates with the exocyst in the trafficking of membrane
receptors to primary cilium43,78.
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Fig. 2 Exocyst subunits interact with Gli2 and Gli3. a Co-immunoprecipitation of endogenous Sec5 with Gli2 and Gli3. Beads were coated with anti-Sec5
antibodies. Rabbit IgG was used as a control. b Proximity Ligation Assay with anti-Gli2 and anti-Sec5 antibodies in NIH/3T3 mouse fibroblasts. Sites of
interaction are marked in red. Cilia were stained with anti-acetylated tubulin (green), and nuclei with DAPI (blue). Scale bar 5μm. c Co-immunoprecipitation of
overexpressed HA-Gli2(P1-6A) and HA-Gli3(P1-6A) with the exocyst subunits Sec3, Sec5, and Sec8 tagged with EGFP in HEK293T cells using anti-HA beads.
d Co-immunoprecipitation of overexpressed HA-Gli2(P1-6A) with single exocyst subunits Sec3, Sec5 and Sec8 tagged with EGFP in HEK293T cells using anti-
HA beads e Reciprocal co-immunoprecipitation of overexpressed EGFP-tagged Sec3, Sec5 and Sec8 with HA-Gli2(P1-6A) constructs using anti-GFP beads.
f Co-immunoprecipitation of overexpressed HA-Gli2(P1-6A) truncation constructs with the exocyst subunits Sec3, Sec5, and Sec8 tagged with EGFP in
HEK293T cells using anti-HA beads.
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Initially, we established by co-IP that Rab14, Rab18, Rab23,
and Arf4 proteins interact with Gli2(P1-6A) (Fig. 7a). In contrast,
two Rab GTPases that had been implicated in ciliary trafficking of
membrane proteins: Rab8 and Rab11a, do not strongly bind to
Gli2(P1-6A) (Supplementary Fig. S4a).

Subsequently, we performed loss-of-function experiments
using shRNA and CRISPR/Cas9 mutagenesis. The knockdown
of Rab14, Rab18, and Arf4 caused the reduction of the Gli2(P1-
6A) ciliary level (Fig. 7b–d). Likewise, the CRISPR/Cas9-mediated
Rab14, Rab18, Rab23, and Arf4 knockout, but not that of Rab8 or
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Fig. 3 Knockdown of exocyst subunits decreases Gli2 ciliary localization. a mRNA expression levels of the indicated genes in cells stable expressing
Gli2(P1-6A) and transduced with shRNA against each of the genes were measured using qRT-PCR. Control cells were transduced with shRNA against
luciferase. The protein level of the indicated proteins was detected by western blot. b The protein level of Sec5 in cells transfected with siRNA against Sec5
or non-targeting control siRNA. c Relative localization at the cilium tip of stably expressed Gli2(P1-6A) in cells with shRNA knockdown of Sec3, Sec5, and
Sec8. Results are presented as violin plots of log-transformed ratios of fluorescence intensity of anti-HA staining at cilia tips to the intensity in the
surrounding background. Cilia per variant n > 170. Student’s t test analysis control-shSec3 p-value= 5.399e-12; control-shSec5 p-value= 2.206e-06;
control-shSec8 p-value < 2.2e-16. Representative images of Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b was used as a
ciliary marker. d Relative localization at the cilium tip of Gli2(P1-6A) in cells transfected with indicated siRNAs. Fluorescence intensities were quantified as
in Fig. 3c from n > 60 cilia per group. Student’s t test for no-target control-siRNA2 p-value= 0.0001015; for no-target control-siRNA3 p-value= 1.581e
−06. Representative images of Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b was used as a ciliary marker and pericentrin
(blue) as a basal body marker. Scale bars 5 μm.
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Rab11a, also significantly decreased the Gli2(P1-6A) ciliary
accumulation (Fig. 7e, S4b). Moreover, we engineered cell lines
expressing dominant-negative Rab23S51N and Arf4T31N mutants
from doxycycline-inducible promoters. Consistent with shRNA-

and CRISPR/Cas9-based experiments, we observed a significant
decrease of Gli2(P1-6A) ciliary accumulation in cells expressing
Arf4 and Rab23 mutants, but not those of Rab8 or Rab11a
(Fig.7f, S4c).
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Fig. 4 Impairment of exocyst function reduces Gli2 ciliary localization. a Schematic representation of the exocyst mitochondrial trap constructs (top) and
assay (bottom). b Relative localization at the cilium tip of Gli2(P1-6A) in HEK293T cells co-transfected with the HA-Gli2(P1-6A) and the indicated
constructs in n > 40 cilia. Fluorescence intensities were quantified as in Fig. 3c. Student’s test for control 1 vs trap p-value= 4.28e−06; control 2 vs. trap
p-value= 0.002. Representative images of Gli2(P1-6A) ciliary localization are presented below. Lower magnification images showing overlap of Gli2 with
mScarlet and a mitochondrial marker SDHA are shown on the right (arrowheads show colocalization). c The exocyst inhibitor endosidin2 blocks the ciliary
accumulation of Gli2(P1-6A). Relative localization at the cilium tip of Gli2(P1-6A) in NIH/3T3 cells expressing HA-Gli2(P1-6A) treated for 2h with DMSO
or 200µM endosidin2 was measured in n > 100 cilia per group. Fluorescence intensities were quantified as in Fig. 3c. Student’s t test p-value < 2.2e−16.
d Gli2(P1-6A)-ΔN is largely excluded from the tip of cilia. Relative localization at the cilium tip of Gli2 constructs stably expressed in NIH/3T3 cells.
Fluorescence intensities were quantified as in Fig. 3c in n > 50 cilia per group. Student’s t test p-value= 2.2e−14. Representative images are presented
below. Arl13b was used as a ciliary marker. e Effect of Smoothened agonist (SAG) treatment (24h; 200nM) on the accumulation of Sec3 and Sec5 at the
ciliary base in NIH/3T3 cells. Cells were stained with anti-Sec3 or anti-Sec5 and the ciliary marker acetylated α-tubulin (ac-tub). Relative localization at the
cilium base was measured in n > 40 cells per group as in Fig. 3c. Student’s t test Sec3: control vs SAG p-value= 0.005; Sec5: control vs SAG p-value= 4.6e
−05. Representative images for each condition are presented below. White arrows show Sec3/5 accumulation and white arrowheads show Gli2 ciliary
accumulation. Scale bars 5μm.
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The trafficking of Lkb1, but not Ubxn10, depends on endo-
cytosis and the exocyst. We wanted to know if the mechanism of
transport to cilia with the use of endocytic vesicles was unique to
Gli proteins or more common among other soluble ciliary pro-
teins. For this purpose, we imaged several HA or GFP tagged
soluble ciliary candidate proteins: HA-Dvl279, Kap3a-EGFP80,

