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Neural and behavioral evidence for oxytocin’s
facilitatory effects on learning in volatile and stable
environments
Menghan Zhou1,2, Siyu Zhu3, Ting Xu1,2, Jiayuan Wang1,2, Qian Zhuang 2,4, Yuan Zhang1,2,

Benjamin Becker 5,6, Keith M. Kendrick1,2 & Shuxia Yao 1,2✉

Outcomes of past decisions profoundly shape our behavior. However, choice-outcome

associations can become volatile and adaption to such changes is of importance. The present

study combines pharmaco-electroencephalography with computational modeling to examine

whether intranasal oxytocin can modulate reinforcement learning under a volatile vs. a stable

association. Results show that oxytocin increases choice accuracy independent of learning

context, which is paralleled by a larger N2pc and a smaller P300. Model-based analyses

reveal that while oxytocin promotes learning by accelerating value update of outcomes in the

volatile context, in the stable context it does so by improving choice consistency. These

findings suggest that oxytocin’s facilitatory effects on learning may be exerted via improving

early attentional selection and late neural processing efficiency, although at the computa-

tional level oxytocin’s actions are highly adaptive between learning contexts. Our findings

provide proof of concept for oxytocin’s therapeutic potential in mental disorders with

adaptive learning dysfunction.
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In real life, decision-making occurs frequently every day from
trifles such as when to drink a cup of coffee or go to the park
to momentous decisions such as whether to quit a job or end a

relationship. Outcomes of past decisions can profoundly shape
our behavior, with rewarding outcomes (e.g., food or money)
being reinforced and aversive ones (e.g., punishment or hurt)
being avoided, as suggested by principles of reinforcement
learning theory1. However, in a rapidly changing world associa-
tions between choices and outcomes are never invariant with
choices associated with rewards in the past potentially becoming
associated with punishment and vice versa. Therefore, individuals
have to adapt to such changes flexibly and update their beliefs
about established associations based on the difference between
anticipated and actual outcomes, termed the prediction error, to
optimize their decision making. However, there is evidence
showing that high anxious individuals have learning deficits when
choice-outcome associations are volatile2. Excessive fear respon-
ses have also been reported during fear extinction when condi-
tioned stimuli are no longer paired with aversive outcomes in
anxiety patients with panic or post-traumatic stress disorders3–5.
Understanding the mechanisms underlying how these learning
processes occur and whether they can be modulated is thus of
importance.

One promising approach for modulating reinforcement
learning is the hypothalamic neuropeptide oxytocin (OT), which
plays a crucial role in modulating social behaviors and emotional
processing in both animals and humans6–8. Given widely dis-
tributed OT receptors in the learning neural circuit9,10, OT can
exert its effects on learning via binding to them. More specifically,
intranasally administered OT has been found to facilitate learning
performance with social feedback in a category association task in
both Caucasian and Chinese subjects11,12. This enhancement
effect of OT is associated with emotional, salience, and reward
processing networks11 and may be particularly amygdala-
dependent12. Recently using a probabilistic learning task,
Zhuang et al. (2021)13 has also reported that intranasal OT
facilitates learning by rendering the evaluation of positive (a
smiley emoticon face) and negative feedback (a grumpy emoticon
face) more equivalent, as reflected at a neural level in decreased
feedback-related negativity (FRN) amplitude following OT rela-
tive to placebo (PLC) treatment13. The FRN is considered to be a
reliable event-related potential (ERP) reflecting feedback evalua-
tion with a more negative amplitude in response to negative
compared to positive feedback during reinforcement
learning14,15. These facilitatory effects of OT were maintained in a
post-learning test without feedback and were also associated with
attenuated error-related negativity (ERN)13. The ERN is asso-
ciated with incorrect responses and reflects the processing of
conflict monitoring at an early stage16–18. Similar facilitatory
effects of OT on learning have also been found in high-
functioning autistic adults19. Of note, these studies have investi-
gated the effects of OT on reinforcement learning in stable
choice-outcome associations. However, choice-outcome associa-
tions can be volatile between choices and outcomes in our rapidly
changing world. Adaption to such changes are crucial for indi-
viduals to optimize decisions and can be dysfunctional in anxiety
disorders3–5. It is therefore of importance to investigate whether
OT also has modulatory effects on reinforcement learning in a
volatile context and whether it does so via similar or different
mechanisms to its effects in a stable context.

Furthermore, there is also a lack of evidence for behavioral
computational mechanisms underlying OT’s modulatory effects
on learning. Previous studies using the reinforcement learning
model have shown that healthy individuals are highly adaptive in
learning choice-outcome associations even in a volatile context
via accelerating belief updates of choice-outcome associations and

giving more weight to more recent outcomes, as reflected by
higher learning rate under volatile than stable associations2,20.
The learning rate interacts with prediction error and determines
the extent to which the action value is updated during learning1

and has been found to be encoded in the anterior cingulate
cortex2,20. In contrast to a faster update of action values under
volatile choice-outcome associations, it is beneficial to keep
choices more consistent under stable choice-outcome associa-
tions, which is evidenced by the choice consistency parameter
(i.e., inverse temperature) in the reinforcement learning model21.
These computational modeling parameters enable us to depict
behavioral mechanisms underlying learning in a more elaborate
way and thus may provide new possibilities for uncovering OT’s
effects on reinforcement learning via a perspective of behavioral
computational modeling.