HA-Lkb181, HA-Mek182, HA-Nbr183, HA-Raptor84, Tbx3-
GFP85, and Ubxn10-GFP86. Only two proteins clearly localized
at cilia in NIH/3T3: Ubxn10-GFP, and HA-Lkb1 (Fig. 8a and
Supplementary Fig. S5).

To examine if the ciliary serine-threonine kinase Lkb1 uses an
analogous transport mechanism, we treated stable expressing
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HA-Lkb1 cells with dynasore and observed decreased Lkb1 ciliary
level (Fig. 8b). Similar to Gli2, ciliary accumulation of HA-Lkb1
also dropped after the shRNA knockdown of Sec3/5/8 (Fig. 8c).
Accordingly, we detected HA-Lkb1 in the endosomal fraction
(Fig. 8d). Finally, we observed using co-IP that Lkb1 binds to the
exocyst subunits (Fig. 8e).

Another soluble ciliary protein that we studied was Ubxn10.
Dynasore treatment did not negatively affect the ciliary trafficking
of Ubxn10-GFP (Fig. 8f). Unlike for Gli2(P1-6A), we observed no
effect of Sec5 knockdown on Ubxn10 ciliary localization (Fig. 8g).
Consistent with these results, we detected Ubxn10 predominantly
in the cytosolic cell fraction (Fig. 8h).

Discussion
The cilium is an essential organelle that relays environmental
signals to the nucleus. Nevertheless, the mechanism of the sig-
naling protein delivery to cilia is still poorly understood, espe-
cially for soluble proteins. To gain a better understanding of
cytoplasmic proteins’ transport to cilia we studied Gli transcrip-
tion factors, large soluble proteins that accumulate at the tip of
the cilium before their conversion into transcriptional
activators5,9,11.

Using proteomic screening, we found that Gli proteins interact
with the exocyst, a complex implicated in ciliary delivery of
membrane receptors23,54. We found that loss-of-function of the
exocyst by RNAi, mitochondrial trap, or drug treatment decreases
ciliary localization of the constitutively active mutant Gli2(P1-6A)
independently of their effect on transmembrane Hh signaling
proteins Ptch and Smo.

On a molecular level, we show that the N-terminal region of
Gli proteins binds to the subcomplex I of the exocyst, which
includes the Sec3/5/6/8 subunits34,87. This agrees with our data
and published reports suggesting that the N-terminal domain is
necessary for the Gli proteins ciliary accumulation5,9,11. The
N-terminus is, however, not sufficient for Gli ciliary transport,
with other domains, particularly the central domain of Gli2/35,9

likely participating in other stages of ciliary translocation, such as
the passage through the diffusion barrier and the transport to the
cilium tip.

Our results suggest that soluble cytoplasmic proteins, like Gli2/
3, can use the exocyst as a vehicle for intracellular trafficking. The
exocyst was shown to collaborate with the BLOC-1 complex and
IFT20 in the transport of membrane proteins polycystin-2 and
fibrocystin to cilia23. However, IFT20 does not interact with HA-
Gli2(P1-6A) (Supplementary Fig. S4a). This suggests that the
exocyst may mediate Gli protein ciliary trafficking independently
of IFT20, which implies that the pathways directing membrane
and soluble cilium components are somewhat divergent. Impor-
tantly, the exocyst can be transported to the cilium despite IFT20
loss-of-function23.

Interestingly, we found that the exocyst subunits accumulate at
the cilium base upon stimulation of the canonical Hh signaling.
The most parsimonious explanation of this result is that the
exocyst is co-transported with Gli proteins upon pathway acti-
vation. Alternatively, the exocyst might be delivered to the cilium
base independently of Gli proteins, and then either trap these
proteins at the base prior to their translocation to the cilium or
promote their accumulation at the cilium indirectly. However, the
fact that we see foci of interaction between Gli2 and the exocyst in
areas distal to the cilium (Fig. 2b) suggests that the co-transport
hypothesis is most likely.

Consistent with the requirement of the exocyst in the transport
of Gli2 to cilia, it appears that Gli2 is associated, at least tran-
siently, with intracellular vesicles. Interestingly, the subunits of
the exocyst that most strongly interact with Gli2 are positioned
away from the putative lipid-facing surface of the complex34,87,
indicating that the exocyst may form a tether between vesicle
lipids and soluble proteins. Structural ciliary proteins had been
previously found to be attached to the outer surfaces of intra-
cellular vesicles carrying ciliary membrane proteins in
Chlamydomonas88. We now provide functional data that corro-
borate and extend these findings. Protein delivery by vesicles to
the cilium is persistent and essential for maintaining proper
cilium function and structure89,90. Thus, the strategy of using
vesicles as universal carriers of proteins, both soluble and mem-
brane-embedded, to cilia, solves the logistical problem of homing
many protein classes onto the tiny cilium base.

The trafficking of vesicles in cells is coordinated by the small
GTPases from the Rab and Arf families. Intriguingly, we found

Fig. 5 Gli2 associates with intracellular vesicles. a Airyscan fluorescence imaging of HEK293T cells co-transfected with HA-Gli2(P1-6A) and EGFP-Sec5
or EGFP-Sec3 stained with anti-HA. Insets show high magnification of the Sec5/3- and HA-Gli2(P1-6A)-positive structures. b Electron microscopy images
of HEK293T cells transfected with EGFP-Gli2(P1-6A) and labeled with immunogold-conjugated anti-GFP. EGFP-positive signal accumulates around vesicle-
like structures. c Cells stably expressing HA-Gli2(P1-6A) were fractionated using the endosome isolation kit and the fractions were resolved using SDS-
PAGE. Immunoblot shows HA-Gli2(P1-6A), Gli3, and Sec5 in the endosomal fraction. EEA1 was used as a marker of the endosomes, and ERK was used as a
cytosolic fraction marker. The same protein samples were resolved by SDS-PAGE and the gel was silver-stained, showing similar total protein abundance in
both fractions. d Dynasore impairs Gli2(P1-6A) ciliary localization. Cells were treated with vismodegib in the presence or absence of dynasore for 2h hours
and then the drugs were washed out for 1h. Relative localization of Gli2(P1-6A) at the cilium tip was measured as in Fig. 3c for n > 80 cilia per group.
Student’s t test DMSO+vismodegib vs dynasore+vismodegib p-value < 2.2e−16; dynasore+vismodegib vs washout 1h p-value= 4.25e−05.
Representative images of Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b was used as a ciliary marker. e Effect of dynasore
treatment on Gli2(P1-6A) ciliary accumulation. NIH/3T3 cells with stable expression of HA-Gli2(P1-6A) were treated with dynasore (4h; 40µM) in the
presence of Smo inhibitors vismodegib (4h; 3µM) and cyclopamine (4h; 10µM). The Smo inhibitors were used to ensure that the effect of dynasore was
not due to its influence on Smo or Ptch trafficking. The Smo inhibitors did not influence Gli2(P1-6A) ciliary accumulation, as expected, and did not prevent
dynasore from inhibiting Gli2(P1-6A) localization at the cilium tip. Relative localization of Gli2(P1-6A) at the cilium tip was measured as in Fig. 3c for n > 30
cilia per group. Student’s t test DMSO vs vismodegib p-value= 0.5533; DMSO vs vismodegib+dynasore p-value= 9.047e−08; DMSO vs cyclopamine p-
value= 0.8634; DMSO vs cyclopamine+dynasore p-value= 1.708e−10. f Effect of pitstop2 treatment on Gli2(P1-6A) ciliary accumulation. Pitstop2
(30µM) was used for 10 min and then washed out to avoid its toxicity. Effect of treatment was observed 30 min after washout. Relative localization of
Gli2(P1-6A) at the cilium tip was measured as in Fig. 3c for n > 80 cilia per group. Student’s t test DMSO vs pitstop2 30 min washout p-value= 2.486e−10.
Representative images of Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b was used as a ciliary marker. g Effect of brefeldin A
treatment on Gli2(P1-6A) ciliary accumulation. Cells were treated with DMSO or brefeldin A (5 µg/ml) for 2h. Relative localization of Gli2(P1-6A) at the
cilium tip was measured as in Fig. 3c for n > 140 cilia per group. Student’s t test DMSO vs brefeldin A p-value= 0.4565. Representative images of Gli2(P1-
6A) ciliary localization for each condition are presented below. Arl13b was used as a ciliary marker. h The relative mRNA expression level of Gli1 (Hh
pathway activity marker), and HA-Gli2(P1-6A) after 4h and 24h of dynasore treatment. Scale bars for immunofluorescence images 5μm.
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that Rab14, Rab18, Rab23, and Arf4, interact with Gli2 and are
essential for its accumulation in the ciliary compartment. The
Rab14 GTPase localizes at early endosomes and plays a role in
protein exchange between the endosomes and the Golgi
compartment91–94, and exocytic vesicle targeting95. On the other
hand, Rab18 is usually associated with the endoplasmic reticulum

and lipid droplets96,97. Intriguingly, we identify COPI and
TRAPP complex components in Gli2(P1-6A) and Gli3 inter-
actomes, and these complexes have been implicated in lipid
droplet recruitment of Rab1898. This suggests that Gli may recruit
Rab18 via TRAPPII and COPI to promote ciliary trafficking.
Interestingly, all three of the above GTPases: Rab18, Rab14, and
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Arf4, were recently identified as proximity interactors of the
cilium base-localized kinase Ttbk299, strengthening the case for
their involvement in the targeting of Gli-laden vesicles to the
cilium.

Finally, Rab23 had previously been implicated in Hh signaling
and ciliary transport of receptors100. Rab23 is described as a

negative regulator of the Hh pathway but several different
mechanisms have been proposed, from affecting Smo to directly
regulating Gli proteins75,76,101. Here, we propose Rab23 as one of
the key players in the trafficking of Gli transcription factors into
the primary cilium. This is consistent with the recently discovered
role of Rab23 in the transport of another soluble protein, Kif17, to
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primary cilia and with the ciliary and early endosome enrichment
of Rab23102,103.