Against these backgrounds, the present study combined a
pharmacological challenge of intranasal OT (24 IU) in a modified
associative learning task with a classical Bayesian learning model
to compare OT’s effects on reinforcement learning in a volatile
relative to a stable context (see Fig. 1). We also recorded subjects’
electroencephalographic signals and based on ERP indices used in
the field and their functional relevance13,22,23, the ERN, FRN, and
P300 were used as primary neural indices. The ERN and FRN are
two classical ERP components associated with signaling of the
mesolimbic dopamine system24,25 and have been widely used in
previous reinforcement learning studies13,23,26. Attention is one
of the most important factors influencing learning
performance27–29 and effects of OT on attentional processing
have also been reported in previous studies30–32. In the current
study we therefore used the P300 associated with attentional
resource allocation and stimulus salience as a primary neural
index of attentional processing33. We also additionally measured
the N2pc, an early component associated with visual selective
attention34–36, as our secondary index of attentional processing.
Thus, we had attentional ERP indices at both an early and a late
stage during learning. Furthermore, given that the present study
mainly focused on the effects of OT on volatile learning per se, we
deliberately utilized non-social rather than social feedback to
avoid observed effects being driven by social context or social
salience30,37,38. Based on reported facilitatory effects of OT on
reinforcement learning11–13, we hypothesized that, on the beha-
vioral level, OT would induce similar facilitatory effects on gen-
eral learning performance (e.g., choice accuracy) between stable
and volatile contexts. However, behavioral computational
mechanisms underlying stable and volatile contexts are different
with higher choice consistency being beneficial to learning per-
formance in the stable context but faster belief updates of choice-
outcome associations being preferred in the volatile context2,20.
The facilitatory effect of OT on learning performance of these two
contexts was therefore predicted to be via different computational
mechanisms (e.g., learning rate and choice consistency). On the
neural level, based on previous findings that OT decreased the
FRN and ERN by rendering the evaluation of positive and
negative feedback more equivalent13 and OT’s facilitatory effects
on attentional processing30,31,39,40, we hypothesized that while
OT would decrease ERN and FRN amplitudes indicative of a
diminished difference in conflict detection and evaluation
between positive and negative feedback, particularly in the stable
context, it would also increase N2pc and P300 amplitudes asso-
ciated with visual attentional processing and resource allocation.

The present study demonstrated a general facilitatory effect of
OT on increasing human learning performance independent of
learning contexts, which was paralleled by a larger early event-
related potential (N2pc) and a smaller late one (P300) on the
neural level following OT treatment. Further computational
modeling analyses revealed that while OT promoted learning by
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accelerating value update of outcomes in the volatile context, it
did so by increasing choice consistency in the stable one. Thus the
facilitatory effect of OT on learning may be exerted via improving
early attentional selection and late neural processing efficiency,
although at the computational level its actions are highly adaptive
depending on learning contexts. Our findings provide new
insights into the complexity of human learning and proof of
concept for intranasal OT’s therapeutic potential in normalizing
adaptive learning dysfunction.

Results
Demographics and questionnaires. Independent t-tests on per-
sonality traits (Table S1) and pre-and post-treatment measures of
positive and negative mood (Table S2) revealed no significant
differences between OT and PLC groups.

Intranasal OT increases choice accuracy independent of
learning context. A repeated-measures ANOVA on choice
accuracy of selecting the shape associated with the high-reward

probability with treatment (OT vs. PLC) as between-subject fac-
tor and context (stable vs. volatile) as within-subject factor
revealed a significant main effect of context (F (1,71)= 32.54,
p < 0.001, ƞp2= 0.31; Fig. 2a), with higher choice accuracy in the
stable than in the volatile context. The main effect of treatment
was also significant (F (1,71)= 4.30, p= 0.042, ƞp2= 0.06;
Fig. 2b), as reflected by a higher accuracy of subjects in the OT
than in the PLC group. However, the interaction between treat-
ment and context was not significant (F (1,71)= 0.10, p= 0.753,
ƞp2= 0.001).