In addition to Rab family GTPases, we found Gli2 to associate
with Arf4, which functions in sorting ciliary cargo at the Golgi
and is a crucial regulator of ciliary receptor trafficking104,105. Arf4
binds the ciliary targeting signal of rhodopsin and controls the
assembly of the Rab11a-Rabin8-Rab8 module for the proper
delivery of cargo to the ciliary base106. Although Rab8 and
Rab11a were found to cooperate with both the exocyst and
Arf4106 in the targeting of ciliary cargos, we found that the
expression of dominant-negative Rab8 and Rab11a did not
negatively affect Gli2 ciliary accumulation, with Rab8 DN actually
promoting higher Gli2 accumulation in cilia (Supplementary
Fig. S4c). Similarly, Rab8 and Rab11a KO did not reduce Gli2
ciliary trafficking (Supplementary Fig. S4b). Moreover, we did not
find Rab8 or Rab11a among interactors of Gli2 and Gli3 in our
co-IP/MS datasets. Instead, among Gli2 interactors was a Rab11a
ortholog Rab11b, which had also been implicated in ciliogenesis
and found to associate with Rab8107,108. Disentangling the roles
of the two Rab11 orthologs as well as Rab8/Rabin8 in the traf-
ficking of soluble ciliary components will be an interesting subject
for future studies.

The data from loss of function studies of small GTPases did not
allow us to identify a known source of vesicles that participated in
Gli2 trafficking to cilia. Many of the implicated Rab/Arf proteins
had been known to associate both with Golgi-derived exocytic
vesicles and with plasma membrane-derived endosomes. To
decipher the relative importance of these two potential vesicle
sources, we used pharmacological inhibitors to show that Gli2 is
likely delivered to cilia via endocytic vesicle trafficking rather than
the canonical secretory pathway.

In addition to Gli2, other soluble ciliary proteins can adopt a
similar transport mechanism. Specifically, we show that Lkb1
levels at primary cilia drop upon exocyst loss-of-function and
inhibition of endocytosis. Like Gli2, Lkb1 associates with intra-
cellular vesicles and interacts with the exocyst. Intriguingly, Lkb1
has been shown to be able to associate directly with plasma
membrane phospholipids in addition to its nuclear and ciliary
localization109. It will be interesting to determine if direct phos-
pholipid binding is important for the targeting of Lkb1 to vesicles
and its ciliary transport and whether phospholipid and exocyst
association are synergistic. Incidentally, the exocyst and
Lkb1 show similar specific affinity for phosphatidic acid109,110. It
is tempting to speculate that other proteins that rely on vesicles
for ciliary delivery, such as Gli2, may also show some affinity for
membrane lipids even in the absence of exocyst tethering.

In contrast to Gli2 and Lkb1, another soluble ciliary compo-
nent Ubxn10 localizes at the cilium normally in cells depleted of
Sec5 or treated with dynasore. This suggests that while the
vesicle-mediated transport is important for the ciliary localization
of some cytoplasmic proteins, others use different routes of ciliary
trafficking. Ubxn10 binds directly to the IFT-B complex via
IFT38/CLUAP186, so it may be delivered to the primary cilium
with the IFT particles. Alternatively, the dynamics of Ubxn10
exchange at the cilium may be slower than that of Gli2 or Lkb1,
which prevents us from observing changes in its localization upon
dynasore treatment. Nevertheless, the lack of effect of Sec5
knockdown on Ubxn10 ciliary accumulation argues against such
an interpretation.

In summary, we describe a previously undocumented
mechanism for the transport of soluble cytoplasmic proteins to
primary cilia, which relies on the association of these proteins
with dynamically cycling endocytic vesicles (Fig. 9). While we
identify several key players in the ciliary trafficking of these
vesicles, further work will dissect the precise sequence of events
that are involved in this process. In particular, it will be inter-
esting to discover potential similarities and differences between
the canonical ciliary targeting pathways for membrane proteins,
such as polycystin 2, fibrocystin, Smo, and rhodopsin with those
described here for soluble ciliary proteins. Our work brings us
closer to gaining a broad understanding of ciliary trafficking and
the coordinated transport of proteins among membrane
compartments.

Methods
Constructs and molecular cloning. Gli2/3 constructs were
cloned based on the Gli2(P1-6A) mutant previously described55

tagged with the N-terminal 3xHA. Initially, Gli2 fragments were
amplified by PCR and then cloned into the pENTR2B (Life
Technologies) vector by Gibson assembly111 using the NEB-
uilder® HiFi DNA Assembly Master Mix (NEB). Subsequently,
the constructs were shuttled into pEF/FRT/V5-DEST (Life
Technologies) using the Gateway method (Gateway LR Clonase II
mix; Life Technologies). Plasmids with Sec3/5/8, Rab8/11/14/18,
and Arf4 on the pEGFP vector were ordered from the Addgene
site (Supplementary Table S1). Rab23 wild type and mutant
cDNA sequences were obtained by DNA synthesis (DNA Strings;
Thermo) and cloned by Gibson assembly into the LT3GEPIR
plasmid ordered from addgene (Supplementary Table S1). Tom20
sequence was amplified from mouse cDNA and then fused with
mScarlet cloned from pmScaret (addgene, Supplementary
Table S1) and Sec5 by Gibson assembly in the pEGFP-C3 vector
with the EGFP sequence removed by restriction digestion. Other