Intranasal OT improves learning rates in the volatile context
but choice consistency in the stable context. Repeated-measures
ANOVAs were employed to analyze behavioral parameters from
the Reward-Punishment (RP) model. In terms of reward learning
rate, a significant main effect of context (F (1,71)= 3504.04,
p < 0.001, ƞp2= 0.98; Fig. 3a) was found, with a higher reward
learning rate in the volatile than in the stable contexts. There was
also a significant main effect of treatment (F (1,71)= 16.73,

Fig. 1 Experimental protocol and the modified associative learning task. a Subjects firstly filled personality trait questionnaires and then self-administered
either OT (24 IU) or PLC nasal spray randomly. The associative learning task began 45min after treatment. To further control for a potentially confounding
impact of mood changes, subjects were asked to complete the Positive and Negative Affect Schedule (PANAS) 3 times (pre-treatment, pre-task and post-
task). In the task, subjects were instructed to choose one of the two hiragana syllables that they considered being more likely associated with a reward
based on feedback displays (i.e., ‘correct’ or ‘incorrect’ or ‘no response’). The more points they accumulated, the more payment they would obtain. b The
associative learning task consisted of two blocks. In the stable block, choice-outcome contingencies were stable (shape A was associated with a high
reward probability of 75% and shape B was associated with a low reward probability of 25%). In the volatile block, choice-outcome contingencies were
volatile by switching contingencies every 20 trials (shape A) was associated with a high reward probability of 80% and shape B was associated with a low
reward probability of 20% for 20 trials and vice versa in another 20 trials. There were 180 trials in total with 80 trials in the stable block and 100 trials in
the volatile block. License: Icons in 1a were obtained from Flaticon.com under the free license with attribution.
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p < 0.001, ƞp2= 0.19), with reward learning rate being higher in
the OT than in the PLC group. Importantly, the interaction
between treatment and context was significant (F (1,71)= 7.72,
p= 0.007, ƞp2= 0.10; Fig. 3b). Post-hoc analyses showed that
while OT increased reward learning rate in the volatile context
compared to PLC (p < 0.001), it had no significant effect in the
stable context (p= 0.105).

For punishment learning rate, the main effect of context was
significant (F (1,71)= 234.96, p < 0.001, ƞp2= 0.77; Fig. 3c), with
punishment learning rate being higher in the volatile relative to
the stable contexts. Although the main effect of treatment was not
significant (F (1,71)= 0.15, p= 0.696, ƞp2= 0.002), the interac-
tion between treatment and context was significant
(F (1,71)= 16.10, p < 0.001, ƞp2= 0.19; Fig. 3d). Post-hoc tests
showed that, relative to PLC, OT significantly increased punish-
ment learning rate in the volatile (p= 0.046) but decreased it in
the stable context (p= 0.001).

The repeated-measures ANOVA on inverse temperature
showed a significant main effect of context (F (1,71)= 289.07,
p < 0.001, ƞp2= 0.80; Fig. 3e), with inverse temperature being
higher in the stable than in the volatile contexts. Importantly, the
interaction between treatment and context was also significant
(F (1,71)= 12.64, p= 0.001, ƞp2= 0.15; Fig. 3f). Post-hoc
analyses found that OT significantly increased subjects’ choice
consistency in the stable (p= 0.021) but not in the volatile
contexts (p= 0.451) compared to PLC. The main effect of
treatment was not significant (F (1,71)= 0.83, p= 0.364,
ƞp2= 0.01).

Intranasal OT has no impact on conflict detection and feed-
back evaluation. The ERN and FRN components were used to
investigate whether OT’s effects on learning were exerted via
modulation of conflict detection and feedback evaluation on the
neural level. Results showed no significant treatment effects for
either the ERN (Fig. 4) and FRN (Fig. 5) components. Given that
there was an error positivity (Pe) component following the FRN,
we also conducted an ANOVA on extracted Pe amplitudes and
found no significant effects (all ps ≥ 0.210; details see Supple-
mentary Results).

Intranasal OT enhances neural processing efficiency and early
attentional selection in both stable and volatile contexts. To
examine whether OT’s effects on learning were derived from eva-
luation of stimuli at a late stage, a repeated-measures ANOVA on the
peak value of the P300 component was conducted. Results only
revealed a significant main effect of treatment (F (1,71)= 6.88,

p= 0.011, ƞp2= 0.09), with P300 amplitude being lower following
OT compared with PLC treatment (3.75 ± 2.59 μv vs. 5.57 ± 3.31 μv;
Fig. 6a, b). Both the main effect of context (F (1,71)= 0.78,
p= 0.380, ƞp2= 0.01) and the interaction between treatment and
context were not significant (F (1,71)= 3.51, p= 0.065, ƞp2= 0.05).

For the N2pc, a repeated-measures ANOVA on difference
waveforms (contralateral minus ipsilateral waveform) showed a
significant main effect of treatment (F (1,71)= 9.75, p= 0.003,
ƞp2= 0.12), with a larger N2pc following OT compared with PLC
treatment across contexts (–0.29 ± 0.59 vs. 0.18 ± 0.70 μv;
Fig. 6c–f). However, the main effect of context (F (1,71)= 1.48,
p= 0.228, ƞp2= 0.02) and the interaction between treatment and
context were not significant (F (1,71)= 0.13, p= 0.720,
ƞp2= 0.002). Patterns of the N2pc component provided support
for preferential attentional selection of the optimal target at an
early stage.

Associations between trait anxiety, behavior, and ERP com-
ponents. Spearman correlation analyses found significant nega-
tive correlations between trait anxiety and inverse temperature in
both stable (r=−0.258, p= 0.028; Fig. 7a) and volatile contexts
(r=−0.283, p= 0.015; Fig. 7b) across groups, suggesting that
individuals with higher trait anxiety levels exhibited less choice
consistency in both contexts.

For associations between behavioral indices and ERP compo-
nents that were modulated by treatment, Spearman correlation
analyses showed a significant positive correlation between choice
accuracy and N2pc amplitudes in the PLC (r= 0.448, p= 0.006)
but not in the OT group (r=−0.104, p= 0.538; Fig. 7c) in the
volatile context, indicating that higher choice accuracy was
associated with a lower N2pc in the PLC group. The correlation
difference was also significant between the two groups (Fisher z-
score=−2.40, p= 0.016). However, there were no significant
correlations between choice accuracy and P300 amplitudes in the
stable and volatile contexts for either the OT or PLC groups (all
ps ≥ 0.347). In addition, Pearson correlation analyses showed a
significant positive correlation between P300 amplitudes and
inverse temperature in the OT (r= 0.343, p= 0.038) but not the
PLC group (r=−0.063, p= 0.716; Fig. 7d) in the stable context.
However, the correlation difference was only marginal between
the two groups (Fisher z-score=−1.72, p= 0.085).

Discussion
The present neuropharmacological study used a modified asso-
ciative learning task combined with computational modeling and
ERP to investigate whether effects of intranasal OT on

Fig. 2 Behavioral effects of OT on choice accuracy. a Accuracy of choosing the optimal shape in the stable and volatile contexts across treatment groups.
b Accuracy of choosing the optimal shape in the OT and PLC groups across contexts (*p < 0.05, **p < 0.01, ***p < 0.001). Error bars indicate standard error
of the mean.
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reinforcement learning varied as a function of different learning
contexts (stable vs. volatile associations). Results showed that,
compared to PLC, OT generally enhanced subjects’ choice
accuracy for the optimal shape independent of learning contexts.
However, further analyses based on computational modeling
suggested that OT acted differently in facilitating learning in these
two contexts. On the neural level, OT increased amplitudes of the
N2pc but decreased amplitudes of the P300 components inde-
pendent of learning contexts. In addition, we found that rein-
forcement learning performance was associated with individual
differences in trait anxiety.

More specifically, on the behavioral level we found that choice
accuracy was higher in the stable than the volatile contexts, which
is predictable given that it is easier for subjects to learn stable
choice-outcome associations than volatile ones. More impor-
tantly, we found that OT relative to PLC improved choice
accuracy across contexts, indicating a similar enhancement effect
of OT on reinforcement learning between the stable and volatile

contexts. This facilitatory effect of OT is consistent with previous
studies using a category association task11,12 or probabilistic
learning task13, although none of these studies included manip-
ulations of associations in a volatile context. Therefore, the pre-
sent study extends previous studies by demonstrating that
intranasal OT can facilitate reinforcement learning performance
in humans in volatile as well as stable contexts.

Furthermore, the RP model analyses provided us more insights
into the behavioral mechanisms underlying how learning occurs
in stable and volatile associations. In accordance with previous
studies2,20, reward and punishment learning rates were higher in
the volatile than in the stable context. By contrast, choice con-
sistency was higher in the stable than in the volatile context.
These findings are in accordance with the reinforcement learning
model such that while subjects have to update their expected
values more frequently and in a timely way in the volatile
environment, keeping choices more consistent is more beneficial
when choice-outcome associations are stable21. Interestingly,

Fig. 3 OT’s effects on reward, punishment learning rates and choice consistency as indicated by inverse temperature. a Reward learning rate in the
stable and volatile contexts across treatment groups. b Reward learning rate of OT and PLC groups in the two contexts. c Punishment learning rate in the
stable and volatile contexts across treatment groups. d Punishment learning rate of OT and PLC groups in the two contexts. e Inverse temperature in the
stable and volatile contexts across treatment groups. f Inverse temperature of OT and PLC groups in the two association contexts (*p < 0.05, **p < 0.01,
***p < 0.001). Error bars indicate standard error of the mean.
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Fig. 4 The error-related negativity (ERN) elicited in correct and incorrect trials following OT and PLC treatments. The ERN components at the electrode
of FCz in correct and incorrect trials following OT and PLC treatments in the stable (a, b) and volatile (c, d) contexts respectively and topographical maps
of difference waveforms.

Fig. 5 The feedback-related negativity (FRN) elicited by positive vs. negative feedback. The FRN potential at the electrode of FCz in response to positive
and negative feedback following OT and PLC treatments in the stable (a, b) and volatile (c, d) contexts respectively and topographical maps of difference
waveforms.
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significant negative correlations were found between trait anxiety
scores and inverse temperature in both stable and volatile con-
texts, namely individuals with higher trait anxiety were more
vulnerable to temporal feedback and made choices more ran-
domly. High trait anxiety individuals also have difficulty in
learning associations in an aversive environment (shock punish-
ment), as reflected by a negative correlation between trait anxiety
scores and learning rate2.