Fig. 7 Rab14, Rab18, Rab23, and Arf4 mediate Gli2 ciliary trafficking into primary cilium. a Co-immunoprecipitation of EGFP tagged Rab and Arf proteins
with HA-Gli2(P1-6A). HEK293T cells were co-transfected with the indicated constructs and co-IP was performed as in Fig. 2c. b Knockdown efficiency of
Rab14, Rab18, and Arf4 using shRNA. Cells were transduced with viral constructs encoding the indicated shRNAs and mRNA expression of their target
genes was measured by qRT-PCR. Control cells were transduced with the shRNA against luciferase. c Effect of Rab14, Rab18, and Arf4 shRNA knockdown
on relative Gli2(P1-6A) ciliary localization. Relative localization of Gli2(P1-6A) at the cilium tip was measured as in Fig. 3c for n > 100 cilia per group.
Student’s t test control vs shRNA Rab14 p-value= 0.00018; control vs shRNA Rab18 p-value= 0.00027; control vs shRNA Arf4 p-value= 0.0081.
d Representative images of HA-Gli2(P1-6A) localization in cilia of cells with the knockdown of Rab14, Rab18 and Arf4. Cells were transduced as in (b).
Arl13B was used as a ciliary marker. e Effect of CRISPR-Cas9-mediated knockout of Rab14, Rab18, Rab23, and Arf4 on Gli2(P1-6A) ciliary localization. Cells
stably expressing both HA-Gli2(P1-6A) and Cas9 were transduced with viral constructs encoding the indicated sgRNAs. Control cells were transduced with
the empty pLentiGuide-puro vector. Relative localization of Gli2(P1-6A) at the cilium tip was measured as in Fig. 3c for n > 280 cilia per group. Student’s t
test control vs Rab14 KO p-value= 1.1e−06; control vs Rab18 KO p-value < 2.2e−16; control vs Rab23 KO p-value= 3.4e−07; control vs Arf4 KO
p-value= 8.9e−07. Representative images of Gli2(P1-6A) ciliary localization for each condition are presented below. Arl13b was used as a ciliary marker.
Indel frequency measured using the TIDE method is shown below. f Effect of inducible expression of dominant-negative (DN) forms of Rab23 and Arf4 on
Gli2(P1-6A) ciliary localization. Relative localization of Gli2(P1-6A) at the cilium tip was measured as in Fig. 3c for n > 100 cilia per group. Student’s t test
Rab23 WT vs DN p-value= 2.2e−05; Arf4 WT vs DN p-value= 0.00031. Representative images of Gli2(P1-6A) ciliary localization for each condition are
presented below. Arl13b was used as a ciliary marker. Scale bars 5 μm.
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Fig. 8 The trafficking of Lkb1, but not Ubxn10, depends on endocytosis and the exocyst. a Ciliary localization of Lkb1 and Ubxn10 in NIH/3T3 cells. Cells
were transfected and stained with the indicated antibodies. Arl13b was used as a ciliary marker. b, Effect of dynasore treatment on Lkb1 ciliary
accumulation. NIH/3T3 cells with stable expression of HA-Lkb1 were treated with DMSO and dynasore (4h; 40µM). Relative localization of Lkb1 at the
cilium was measured for n > 50 cells per group. Student’s t test p-value= 2.3e−11. Representative images are presented below. c Effect of Sec3/5/8
shRNA knockdown on Lkb1 ciliary localization. Cells were transduced as in Fig. 3a. Relative localization of Lkb1 at the cilium tip was measured as in Fig. 3c
for n > 70 cilia per group. Student’s t test control vs shSec3/5/8 p-value= p-value= 0.003. d Cells stably expressing HA-Lkb1 were fractionated using the
endosome isolation kit and the fractions were resolved using SDS-PAGE. Immunoblot shows Lkb1 in the endosomal fraction. EEA1 was used as a marker of
the endosomes. Silver-stained gel of the same samples shows similar total protein abundance in both fractions. e Co-immunoprecipitation of EGFP tagged
Sec3/5/8 proteins with HA-Lkb1 in HEK293T cells co-transfected with the indicated constructs. f Effect of dynasore treatment on Ubxn10 ciliary
accumulation. Cells were treated as in (b) and relative localization was measured for n > 100 cells per group. Student’s t test DMSO vs dynasore 4h
p-value= 0.05. Representative images are presented below. g Effect of Sec5 shRNA knockdown on relative Ubxn10 ciliary localization. Cells were
transduced as in Fig. 3a. Relative localization of Ubxn10 at the cilium tip was measured as in Fig. 3c for n > 160 cilia per group. Student’s t test control vs
shSec5 p-value= 0.037. h Fractionation of cells with stable expression of GFP-Ubxn10 as in (d). Immunoblot shows Ubxn10 mainly in the cytosolic
fraction. ERK was used as a cytosolic fraction marker. Scale bars 5μm.
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soluble proteins sequences of Dvl2, Nbr1, Mek1, Lkb1, Raptor
were amplified from mouse cDNA and cloned into the pENTR2B
with 3xHA tag vector by Gibson assembly. Ubnx10 was cloned
from pHAGE-NGFP-UBXD3—gift from M. Raman86. Tbx3 was
cloned from the construct with Tbx3-Myc—a gift from A.
Moon85. pEGFP-Kap3a was a gift from P. Avasthi and pEGFP-
Rab11a was a gift from M. Miaczynska. Primer sequences for
cloning are shown in Supplementary Table S2.

Cell culture. HEK293T (ATCC) and NIH/3T3 Flp-In (Thermo)
cells were maintained in media composed of DMEM (high glu-
cose; Biowest), sodium pyruvate (Thermo), stable glutamine
(Biowest), non-essential amino acids (Thermo), 10% fetal bovine
serum (EurX), and penicillin/streptomycin solution (Thermo).
mIMCD3 Flp-In cells (gift from D. Mick112) were cultured in
DMEM/F-12 (Gibco) media supplemented with 2 mM stable
glutamine (Biowest), 10% fetal bovine serum (EurX), and peni-
cillin/streptomycin solution (Thermo). HA-Gli2(P1-6A) and HA-
LKB1 NIH/3T3 and mIMCD3 stable cell lines were generated
using the Flp-In system according to the manufacturer’s protocols
(Thermo Fisher). Stable cell lines were reselected with hygro-
mycin on every other passage to preserve selection pressure.

To stimulate ciliogenesis the cells were cultured in the same
medium but containing 0.5% FBS for 24h before fixing. For
activation of the Hh pathway, we used SAG (Smoothened
agonist) treatment 200nM for 24h. Transient transfections of cells
we performed using the JetPrime reagent (Polyplus) according to
the manufacturer’s protocol.