More importantly, OT increased both the reward and pun-
ishment learning rates in the volatile context, indicating that it
accelerates expected value updates for both the positive and
negative feedback. However, OT decreased punishment learning
rate but enhanced inverse temperature in the stable context,
suggestive of an inhibitory effect of OT on the impact from recent
negative feedback but a facilitatory effect on increasing choice
consistency of the optimal shape. Thus, OT’s actions on facil-
itating learning are highly adaptive depending on types of choice-

outcome associations although via different mechanisms in stable
and volatile contexts. Interestingly, while one recent behavioral
study with only stable association learning reported that intra-
nasal OT attenuated self-oriented relative to prosocial learning
partially by decreasing choice consistency41, another one using a
similar paradigm found no significant modulatory effects of a low
dose (9 IU) of OT administered via a nebulizer on learning rate or
choice consistency for both self-oriented and prosocial learning42.
Thus, the effects of OT on learning may vary depending on
learning orientation, doses and association contexts.

At the neural level, in contrast to our hypotheses we did not
find a modulatory effect of OT on either the ERN or FRN, sug-
gesting that the facilitatory effect of OT on reinforcement
learning under stable and volatile environment is not closely
associated with modulation of conflict monitoring and outcome
evaluation at an early stage. However, OT has been found to
decrease the FRN and ERN by rendering the evaluation of

Fig. 6 The modulatory effect of intranasal OT on the P300 and N2pc components. P300 amplitudes at the electrode Pz and topographical maps
following OT and PLC treatments in the stable (a) and volatile (b) contexts. N2pc component following OT and PLC treatments in the stable (c, d) and
volatile (e, f) contexts respectively.
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positive and negative feedback more equivalent in a probabilistic
learning task13. The discrepancy between the findings of this
previous study and the present one may be due to the different
learning environments in the two studies and the types of feed-
back. While choice-outcome associations were stable and the task
was split into a learning and a test phase in Zhuang et al. (2021)13,
the present study included both stable and volatile associations in
a learning phase and subjects were instructed to adjust their
choices based on real-time feedback. Furthermore, in the Zhuang
et al. (2021)13 social feedback was given in the form of happy and
grumpy faced emoticons whereas in the current study points
converted to a non-social monetary reward was used. There is
growing evidence showing that OT can also have effects in
nonsocial contexts43,44 and thus the present study also provides
new support for this in reinforcement learning under volatile
associations. The functional effects of OT on human behavior
have consistently been demonstrated to be influenced by the
nature of experimental tasks, contexts, and individual
differences6,45.

On the other hand, OT was found to decrease the P300
amplitude in response to pairs of shapes across learning contexts.
Given that the P300 has been proposed as a neural index of
attentional resource allocation33 or neural processing efficiency at
a late stage46,47, a smaller P300 following OT treatment may
suggest that it promotes less consumption of attentional resources
or more efficient neural processing of stimulus pairs. This argu-
ment can be further supported by a previous study where a
reduced P300 was found to be associated with a long-term
habituation effect that subjects gradually executed less cognitive
control on stimulus processing over the time-course of
learning48,49. However, such an OT-induced enhancement effect

on neural processing efficiency at a late stage has to be under-
pinned by preferential attentional selection of the optimal target
at an early stage. In other words, OT should firstly facilitate
attentional selection of the optimal shape after acquiring choice-
outcome associations and consequently less deep processing of
stimulus pairs is required at a late stage. To validate this
assumption, we further analyzed the N2pc component reflecting
early visually attentional selection34,35. Results supported our
assumption by demonstrating that OT increased the N2pc
amplitude in response to the optimal shape across learning
contexts, indicating that OT promoted selective attention to the
optimal shape at an early stage. Similar effects of OT on
improving attention to task-relevant social cues have also been
reported in previous studies50,51. Interestingly, there was a posi-
tive correlation in the stable context between P300 amplitudes
and inverse temperature in the OT group, namely subjects who
kept their choices more consistently exhibited a larger P300.
Thus, although OT decreased P300 amplitudes compared with
PLC, in the OT group per se increased choice consistency of the
optimal shape in the stable context tended to consume more
attentional resources during encoding of stimulus pairs. However,
given the methodology used and a lack of correlation between
P300 amplitudes and choice accuracy in the present study, we
cannot uncover the specific underlying mechanism and future
studies are needed. Furthermore, we also found a positive cor-
relation in the volatile context between values of the difference of
the ipsilateral subtracted from the contralateral waveform and
choice accuracy in the PLC group. Given that a contralateral
waveform being more positive relative to the ipsilateral one in
response to the optimal shape represents an opposite pattern of
the N2pc or a component of distractor positivity (PD), this