All inhibitors were suspended in DMSO and used with
indicated times. The following concentrations of inhibitors were

used: dynasore (40µM, Sigma), endosidin2 (200µM, Sigma),
pitstop2 (30µM, Sigma), brefeldin A (5µg/ml, Sigma).

Large scale co-IP/MS on Gli3. NIH/3T3 cells were cultured to
confluence on 50 15cm dishes and starved overnight to promote
ciliogenesis. They were treated with 100nM SAG for 4h. The cells
were fractionated into “nuclear” and “cytoplasmic” fractions as
previously described113. Briefly, cells were washed 2x with ice-
cold PBS and 2x with ice-cold 10 mM HEPES pH 7.4. They were
left on ice in 10 mM HEPES for 10 min. to swell. The HEPES
buffer was removed and the cells were scraped in ice-cold SEAT
(sucrose, EDTA, acetic acid, triethanolamine) buffer with pro-
tease and phosphatase inhibitors and homogenized using a
Dounce homogenizer with nuclei release and integrity monitored
microscopically. “Nuclear” and “cytoplasmic” fractions were
separated using two rounds of centrifugation at 900xg for 5 min.
at 4 °C. The supernatant from the first centrifugation was col-
lected as the “cytoplasmic” fraction, and the pellet from the first
centrifugation was resuspended in SEAT buffer and centrifuged
again. The pellet from the second centrifugation was collected as
the “nuclear” fraction. The “cytoplasmic” fraction was supple-
mented with Tris (to a concentration of 50mM), NaCl (to a
concentration of 150mM), Nonidet P-40 (to a concentration of
2%), sodium deoxycholate (to a concentration of 0.25%), DTT (to
a concentration of 1mM), and protease inhibitors and incubated
for 45 min. at 4 °C. Afterwards, the “cytoplasmic” lysate was
centrifuged at 20,000xg for 45 min, and the supernatant was used
for immunoprecipitation. The “nuclear” pellet was lysed for
45 min in a buffer containing 50 mM Tris, 150 mM NaCl, 2%
Nonidet P-40, 0.25 sodium deoxycholate, 1 mM DTT, and
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Rab/Arf GTPase

IFT complex
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Fig. 9 The model of Gli protein trafficking to cilia. (1) Endocytic proteins that are targeted to cilia associate with the exocyst. (2) The exocyst subunits that
face the cytoplasm capture soluble cargo. (3) Rab/Arf small GTPases associate with vesicles laden with soluble cargo and orchestrate transport to cilium
base. (4) Vesicles dock at the ciliary pocket, and Gli proteins are released and transported across the ciliary barrier using importins. (5) Gli proteins are
transported to cilium tip on IFT trains.
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protease and phosphatase inhibitors. The “nuclear” lysate was
cleared by centrifugation at 20,000g for 30 min. at 4 °C and used
for immunoprecipitation. Each fraction was immunoprecipitated
overnight with 150 µL Dynabeads-Protein G (Invitrogen) cova-
lently cross-linked with goat-anti-Gli3 (AF3690; R&D Systems; 30
µg antibody per fraction). The beads were washed with the fol-
lowing buffers: harsh RIPA lysis buffer (50 mM Tris pH 7.4, 150
mM NaCl, 2% Nonidet P-40, 500 mM LiCl, 1 mM DTT, 0.25%
sodium deoxycholate, 0.1% SDS, protease and phosphatase
inhibitors), RIPA lysis buffer supplemented with 0.8M urea, and
mild 0.1% NP-40 lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl,
0.1% Nonidet P-40, 1 mM DTT, 1% glycerol, phosphatase inhi-
bitors). The samples were eluted from beads using preheated 2x
Laemmli sample buffer without DTT at 85 °C for 5 min. The
samples were then reduced and alkylated using DTT and
iodoacetamide and loaded onto a 6% SDS-PAGE gel. The gel was
stained using the GelCode Blue reagent (Pierce) and prominent
bands were excised using a sterile scalpel and submitted for
further processing to MS Bioworks (Ann Arbor, MI). The bands
were destained and subjected to in-gel digest using trypsin. Each
gel digest was analyzed by nano LC/MS/MS with a Waters
NanoAcquity HPLC system interfaced to a ThermoFisher LTQ
Orbitrap Velos. Peptides were loaded on a trapping column and
eluted over a 75µm analytical column at 350nL/min; both col-
umns were packed with Jupiter Proteo resin (Phenomenex). The
mass spectrometer was operated in data-dependent mode, with
MS performed in the Orbitrap at 60,000 FWHM resolution and
MS/MS performed in the LTQ. The fifteen most abundant ions
were selected for MS/MS. Data were searched using a local copy
of Mascot with the following parameters: Enzyme: Trypsin,
Database: IPI Mouse v3.75 (forward and reverse appended with
common contaminants), Fixed modification: Carbamidomethyl
(C), Variable modifications: Oxidation (M), Acetyl (N-term, K),
Pyro-Glu (N-term Q), Deamidation (N,Q), Phospho (S,T,Y),
GlyGly (K), Mass values: Monoisotopic, Peptide Mass Tolerance:
10 ppm, Fragment Mass Tolerance: 0.5 Da, Max Missed Clea-
vages: 2. Mascot DAT files were parsed into the Scaffold algo-
rithm for validation, filtering, and to create a nonredundant list
per sample. Data were filtered using a minimum protein value of
90%, a minimum peptide value of 50% (Prophet scores), and
requiring at least two unique peptides per protein.

To determine high-confidence Gli3 interactors, we rejected all
proteins found in more than 10% of negative control affinity
purification/MS experiments in the CRAPome database49 (FDR <
10%). Enrichment of proteins representing specific Gene
Ontology terms was performed using PANTHER with GO-Slim
Cellular Component and GO-Slim Biological Process terms114.