Fig. 7 Correlations between trait anxiety, behavior, and ERP components. Negative correlations between trait anxiety scores and inverse temperature in
the stable context (a) and in the volatile context (b) across groups. c The positive correlation between N2pc and choice accuracy following PLC but not OT
treatments in the volatile context. d The positive correlation between P300 and inverse temperature following OT but not PLC treatments in the stable
context.
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suggests that the suboptimal shape on the other side captured
more attention or that the optimal shape was attentionally
inhibited52. Thus, the positive correlation may be interpreted as
subjects in the PLC group with a higher choice accuracy pre-
ferring to switch choices earlier from the current optimal shape to
the suboptimal one, or to suppress the attentional processing of
the current optimal shape, which would both result in better
performance in the volatile context. However, OT disassociated
this positive correlation seen in the PLC group, perhaps by
selectively promoting choice accuracy of the optimal shape.
Taken together, these findings suggest that at the neural level OT
may facilitate reinforcement learning in the two learning contexts
similarly by improving attentional selection of optimal shapes at
an early stage and efficiency of neural processing at a late stage.

There are several limitations in the present study. First, only
male subjects were recruited and thus the present findings cannot
be extended to females. Secondly, although the use of non-social
feedback in the present study enables us to exclude confounding
effects from OT’s actions on social contexts, it is unclear whether
there will be similar or distinct effects of OT on reinforcement
learning using social feedback under stable and volatile associa-
tions. Future studies are needed to explore these aspects.

In summary, the present study has provided evidence for a
similar facilitatory effect of OT on learning under volatile and
stable choice-outcome associations using multi-methodological
approaches. OT generally increased choice accuracy across the
volatile and stable learning contexts, possibly via improving early
attentional selection of optimal targets and efficiency of neural
processing at a late stage. The computational modeling analysis
further revealed that the general enhancement effect of OT on
learning may be exerted via distinct behavioral mechanisms such
that while it facilitated learning via accelerating the update of
outcome predictions in the volatile context, it did this by
improving choice consistency in the stable context. Thus, OT’s
actions on facilitating learning are highly adaptive depending on
types of choice-outcome associations. Findings in the present
study not only provide new insights into the complexity of
human learning and its modulation but also provide proof of
concept evidence for the therapeutic potential of intranasal OT in
mental disorders with learning dysfunction such as anxiety.

Methods
Participants and treatment. Eighty healthy male students (mean
age = 20.65 years, SD= 1.77) were recruited from the University
of Electronic Science and Technology of China (UESTC) to
participate in the present double-blind, placebo-controlled,
between-subject pharmacological study. Based on an a priori
power analysis using the G*Power v.3.1 toolbox53 for a two-way
mixed analysis of variance (ANOVA), the sample size was ade-
quate to achieve a power >0.8 (effect size = 0.25, α= 0.05). All
subjects self-reported being free from current or past psychiatric,
neurological, or other medical conditions. They were instructed
to abstain from alcohol and caffeine for the 24 h prior to the
experiment and not to consume any food for 2 h before it.
7 subjects were excluded because of excessive eye movement
(resulted in <50% of the trials being left for analyses in each
condition; 3 subjects), self-reported fatigue (2 subjects) or noise
disturbance (2 subjects) during EEG acquisition. Consequently
37 subjects in the OT group and 36 subjects in the PLC group
were included in the final data analyses (mean age = 20.66 years,
SD= 1.80).

To control for potential confounding effects of individual
differences on personality traits and cognitive flexibility, subjects
completed validated Chinese versions of psychometric question-
naires before treatment, including the Autism Spectrum

Quotient54, State-Trait Anxiety Inventory55, Beck Depression
Inventory56,57, Sensitivity to Punishment and Sensitivity to
Reward Questionnaire58, Behavioral Inhibition System and
Behavioral Activation System Scale59, Cognitive Flexibility
Inventory60. To further control for a potentially confounding
impact of mood changes, subjects were asked to complete the
Positive and Negative Affect Schedule61 3 times: when they
arrived for the experiment (pre-treatment), 45 min after intrana-
sal treatment but before the task (post-treatment) and immedi-
ately after completing the task (post-task).

Subjects were randomly assigned into two groups (OT vs. PLC)
and self-administered either OT (OT-spray, Sichuan Defeng
Pharmaceutical Co. Ltd, China) or PLC (placebo; identical
ingredients with the OT-spray but without OT, i.e., sodium
chloride and glycerin) nasal spray. Following a standardized
protocol for intranasal OT administration62, 24 international
units (IU) of OT or PLC were administered with 3 puffs to each
nostril. The learning task began 45 min after treatment. All
subjects were provided with written informed consent before the
study and all procedures conformed with the latest version of the
Declaration of Helsinki and were approved by the ethical
committee of UESTC. The study was also pre-registered as a
clinical trial (NCT05245708).

Experimental task. The associative learning task was modified
from Browning et al. (2015)2 and consisted of two blocks. In the
stable block, choice-outcome contingencies were stable (shape A
was associated with a high reward probability of 75% and shape B
was associated with a low reward probability of 25%). In the
volatile block, choice-outcome contingencies were volatile by
switching contingencies every 20 trials (shape A was associated
with a high reward probability of 80% and shape B was associated
with a low reward probability of 20% for 20 trials and vice versa
in another 20 trials)2. There were 180 trials in total with 80 trials
in the stable block and 100 trials in the volatile block. Block order
was counterbalanced across subjects for each treatment group.

Each trial started with a jittered fixation (1500–2000 ms) that
changed to a question mark simultaneously with the presentation
of a pair of Japanese hiragana syllables (“よ” and “や”). These
syllables were unfamiliar to the Chinese subjects and were
presented for 3000 ms or until response. Subjects were instructed
to choose one of the two hiragana syllables that they considered
being more likely associated with a reward. Selection of the left
shape was made by pressing the “F” key and the right shape by
pressing the “J” key. Associations and positions of the two shapes
were counter-balanced across subjects. After a response, there was
another fixation interval (1000 ms) before the presentation of
feedback (2000 ms). In the feedback display, a green (correct
response) or a red (incorrect or no response) frame appeared
around the answer shape, with the real-time rewarding points in
the current trial and cumulative scores across trials being
presented below it. A correct response was rewarded by one
point (“+1”) and an incorrect response was given zero points
(“+0”). Given that we mainly focused on OT’s effects on dynamic
learning per se, we deliberately utilized these non-social rather
than social feedback to avoid observed effects being driven by
social context or salience30,37,38. If subjects did not respond in
time, a warning message “invalid trial” would be presented above
the frame. There were no cues indicating the block type before
each block. Subjects were instructed to optimize their choices in
real-time based on the feedback information to obtain as many
points as possible in order to maximize their payment. They were
all clearly informed that their final payment would correspond to
the total points earned during the task plus a basic participant fee.
Each point was worth 15 RMB cents. Consistent with Browning
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et al. (2015)2, the two blocks were completed sequentially without
breaks to avoid interruptions in the time course of association
learning, and lasted approximately 20 min. Ten practice trials
were performed by each subject before the main task. Subjects
were asked to keep their eyes on the displayed fixation cross to
minimize blinking and eye movements during the experiment.

EEG data collection and analyses. The EEG was recorded at a
sampling rate of 500 Hz using a 64-channel ActiCap system with a
Quick Amp amplifier (Brain Products GmbH, Germany). Signals
of all channels were online referenced to the Cz electrode (the
international 10–20 system). Electrode impedances were kept
below 5 kΩ. The EEGLAB 14.1.1 toolbox63 was used to preprocess
the raw data. The EEG data were down-sampled to 250Hz, filtered
with a Hamming windowed sinc FIR filter separately for high- and
low-pass filters (high-pass: 0.1 Hz, −6 dB cutoff: 0.05 Hz; low-pass:
40 Hz, −6 dB cutoff: 45 Hz), and offline re-referenced to the
average reference. Correction of eye movement artifacts was con-
ducted by independent component analysis (ICA).

For the ERN, in accordance with previous studies13, an epoch
from 800ms before and 500ms after the response was extracted
with the time window pre-response from 800ms to 700ms serving
as the ERN baseline. The FRN was time-locked to 200ms pre-
feedback and 1000ms post-feedback with a baseline from 200ms
to 0 ms pre-feedback. To remove the remaining artifacts after ICA,
epochs with voltage values exceeding ±80 µV were further
discarded from analyses64–66. This resulted in an average of
7.88% of ERN trials and 6.95% of FRN trials were excluded from
further analyses. The ERN was defined as the peak difference after
responses between correct and incorrect trials in the time window
of 0–60ms at electrode FCz13. The FRN was calculated as the peak
difference between positive and negative feedback in the time
window of around 252–352ms at electrode FCz67.

For the P300, EEG data was extracted from 200 ms before and
1000 ms after the onset of displayed stimuli from correct trials
with a baseline of 200 ms to 0 ms pre-onset. Similar to ERN and
FRN, epochs with voltage values exceeding ±80 µV were further
discarded from analyses and an average of 5.75% of trials were
excluded. The P300 peak amplitude was calculated in the time
window of 300–600 ms at the electrode Pz68,69. The correspond-
ing remaining epochs of each ERP component were averaged for
each condition in each subject. To examine whether OT
facilitated attentional selection of the optimal shape at an early
stage, we further analyzed the N2pc component, which is an
explicit index of early visual attentional selection with a more
negative amplitude in response to contralateral relative to
ipsilateral targets34–36. The N2pc component was segmented
using a time window between 100 ms pre-stimulus and 400 ms
post-stimulus from correct trials, with approximately 1.85% of
trials deleted from analyses. The ipsilateral waveform was
computed as the average of the left-sided electrode (PO7) to
the left-sided targets and the right-sided electrode (PO8) to the
right-sided targets, whereas the contralateral waveform was
computed as the average of the left-sided electrode to the right-
sided targets and the right-sided electrode to the left-sided
targets34,35. Peak amplitude of N2pc was calculated in the
200–252 ms time window at PO7 and PO8 electrodes70,71.