Peak files and protein identification results have been
submitted to MassIVE (dataset MSV000093738 https://doi.org/
10.25345/C5445HP7K).

Large scale co-IP/MS on HA-Gli2 (P1-6A) in ciliated and non-
ciliated cells. NIH/3T3 cells stably expressing HA-Gli2 (P1-6A)
were transduced either with the control vector or with a retroviral
vector encoding the dominant-negative variant of Kif3a (headless
– amino acids 441-701 of the mouse Kif3a; dnKif3a) and selected
with puromycin to eliminate untransduced cells. Each cell line
was expanded from a single clone and ciliogenesis or lack thereof
was verified by immunofluorescence.

Both cell lines were starved for 36h and lysed in a gentle lysis
buffer (50 mM Tris pH 7.4, 150 mM NaCl, 0.1% Nonidet P-40,
5% glycerol, protease and phosphatase inhibitors) and scraped at
4 °C. The lysate was clarified for 30 min at 15,000g and the
supernatant was immunoprecipitated for 2h at 4 °C with
Dynabeads-protein G covalently coupled to the rat anti-HA

antibody (Roche). The beads were washed 3x5 min. with the lysis
buffer and 1x5 min with the lysis buffer with the addition of 350
mM NaCl (total NaCl concentration 500mM). Protein was eluted
from beads using 2x Laemmli sample buffer at 37 °C for 30 min
with vigorous mixing (500rpm).

Eluted proteins were submitted for mass spectrometric protein
identification to MS Bioworks (Ann Arbor, MI). The entire
amount of sample was separated ~1.5 cm on a 10% Bis–Tris
Novex mini-gel (Invitrogen) using the MES buffer system. The
gels were stained with coomassie and excised into ten equally
sized segments. Gel segments were processed using a robot
(ProGest, DigiLab) with the following protocol: Washed with 25
mM ammonium bicarbonate followed by acetonitrile. Reduced
with 10 mM dithiothreitol at 60 °C followed by alkylation with 50
mM iodoacetamide at RT. Digested with trypsin (Promega) at
37 °C for 4 h. Quenched with formic acid and the supernatant
was analyzed directly without further processing.

The gel digests were analyzed by nano LC/MS/MS with a
Waters M-class HPLC system interfaced with a ThermoFisher
Fusion Lumos. Peptides were loaded on a trapping column and
eluted over a 75µm analytical column at 350nL/min; both
columns were packed with Luna C18 resin (Phenomenex). A
30 min gradient was employed (5h LC/MS/MS per sample). The
mass spectrometer was operated in data-dependent mode, with
MS and MS/MS performed in the Orbitrap at 60,000 FWHM
resolution and 15,000 FWHM resolution, respectively. APD was
turned on. The instrument was run with a 3s cycle for MS and
MS/MS. Data were searched using a local copy of Mascot with the
following parameters: Enzyme: Trypsin, Database: Swissprot
Mouse (concatenated forward and reverse plus common
contaminants), Fixed modification: Carbamidomethyl (C), Vari-
able modifications: Oxidation (M), Acetyl (Protein N-term),
Deamidation (NQ), Phosphorylation (S,T,Y), Mass values:
Monoisotopic, Peptide Mass Tolerance: 10 ppm, Fragment Mass
Tolerance: 0.02 Da, Max Missed Cleavages: 2. Mascot DAT files
were parsed into the Scaffold software for validation, filtering, and
to create a nonredundant list per sample. Data were filtered at 1%
protein and peptide level FDR and requiring at least two unique
peptides per protein.

Peak files and protein identification results have been
submitted to MassIVE (dataset MSV000093739 https://doi.org/
10.25345/C50G3H85P).

Proteomic data analysis. Proteomic data were analyzed using
Scaffold 4 and Cytoscape 3.8.2 to generate and visualize protein-
protein interaction networks.

Viral transduction. For lentivirus production, we transfected
HEK293T cells with pRSV-rev, pMDLg/pRRE, pMD2.G lentiviral
packaging vectors (addgene, Supplementary Table S1) and the
construct encoding our protein or shRNA or sgRNA of interest,
and then after 2 days, we collected the virus-containing medium
and added it to target cells. We used puromycin to select
transduced cells.

siRNA mediated knockdown. For siRNA-mediated knockdown
of Sec5, we used the Sec5 ON-TARGET plus siRNA set of four
siRNAs with non-targeting controls (Horizon Dharmacon). For
siRNA transfection, we used Lipofectamine RNAiMAX (Ther-
mofisher). Each siRNA was introduced at 40 pmol/well on a 24-
well plate for 48h.

shRNA mediated knockdown. shRNAs were cloned into
pLKO.1-TRC cloning vector (Supplementary Table S1). Targeting
sequences were designed using the BlockIT software from the
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Thermo-Fisher website. ShRNA primer sequences are in Sup-
plementary Table S2.

CRISPR-Cas9-mediated mutagenesis. CRISPR-Cas9-mediated
mutagenesis was performed on NIH/3T3 Flp-In cells stably
expressing HA-Gli2(P1-6A) and Cas9 (Supplementary Table S1).
sgRNA sequences were designed using the Broad Institute sgRNA
designer tool115 and cloned into the pLentiGuide-puro vector
(addgene, Supplementary Table S1). We transduced the target
cells with lentiviruses carrying the sgRNA of interest and either
fixed 72 h later or subjected to antibiotic selection. Knockout
efficiency was evaluated on pools of cells using Sanger sequencing
and the TIDE method116. SgRNA primer sequences are in Sup-
plementary Table S2.