Computational model. To capture subjects’ learning perfor-
mance, especially the computational basis, in a more sensitive
way we employed a widely validated reinforcement learning
model with a hierarchical Bayesian parameter estimation referred
to as the RP model72,73. The RP model posits that positive and
negative feedback affect perseverative learning behavior differ-
ently and can provide more elaborate parameters to depict
learning behavior via trial-by-trial analyses. This model is
described by the following equations:

vA;ðtþ1Þ ¼
vA;ðtÞ þ αpos ´ RðtÞ � vA;ðtÞ

� �
; to positive feedback

vA;ðtÞ þ αneg ´ RðtÞ � vA;ðtÞ
� �

; to negative feedback

8><
>:

and

v�A;ðtþ1Þ ¼ v�A;ðtÞ

vA,(t+1) is subjects’ predicted outcome value of shape A on trial
t+ 1 and vA,(t) is the expected value of shape A on trial t. α pos is
the learning rate of reward and αneg is the learning rate of pun-
ishment (ranging from 0 to 1). The learning rate indicates the
extent to which the prediction error is utilized to update the
expected value and can reflect the speed of updating and learning
based on reward or punishment outcomes. R(t) represents the
actual outcome on trial t and R(t) – vA,(t) therefore means
the prediction error on trial t. v-A,(t+1) is the predicted outcome
value of the unchosen option. Note that only information of the
chosen stimulus is updated in this model. The probability of
choosing each shape is then modeled using a softmax choice
function as follows:

Ptþ1 Að Þ ¼ 1

1þ e�β�ððvtþ1 Að Þ�vtþ1ðBÞÞ

P is the probability of choosing shape A on trial t+ 1. The
inverse temperature parameter β represents subjects’ choice
consistency. A smaller β indicates more random choices, namely
less consistent choice making, and vice versa. The probability of
choosing shape B is 1 - P.

The RP model was estimated using a Markov Chain Monte
Carlo algorithm implemented in the hBayesDM package in R and
all Rhat values were less than 1.174. Normal priors have been
used for hyperparameters (μ ~ normal (0,1); σ ~ normal (0,0.2)).
Based on previous learning studies involved in the volatile
context2,20,72,75, we considered another two reinforcement learn-
ing models (Rescorla-Wagner (Delta) Model and Experience-
Weighted Attraction Model), which are also based on the classic
theory of Rescorla-Wagner and widely used in the field (for details
of these two models see Supplementary Computational model). To
determine whether the RP model best fitted our behavioral data,
we compared it with these two models using the Leave-One-Out
Information Criterion (LOOIC). The LOOIC estimates pointwise
out-of-sample prediction accuracy from a fitted Bayesian model76,
with a lower value of LOOIC suggesting a better model-fit. The
results indicated that the RP model was the best fitting model (see
Table 1).

To further confirm whether this model sufficiently captured
subjects’ actual choice behavior, we simulated subjects’ choice of

Table 1 Model comparison based on LOOIC in different contexts of OT and PLC groups.

Model Stable_OT Stable_PLC Volatile_OT Volatile_PLC

Reward and Punishment Model 2663 3117 3999 4084
Rescorla-Wagner (Delta) Model 2709 3036 4010 4147
Experience-Weighted Attraction Model 2675 3099 4017 4151
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the optimal shape in each trial for each condition and found that
this model fitted well with subjects’ actual choices (see Fig. S1).
For validation of the winning model, subjects’ choices in each trial
were simulated by using posterior prediction checks of these
estimated parameters in the RP model for each condition. Results
using the simulated data replicated findings of subjects’ actual
choices (details see Supplementary Computational model).

Statistics and reproducibility. Independent t-tests were con-
ducted to compare group differences on questionnaire scores of
mood and personality traits. For behavioral data, we focused on
the choice accuracy of selecting the optimal shape. A 2 × 2
ANOVA with treatment (OT vs. PLC) as between-subject factor
and context (stable vs. volatile) as within-subject factor was
performed on choice accuracy. After fitting the RP model in each
condition, behavioral parameters including the reward learning
rate, punishment learning rate, and inverse temperature were
obtained and were also analyzed using the treatment × context
ANOVAs respectively.

For the ERP data, to examine whether treatment effects on
reinforcement learning varied as a function of different learning
contexts (stable vs. volatile associations), we performed a 2 × 2
ANOVA with treatment as between-subject factor and context as
within-subject factor on ERN (difference amplitude: incorrect
minus correct response), FRN (difference amplitude: negative
minus positive feedback), N2pc (difference amplitude: contral-
ateral minus ipsilateral waveform), and P300. The Greenhouse-
Geisser correction was employed whereby assumptions of
sphericity were violated.

Furthermore, correlations between trait anxiety, behavioral
responses, modeling parameters and neural signals were tested
using Spearman or Pearson correlations depending on distribu-
tion of the data. Correlation differences between treatments were
tested using the Fisher z-transformation test.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
All data that support the findings of this study are openly available via the Open Science
Framework Repository (https://osf.io/5u837/).
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