Immunostaining and microscopy. Cells were cultured on glass
coverslips. After low-serum starvation to promote ciliogenesis, we
fixed cells in 4% [w/v] paraformaldehyde in PBS for 15 min at
room temperature (RT) and then washed 3 x 10 min in phosphate
buffer saline (PBS). Subsequently, cells were blocked and per-
meabilized in 5% [w/v] donkey serum in 0.2% [w/v] Triton X-100
in PBS. We incubated cells with the primary antibodies diluted in
blocking buffer overnight at 4 °C. Next, we washed the coverslips
3 × 10 min with 0.05% [w/v] Triton X-100 in PBS, followed by
incubation with secondary antibodies in the blocking buffer for
1 hour at RT. Cells were washed as above and mounted onto
slides using a fluorescent mounting medium with DAPI (ProLong
Diamond, Thermo). We acquired images on an inverted Olym-
pus IX-73 fluorescent microscope equipped with a 63x uPLA-
NAPO oil objective and the Photometrics Evolve 512 Delta
camera using the cellSens sotware. For superresolution micro-
scopy, we used the Zeiss LSM800 confocal microscope with the
Airyscan detector and Plan Apochromat 63x/1.4 Oil DIC objec-
tive using the ZEN Black software.

For the quantitative analysis of fluorescence intensities, images
were acquired with the same settings of exposure time, gain,
offset, and illumination. Fluorescent intensities were measured in
a semi-supervised manner by a custom ImageJ script. To calculate
the Gli ciliary accumulation, we calculated the log10 values of the
ratios of intensities of the fluorescent signal at the tip of the
primary cilium and the surrounding background in each cell.

Co-immunoprecipitation. We performed co-
immunoprecipitation using Pierce Anti-HA Magnetic Beads
(Life Technologies) or using Dynabeads-protein G (Thermo)
magnetic beads with primary antibodies (anti-GFP Genetex
No#GTX113717; anti-Sec5 Proteintech No#12751-1-AP) cross-
linked using dimethyl pimelimidate (Life Technologies).

For the production of whole-cell lysates, cells were lysed at 4 °C
in lysis buffer (50 mM Tris at pH 7.4, 1% NP-40 [v/v], 150 mM
NaCl, 0.25% sodium deoxycholate [v/v], protease inhibitor
cocktail [1× EDTA-free protease inhibitors, Sigma], 10 mM
NaF). 1/10 part of the clarified lysate was saved as an input
fraction, and the rest was subjected to immunoprecipitation.

After adding beads, binding of the protein of interest was
performed overnight with gentle rotation at 4 °C. The next day, beads
were washed 4 × 10 min at 4 °C in the same lysis buffer to remove
unbound proteins, and complexes were eluted off the beads using 2x
SDS sample buffer at 37C for 30min. We analyzed the composition of
eluent using the SDS-PAGE and Western Blot method.

qRT-PCR. Total RNA was isolated using the Universal RNA
Purification Kit (EURx). Reverse transcription was performed
using the High-Capacity cDNA Reverse Transcription Kit

(Thermo). Quantitative PCR was performed on the Roche
LightCycler 480 II system using primers shown in Supplementary
Table S2 and the Real-Time 2xHS-PCR Master Mix Sybr B (A&A
Biotechnology). Relative gene expression was quantified using the
ΔΔCt method.

SDS-PAGE and western blot. Proteins were denaturated for
30 min at 65 °C and resolved by SDS-PAGE. Afterward, we
performed electrotransfer onto a nitrocellulose membrane.
Immunocomplexes were detected using an enhanced chemilu-
minescence detection system (Clarity or Clarity Max, Bio-rad) on
Amersham Imager 680 and 800 as 16-bit grayscale TIFF files. The
molecular weight of proteins was estimated with pre-stained
protein markers (Bio-rad).

Proximity ligation assay. We performed the proximity ligation
assay117 using the Duolink PLA Kit (Merck) according to the
manufacturer’s protocol. Anti-Sec5 and anti-Gli2 primary anti-
bodies (Supplementary Table S3) were used to detect sites of
interaction between the proteins in NIH/3T3 Flp-In cells.

Endosome isolation. The Trident Endosome Isolation Kit
(Genetex) was used to fractionate cell lysates according to the
manufacturer’s protocol.

Electron microscopy. HEK293 cells expressing EGFP-Gli2(P-
16A) were fixed on the dish with 4% PFA in 0.2M phosphate
buffer and 0.25% sucrose. The samples were sent to Biocenter
Oulu Electron Microscopy Core Facility and there processed for
EM and immunogold labeled with anti-GFP. Imaging was per-
formed on Sigma HD VP FE-SEM equipped with ET-SE and In-
lens SE detectors, VPSE G3 detector for low vacuum mode, and
5Q-BSD detector.

Transferrin uptake assay. Cells were treated with DMSO or
endocytosis inhibitors, followed by 20 min. incubation with 20μg/
mL Alexa Fluor 647-conjugated transferrin (Sigma). The cells were
washed with PBS, fixed with 4% PFA, and mounted in fluorescent
mounting medium with DAPI (ProLong Diamond, Thermo).

Statistics and reproducibility. The statistical data analysis was
performed using Microsoft Excel and R/RStudio (R version 4.1.2).
For the processing of the fluorescence images, we used the FiJi/
ImageJ suite. Statistical significance was calculated using Student’s
t test for experiments involving two experimental groups, or
ANOVA and Tukey posthoc test for multiple comparisons.
Number of samples (biological replicates) and p-value is provided
in each figure legend. To ensure reproducibility in experiments
where statistical analysis was not practical, each experiment was
reproduced at least twice with results supporting the same
conclusion.

Data availability
All data supporting the findings of this study are available within the paper and its
Supplementary Data. Raw data for plots are available as Supplementary Data 3. For
coimmunoprecipitation/mass spectrometry experiments, data were submitted to the
MassIVE database (accession code MSV000093738; https://doi.org/10.25345/
C5445HP7K, accession code MSV000093739; https://doi.org/10.25345/C50G3H85P).
Uncropped, unprocessed blot images from the Amersham Imager are included in
Supplementary Fig. S6.
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